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Abstract. Kalyna is an SPN-based block cipher that was selected during Ukrainian
National Public Cryptographic Competition (2007-2010) and its slight modifica-
tion was approved as the new encryption standard of Ukraine. In this paper, we
focus on the key-recovery attacks on reduced-round Kalyna-128/256 and Kalyna-
256/512 with meet-in-the-middle method. The differential enumeration technique
and key-dependent sieve technique which are popular to analyze AES are used to
attack them. Using the key-dependent sieve technique to improve the complex-
ity is not an easy task, we should build some tables to achieve this. Since the
encryption procedure of Kalyna employs a pre- and post-whitening operations
using addition modulo 264 applied on the state columns independently, we care-
fully study the propagation of this operation and propose an addition plaintext
structure to solve this. For Kalyna-128/256, we propose a 6-round distinguisher,
and achieve a 9-round (out of total 14-round) attack. For Kalyna-256/512, we
propose a 7-round distinguisher, then achieve an 11-round (out of total 18-round)
attack. As far as we know, these are currently the best results on Kalyna-128/256
and Kalyna-256/512.

Keywords: Block Cipher, Kalyna, Meet-in-the-Middle Attack, Differential Enu-
meration Technique, Key-Bridging Technique.

1 Introduction

Block cipher Kalyna [14,13] was selected during Ukrainian National Public Crypto-
graphic Competition (2007-2010) and its slight modification was approved as the new
encryption standard DSTU 7624:2014 of Ukraine in 2015. Kalyna-b/k has five variants,
i.e, Kalyna-128/128, Kalyna-128/256, Kalyna-256/256, Kalyna-256/512 and Kalyna-
512/512, where b is the block size and k is the key size.

In recent years, meet-in-the-middle attack is widely researched due to its effective-
ness against block cipher AES [3]. At FSE 2008, Demirci and Selçuk give meet-in-the-
middle attacks on AES based on δ -set (a set of plaintexts where one byte can take all the
256 different values and the other bytes remain constant). More specifically, the value
of each byte after 4-round AES encryption is a function of the δ -set parameterized by
25 [5] and 24 [6] byte-parameters. They use this function to build a distinguisher in
the precomputation phase, i.e., store all the sequences constructed from the δ -set in a
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lookup table. In the online phase, a δ -set must be identified from the plaintexts, and
then partially decrypt the δ -set through the last few rounds and test whether it is in the
table. To solve the memory problems of the Demirci and Selçuk attacks, Dunkelman et
al. propose many contributions at ASIACRYPT 2010 [9]. First of all, they use multiset,
i.e., an unordered sequence that elements can occur many times, instead of the ordered
sequence. Their major contribution is the differential enumeration technique which is
based on a special property of a truncated differential trail that greatly reduce the num-
ber of byte-parameters of Demirci and Selçuk attack from 24 to 16. At EUROCRYPT
2013, Derbez et al. propose a rebound-like idea called efficient tabulation to improve
the differential enumeration technique [7]. They find that the precomputation table can-
not take all the possible values under the constraint of a special truncated differential
trail. Actually, the number of byte-parameters is reduced to 10. After that, a new im-
provement is introduced by Li et al. at FSE 2014, called key-dependent sieve technique
[11]. With this technique, some unreachable values in the precomputation table can be
filtered by some relations of sub-keys. In [2], 7-round meet-in-the-middle attacks on
Kalyna-128/256 and Kalyna-256/512 are given by AlTawy et al. And in [1], Akshima
et al. give 9-round meet-in-the-middle attacks on Kalyna-128/256 and Kalyna-256/512.

Our contributions. In this paper, we focus on the key-recovery attacks on reduced-
round Kalyna-128/256 and Kalyna-256/512 with meet-in-the-middle method. First, a
6-round distinguisher on Kalyna-128/256 is presented using the key-dependent sieve
technique and differential enumeration technique. By adding three rounds at the end, a
9-round meet-in-the-middle attack on Kalyna-128/256 is introduced with time com-
plexity of 2208.38 9-round Kalyna-128/256 encryptions, memory complexity of 2204

128-bit blocks and data complexity of 2127 chosen-plaintexts. After that, with a 7-round
distinguisher and an addition plaintext structure (the usual structure is tweaked to bet-
ter fit the modular addition), an attack on 11-round Kalyna-256/512 is introduced by
adding one round at the beginning and three rounds at the end with time complexity
of 2425 11-round Kalyna-256/512 encryptions, memory complexity of 2403.5 256-bit
blocks and data complexity of 2233 chosen-plaintexts. As far as we know, these are cur-
rently the best attack results on Kalyna-128/256 and Kalyna-256/512. We present here
a summary of our attack results on Kalyna-128/256 and Kalyna-256/512, and compare
them to the best attacks known for them. This summary is given in Table 1.

Table 1. Summary of the best attacks on Kalyna-128/256 and Kalyna-256/512.

Cipher Attack type Rounds Data Memory (Blocks) Time (Enc) Source
Kalyna-128/256 MITM 7 289 CPs 2202.64 2230.2 [2]

MITM 9 2105 CPs 2226.86 2245.83 [1]
MITM 9 2127 CPs 2204 2208.38 Sec. 3

Kalyna-256/512 MITM 7 2233 CPs 2170 2502.2 [2]
MITM 9 2217 CPs 2451.45 2477.82 [1]
MITM 11 2233 CPs 2403.5 2425 Sec. 4

CPs: Chosen-Plaintexts.
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Organizations of this paper. In Section 2, we describe Kalyna with some definitions
and properties used throughout this paper, and then review the former works of meet-
in-the-middle attack. In Section 3, we give our attack on 9-round Kalyna-128/256. In
Section 4, we give our attack on 11-round Kalyna-256/512. In Section 5, we conclude
this paper.

2 Preliminaries

In this section we give a short description of Kalyna with some definitions and propo-
sitions used throughout this paper. After that, we review the former works of meet-in-
the-middle attack. Finally, the attack scheme is given.

2.1 Description of Kalyna

The encryption procedures of Kalyna-128/256 and Kalyna-256/512 run a round func-
tion for 14 and 18 times on a byte matrix of size 8× 2 and 8× 4 respectively, and the
bytes are numbered column-wise. As shown in Fig. 1, the encryption procedure em-
ploys a pre- and post-whitening operations using addition modulo 264 applied on the
state columns independently. Each round function consists of four basic operations:

Su
b
B
yt
e

Sh
if
tR
o
w

M
ix
C
o
lu
m
n

Su
b
B
yt
e

Sh
if
tR
o
w

M
ix
C
o
lu
m
n

rki

P C

rk0 rkR

R-1 times

Fig. 1. Kalyna encryption function. Here, R is the number of rounds.

