
Attacks on cMix - Some Small Overlooked
Details

Herman Galteland1, Stig F. Mjølsnes2, and Ruxandra F. Olimid2

1 Department of Mathematical Sciences, NTNU, Norwegian University of Science
and Technology, Trondheim, Norway
herman.galteland@math.ntnu.no

2 Department of Telematics, NTNU, Norwegian University of Science and
Technology, Trondheim, Norway

stig.mjolsnes@item.ntnu.no, ruxandra.olimid@ntnu.no

Abstract Chaum et al. have very recently introduced cMix as the first
practical system that offers senders-receivers unlinkability at scale. cMix
is claimed by its authors to be secure unless all nodes collude (or less
than two senders are honest). We argue their assertion does not hold and
sustain our statement by three different types of attacks: tagging attack,
insider attack and passive attack. For each one, we discuss the settings
that make it feasible and possible countermeasures.

Keywords: cryptographic protocols, sender-recipient unlinkability,
anonymity, mixnets, attacks

1 Introduction

1.1 cMix

The cMix protocol by Chaum et al. [1] is an improved mixing network [2] which
aims to provide an anonymous communication tool for its users at large scales.
The mixing should be such that no one is able to relate an output message to
an user input message, that is, no one is able to link a sender with a recipient.
An important advantage over its predecessors is that cMix moves expensive
computations (like public key encryption) to a precomputation phase, keeping
the real-time phase, which is in charge with actual message delivery, fast. The
protocol is meant to be a part of a larger system, called Privategrity, but its
authors describe cMix independently.

cMix is claimed by its authors to be the first practical system that provides
sender-recipient unlinkability, unless all nodes collude (or less than two senders
are honest). We argue their assertion is false and sustain our statement by three
different types of attacks. Although a single one would have suffice to show the
weakness of cMix (e.g. our strong passive attack), we present multiple attacks
because each one has its own influence on the design or implementation of the
original protocol.



1.2 Related work

cMix is designed to be resistant to most standard mix network attacks. As our
work focuses on the cryptanalysis of cMix, we will present a selection of proposed
attacks on anonymous overlay networks.

Tagging attacks are a potential threat to all mix networks [3]. Given that it
is possible to recognize a valid message in the output, an adversary can tag a
message before it is sent through the mix network and observe the tag in the
output. Hence, the adversary can break the anonymity of a specific user. We
show in Section 3 that cMix is vulnerable to a tagging attack.

Replay attacks are network attacks in which an adversary maliciously or
fraudulently retransmits a valid data transmission several times, making it pos-
sible to analyze the outgoing traffic [4]. We do not analyze replay attacks against
cMix system, as they are eliminated by the adversarial model (see Subsection
2.2).

Intersection attacks and statistical disclosure attacks use information given
by observing mix networks where the users can freely choose the mix node for
their messages (free mix nodes) [4–6]. In such systems, different batches can be
distinguished since they come from different mix nodes. Assuming a user use
the same mix nodes for every message, the adversary can separate the routes by
analyzing the network flow.

Traffic analysis attacks is a family of attacks that observes the network traffic
in order to deduce information form patterns in communication and targets
connection-based systems. Unlike message-based system like cMix, connection-
based systems use free mix nodes and do not batch and permute messages.
By counting packets [7] and timing communication [8] the adversary is able to
distinguish between different paths in the (free) mix network. Contextual attacks
[9] (or traffic confirmation attacks [10], or intersection attacks [11]) analyze the
traffic when specific users and recipients use a protocol, their communication
pattern, and how many messages they send and receive.

The authors of cMix acknowledge that their proposal is potentially vulnerable
to attacks that make anonymous systems fail, like the broadband intersection
attacks, contextual attacks, or DoS (Denial of Service) [1].

1.3 Results

We focus on the security analysis of cMix and show that it is susceptible to three
attacks, which differ by adversarial power and action type.

