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Abstract

The literature on leakage-resilient cryptography contains various leakage models that provide different
levels of security. In this work, we consider the bounded leakage and the continual leakage models. In the
bounded leakage model (Akavia et al. – TCC 2009), it is assumed that there is a fixed upper bound L on
the number of bits the attacker may leak on the secret key in the entire lifetime of the scheme. Alternatively,
in the continual leakage model (Brakerski et al. – FOCS 2010, Dodis et al. – FOCS 2010), the lifetime of
a cryptographic scheme is divided into “time periods” between which the scheme’s secret key is updated.
Furthermore, in its attack the adversary is allowed to obtain some bounded amount of leakage on the current
secret key during each time period.

In the continual leakage model, a challenging problem has been to provide security against leakage
on key updates, that is, leakage that is a function not only of the current secret key but also the randomness
used to update it. We propose a new, modular approach to overcome this problem. Namely, we present a
compiler that transforms any public-key encryption or signature scheme that achieves a slight strengthening
of continual leakage resilience, which we call consecutive continual leakage resilience, to one that is contin-
ual leakage resilient with leakage on key updates, assuming indistinguishability obfuscation (Barak et al. —
CRYPTO 2001, Garg et al. – FOCS 2013). Under the stronger assumption of public-coin differing-inputs
obfuscation (Ishai et al. – TCC 2015) the leakage rate tolerated by our compiled scheme is essentially as
good as that of the starting scheme. Our compiler is obtained by making a new connection between the
problems of leakage on key updates and so-called “sender-deniable” encryption (Canetti et al. – CRYPTO
1997), which was recently realized for the first time by Sahai and Waters (STOC 2014).

In the bounded leakage model, we develop a new approach to constructing leakage-resilient encryp-
tion from obfuscation, based upon the public-key encryption scheme from iO and punctured pseudorandom
functions due to Sahai and Waters (STOC 2014). In particular, we achieve leakage-resilient public key en-
cryption tolerating L bits of leakage for any L from iO and one-way functions. We build on this to achieve
leakage-resilient public key encryption with optimal leakage rate of 1�o(1) based on public-coin differing-
inputs obfuscation and collision-resistant hash functions. Such a leakage rate is not known to be achievable
in a generic way based on public-key encryption alone. We then develop entirely new techniques to con-
struct a new public key encryption scheme that is secure under (consecutive) continual leakage resilience
(under appropriate assumptions), which we believe is of independent interest.
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1 Introduction

1.1 Background and Motivation

In recent years, researchers have uncovered a variety of ways to capture cryptographic keys through side-
channel attacks: physical measurements, such as execution time, power consumption, and even sound waves
generated by the processor. This has prompted cryptographers to build models for these attacks and to construct
leakage resilient schemes that remain secure in the face of such attacks. Of course, if the adversary can leak
the entire secret key, security becomes impossible, and so the bounded leakage model was introduced (cf. [2,
45, 38, 11]). Here, it is assumed that there is a fixed upper bound, L on the number of bits the attacker may
leak, regardless of the parameters of the scheme, or, alternatively, it is assumed that the attacker is allowed
to leak L = � · |sk| total number of bits, where the amount of leakage increases as the size of the secret key
increases. Various works constructed public key encryption and signature schemes with optimal leakage rate of
� = 1� o(1), from specific assumptions (cf. [45, 11]). Hazay et al. [35] constructed a leakage resilient public
key encryption scheme in this model, assuming only the existence of some standard public key encryption
scheme; the tradeoff is that they tolerate a leakage rate of only O(log()/|sk|), where |sk| is the size of the
secret key when using security parameter .

Surprisingly, it is possible to do better; an interesting strengthening of the model — the continual leakage
model1 — allows the adversary to request unbounded leakage. This model was introduced by Brakerski et
al. [12] and Dodis et al. [21], who constructed continual-leakage resilient (CLR) public-key encryption and
signature schemes. Intuitively, the CLR model divides the lifetime of the attack, which may be unbounded, into
time periods and: (1) allows the adversary to obtain the output of a “bounded” leakage function in each time
period, and (2) allows the secret key (but not the public key!) to be updated between time periods. So, while
the adversary’s leakage in each round is bounded, the total leakage is unbounded.