– SubByte (SB): Apply the non-linear 8× 8 S-boxes in parallel on each byte of the
state.

– ShiftRow (SR): A transformation that cyclically right shifts the rows of the state.
The value of the shift is given by b i·b

512c, where i = 0,1, · · · ,7 and b denote the row
number and state size, respectively.

– MixColumn (MC): A transformation that multiplies the columns of the state inde-
pendently with an 8×8 MDS matrix.

– AddRoundKey (AK): The ith b-bit round key rki is xored to the state.

The key-schedule of Kalyna is quite complicated, we refer to [14] for the details.
We only give one important property of the key-schedule, i.e., odd indexed sub-keys are
linearly computed from their previous even indexed sub-keys according to the formula:

rki = rki−1 ≪ (b/4+24),
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where ≪ denotes circular left shift operation.
In this paper, let xi denote the internal state entering Round i, and let yi, zi and wi

denote the internal states after the SubByte, ShiftRow and MixColumn operations of
Round i, respectively. Let xi[ j] denote the jth byte of Round i, xi[ j.w] denote the wth

bit of xi[ j], xi[ j0 − j1] denote the jth0 byte to the jth1 byte of xi and xk
i [ j] denote the kth

element of a set of some xi[ j]. Let ∆xk
i [ j] denote the difference of the kth element and

0th element of a set, i.e., ∆xk
i [ j] = xk

i [ j]⊕ x0
i [ j].

We denote the sub-key of Round i by rki+1. Since MixColumn and AddRound-
Key are linear operations, we can firsty xor the data with an equivalent sub-key rui =
MC−1(rki) and then apply the MixColumn operation.

2.2 Definitions and Propositions

First of all, we give some definitions of particular structures of messages used in the
attacks.

Definition 1 (δ -set of byte, [3]). Let a δ -set be a set of 28 states that are all different
in one state byte (active byte) and all equal in the other state bytes (inactive bytes).

Definition 2 (Multiset of bytes, [7]). A multiset generalizes the set concept by allow-
ing elements to appear more than once. Here, a multiset of 256 bytes can take as many
as

(28+28−1
28

)
≈ 2506.17 different values.

Definition 3 (2-Multiset, [12]). A 2-multiset is a multiset of 256 values where each
value consists of two bytes. A 2-multisets can take as many as

(216+28−1
216−1

)
≈ 22412.72

different values.

In [4], Daemen et al. gave the definition of Super-box for AES. For Kalyna, we can
give a similar definition as follows.

Definition 4 (Super-box). For each value of one column of rk2, a Kalyna Super-box
maps one column of z1 to one column of y2 as shown in Fig. 2. It consists of one SB
operation, one MC operation, one AK operation and one SB operation.

For one S-box, we have the following proposition.

Proposition 1 (Differential Property of S-box, [7]). Given ∆i and ∆0 two non-zero
differences, the equation of S-box

S(x)⊕S(x⊕∆i) = ∆0, (1)
has one solution in average.

This proposition also applies to Super-box.

Proposition 2 (Differential Property of Super-box). Given ∆i and ∆0 two non-zero
differences in F264 , the equation of Super-box

Super−S(x)⊕Super−S(x⊕∆i) = ∆0, (2)
has one solution in average for each key value.

For rui, we have the following proposition.
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Fig. 2. Super-box for Kalyna.

Proposition 3. As shown in Fig. 2, if the first column of z1 is active only in the first
4 bytes, z1[0− 3]||y2[0− 7] has one solution in average for each ∆z1[0− 3]||∆y2[0−
8]||ru2[0−3].

Proof. We use the equivalent sub-key in this proof. For each y2[0− 7] and ru3[0− 3],
since ∆y4[0−7] is known, one can get w1[0−7] and ∆w1[0−7]. With the probability
of 2−32, y1[0−7] is active only in the first four bytes. By adding ru2[0−3], one can get
∆z1[0−3].

Therefore, for each ∆i and ∆0, the average number of input values of Super-box is
264−32−32 = 1 for each equivalent sub-key.

�

2.3 Reviews of Former Works

In this section, we review the previous meet-in-the-middle distinguishers on AES in
[5,9,7,11].
Demirci and Selçuk distinguisher. Consider the set of functions

f : {0,1}8 −→ {0,1}8

that maps a byte of a δ -set to another byte of the state after four AES rounds. A conve-
nient way is to view f as an ordered byte sequence ( f (0), . . . , f (255)) so that it can be
represented by 256 bytes. This set is tiny since it can be described by 25 byte-parameters
(225·8 = 2200) compared with the set of all functions of this type which counts as
may as 28·28

= 22048 elements [5]. Considering the differences ( f (0)− f (0), f (1)−
f (0), . . . , f (255)− f (0)) rather than values, the set of functions can be described by 24
byte-parameters [6]. The 24 byte-parameters which map x1[0] to ∆x5[0] are presented
as gray cells in Fig. 3.
Dunkelman et al. distinguisher and Derbez et al. distinguisher. In [9], Dunkelman et
al. introduced two new improvements to further reduce the memory complexity of [6].
The first uses multiset which is an unordered sequence with multiplicity to replace or-
dered sequence in the offline phase, since there is enough information so that the attack
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Fig. 3. The 4-round AES distinguisher used in [6]. The gray cells represent 24 byte-parameters,
δ represents the δ -set and m represents the differential sequence to be stored.

succeeds. The second improvement uses a novel idea named differential enumeration
technique. The main idea of this technique is to use a special 4-round property on a
truncated differential trail to reduce the number of parameters which describes the set
of functions from 24 to 16.

In [7], Derbez et al. used the efficient tabulation to improve Dunkelman et al.’s
differential enumeration technique. Combining with the rebound-like idea, many values
in the precomputation table are not reached at all under the constraint of a truncated
differential trail.

Proposition 4 (Differential Enumeration Technique with Efficient Tabulation, [7]).
If a message of δ -set belongs to a pair conforming to the 4-round truncated differential
trail outlined in Fig. 4, the values of multiset are only determined by 10 byte-parameters
of intermediate states ∆z1[0]||x2[0,1,2,3]||∆x5[0]||z4[0,1,2,3] presented as gray cells
in Fig. 4.

SB

SR

1z1x 2x

MC

ARK

1 round

3x 4z

1 round

5x3y

SB SR

MC,ARK

Fig. 4. The truncated differential trail of 4-round AES used in [5], the gray cells represent 10
byte-parameters, ∆ represents difference.

The main idea of their works is that suppose one gets a pair of messages conforming
to this truncated differential trail, ∆x3 is determined by ∆z1[0]||x2[0,1,2,3] and ∆y3 is
determined by ∆x5[0]||z4[0,1,2,3]. By Proposition 1, part of the 24 byte-parameters in
the Demirci and Selçuk distinguisher, i.e. x3, can be determined. Therefore, the number
of parameters which determines the size of the precomputation table reduces from 16
to 10. In the rest of this paper, when we speak of differential enumeration technique,
we mean differential enumeration technique with efficient tabulation.