Tagging Attack. Chaum et al. consider tagging attacks and introduce commit-
ments [12] to overcome this issue. However, they also state that ”tagging attacks
do not work before the exit node” and ”if a tagging attack is detected, at least the
last node should be removed from the cascade” (see [1], Section 4.3); therefore,
the authors might be aware of a possible attack performed by the last node and
if so, they do not consider any prevention. We introduce a simple tagging attack



launched by the last node. Although prevention is immediate (by adding an ex-
tra commitment), we consider it for completeness, as an example of a possible
tagging attack.

Insider Attack. Attacks are claimed unsuccessful unless all nodes collude. We
contradict this and prove that the last node can break unlinkability by, essen-
tially, creating a mix network consisting of only itself. To succeed, the last node
will deviate from the protocol rules and choose its own output. We argue that
this attack remains undetected in the original version of cMix and becomes de-
tectable only if additional checks like RPC are considered (suggested by the
authors of [1] as a special feature). On the other hand, an inappropriate use of
RPC could allow a coalition of nodes (all except one) to link a large fraction of
the senders to their recipients.

Passive Attack. Finally, we introduce our strongest attack: a passive adversary
can break unlinkability without having to corrupt any node or user, only the net-
work handler (which is considered untrusted by default). Under the assumption
that the messages are invertible, the adversary links all senders and receivers in
quadratic time by performing simple group operations. Being a passive attack
makes it feasible regardless of any extra commitments or other integrity pro-
tection mechanisms like RPC. We also highlight a practical applicability of the
attack in the sense that the precomputation phase can remain perfectly hidden
to the adversary, making the attack possible regardless how this is handled (e.g.
on dedicated separate hardware or at different timings).

1.4 Outline

Section 2 describes cMix and presents the adversarial model. The three following
sections contain personal results: Section 3 describes a simple tag attack which
is similar to the tag attack described by Chaum et al. in the original cMix paper;
Section 4 presents the insider attack where the adversary compromises the last
node and makes the overall mixing process independent of the other nodes;
Section 5 introduces a passive attack, which allows the adversary to compromise
linkability without corrupting any users or nodes (but only the network handler).
Section 6 concludes and indicates possible future research directions.

2 Preliminaries

2.1 cMix Description

Figure 2 describes the cMix protocol from [1]. We ignore the return steps, since
they are irrelevant for our attacks. Note that this does not restrict the applicabil-
ity of our results, since the same permutation is used for both forward and return
path. Once the permutation is disclosed, both directions of communication are
compromised.



Uj sender j
M a batch of β messages M = (M1, . . . ,Mβ), each Mi sent by a distinct user
Ni node i from the set of n mix nodes {N1, . . . , Nn}
ei the share of node Ni of the secret key e
d the public key of the system, where d =

∏n
i=1 g

ei

E(·) a multi-party group-homomorphic encryption under the system public key d
πi a random permutation on a batch, applied by node Ni
Πi the composed permutation performed by all nodes from N1 to Ni
ki,j the derived secret key shared between node Ni and the sending user of slot j
ki the vector of derived secret keys shared between node Ni and all users in a

batch, i.e. ki = (ki,1, . . . , ki,β)
Kj the product of all shared keys for the sending user of slot j, i.e. Kj =

∏n
i=1 ki,j

ri, si random values of node Ni for the batch, where ri = (ri,1, . . . , ri,β), respec-
tively si = (si,1, . . . , si,β)

Ri,Si the direct product of the first i values, i.e. Ri =
∏i
j=1 rj , respectively Si =∏i

j=1 sj

Figure 1. Notations

cMix has 2 phases: a precomputation phase and a real-time phase. By design,
expensive public key computation is performed in the precomputation phase,
which can run on a separate hardware (for each node). Since the precomputa-
tion phase does not require any input from the users it can be performed offline.
Splitting the process into two phases gives cMix an increased performance, as the
heavy public key operations is being computed during the (offline) precomputa-
tion phase and can be performed while a batch is being filled up with messages.