Note that the algorithm used by any CLR scheme to update the current secret key to the next one must
be randomized, since otherwise the adversary can obtain some future secret key, bit-by-bit, via its leakage in
each time period. While the CLR schemes of [12, 21] were able to tolerate a remarkable 1 � o(1) leakage
rate (the ratio of the allowed number of bits leaked per time period to the length of the secret key) handling
leakage during the update procedure itself — that is, produced as a function of the randomness used by the
update algorithm as well as the current secret key — proved to be much more challenging. The first substantial
progress on this problem of “leakage on key updates” was made by Lewko et al. [42], with their techniques
being considerably refined and generalized by Dodis et al. [24]. In particular, they give encryption and signature
schemes that are CLR with leakage on key updates tolerating a constant leakage rate, using “dual-system”
techniques (cf. [47]) in bilinear groups.

1.2 Overview of Our Results

Our first main contribution is to show how to compile any public-key encryption or signature scheme that
satisfies a slight strengthening of CLR (which we call “consecutive” CLR or 2CLR) without leakage on key
updates to one that is CLR with leakage on key updates. Our compiler is based on a new connection we
make between the problems of leakage on key updates and “sender-deniability” [13] for encryption schemes.
In particular, our compiler uses program obfuscation — either indistinguishability obfuscation (iO) [5, 29] or
the public-coin differing-inputs obfuscation [37]2 — and adapts and extends techniques recently developed
by Sahai and Waters [46] to achieve sender-deniable encryption. This demonstrates the applicability of the

1Here “continual” refers to the fact that the total amount of leakage obtained by the adversary is unbounded. Additionally, the model
is more accurately called the continual memory leakage model to contrast with schemes constructed under an assumption that “only
computation leaks” [44].

2To the best of our knowledge, no impossibility results are known for public-coin differing-inputs obfuscation. Indeed, the impos-
sibility results of Garg et al. [30] do not apply to this setting. In either case, current constructions rely on multilinear maps, whose first
candidate construction was given by [28].
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techniques of [46] to other seemingly unrelated contexts.3 We then show that the existing CLR encryption
scheme of Brakerski et al. [12] can be extended to meet the stronger notion of 2CLR that we require for our
compiler. Additionally, we show all our results carry over to signatures as well. In particular, we show that
2CLR PKE implies 2CLR signatures (via the intermediate notion of CLR “one-way relations” of Dodis et
al. [21]), and observe that our compiler also upgrades 2CLR signatures to ones that are CLR with leak on
updates.

Our second main contributions concerns constructions of leakage-resilient public-key encryption directly
from obfuscation. In particular, we show that the approach of Sahai and Waters to achieve public-key encryp-
tion from iO and punctured pseudorandom functions [46] can be extended to achieve leakage-resilience in the
bounded-leakage model. Specifically, we achieve (1) leakage-resilient public key encryption tolerating L bits
of leakage for any L from iO and one-way functions, (2) leakage-resilient public key encryption with optimal
leakage rate of 1 � o(1) based on public-coin differing-inputs obfuscation and collision-resistant hash func-
tions. (3) (consecutive) CLR public key encryption with constant (although not optimal, on the order of one
over several hundred) leakage rate from differing inputs obfuscation (not public coin) and standard assump-
tions. Extending the construction from (2) to achieve continual leakage-resilience, without these additional
assumptions, is an interesting open problem.

In summary, we provide a thorough study of the connection between program obfuscation and leakage
resilience. We define a new notion of leakage-resilience (2CLR), and demonstrate new constructions of 2CLR
secure encryption and signature schemes from program obfuscation. Also using program obfuscation, we
construct a compiler that lifts 2CLR-secure schemes to CLR with leakage on updates; together with our new
constructions, this provides a unified and modular method for constructing CLR with leakage on key updates.
Under appropriate assumptions (namely, the ones used by Brakerski et al. [12] in their construction), this
approach allows us to achieve a leakage rate of 1/4 � o(1), a large improvement over prior work, where the
best leakage rate was 1/258 � o(1) [42]. Our result nearly matches the trivial upper-bound of 1/2 � o(1).4

In the bounded leakage model, we show that it is possible to achieve optimal-rate leakage-resilient public key
encryption from obfuscation and generic assumptions.