Key-dependent sieve technique. At FSE 2014, Li et al. introduced the key-dependent
sieve technique, which filters the wrong states based on the key relations, to further
reduce the complexity in the precomputation phase of the attack on AES-192 [11].
More specifically, as shown in Fig. 5, the precomputation procedure allows to deduce
ru2[3,6,9,12] and rk3, independently. Meanwhile, by the key schedule of AES-192,
it is obviously that the knowledge of rk3 allows to deduce columns 0 and 1 of rk2.
This means that the value of the equivalent sub-key ru2[3,6] can be deduced from rk3.
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Thus there exists a contradiction between ru2[3,6] and rk3 with a probability of 2−16.
Therefore, the size of precomputation table is improved by a factor of 216.

2 2 3

MixColumn KeySchedule

Fig. 5. Key-dependent sieve technique based on the key schedule algorithm of AES-192

2.4 Attack Scheme

In this section, we present a unified view of the meet-in-the-middle attack, where R
rounds of block cipher can be split into three consecutive parts: r1, r, and r2, such that
a particular set of messages may verify a certain property we denote F in the sequel in
the middle r rounds as shown in Fig. 6.

r roundsr1 rounds r2 rounds

Fig. 6. General scheme of meet-in-the-middle attack, where some messages in the middle rounds
may verify a certain F property used to perform the meet-in-the-middle method.

The general attack scheme uses two successive phases:

Precomputation phase
1. In the precomputation phase, we build a lookup table T containing all the pos-

sible sequences constructed from a δ -set such that one message verifies a trun-
cated differential trail.

Online phase
2. In the online phase, we need to identify a δ -set containing a message m veri-

fying the desired property. This is done by using a large number of plaintexts
and ciphertexts, and expecting that for each key candidate, there is one pair of
plaintexts satisfying the truncated differential trail.

3. Finally, we partially decrypt the associated δ -set through the last r2 rounds and
check whether it belongs to T .
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3 Meet-in-the-Middle Attack on 9-Round Kalyna-128/256

In this section, we first propose a 6-round meet-in-the-middle distinguisher with differ-
ential enumeration technique and key-dependent sieve technique on Kalyna-128/256.
Then, we apply this distinguisher to 9-round Kalyna-128/256 by adding 3 rounds at the
end.

3.1 6-Round Distinguisher on Kalyna-128/256

Since the branch number of MC operation is 9, if the differences in any eight out of
sixteen input/output bytes are known, then the differences in the other eight bytes are
uniquely determined. If z5[4−7] and w5[4−7] are known, w5[3] = 0x67 · z5[4]⊕0x80 ·
z5[5]⊕0x90 ·z5[6]⊕0x20 ·z5[7]⊕0x6a ·w5[4]⊕0x1b ·w5[5]⊕0xde ·w5[6]⊕0xeb ·w5[7].
Let ein = 0x67 · z5[4]⊕0x80 · z5[5]⊕0x90 · z5[6]⊕0x20 · z5[7] and eout = x6[3]⊕0x6a ·
x6[4]⊕0x1b · x6[5]⊕0xde · x6[6]⊕0xeb · x6[7], then ∆eout = ∆ein.

Besides, since rk3 = rk2 ≪ 56 and ru2[0] = 0xad · rk2[0]⊕ 0x95 · rk2[1]⊕ 0x76 ·
rk2[2]⊕0xa8 ·rk2[3]⊕0x2 f ·rk2[4]⊕0x49 ·rk2[5]⊕0xd7 ·rk2[6]⊕0xca ·rk2[7], we have
ru2[0] = 0xad · rk3[9]⊕0x95 · rk3[10]⊕0x76 · rk3[11]⊕0xa8 · rk3[12]⊕0x2 f · rk3[13]⊕
0x49 ·rk3[14]⊕0xd7 ·rk3[15]⊕0xca ·rk3[0]. Let χ0 denote 0xad ·x3[9]⊕0x95 ·x3[10]⊕
0x76 · x3[11]⊕ 0xa8 · x3[12]⊕ 0x2 f · x3[13]⊕ 0x49 · x3[14]⊕ 0xd7 · x3[15]⊕ x3[0] and
χ ′

0 denote 0xad ·w2[9]⊕0x95 ·w2[10]⊕0x76 ·w2[11]⊕0xa8 ·w2[12]⊕0x2 f ·w2[13]⊕
0x49 ·w2[14]⊕0xd7 ·w2[15]⊕w2[0]⊕ru2[0], we can deduce χ0 = χ ′

0. Similarly, we can
define χi and χ ′

i for ru2[i], where i = 1,2,3,12,13,14,15. Therefore, we can define χ

and χ ′ as follows:

χ = (χ0,χ1,χ2,χ3,χ12,χ13,χ14,χ15) (3)
χ
′ = (χ ′

0,χ
′
1,χ

′
2,χ

′
3,χ

′
12,χ

′
13,χ

′
14,χ

′
15).

The 6-round distinguisher on Kalyna-128/256 is based on the proposition below.

Proposition 5. If a message m belongs to a pair of states conforming to the truncated
differential characteristic of Fig. 7(a), then the multiset of differences ∆eout obtained
from the δ -set constructed from m in x0, where x0[15] is the active byte, can only take
about 2216 values.

Proof. As shown in Fig. 7(a), for the encryption of the δ -set, the output multiset is
determined by the 52 byte-parameters:

x0
1[0−7]||x0

2||rk3||rk4[4−11]||rk5[12−15] (4)

At Round 0, the differences (x0
0[15]⊕ x0

0[15],x1
0[15]⊕ x0

0[15], · · · ,x255
0 [15]⊕ x0

0[15])
are known — these are exactly the 256 possible differences in byte 15 (the rest of the
bytes are equal). Note that the order of the differences are not known, but this does not
disturb the adversary since in our attack he is interested only in the multiset and not
in the sequence. Since the SR, MC and AK operations are linear, ∆xm

1 [0− 7] is also
known, where m = 0,1, · · · ,255. Since we have guessed the value of x0

1[0−7], we can
deduce ∆ym

1 [0−7] = S(x0
1[0−7])⊕S(x0

1[0−7]⊕∆xm
1 [0−7]). And since the SR, MC and
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AK operations are linear, ∆xm
2 can be deduced. Similarly, ∆xm