The scheme consists mainly of a sequence of n mix nodes that process β
messages at a time (a batch of messages); made simple, each node performs a
permutation on the input and blinds the output by multiplying it with a random
value. The last node Nn makes an exception, as it usually behaves differently
from the other nodes (see Figure 2).

Besides the last node, there is another entity with a special role in the system
- the network handler - that interacts both with the users and the whole set of
nodes. The network handler receives messages from the users and arranges them
into batches, once a batch is full it is sent to the first node in the mix network.
After the last node performs its mixing, it sends a message back to the network
hander, which can then deliver or broadcast the messages to the destination.
The mixing should be such that no one is able to relate an output message to
an user input message, that is, no one is able to link a sender with a recipient.

Before using the system, each sender Uj must establish a private symmetric
key with each of the nodes Ni, which they use as a seed in a pseudorandom
generator to derive the secret keys ki,j . To blind a message Mj , before it is
sent to the network handler, user Uj multiplies Mj with a key composed by the
derived keys shared with each of the nodes Kj =

∏n
i=1 ki,j . The network handler



Precomputation Phase

Step 1 (preprocessing). Each node Ni, 1 ≤ i ≤ n, selects a random ri, computes the
encryption E(r−1

i ) and sends it to the network handler. The network handler multiplies
the received values, produces E(R−1

n ) =
∏n
i=1E(r−1

i ) and sends it to the first node.

Step 2 (mixing). Each node Ni, 1 ≤ i ≤ n, computes πi(E(Πi−1(R−1
n ) × S−1

i−1)) ×
E(s−1

i ), where Π0 is the identity permutation and S−1
0 = 1. Last node sends the

vector of random components (i.e. the first component) of the ciphertext (x, c) =
E((Πn(Rn)× Sn)−1) to the other nodes and stores the vector of message components
(i.e. the second component) locally for the real-time phase.

Step 3 (postprocessing). Using the random component x, each node Ni, 1 ≤ i ≤ n,
computes its individual decryption share for (x, c) as Di(x) = x−ei , stores it locally
to use in the real-time phase and publicly commits to it.

Real-Time Phase

Step 0. Each user constructs its message MK−1
j (for slot j) by multiplying the message

Mj with the inverse of the key Kj and it sends it to the network handler, which collects
all messages and combines them to get a vector M×K−1.

Step 1 (preprocessing). Each node Ni, 1 ≤ i ≤ n, sends ki× ri to the network handler,
which uses them to compute M×Rn = M×K−1×

∏n
i=1ki × ri and then, sends the

result to N1.

Step 2 (mixing). Each node Ni, 1 ≤ i ≤ n, computes πi(Πi−1(M × Rn) × Si−1) ×
si, where Π0 is the identity permutation and S0 = 1. The last node Nn sends a
commitment to its message Πn(M×Rn)× Sn to every other node.

Step 3 (postprocessing). Each node Ni, 1 ≤ i ≤ n−1, sends its precomputed decryption
share for (x, c) = E((Πn(Rn)× Sn)−1) to the network handler, while the last node
Nn sends its decryption share multiplied by the value in the previous step and the
message component: Πn(M × Rn) × Sn × Dn(x) × c. Finally, the network handler
retrieves the permuted message as Πn(M) = Πn(M×Rn)× Sn ×

∏n
i=1Di(x)× c.

Figure 2. The cMix Protocol [1]

arranges messages into a batch and sends it through the mix network. Each node
will apply its permutation to the batch and the last node will send it back to
the network handler. The output is a permuted batch of messages.

During the mixing step of the precomputation phase, each node performs
encryption under a public key of the system, whose private key is split across all
nodes in the network. The encryption scheme suggested by the authors of [1] is
the multi-party group-homomorphic encryption based on ElGamal [13] described
by Benaloh [14]. Moreover, all computations of the protocol are performed in a
prime order cyclic group G that satisfies the decisional Diffie-Hellman security
assumption. We denote by G∗ the set of nonidentity elements in G.



Refer to Figure 2 for the detailed description of cMix, which is self-contained
under the notations in Figure 1.