Finally, as we have mentioned above, Hazay et al. [35] constructed bounded leakage resilient public key
encryption in this model from a far weaker generic assumption, albeit with a far worse leakage rate. In addition
to offering a tradeoff between the strength of the assumption and the leakage rate, the value of our result in
the bounded leakage model is that it provides direct insight into the connection between program obfuscation
and leakage resilience. We are hopeful that our techniques might lead to future improvements in the continual-
leakage models.

1.3 Details and Techniques

Part I: The Leak-on-Update Compiler. As described above, in the model of continual leakage-resilience
(CLR) [12, 21] for public-key encryption or signature schemes, the secret key can be updated periodically
(according to some algorithm Update) and the adversary can obtain bounded leakage between any two updates.
Our compiler applies to schemes that satisfy a slight strengthening of CLR we call consecutive CLR, where
the adversary can obtain bounded leakage as a joint function of any two consecutive keys. More formally, let
sk

0

, sk
1

, sk
2

, . . . , skt, . . . be the secret keys at each time period, where ski = Update(ski�1, ri), and each ri
denotes fresh random coins used at that round. For leakage functions f

1

, . . . , ft, . . . (chosen adaptively by the
adversary), consider the following two leakage models:

3We note that the techniques of [46] have been shown useful in adaptively secure two-party and multiparty computation [31, 14, 19]
and “only computation leaks” (OCL) circuits without trusted hardware [20]. We note that this work precedes the work of [19].

4Unlike the case of CLR without leakage on key updates, observe that any scheme that is CLR with leakage on key updates can leak
at most 1/2 · |sk|-bits per time period, since otherwise the adversary can recover an entire secret key. As a consequence, the optimal
leakage rate for a scheme that is CLR with leakage on key updates is at most 1/2·|sk|

|sk|+|rup|
< 1/2, where |sk| is the secret key length and

|rup| is the length of the randomness needed by the update algorithm.
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(1) For consecutive CLR (2CLR), the adversary obtains leakage
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2
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(2) For CLR with leakage on key updates, the adversary obtains leakage

f
1

(sk
0

, r
1

), f
2

(sk
1

, r
2

), . . . , ft(skt�1, rt), . . . .

Our compiler from 2CLR to CLR with leakage on key updates produces a slightly different Update algo-
rithm for the compiled scheme depending on whether we assume indistinguishability-obfuscation (iO) [5, 29]
or public-coin differing-inputs obfuscation [37]. In both cases, if we start with an underlying scheme that is
consecutive two-key CLR while allowing µ-bits of leakage, then our compiled scheme is CLR with leakage on
key updates with leakage rate

µ

|sk|+ |rup|
,

where |rup| is the length of the randomness required by Update. When using iO, we obtain |rup| = 6|sk|,
where |sk| is the secret key length for the underlying 2CLR scheme, whereas using public-coin differing-input
obfuscation we obtain |rup| = |sk|. Thus:

• Assuming iO, the compiled scheme is CLR with leakage on key updates with leakage rate µ
7·|sk| .

• Assuming public-coin differing-input obfuscation, the compiled scheme is CLR with leakage on key
updates with leakage rate µ

2·|sk| .

Thus, if the underlying 2CLR scheme tolerates the optimal number of bits of leakage (⇡ 1/2 · |sk|), then our
resulting public-coin differing-inputs based scheme achieves leakage rate 1/4� o(1).

Our compiler is obtained by adapting and extending the techniques developed by [46] to achieve sender-
deniable PKE from any PKE scheme. In sender-deniable PKE, a sender, given a ciphertext and any message,
is able to produce coins that make it appear that the ciphertext is an encryption of that message. Intuitively,
the connection we make to leakage on key updates is that the simulator in the security proof faces a similar
predicament to the coerced sender in the case of deniable encryption; it needs to come up with some randomness
that “explains” a current secret key as the update of an old one. Our compiler makes any two such keys
explainable in a way that is similar to how Sahai and Waters make any ciphertext and message explainable.
Intuitively, this is done by “encoding” a secret key in the explained randomness in a special way that can be
detected only by the (obfuscated) Update algorithm. Once detected, the Update algorithm outputs the encoded
secret key, instead of running the normal procedure.