3 can be deduced by the
knowledge of x0

2. Since x0
3 can be deduced from x0

2 and rk3, ∆xm
4 [4−11] can be deduced

by the knowledge of rk3. Since x0
4[4− 11] can be deduced from x0

3 and rk4[4− 11],
∆xm

5 [12−15] can be deduced by the knowledge of rk4[4−11]. Since x0
5[12−15] can be

deduced from x0
4[4−11] and rk5[12−15], ∆zm

5 [4−7] can be deduced by the knowledge
of rk5[12−15]. Then we get the value of em

in ⊕ e0
in. Since em

out ⊕ e0
out = em

in ⊕ e0
in, we can

get the corresponding multiset of ∆eout .
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x1 y1z1 w1rk1ru1
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SB SR MCMC

x2 y2 z2 w2rk2ru2
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SB SR MCMC

x3 y3 z3 w3rk3ru3
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SB SR MCMC

x4 y4 z4 w4rk4ru4
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x5 y5 z5 w5rk5ru5
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Round 2
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x8 y8 z8 w8rk8ru8
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Round 6
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Crk9ru9

Round 8
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Round 0MC

x0rk0ru0

6-Round Distinguisher

(a) Precomputation phase (b) Online phase

inactive byte active byte
key-byte can be deduced from the 
truncated differential trail 

key-byte can be deduced from 
other key-bytes

Fig. 7. The attack on 9-round Kalyna-128/256. The 6-round distinguisher is shown in (b), the
online phase is shown in (b).
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However, if a pair of messages (m0,m1) conforms to the truncated differential trail
outlined in Fig. 7(a), the above 52 byte-parameters are determined by the 38 byte-
parameters (the values are corresponding to m0 and the differences are corresponding
to m0 ⊕m1):

∆z0[7]||x1[0−7]||y3||y4[4−11]||y5[12−15]||∆z5[4] (5)

Since ∆z0[7] is known, we can get ∆x1[0− 7]. Since ∆y1[0− 3,12− 15] can be
deduced by the knowledge of x1[0 − 7], we can deduce ∆x2. For the backward di-
rection, since ∆z5[0,1,2,3] = ∆w5[0,1,2] = 0, we can deduce ∆z5[5] = 0x13 ·∆z5[4],
∆z5[6] = 0x30 ·∆z5[4] and ∆z5[7] = 0xb2 ·∆z5[4]. So we can get ∆z5[4− 7]. For the
same reason as the forward direction, ∆y2 can be deduced by the knowledge of y5[12−
15]||y4[4− 11]||y3||∆z5[4− 7]. According to Proposition 1, we get one value of inter-
mediate state x2||y2 on average for the fixed difference ∆x2||∆y2. Apparently, ru2[0−
3,12−15]||rk3||rk4[4−11]||rk5[12−15] is also deduced for every 38 byte-parameters
(by letting m0 be corresponding to the 0th element of the δ -set).

Since rk3 can be deduced from x2 and y3 and ru2[0− 3,12− 15] can be deduced
from x1[0− 7] and x2, this means that we can get rk3 and ru2[0− 3,12− 15] indepen-
dently. According to the key-schedule of Kalyna-128/256, ru2[0− 3,12− 15] can be
deduced from rk3. Thus there exists a contradiction between ru2[0−3,12−15] and rk3
with a probability of 2−64. Therefore, the size of precomputation table is improved by
a factor of 264. Similarly, since we can get rk4[4,5,6] and rk5[13,14,15] independently
and rk4[4,5,6] can be deduced from rk5[13,14,15] by the key-schedule, there exists a
contradiction between rk4[4,5,6] and rk5[13,14,15] with a probability of 2−24. There-
fore, By the key-dependent sieve technique, there are 2216 possible values for the 38
byte-parameters. So the 52 byte-parameters (4) are determined by 38 byte-parameters
(5), i.e., the multiset of ∆eout can take about 2216 values.

�

3.2 Attack on 9-Round Kalyna-128/256

The attack is made up of two phases: precomputation phase and online phase (we
change the order of SB and SR at Round 1 and Round 7).
Precomputation phase: In the precomputation phase, we need to build a table T3
that contains all the the multisets of ∆eout described in Propostion 5. To use the key-
dependent sieve technique to improve the complexity, we need to build two more tables
T1 and T2. Otherwise, we need to build two more tables T 1

4 and T 2
4 for online phase.

1. As shown in Fig. 7(a), for each value of ∆z5[4]||∆w4[12−15]||∆w3[4−11]: com-
pute ∆z5[4− 7] since ∆z5[0,1,2,3] = 0 and ∆w5[0,1,2] = 0. Deduce x5[12− 15]
and x4[4− 11] according to Proposition 1. Deduce rk5[12− 15] from x5[12− 15]
and x4[4− 11], then compute w3[4,5,6] from x4[4,5,6] and rk5[12,13,14]. Store
rk5[12 − 15]||x4[7 − 11] in a table T1 with the index of w3[4,5,6]||∆w3[4 − 11].
There are about 216 values for each index.

2. For each value of ∆x3||∆w3[4−11], deduce x3||y3 according to Proposition 1. De-
duce χ and w3[4−11] from x3. Store x3||w3[4−11]||∆w3[4−11] in a table T2 with
the index of χ||∆w2. There is about 1 value for each index.
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3. For each 64-bit value of ru2[0−3,12−15], do the following sub-steps.
(a) For all 2136 values of ∆z0[7] and ∆w2, deduce ∆z1[0− 3,12− 15] and ∆y2.

According to Proposition 3, we can get z1[0− 3,12− 15] and y2. Deduce χ ′

from ru2[0− 3,12− 15] and y2. Look up the table T2 to get about one value
of x3||w3[4− 11]||∆w3[4− 11] with the index of χ ′||∆w2. Then look up the
table T1 to get about 216 values of rk5[12− 15]||x4[7− 11] with the index of
w3[4,5,6]||∆w3[4−11]. Deduce rk4[4−11] from rk5[13,14,15], x4[7−11] and
w3[7 − 11], and deduce rk3 from x3 and y2. Therefore, we get the 52 byte-
parameters (4).

(b) For each of the 52 byte-parameters we get, compute the multiset of ∆eout , and
store them in a table T3.

4. We build two more tables T 1
4 and T 2

4 for online phase.
(a) As shown in Fig. 7(b), for all 2168 values of ∆z6[3,12,13,14,15]||∆y8[0 −

7]||rk8[0− 7], deduce ∆z7[0− 7]. Then deduce z7[0− 7]||y8[0− 7] according
to Proposition 2. Deduce z8[0− 3,12− 15] and ∆z8[0− 3,12− 15], and store
z8[0− 3]||∆z8[0− 3]||rk8[7]||x7[0− 7]||∆z6[3,12,13,14,15] in a table T 1

4 with
the index of rk8[0−6]||z8[12−15]||∆z8[12−15]. There are 248 values for each
index.