2.2 Adversarial Model

The adversarial model in [1] assumes authenticated channels among the mix
nodes and between the network handler and each mix node, in the sense that
the adversary can eavesdrop, forward and delete messages, but he cannot modify,
inject or replay messages without detection. The adversary can compromise users
(all except two) and/or mix nodes (all except one). Compromised nodes can be
malicious but cautions, as they aim to remain undetected. Within this attacker
model, the authors of cMix claim that the outputs are unlinkable to the inputs
unless all nodes collude, even if the adversary knows the set of senders and the
set of receivers for every batch of messages.

The security analysis in Appendix A of the cMix paper makes a stronger
assumption: it considers secure authenticated channels, for which the adversary
can eavesdrop on the sender, the receiver, and the length of a message, but
cannot read its content. All our results hold under these stronger premises and
in fact we use this strong attacker model in the description and discussions of
our attacks.

2.3 Features and Extensions of cMix

Chaum el al. dedicate a section to special features and extensions of the system,
where they shortly discuss the utility of adding RPC (Randomized Integrity
Checking) to cMix [1]. Introduced in 2002 by Jacobsson, Juels and Rivest [15],
RPC is an integrity check mechanism that has continued to be analyzed and
developed even recently [16,17]. The idea of RPC is that all nodes commit to their
permutation, publish their input and output, and prove that they have followed
the protocol correctly by giving a (large) fraction of their secret information,
validating that an input/output pair is correct. That is, show that a (large)
fraction (selected by the other nodes or by a random oracle) of their permutations
is correct. As it is described in the cMix paper, two adjacent nodes can be paired
up and reveal their secret information such that none of the messages can be
followed though a pair as an input of the first node and as the output of the
second node. This method will probabilistically detect whether any node changes
one of the values in a batch, while it keeps secret the overall mixing through the
two nodes.

3 Tagging Attack

Our first attack is similar to the tag attack described in the cMix paper [1],
but uses a different value to remove the tag. During the precomputation phase
the nodes compute the value (x, c) = E((Πn(Rn)×Sn)−1), where the last node
stores the vector of message components c locally and sends the vector of random



Goal: Tag a message Mj belonging to user Uj and recognize it in the permuted batch
of messages, linking the sender Uj to its recipient.

Step 1. The corrupted node Nn creates a tag vector t which consists of β − 1 ones
and one tag t ∈ G∗ in slot j (i.e. t = (1, . . . , 1, t, 1, . . . , 1) ), computes kn× rn× t and
sends it to the network handler (Real-time Phase.Step 1).

Step 2. The network handler sends the set of all decryption shares {Di(x)|1 ≤ i < n} to
the last node (Real-time Phase.Step 3). Node Nn can retrieve the tagged and permuted
messages as Πn(M× t) = Πn(M×Rn × t)×Sn ×

∏n
i=1Di(x)× c and recognize the

tagged message in slot j′.

Step 3. The corrupted node Nn creates the inverse tag vector t−1, which consists
of β − 1 ones and one tag t−1 ∈ G∗ in slot j′, computes c′ = c × t−1 and sends
Πn(M×Rn)× Sn ×Dn(x)× c′ to the network handler.

Figure 3. Tagging Attack

components x to all other nodes. Each node computes its decryption share using
x and commits to this value. Note that c is not being committed to.

The authors of cMix introduce commitments to the decryption shares to
detect potential tagging attacks, exposing any attempt of using the decryption
shares to remove the tag; however, the commitments are independent of c, so it
is possible to perform a similar attack which uses c instead of Dn(x) to remove
the tag. The downside is that the adversary needs to corrupt the last node (since
it is the only node that has access to the message component) and the network
handler (under the assumption of secure authorized channels). Figure 3 describes
the tag attack performed by Nn on one of the users.