However, in our context, naı̈vely applying their techniques would result in the randomness required by our
Update algorithm being very long, which, as described above, affects the leakage rate of our resulting CLR
scheme with leakage on key updates in a crucial way (we would not even be able to get a constant leakage rate).
We decrease the length of this randomness in two steps. First, we note that the sender-deniable encryption
scheme of Sahai and Waters encrypts a message bit-by-bit and “explains” each message-bit individually. This
appears to be necessary in their context in order to allow the adversary to choose its challenge messages adap-
tively depending on the public key. For our setting, this is not the case, since the secret key is chosen honestly
(not by the adversary), so “non-adaptive” security is in fact sufficient in our context and we can “explain” a
secret key all at once.This gets us to |rup| = 6 · |sk| and thus 1/14� o(1) leakage rate assuming the underlying
2CLR scheme can tolerate the optimal leakage. Second, we observe that by switching assumptions from iO to
the public-coin differing-inputs obfuscation we can replace some instances of sk in the explained randomness
with its value under a collision-resistant hash, which gets us to |rup| = sk and thus 1/4 � o(1) leakage rate in
this case.

A natural question is whether the upper bound of 1/2 � o(1) leakage rate for CLR with leakage on key
updates, can be attained via our techniques (if at all). We leave this as an intriguing open question, but note that
the only way to do so would be to further decrease |rup| so that |rup| < |sk|.
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Part II: Constructions against Two-key Consecutive Continual Leakage. We revisit the existing CLR
public-key encryption scheme of [12] and show that a suitable modification of it achieves 2CLR5 with optimal
1/4� o(1) leakage rate6, under the same assumption used by [12] to achieve optimal leakage rate in the basic
CLR setting (namely the symmetric external Diffie-Hellman (SXDH) assumption in bilinear groups; smaller
leakage rates can be obtained under weaker assumptions). Our main technical tool here is a new generalization
of the Crooked Leftover Hash Lemma [26, 6] that generalizes the result of [12], which shows that “random
subspaces are leakage resilient,” showing that random subspaces are in fact resilient to “consecutive leakage.”
Our claim also leads to a simpler analysis of the scheme than appears in [12].

Finally, we also show (via techniques from learning theory) that 2CLR public-key encryption generically
implies 2CLR one-way relations. Via a transformation of Dodis et al. [21], this then yields 2CLR signatures
with the same leakage rate as the starting encryption scheme. Therefore, all the above results translate to the
signature setting as well. We also show a direct approach to constructing 2CLR one-way relations follow-
ing [21] based on the SXDH assumption in bilinear groups, although we are not able to achieve as good of a
leakage rate this way (only 1/8� o(1)).

Part III: Exploring the relationship between (bounded and continual) leakage resilience and obfuscation.
Note that, interestingly, even the strong notion of VBB obfuscation does not immediately lead to constructions
of leakage resilient public-key encryption. In particular, if we replace the secret key of a public key encryption
scheme with a VBB obfuscation of the decryption algorithm, it is not clear that we gain anything: E.g., the
VBB obfuscation may output a circuit of size |C|, where only

p

|C| number of the gates are ”meaningful” and
the remaining gates are simply ”dummy” gates, in which case we cannot hope to get a leakage bound better
than L =

p

|C|, and a leakage rate of 1/
p

|C|. Nevertheless, we are able to show that the PKE scheme of
Sahai and Waters (SW) [46], which is built from iO and “punctured pseudorandom functions (PRFs),” can
naturally be made leakage resilient. To give some brief intuition, a ciphertext in our construction is of the form
(r, w,Ext(PRF(k; r), w)�m), where Ext is a strong extractor, r and w are random values7, and the PRF key
k is embedded in obfuscated programs that are used in both encryption and decryption. In the security proof,
we “puncture” the key k at the challenge point, t⇤, and hardcode the mapping t⇤ ! y, where y = PRF(k; t⇤),
in order to preserve the input/output behavior. As in SW, we switch the mapping to t⇤ ! y⇤ for a random y⇤

via security of the puncturable PRF. But now observe we have that the min-entropy of y⇤ is high even after
leakage, so the output of the extractor is close to uniform. To achieve optimal leakage rate, we further modify
the scheme to separate t⇤ ! y⇤ from the obfuscated program and store only an encryption of t⇤ ! y⇤ in the
secret key.