(b) For all 2168 values of ∆z6[3,12,13,14,15]||∆y8[8 − 15]||rk8[8 − 15], deduce
∆z7[8− 15], and deduce z7[8− 15] and y8[8− 15] according to Proposition 2.
Deduce z8[4−11] and ∆z8[4−11], and store z8[8−11]||∆z8[8−11]||rk8[15]||z7[
8−15]||∆z6[3,12,13,14,15] in a table T 2

4 with the index of rk8[8−14]||z8[4−
7]||∆z8[4−7]. There are 248 values for each index.

Online phase: In the online phase of the attack, we first find at least one pair which
satisfies the truncated differential trail in Fig. 7(a). To find the right pair, instead of
guessing the sub-keys and checking whether this pair satisfies the truncated differential
trail, we deduce the sub-keys which make it satisfy the truncated differential trail for
each pair. Then we identify the δ -set, caculate the corresponding mutiset of ∆eout and
check whether it belongs to the table T3.

1. Phase A – Detecting the right pair.
Define a structure of 28 plaintexts where P[15] take all the possible values, and
the remaining 15 bytes are fixed to some constants. Hence, we can generate 28 ×
(28 − 1)/2 ≈ 215 pairs satisfying the plaintext difference. Choose 2105 structures
to get about 215+105 = 2120 pairs. As shown in Fig. 7(b), the probability to get the
truncated differential trail in the forward and backward direction is 2(1−16)×8 =
2−120, then about 1 pair follows the truncated differential trail for each guess of the
key.

2. Phase B – Checking the δ -set.
For each of the 2120 remaining pairs, we do the following sub-steps.
(a) Guess rk9[0− 7], and deduce rk8[7− 14], z8[0− 7] and ∆z8[0− 7]. Look up

the table T 2
4 to get about 248 values of z8[8− 11]||∆z8[8− 11]||rk8[15]||z7[8−

15]||∆z6[3,12,13,14,15] with the index of rk8[8− 14]||z8[4− 7]||∆z8[4− 7].
Store z7[8 − 15]||rk9[0 − 7] in a table T 1

5 with the index of ∆z8[0 − 3,8 −
11]||z8[0− 3,8− 11]||rk8[7,15]||∆z6[3,12,13,14,15]. The size of this table is
2112.
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(b) Guess rk9[8−15], and deduce rk8[0−6,15], z8[8−15] and ∆z8[8−15]. Look
up the table T 1

4 to get about 248 values of z8[0− 3]||∆z8[0− 3]||rk8[7]||z7[0−
7]||∆z6[3,12,13,14,15] with the index of rk8[0−6]||z8[12−15]||∆z8[12−15].
Store z7[0 − 7]||rk9[8 − 15] in a table T 2

5 with the index of ∆z8[0 − 3,8 −
11]||z8[0− 3,8− 11]||rk8[7,15]||∆z6[3,12,13,14,15]. The size of this table is
2112.

(c) Merge T 1
5 and T 2

5 with the index of ∆z8[0−3,8−11]||z8[0−3,8−11]||rk8[7,15]
||∆z6[3,12,13,14,15] and get about 240 values of rk9||z7||∆z6[3,12,13,14,15].
Guess ∆x6[3], and deduce ∆x6[3−7] since ∆x6[0,1,2] = 0 and ∆z5[0−3] = 0.
According to Proposition 1, we can deduce z6[3,12,13,14,15] from ∆x6[3,4,5,
6,7] and ∆z6[3,12,13,14,15]. Deduce ru7[3,12,13,14,15] from z6[3,12,13,14,
15] and x7. Therefore, we get about 248 values of rk9 (rk8 can be deduced from
rk9) and ru7[3,12,13,14,15].

(d) Pick one member of the pair and get the δ -set where P[15] is the active byte,
then get the corresponding ciphertexts. For about 248 values of rk9, rk8 and
ru7[3,12,13,14,15], decrypt the ciphertexts through the last 3 rounds and get
the multiset of ∆eout . Check whether it lies in the precomputation table T3. If
not, try another one.

3. Exhaustively search the rest of the key: Since the key-schedule algorithm of
Kalyna does not allow recovery of master key from any subkey. As rk9, rk8 and
ru7[3,12,13,14,15] have been recovered, we can recover all the sub-keys follow-
ing the method in [2].

Complexity analysis. The probability for a wrong guess to pass this test is 2216−506.17 ≈
2−290.17 [7]. In the precomputation phase, in order to construct T3, we need to perform
2216 partial encryptions on 28 messages. The time complexity of this phase is about
2216+8−1.62 = 2222.38 9-round Kalyna-128/256 encryptions, the memory complexity is
about 2216+2 = 2218 128-bit blocks. In the online phase, the major time complexity
comes from step 2a and 2b, so the time complexity of this phase is about 2120+64−3+1 =
2182 9-round Kalyna-128/256 encryptions, the data complexity is 28+105 = 2113 chosen-
plaintexts. With data/time/memory tradeoff, the adversary only need to precompute a
fraction of 2−14 of possible sequences, then the time complexity becomes 2222.38−14 =
2208.38, the memory complexity becomes 2204 128-bit blocks. But in the online phase
, the adversary will repeat the attack 214 times to offset the probability of the failure.
So the data complexity increases to 2127 chosen-plaintexts, and the time complexity
increases to 2196. In total, the time complexity of this attack is 2208.38 9-round Kalyna-
128/256 encryptions, the data complexity is 2127 chosen-plaintexts and the memory
complexity is 2204 128-bit blocks.

4 Meet-in-the-Middle Attack on 11-Round Kalyna-256/512

In this section, we first propose an addition plaintext structure and a 7-round meet-
in-the-middle distinguisher with differential enumeration technique and key-dependent
sieve technique on Kalyna-256/512. Then, we apply these to 11-round Kalyna-256/512
by adding one round at the beginning and three rounds at the end.
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4.1 Addition Plaintext Structure

Considering the plaintext structure of meet-in-the-middle attacks on AES and other
block ciphers, i.e., some bytes of the plaintexts take all the possible values while the
other bytes remain constant, since the whiten key of Kalyna is modular added to the
plaintext, this structure makes no sense. Here, we propose an addition plaintext structure
to solve this as follows. For the second column of x0, we have the following 2 cases (Fig.
8):

P x1
rk0

x0

SB

y0

SR MC

z0 w0rk0ru0

P

Fig. 8. Addition plaintext structure of Kalyna.

– If rk0[14.0] = 0, we let x0[12,13] take all the possible values, the other bytes remain
constant and the first bit of x0[14] be 1. After x0 � rk0, the second column of P has
difference only in byte 12, byte 13 and the first bit of byte 14.

– If rk0[14.0] = 1, we let x0[12,13] take all the possible values, the other bytes remain
constant and the first bit of x0[14] be 0. After x0 � rk0, the second column of P has
difference only in byte 12, byte 13 and the first bit of byte 14.