In order for our tag attack to be successful, we need to assume that it is
possible to recognize valid messages in the output. To tag a message Mj , the
last node create a tag vector t = (1, . . . , t, . . . , 1), multiplies it with the keys and
random values, kn × rn × t and sends the result to the network handler. The
tag then goes though the mixnet attached to message Mj and arrives at the
last node as Πn−1(M × Rn × t) × Sn−1. The last node can then permute, do
the computations as normal and publish its commitment to the value Πn(M×
Rn× t)×Sn. This triggers all other nodes to send their decryption share to the
network handler, which forwards them to Nn. The last node can then retrieve
the batch of permuted messages and find the invalid message Mjt in slot j′ of
the permuted batch. The last node creates the inverse tag t−1, which has t−1 in
slot j′, and replaces the message components with the altered value c′ = c×t−1.
The network handler then computes

Πn(M×Rn × t)× Sn × c′ ×
n∏
i=1

Di(x) =

Πn(M×Rn × t)×Sn × (Πn(Rn)×Sn)−1 × t−1 = Πn(M× t)× t−1 = Πn(M)



and deliver the permuted batch as normal. That is, the adversary has successfully
linked a sender with a recipient without being detected.

To make the attack detectable, the last node should publish a commitment
to the vector of message components c in the Precomputation Phase.Step 3 or
the system should implement RPC as an integrity check mechanism. Although
prevention can be simply achieved by natural solutions like the ones mentioned,
we introduce the attack for completeness; it stands as an example of tagging
attack performed by the last node, a type of attack the authors of cMix seem
to be aware of (see [1], Section 4.2: ”tagging attacks do not work before the exit
node” and ”if a tagging attack is detected, at least the last node should be removed
from the cascade”).

4 Insider Attack

Our second attack allows the last node to cancel all mixing introduced by the
previous nodes and perform the overall mixing process by itself. Hence, the
output of the real-time phase will be a batch of messages permuted with a
known permutation, making it easy to link all users and recipients. To succeed,
the adversary needs to corrupt the last node (which knows the permutation) and
the network handler (which knows the content of the values E(R−1n ) and M×Rn,
under the assumption of secure authenticated channels). Figure 4 describes the
insider attack.

During Precomputation Phase.Step 1 the corrupted network handler computes
and sends E(R−1n ) to the first and last node. The honest nodes operate as normal,
but the last node discards the input it receives from the previous node and choose
its own output. The last node draws a random vector A = (A1, . . . , Aβ), encrypts
the inverted values, E(A−1), and computes πn(E(R−1n )×E(A−1)) = πn(E(R−1n ×
A−1)). The last node publishes the random components of πn(E(R−1n ×A−1))
to the other nodes such that they can prepare their decryption shares.

In Real-Time Phase.Step 1 the network handler sends M × Rn to the first
and last node. In the mixing step, the last node discards what it receives from
the previous node, selects its output πn(M×Rn×A), commits to this batch of
messages and sends πn(M ×Rn ×A) × c × Dn(x) to the network handler. As
the network handler receives the decryption shares from the other nodes, it can
retrieve the permuted messages and deliver them correctly:

πn(M×Rn×A)×c×
n∏
i=1

Di(x) = πn(M×Rn×A)×πn(R−1n ×A−1) = πn(M).

Note that the output batch is only permuted with the permutation πn which is
known to the last node. Hence, the adversary can easily deanonymize all of the
senders by applying πn

−1 to the output.
RPC (probabilistically) ensures that each node follows its instructions; hence,

it prevents the last node from deviating from the protocol. Since our insider
attack changes the entire batch, RPC will detect the attack with overwhelming
probability.



Goal: Perform the mixing process with only the last node, using only a known per-
mutation to permute the batch of messages.

Step 1. The network handler computes and sends E(R−1
n ) to the first and last node

(Precomputation Phase.Step 1). The last node discards the input it is given form the
previous node and publishes the component of random elements of πn(E(R−1

n ×A−1)),
for a random and invertible A (Precomputation Phase.Step 3).

Step 2. The network handler computes and sends M ×Rn to the first and last node
(Real-Time Phase.Step 1). The last node discards the input it is given form the previous
node, publishes a commitment to πn(M×Rn×A) and sends πn(M×Rn×A)× c×
Dn(x) to the network handler (Real-Time Phase.Step 3).