Note that the last change lends itself to achieving (consecutive) CLR, since the secret key can be refreshed
by re-randomizing the encryption. However, the information theoretic argument above about the entropy re-
maining in y⇤ no longer holds, since additional entropy is lost in every round, and, eventually, y⇤ might be
recovered in full. To address this issue, we must prevent the attacker from directly leaking on y⇤ in each
round. Instead of embedding an encryption of t⇤ ! y⇤ in the secret key, we embed an encryption of a tu-
ple (si,↵i, H(t⇤)) ! y⇤ using a fresh si in each round i, subject to the constraint that ↵i = hsi, t⇤i. In
order to determine whether to output y⇤ on some input t, our obfuscated circuit decrypts and checks whether
H(t⇤) = H(t) ^ hsi, ti = ↵i, where H is a collision resistant hash function. We rely on the following facts to
ensure that y⇤ remains indistinguishable from random given the adversary’s view: a) the adversary must form
his leakage queries before learning t⇤, b) very little information about t⇤ is contained in the secret key, and
c) due to the previous facts, and since the inner-product is a good two-source extractor, hsi, t⇤i remains very
close to uniform, even under the leakage. It follows that we can switch, even under leakage, to a random ↵⇤,
uncorrelated with si, t⇤. Since it is now hard to find inputs satisfying H(t⇤) = H(t) ^ hsi, ti = ↵⇤, we can,

5Note that [12] also constructs such a signature scheme, but, as discussed below, such a signature scheme can in fact be generically
obtained, and therefore for simplicity we do not consider their direct construction here.

6In the 2CLR model, the maximum amount of leakage is roughly 1/2 · |sk|, so the optimal rate is roughly 1/2·|sk|
|sk|+|sk|

= 1/4.
7Technically, we actually use pseudo-random value r, just as SW do. We omit this here to make the explanation a little more clear.
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using security of the diO, ignore this conditional statement and replace y⇤, with a 0 string in the secret key,
while still using y⇤ in the challenge ciphertext.

In the above discussion above we omitted some additional technical challenges due to lack of space. Most
notably, we also require that the encryption scheme used for encrypting the tuple in the secret key satisfies
a notion of “diO-compatible RCCA-secure re-randomizability,” which we introduce (see Section 5.3.2), and
show that the “controlled malleable” RCCA-secure PKE due to Chase et al. [17] based on the decision linear
assumption in bilinear groups schemes satisfies it, giving us a constant leakage rate for our (2)CLR scheme.
For an in-depth technical overview and complete proof, see Section 5.3.

1.4 Related Work

Leakage resilient cryptography. We discuss various types of memory leakage attacks that have been studied
in the literature. Memory attacks are a strong type of attack, where all secrets in memory are subject to leakage,
whether or not they are actively being computed on. Memory leakage attacks are motivated by the cold-boot
attack of Halderman et al. [34], who showed that for some time after power is shut down, partial data can
be recovered from random access memory (DRAM and SRAM). Akavia et al. [2] introduced the model of
bounded memory attacks, where arbitrary leakage on memory is allowed, as long as the output size of the
leakage function is bounded. Additional models introduced by [16], [27] and [23] allow unbounded-length
noisy leakage, unbounded-length leakage under restricted leakage functions, or unbounded-length hard-to-
invert leakage, respectively. The works of [12] and [21] introduced the notion of “continual memory leakage”
for public key primitives where the secret key is updated while the public key remains the same. This model
allows bounded memory leakage between key refreshes. Finally, [12, 21, 42, 24] considered the model of
continual memory leakage with leak on update, where leakage can occur while the secret key is being updated.
In this work, we consider bounded memory attacks, continual memory leakage and continual memory leakage
with leak on update.

There is a long line of constructions of leakage-resilient cryptographic primitives, including public key
encryption that are leakage resilient (LR) against bounded memory attacks [2, 45]; public key encryption that
is continual leakage resilient (CLR) without leak on update [12]; public key encryption that is CLR with leak
on update [42]; digital signature schemes that are leakage resilient (LR) against bounded memory attacks [38];
digital signature schemes that are LR against bounded memory attacks on both secret key and random coins
for signing [38, 11, 43]; digital signature schemes that are CLR without leak on update [21]; digital signature
schemes that are CLR with leak on update [42].