For the third and fourth columns of Fig. 8, we have the similar case as the second
column. Therefore, the plaintext structure of Kalyna takes all the possible values of
P[6,7,12,13,
14.0,18,19,20.0,24,25,26.0].

4.2 7-Round Distinguisher on Kalyna-256/512

Since the branch number of MC operation is 9, if the differences in any eight out of
sixteen input/output bytes are known, then the differences in the other eight bytes are
uniquely determined. By the MC matrix, we have the following two equations:

z7[2]⊕0xbb · z7[3] =0x3c ·w7[0]⊕0x8d ·w7[1]⊕0x49 ·w7[2]⊕0x68 ·w7[3]
⊕0xbb ·w7[4]⊕0x75 ·w7[5]⊕0xb f ·w7[6] (6)

z7[2]⊕0x2d · z7[3] =0x6 f ·w7[1]⊕0x0e ·w7[2]⊕0xb3 ·w7[3]⊕0x06 ·w7[4]
⊕0xea ·w7[5]⊕0x90 ·w7[6]⊕0x36 ·w7[7].

Let e0
in = z7[2]⊕0xbb ·z7[3], e1

in = z7[2]⊕0x2d ·z7[3], e0
out = 0x3c ·x8[0]⊕0x8d ·x8[1]⊕

0x49 · x8[2]⊕ 0x68 · x8[3]⊕ 0xbb · x8[4]⊕ 0x75 · x8[5]⊕ 0xb f · x8[6] and e1
out = 0x6 f ·

x8[1]⊕0x0e ·x8[2]⊕0xb3 ·x8[3]⊕0x06 ·x8[4]⊕0xea ·x8[5]⊕0x90 ·x8[6]⊕0x36 ·x8[7],
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then (∆e0
out ,∆e1

out) = (∆e0
in,∆e1

in). Since the key size of Kalyna-256/512 is 512-bit and
the total number of 2-multiset is 22412.72, the probability for a wrong key past the test is
2512−2412.72 = 2−1900.72, it’s almost impossible, so we choose 2-multiset. The 7-round
distinguisher on Kalyna-256/512 is based on the proposition below.

Proposition 6. If a message m belongs to a pair of states conforming to the truncated
differential characteristic of Fig. 9(a), then the multiset of differences (∆e0

out ,∆e1
out)

obtained from the δ -set constructed from m in x0, where x1[31] is the active byte, can
only take about 2400 values.

x1

SB

y1

SR MC

rk2ru2

z1 w1

AK

Round 1

x2

SB

y2

SR MC

rk3ru3

z2 w2

AK

Round 2

x3

SB

y3

SR MC

rk5ru5

z3 w3

AK

Round 3

x5

SB

y5

SR MC

rk6ru6

z5 w5

AK

Round 5

x6

SB

y6

SR MC

rk7ru7

z6 w6

AK

Round 6

x7

SB

y7

SR MC

z7 w7

Round 7

rk4ru4

AK

x4

SR

y4

SB MC

z4 w4

Round 4

x0

SB

y0

SR MC

z0 w0rk0ru0

P

7-Round Distinguisher

rk8ru8 x8

SB

y8

SR MC

rk9ru9

z8 w8

AK

Round 8

x9

SR

y9

SB MC

rk10ru10

z9 w9

AK

Round 9

x10

SB

y10

SR MC

z10 w10

Round 10

MC

MC

MC

rk11ru11 C

MC

Round 0

(a) Precomputation phase (b) Online phase

inactive byte active byte
key-byte can be deduced from the 
truncated differential trail 

key-byte can be deduced from 
other key-bytes

Fig. 9. The attack on 11-round Kalyna-256/512. The 7-round distinguisher is shown in (b), the
online phase is shown in (b).
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Proof. As shown in Fig. 9(a), for the encryption of the δ -set, the output 2-multiset
(∆e0

out ,∆e1
out) is determined by the 112 byte-parameters:

x2[16−23]||x3||rk4||rk5||rk6[6,7,12,13,18,19,24,25] (7)

However, if a pair of messages conforms to the truncated differential trail outlined
in Fig. 9(a), the above 112 byte-parameters are determined by the 83 byte-parameters:

∆z1[23]||x2[16−23]||x3||x5||y6[6,7,12,13,18,19,24,25]||∆z7[2,3]. (8)

Meanwhile, ru3[4,5,14,15,16,17,26,27]||rk4||rk5||rk6[6,7,12,13,18,19,24,25]||
rk7[26,27] can be determined by the above 83 byte-parameters. Since rk4 can be de-
duced from rk5, rk7[27] can de deduced from rk6[6], by the key-dependent sieve tech-
nique, there are 2400 possible values for the 112 byte-parameters (7).

So the 112 byte-parameters (7) are determined by 83 byte-parameters (8), i.e., the
2-multiset of (∆e0

out ,∆e1
out) can take about 2400 values.

�

4.3 Attack on 11-Round Kalyna-256/512

The attack is made up of two phases: precomputation phase and online phase (we
change the order of SB and SR at Round 4 and Round 9).
Precomputation phase: In the precomputation phase, we need to build a table T6 that
contains all the the 2-multisets of (∆e0

out ,∆e1
out) described in Propostion 6. To use the

key-dependent sieve technique to improve the complexity, we need to build seven more
tables T1, T2, T3, T 0,2

4 , T 1,3
4 , T 1

5 and T 2
5 . Otherwise, we need to build three more tables

T7, T 1
8 and T 2

8 for online phase.

1. As shown in Fig. 9(a), for each value of ∆z1[23]||∆z2[4,5,14,15,16,17,26,27], de-
duce ∆x2[16−23] and ∆y2[16−23], then deduce x2[16−23] according to Proposi-
tion 1. Store x2[16−23] in a table T1 with the index of ∆z2[4,5,14,15,16,17,26,27].
There are about 28 values for each index.

2. For each value of ∆z2[4,5,14,15,16,17,26,27]||∆w3, compute ∆x3 and ∆y3. De-
duce x3 and y3 according to Proposition 1. Store x3 in a table T2 with the index of
∆z2[4,5,14,15,16,17,26,27]||∆w3. There is about one value for each index.

3. For each value of ∆z7[2,3]||∆x7[26,27]||∆x6[6,7,12,13,18,19,24,25], deduce x6[6,
7,12,13,18,19,24,25] and x7[26,27] according to Proposition 1. Deduce rk7[26,27]
from x6[6,7,12,13,18,19,24,25] and x7[26,27]. Since rk6[6] = rk7[27], we can de-
duce w5[6]. Store rk7[26,27]||x6[6,7,12,13,18,19,24,25] in a table T3 with the in-
dex of w5[6]||∆x6[6,7,12,13,18,19,24,25]. There are about 224 values for each
index.