Step 3. The network handler retrieves the permuted batch of messages as πn(M) =
πn(M ×Rn ×A) × πn(R−1

n ×A−1) and publishes it. The adversary now can easily
reveal M by applying πn

−1.

Figure 4. Insider Attack

Notes on Implementations of RPC. In addition to the remarks made in the cMix
paper, the implementation of RPC need to be done with care. For example, if the
adversary corrupts all except one node, the honest node then reveals a (large)
portion of its permutation, which exposes the senders of the corresponding mes-
sages. To avoid this, we propose a few changes to the original cMix protocol: let
each node Ni have two permutations, π2i−1 and π2i, and two random vectors
to hide both permutations, s2i−1 and s2i. This way, each node can follow the
cMix protocol as if it where two nodes and form a pair all by itself. This ensures
that no messages can be followed as the input and output of a single node in the
RPC checks. Note that each node Ni still needs only one key vector ki and one
random vector ri.

5 Passive Attack

We now introduce our strongest result, a passive attack that breaks unlinkability
for a whole batch in quadratic time by eavesdropping on the messages sent in
the real-time phase only.

The most ambitious goal of the adversary is to link every sender to a receiver,
or equivalently, to find the overall permutation on the input to the output of the
cMix network. To succeed with this goal, the adversary reads some messages sent
in the real-time phase and performs a bottom-up check for each possible slot in
the permuted output. More precise, the adversary considers each message in the
permuted output as a possible candidate for a given input slot j, computes the
corresponding candidate key K ′j and then checks his guess against his knowledge.
Figure 5 describes the attack for a single slot, which succeeds in linear time and
requires group operations only (multiplications and inverses). To compromise



Goal: Find MΠn(j) for any slot j in the input batch, 1 ≤ j ≤ n (i.e. map input slot j
to its permuted output MΠn(j)).

Step 0. The adversary reads M×K−1 (Real-time Phase.Step 0), M×Rn and
∏n
i=1 ki×

ri (Real-time Phase.Step 1), Πn(M) (Real-time Phase.Step 3); then, he performs the
following steps for each value MΠn(i) in the permuted output Πn(M) until successfully
finds MΠn(j).

Step 1. The adversary computes R′j = M−1
Πn(i)MjRj , where MjRj is the j-th compo-

nent of M×Rn.

Step 2. The adversary computes a candidate key K′j = KjRjR
′
j
−1

, where KjRj is the

j-th component of K×Rn (known from
∏n
i=1 ki × ri) and R′j

−1
is the inverse of the

value from the previous step.

Step 3. The adversary checks if MΠn(i)
?
= MjKj

−1K′j holds, where MjKj
−1 is the j-th

component of M ×K−1; if yes, then i = j and hence the adversary has successfully
linked input slot j to the output message MΠn(j), otherwise repeat Steps 1-3 for the
next value MΠn(i) in the output batch.

Figure 5. Passive Attack

the anonymity of all initiators, the adversary repeats its actions for each slot in
the batch, so the overall complexity becomes O(β2).

The network handler is untrusted by default (see [1], Introduction), so we
might naturally assume that the adversary can read all messages sent to or from
the network handler; therefore, the attack remains valid even if the adversarial
model assumes secure authenticated channels that disallow the adversary to read
the message content. Note that all messages needed by the adversary to perform
the attack originate from (M×Rn, Πn(M)) or are sent to (M×K−1,

∏
i ki×ri)

the network handler, so there is no need to corrupt any other node. Also note
that no user or node deviates from the protocol rules, so the usual integrity
checks mechanisms (e.g.: extra commitments or RPC) fail to prevent it.

Finally, we highlight a practical applicability of the attack in the sense that
the precomputation phase can remain perfectly hidden to the adversary, making
the attack feasible regardless of how precomputation is performed with respect
to the real-time phase. This might include precomputation on dedicated powerful
hardware or at different timing (e.g. precompute values for multiple batches in
advance), to avoid real-time processing delays.