Obfuscation and its applications. Since the breakthrough result of Garg et al. [29], demonstrating the first
candidate of indistinguishability obfuscation (iO) for all circuits, a myriad of uses for iO in cryptography have
been found. Among these results, the puncturing methodology by Sahai and Waters [46] has been found very
useful. Related notions such as differing-inputs obfuscation (diO) [4] have been studied [9, 3, 37]. Please refer
to [49, 48]for new constructions, applications, and limitations of obfuscations.

2 Definitions and Preliminaries

2.1 Security Definitions for Leakage Resilient Public Key Encryption

In this section, we first present the definitions of various leakage resilient PKE. The definitions in the first two
subsections are from the literature. We present our new definition for consecutive continual leakage resilience
(2CLR) in Subsection 3.1. We will present definitions for other primitives, such as one-way relations and
signatures in Sections 6 and 7.

We present definitions for obfuscation and puncturable PRFs in Sections 2.2 and 2.3.

7



2.1.1 One-time Leakage Model

A public key encryption scheme PKE consists of three algorithms: (PKE.Gen,PKE.Enc,PKE.Dec).

• PKE.Gen(1) ! (pk, sk). The key generation algorithm takes in the security parameter and outputs a
public key pk and a secret key sk.

• PKE.Enc(pk,m)! c. The encryption algorithm takes in a public key pk and a message m. It outputs a
ciphertext c.

• PKE.Dec(sk, c) ! m. The decryption algorithm takes in a ciphertext c and a secret key sk. It outputs a
message m.

Correctness. The PKE scheme satisfies correctness if PKE.Dec(sk, c) = m with all but negligible probability
whenever pk, sk is produced by PKE.Gen and c is produced by PKE.Enc(pk,m).

Security. We define one-time leakage-resilient security for PKE schemes in terms of the following game
between a challenger and an attacker (this extends the usual notion of semantic security to our leakage setting).
We let  denote the security parameter, and the parameter µ controls the amount of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls PKE.Gen(1) to create the initial
secret key sk and public key pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage function f , whose output is at most µ
bits. The challenger returns f (sk) to the attacker.

Challenge Phase. The attacker chooses two messages m
0

, m
1

which it gives to the challenger. The chal-
lenger chooses a random bit b 2 {0, 1}, encrypts mb, and gives the resulting ciphertext to the attacker.
The attacker then outputs a guess b0 for b. The attacker wins the game if b = b0. We define the advantage
of the attacker in this game as |1

2

� Pr[b0 = b]|.

Definition 2.1 (One-time Leakage Resilience) We say a Public Key Encryption scheme is µ-leakage resilient
against one-time key leakage if any probabilistic polynomial time attacker only has a negligible advantage
(negligible in ) in the above game.

2.1.2 Continual Leakage Model

In the continual leakage setting we require an additional algorithm PKE.Update which updates the secret key.
Specifically, the update algorithm takes in a secret key ski�1 and some randomness ri, and produces a new
secret key ski for the same public key. Thus, scheme PKE consists of four algorithms: (PKE.Gen,PKE.Enc,
PKE.Dec,PKE.Update).

• PKE.Gen(1) ! (pk, sk
0

). The key generation algorithm takes in the security parameter and outputs a
public key pk and a secret key sk

0

.

• PKE.Enc(pk,m)! c. The encryption algorithm takes in a public key pk and a message m. It outputs a
ciphertext c.

• PKE.Dec(ski, c) ! m. The decryption algorithm takes in a ciphertext c and a secret key ski. It outputs
a message m.

• PKE.Update(ski�1)! ski. The update algorithm takes in a secret key ski�1 and produces a new secret
key ski for the same public key. Here some randomness ri is used in the update algorithm.
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Correctness. The PKE scheme satisfies correctness if PKE.Dec(ski, c) = m with all but negligible probabil-
ity whenever pk, sk is produced by PKE.Gen, ski is obtained by calles to PKE.Update on previously obtained
secret keys (starting with sk

0

), and c is produced by PKE.Enc(pk,m).