4. (a) For each value of ∆z4[0− 7,16− 23]||∆w5[6,7,12,13,18,19,24,25]||rk5[0−
7,16− 23], deduce ∆y5[0− 7,16− 23], then deduce z4[0− 7,16− 23]||y5[0−
7,16−23] according to Proposition 2. Deduce rk4[0,1,11,14,15,16,17,27,30,
31] from rk5[21,22,0,3,4,5,6,16,19,20] according to the key-schedule algo-
rithm. Deduce w3[0,1,11,14,15,16,17,27,30,31] from z4[0,1,19,6,7,16,17,
3,22,23] and rk4[0,1,11,14,15,16,17,27,30,31]. Store z4[0−7,16−23]||y5[0
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−7,16−23]||rk5[0−7,16−23] in a table T 0,2
4 with the index of w3[0,1,11,14,

15,16,17,27,30,31]||∆z4[0−7,16−23]||∆w5[6,7,12,13,18,19,24,25]. There
are about 248 values for each index.

(b) For each value of ∆z4[8−15,24−31]||∆w5[6,7,12,13,18,19,24,25]||rk5[8−
15,24−31], deduce ∆y5[8−15,24−31], then deduce z4[8−15,24−31]||y5[8−
15,24−31] according to Proposition 2. Deduce rk4[3,6,7,8,9,19,22,23,24,25]
from rk5[24,27,28,29,30,8,11,12,13,14] according to the key-schedule algo-
rithm. Deduce w3[3,6,7,8,9,19,22,23,24,25] from z4[11,30,31,8,9,27,14,15,
24,25] and rk4[3,6,7,8,9,19,22,23,24,25]. Store z4[8− 15,24− 31]||y5[8−
15,24−31]||rk5[8−15,24−31] in a table T 1,3

4 with the index of w3[3,6,7,8,9,
19,22,23,24,25]||∆z4[8 − 15,24 − 31]||∆w5[6,7,12,13,18,19,24,25]. There
are about 248 values for each index.

5. For each 384-bit value of ∆z4||∆z2[4,5,14,15,16,17,26,27]||∆w5[6,7,12,13,18,19,
24,25], look up the table T2 to get about one value of x3 with the index of ∆z2[4,5,14,
15,16,17,26,27]||∆x4. Then do the following sub-steps:

(a) Look up the table T 0,2
4 to get about 248 values of z4[0 − 7,16 − 23]||y5[0 −

7,16−23]||rk5[0−7,16−23] with the index of w3[0,1,11,14,15,16,17,27,30,
31]||∆z4[0−7,16−23]||∆w5[6,7,12,13,18,19,24,25]. Deduce rk4[2,12,13,
18,28,29] from rk5[23,1,2,7,17,18], deduce rk4[4,5,10,20,21,26] from x3
and z4[0−7,16−23], and deduce rk5[9,10,15,25,26,31] from rk4[20,21,26,4,
5,10]. Store y5[0−7,16−23]||rk5[0−7,16−23] in a table T 1

5 with the index
of rk4[2,12,13,18,28,29]||rk5[9,10,15,25,26,31].

(b) Look up the table T 1,3
4 to get about 248 values of z4[8− 15,24− 31]||y5[8−

15,24−31]||rk5[8−15,24−31] with the index of w3[3,6,7,8,9,19,22,23,24,
25]||∆z4[8−15,24−31]||∆w5[6,7,12,13,18,19,24,25]. Deduce rk4[2,12,13,
18,28,29] from x3 and z4[8− 15,24− 31]. Store y5[8− 15,24− 31]||rk5[8−
15,24−31] in a table T 2

5 with the index of rk4[2,12,13,18,28,29]||rk5[9,10,15,
25,26,31].

(c) Look up the tables T 1
5 and T 2

5 to get about one value of y5||rk5 with the index of
rk4[2,12,13,18,28,29]||rk5[9,10,15,25,26,31], then deduce w5[6,7,12,13,18,
19,24,25] and rk4. Look up the table T1 to get about 28 values of x2[16− 23]
with the index of ∆z2[4,5,14,15,16,17,26,27], and look up the table T3 to
get about 224 values of rk7[26,27]||x6[6,7,12,13,18,19,24,25] with the index
of w5[6]||∆x6[6,7,12,13,18,19,24,25]. Deduce rk6[6,7,12,13,18,19,24,25]
from w5[6,7,12,13,18,19,24,25] and x6[6,7,12,13,18,19,24,25]. Therefore,
we get the 112 byte-parameters (7). Compute the 2-multiset of (∆e0

out ,∆e1
out),

and store them in a table T6.
6. We build one table T7 for online phase. As shown in Fig. 8, for each 72-bit value

∆x0[6,7,12,13,18,19,24,25]||∆w0[31], deduce x0[6,7,12,13,18,19,24,25] accord-
ing to Proposition 1. Guess rk0[6,7,12,13,14.0,18,19,20.0,24,25,26.0], and de-
duce the value of x0[14.0,20.0,26.0] from rk0[14.0,20.0,26.0] (subsection 4.1).
Deduce P0[6,7,12,13,14.0,18,19,20.0,24,25,26.0] and ∆P0[6,7,12,13,14.0,18,
19,20.0,24,25,26.0] from rk0[6,7,12,13,14.0,18,19,20.0,24,25,26.0], ∆x0[6,7,
12,13,18,19,24,25] and x0[6,7,12,13,14.0,18,19,20.0,24,25,26.0]. Store ∆x0[6,
7,12,13,18,19,24,25]||rk0[6,7,12,13,14.0,18,19,20.0,24,25,26.0]||∆w0[31] in a
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table T7 with the index of P0[6,7,12,13,14.0,18,19,20.0,24,25,26.0]||∆P0[6,7,12,
13,14.0,18,19,20.0,24,25,26.0]. There are 25 values for each index.

7. We build two more tables T 1
8 and T 2

8 for online phase:
(a) As shown in Fig. 9(b), for all 2320 values of ∆z8[0,1,10,11,20,21,30,31]||∆y10[

8−23]||rk10[8−23], deduce ∆z9[8−23]. Then deduce z9[8−23] and y10[8−
23] according to Proposition 2. Deduce z10[4−9,14−19,26−29] and ∆z10[4−
9,14−19,26−29], and store z10[16−19,26−29]||∆z10[16−19,26−29]||rk10[
8,9,10]||z9[8−23]||∆z8[0,1,10,11,20,21,30,31] in a table T 1

8 with the index
of rk10[11−23]||z10[4−9,14,15]||∆z10[4−9,14,15]. There are about 288 val-
ues for each index.