Our attack is possible due to the invertibility of the messages M , which allows
the bottom-up approach we exploited. A possible natural fix could try to define
cMix system in a way that disallows invertible messages.



6 Conclusions

We demonstrate by examples that the cMix protocol as currently defined is
insecure and allows linkability between senders and receivers, compromising the
anonymity of the senders. For each of the three classes of attacks (tagging attack,
insider attack and passive attack) we detail the actions the adversary should
follow to succeed its goal and discuss possible countermeasures. All our attacks
succeed in the secure authenticated channels settings, under the assumption
that the adversary can corrupt the network handler (a natural assumption the
authors of cMix made by default).

Our current work restricts to the theoretical exposure of the attacks against
cMix as a standalone protocol. Interesting future work might include a practical
implementation of the attacks against the current implementation of cMix or
analyze its security as within the context of the larger solution of Privategrity.

Acknowledgements. Herman Galteland is funded by the National Security
Authority (NSM).

References

1. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sher-
man, A.T.: cmix: Anonymization by high-performance scalable mixing. Cryptol-
ogy ePrint Archive, Report 2016/008 (2016) http://eprint.iacr.org/, version
20160530:183553 from May, 30 2016.

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2) (February 1981) 84–90

3. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In An-
derson, R., ed.: Proceedings of Information Hiding: First International Workshop,
Springer-Verlag, LNCS 1174 (May 1996) 137–150

4. Berthold, O., Pfitzmann, A., Standtke, R. In: The Disadvantages of Free MIX
Routes and How to Overcome Them. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2001) 30–45

5. Danezis, G., Diaz, C., Troncoso, C. In: Two-Sided Statistical Disclosure Attack.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007) 30–44

6. Danezis, G., Serjantov, A. In: Statistical Disclosure or Intersection Attacks on
Anonymity Systems. Springer Berlin Heidelberg, Berlin, Heidelberg (2005) 293–
308

7. Serjantov, A., Sewell, P. In: Passive Attack Analysis for Connection-Based
Anonymity Systems. Springer Berlin Heidelberg, Berlin, Heidelberg (2003) 116–
131

8. Danezis, G. In: The Traffic Analysis of Continuous-Time Mixes. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005) 35–50

9. Raymond, J.F.: Traffic analysis: Protocols, attacks, design issues, and open prob-
lems. In: International Workshop on Designing Privacy Enhancing Technologies:
Design Issues in Anonymity and Unobservability, New York, NY, USA, Springer-
Verlag New York, Inc. (2001) 10–29



10. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Proceedings of the 1997 IEEE Symposium on Security and Privacy.
SP ’97, Washington, DC, USA, IEEE Computer Society (1997) 44–54

11. Berthold, O., Langos, H. In: Dummy Traffic against Long Term Intersection At-
tacks. Springer Berlin Heidelberg, Berlin, Heidelberg (2003) 110–128

12. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2) (October 1988) 156–189

13. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Proceedings of CRYPTO 84 on Advances in Cryptology, New York,
NY, USA, Springer-Verlag New York, Inc. (1985) 10–18

14. Benaloh, J.: Simple verifiable elections. In: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006 on Electronic Voting Technology
Workshop. EVT’06, Berkeley, CA, USA, USENIX Association (2006) 5–5

15. Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic voting
by randomized partial checking. In: Proceedings of the 11th USENIX Security
Symposium, Berkeley, CA, USA, USENIX Association (2002) 339–353

16. Khazaei, S., Wikström, D.: Randomized partial checking revisited. In: Proceedings
of the 13th International Conference on Topics in Cryptology. CT-RSA’13, Berlin,
Heidelberg, Springer-Verlag (2013) 115–128

17. Küsters, R., Truderung, T., Vogt, A.: Formal analysis of chaumian mix nets with
randomized partial checking. In: Proceedings of the 2014 IEEE Symposium on
Security and Privacy. SP ’14, Washington, DC, USA, IEEE Computer Society
(2014) 343–358