Security. We define continual leakage-resilient security for PKE schemes in terms of the following game
between a challenger and an attacker (this extends the usual notion of semantic security to our leakage setting).
We let  denote the security parameter, and the parameter µ controls the amount of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls PKE.Gen(1) to create the initial
secret key sk

0

and public key pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of leakage queries. Each time, say in
the i-th query, the attacker provides an efficiently computable leakage function fi whose output is at most
µ bits, and the challenger chooses randomness ri, updates the secret key from ski�1 to ski, and gives the
attacker the leakage response `i. In the regular continual leakage model, the leakage attack is applied on
a single secret key, and the leakage response `i = fi(ski�1). In the continual leak-on-update model, the
leakage attack is applied on the current secret key and the randomness used for updating the secret key,
i.e., `i = fi(ski�1, ri).

Challenge Phase. The attacker chooses two messages m
0

, m
1

which it gives to the challenger. The chal-
lenger chooses a random bit b 2 {0, 1}, encrypts mb, and gives the resulting ciphertext to the attacker.
The attacker then outputs a guess b0 for b. The attacker wins the game if b = b0. We define the advantage
of the attacker in this game as |1

2

� Pr[b0 = b]|.

Definition 2.2 (Continual Leakage Resilience) We say a Public-Key Encryption scheme is µ-CLR secure (or
µ-CLR secure with leakage on key updates) if any PPT attacker only has a negligible advantage (negligible in
) in the above game.

Statistical Indistinguishability. The statistical distance between two random variables X,Y is defined by

�(X,Y ) =

1

2

X

x

|Pr[X = x]� Pr[Y = x]|

We write X
s⇡ Y to denote that the statistical distance is negligible in the security parameter, and we say

that X,Y are statistically indistinguishable.

2.2 Obfuscation

Indistinguishability Obfuscation. A uniform PPT machine iO is called an indistinguishable obfucastor [4,
5, 33, 29], for a circuit family {C}, if the following conditions hold:

• (Correctness) For all  2 N, for all C 2 C, for all inputs x, we have

Pr

⇥

C 0(x) = C(x) : C 0  iO(, C)

⇤

= 1

• For any uniform or non-uniform PPT distinguisher D, for all security parameter  2 N, for all pairs of
circuits C

0

, C
1

2 C such that C
0

(x) = C
1

(x) for all inputs x, then

|Pr [D(iO(, C
0

)) = 1]� Pr [D(iO(, C
1

)) = 1]|  negl()

For simplicity, when the security parameter  is clear, we write iO(C) in short.
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Public-Coin Differing-inputs Obfuscation for Circuits. Barak et al. [4, 5] defined the notion of differing-
inputs obfuscation, which was later re-formulated in the works of Ananth et al. and Boyle et. al [3, 9]. In our
work, we use a weaker notion known as public-coin differing inputs obfuscation, due to Ishai et al. [37]. To
the best of our knowledge, unlike the case of differing-inputs obfuscation, there are no impossibility results for
public-coin differing-inputs obfuscation. Below, we closely follow the definitions presented in [37].

Definition 2.3 (Public-Coin Differing-Inputs Sampler for Circuits) An efficient non-uniform sampling al-
gorithm Samp = {Samp} is called a public-coin differing-inputs sampler for the parameterized collection
of circuits C = {C} if the output of Samp is distributed over C ⇥ C and for every efficient non-uniform
algorithm A = {A} there exists negligible function negl such that for all  2 N:

Pr

r
[C

0

(x) 6= C
1

(x) : (C
0

, C
1

) Samp(r), x A(r)]  negl().

Note that in the above definition the sampler and attacker circuits both receive the same random coins as
input.

Definition 2.4 (Public-Coin Differing-inputs Obfuscator for Circuits) A uniform PPT machine diO is called
a Public-Coin Differing-inputs Obfuscator for the parameterized collection of circuits C = {C} if the following
conditions are satisfied:

• (Correctness): For all security parameter , all C 2 C, all inputs x, we have

Pr[C 0(x) = C(x) : C 0  diO(, C)] = 1.

• (Polynomial slowdown): There exists a universal polynomial p such that for any circuit C, we have
|C 0|  p(|C|) for all C 0 = diO(, C) under all random coins.