(b) For all 2320 values of ∆z8[0,1,10,11,20,21,30,31]||∆y10[0−7,24−31]||rk10[
0−7,24−31], deduce ∆z9[0−7,24−31]. Then deduce z9[0−7,24−31] and
y10[0−7,24−31] according to Proposition 2. Deduce z10[0−3,10−13,20−
25,30,31] and ∆z10[0− 3,10− 13,20− 25,30,31], and store z10[0− 3,10−
13]||∆z10[0−3,10−13]||rk10[24,25,26]||z9[0−7,24−31]||∆z8[0,1,10,11,20,
21,30,31] in a table T 2

8 with the index of rk10[0−7,27−31]||z10[20−25,30,31]
||∆z10[20−25,30,31]. There are about 288 values for each index.

Online phase: In the online phase of the attack, we first find at least one pair which sat-
isfies the truncated differential trail in Fig. 9(a). To find the right pair, instead of guess-
ing the sub-keys and checking whether this pair satisfies the truncated differential trail,
we deduce the sub-keys which make it satisfy the truncated differential trail for each
pair. Then we identify the δ -set, caculate the corresponding 2-multiset of (∆e0

out ,∆e1
out)

and check whether it belongs to the table T6.

1. Phase A – Detecting the right pair. Define a structure of 267 plaintexts where
P0[6,7,12,13,14.0,18,19,20.0,24,25,26.0] takes all the possible values, and the
other bits are fixed to some constants. Hence, we can generate 267 × (267 −1)/2 ≈
2133 pairs satisfying the plaintext difference. Choose 2166 structures to get about
2166+133 = 2299 pairs. As shown in Fig. 9(b), the probability to get the truncated
differential trail in the forward and backward direction is 2(−7−30)×8−3 = 2−299,
then about one pair follows the truncated differential trail for each guess of the key.

2. Phase B – Checking the δ -set. For each of the 2299 remaining pairs, we do the
following sub-steps.
(a) Guess rk11[0 − 15], and deduce rk10[11 − 26], z10[0 − 15] and ∆z10[0 − 15].

Look up the table T 1
8 to get about 288 values of z10[16−19,26−29]||∆z10[16−

19,26−29]||rk10[8,9,10]||z9[8−23]||∆z8[0,1,10,11,20,21,30,31] with the in-
dex of rk10[11−23]||z10[4−9,14,15]||∆z10[4−9,14,15]. Store z9[8−23]||rk11[
0−15]||∆z8[0,1,10,11,20,21,30,31] in a table T 1

9 with the index of ∆z10[0−
3,10−13,16−19,26−29]||z10[0−3,10−13,16−19,26−29]||rk10[21,22,23,
29,30,31]||∆z8[0,1,10,11,20,21,30,31]. The size of this table is 2216.

(b) Guess rk11[16−31], and deduce rk10[0−10,27−31], z10[16−31] and ∆z10[16−
31]. Look up the table T 2

8 to get about 288 values of z10[0−3,10−13]||∆z10[0−
3,10−13]||rk10[24,25,26]||z9[0−7,24−31]||∆z8[0,1,10,11,20,21,30,31] with
the index of rk10[20− 25,24− 28]||z10[20− 25,30,31]||∆z10[20− 25,30,31].
Store z9[0 − 7,24 − 31]||rk11[16 − 31]||∆z8[0,1,10,11,20,21,30,31] in a ta-
ble T 2

9 with the index of ∆z10[0−3,10−13,16−19,26−29]||z10[0−3,10−
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13,16−19,26−29]||rk10[21,22,23,29,30,31]||∆z8[0,1,10,11,20,21,30,31].
The size of this table is 2216.

(c) Merge T 1
9 and T 2

9 with the index of z10[0−3,10−13,16−19,26−29]||z10[0−
3,10−13,16−19,26−29]||rk10[21,22,23,29,30,31]||∆z8[0,1,10,11,20,21,
30,31], and get about 264 values of rk11||x9||∆z8[0,1,10,11,20,21,30,31]. Guess
∆z7[2,3], and deduce ∆x8[0− 7]. According to Proposition 1, we can deduce
z8[0,1,10,11,20,21,30,31] from ∆x8[0−7] and ∆z8[0,1,10,11,20,21,30,31].
Deduce ru9[0,1,10,11,20,21,30,31] from z8[0,1,10,11,20,21,30,31] and x9.
Therefore, we get about 280 values of rk11 (rk10 can be deduced from rk11) and
ru9[0,1,10,11,20,21,30,31].

(d) Look up the table T7 to get about 25 values of ∆x0[6,7,12,13,18,19,24,25]||rk0[
6,7,12,13,14.0,18,19,20.0,24,25,26.0]||∆w0[15] with the index of P0[6,7,12,
13,14.0,18,19,20.0,24,25,26.0]||∆P0[6,7,12,13,14.0,18,19,20.0,24,25,26.0].

(e) Pick one member of the pair and get the δ -set where w0[15] is the active byte,
then get the corresponding ciphertexts. For about 280 values of rk11, rk10 and
ru9[0,1,10,11,20,21,30,31], decrypt the ciphertexts through the last 3 rounds
and get the 2-multiset of (∆e0

out ,∆e1
out). Check whether it lies in the precom-

putation table T6. If not, try another one.
3. Exhaustively search the rest of the key: We can use the same method as [2] to

recover all the sub-keys.

Complexity analysis. The probability for a wrong guess to pass this test is 2400−2412.72 ≈
2−2012.72. In the precomputation phase, in order to construct T6, we need to perform
2400 partial encryptions on 28 messages. The time complexity of this phase is about
2400+8−1.62 = 2406.38 11-round Kalyna-256/512 encryptions, the memory complexity
is about 2400+3.5 = 2403.5 256-bit blocks. In the online phase, the major time com-
plexity comes from step 2a and 2b, so the time complexity of this phase is about
2299+128−3+1 = 2425 11-round Kalyna-256/512 encryptions. In total, the time complex-
ity of this attack is 2425 11-round Kalyna-256/512 encryptions, the data complexity is
2233 chosen-plaintexts and the memory complexity is 2403.5 256-bit blocks.

5 Conclusions

In this paper, we discussed the security of Kalyna-128/256 and Kalyna-256/512 against
meet-in-the-middle attacks. Using the differential enumeration technique and key-dependent
sieve technique, we proposed a 6-round meet-in-the-middle distinguisher on Kalyna-
128/256. Based on this distinguisher, we added three rounds at the end to present a
9-round attack. After that, with a 7-round distinguisher and an addition plaintext struc-
ture, we got an attack on 11-round Kalyna-256/512 by adding one round at the begin-
ning and three rounds at the end. To the best of our knowledge, these are the currently
best attacks on Kalyna-128/256 and Kalyna-256/512.
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