• (Differing-inputs): For every public-coin differing-inputs samplers Samp = {Samp} for the collection
C, for every (not necessarily uniform) PPT distinguisher D, there exists a negligible function negl such
that for all security parameters :

�

�

�

�

Pr[D(r, C 0) = 1 : (C
0

, C
1

) Samp(r), C
0  diO(, C

0

)]�
Pr[D(r, C 0) = 1 : (C

0

, C
1

) Samp(r), C
0  diO(, C

1

)]

�

�

�

�

 negl(),

where the probability is taken over r and the coins of diO.

2.3 Puncturable Pseudorandom Functions.

Puncturable family of PRFs are a special case of constrained PRFs [8, 10, 40], where the PRF is defined on all
input strings except for a set of size polynomial in the security parameter. Below we recall their definition, as
given by [46].

A puncturable family of PRFs PRF is defined by a tuple of efficient algorithms (Gen,Eval,Punct) and a
pair of polynomials n() and m():

• Key Generation Gen(1) is a PPT algorithm that takes as input the security parameter  and outputs a
PRF key K.

• Punctured Key Generation Punct(K,S) is a PPT algorithm that takes as input a PRF key K, a set
S ⇢ {0, 1}n() and outputs a punctured key KS .

• Evaluation Eval(K,x) is a deterministic algorithm that takes as input a key K (punctured key or PRF
key), a string x 2 {0, 1}n() and outputs y 2 {0, 1}m()
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Definition 2.5 A family of PRFs (Gen,Eval,Punct) is puncturable if it satisfies the following properties

• Functionality preserved under puncturing. Let K  Gen(1) and KS  Punct(K,S). Then for all
x 62 S, Eval(K,x) = Eval(KS , x).

• Pseudorandom at punctured points. For every PPT adversary (A
1

,A
2

) such that A
1

() outputs a set
S ⇢ {0, 1}n() and x 2 S, consider an experiment K  Gen(1) and KS  Punct(K,S). Then

�

�

Pr[A
2

(KS , x,Eval(K,x)) = 1]� Pr[A
2

(KS , x, Um()) = 1]

�

�  negl()

where Um() denotes the the uniform distribution over m() bits.

Theorem 2.6 ( [32, 8, 10, 40]) If one-way functions exist, then for all polynomial n() and m(), there exists a
puncturable PRF family that maps n() bits to m() bits.

Next we consider families of PRFs that are with high probability injective:

Definition 2.7 A statistically injective (puncturable) PRF family with failure probability ✏() is a family of
(puncturable) PRFs such that with probability 1 � ✏() over the random choice of key K  Gen(1), we have
that Eval(K, ·) is injective.

If the failure probability function ✏() is not specified, then ✏() is a negligible function.

Theorem 2.8 ([46]) If one-way functions exist, then for all efficiently computable functions n(), m(), and
e() such that m() > 2n() + e() here exists a puncturable statistically injective PRF family with failure
probability 2

�e() that maps n() bits to m() bits.

Finally, we consider PRFs that are also (strong) extractors over their inputs:

Definition 2.9 An extracting (puncturable) PRF family with error ✏() for min-entropy k() is a family of (punc-
turable) PRFs mapping n() bits to m() bits such that for all , if X is any distribution over n() bits
with min-entropy greater than k() then the statistical distance between (K  Gen(1),Eval(K,X)) and
(K  Gen(1), Um()) is at most ✏(), where U` denotes the uniform distribution over ` bit strings.

Theorem 2.10 ([46]) If one-way functions exist, then for all efficiently computable functions n(), m(), k()
and e() such that n() > k() > m() + 2e() + 2 there exists an extracting puncturable PRF family that
maps n() bits to m() bits with error 2�e() for min-entropy k()

For ease of presentation, for a puncturable family of PRFs PRF, we often write PRF(K,x) to represent
PRF.Eval(K,x).

3 Compiler from 2CLR to Leakage on Key Updates

In this section, we present a compiler that upgrades any scheme for public key encryption (PKE), digital sig-
nature (SIG), or one-way relation (OWR) that is consecutive two-key leakage resilient, into one that is secure
against leak on update. We first introduce a notion of explainable update transformation, which is a gener-
alization of the idea of universal deniable encryption by Sahai and Waters [46]. We show how to use such
a transformation to upgrade a scheme (PKE, SIG, or OWR) that is secure in the consecutive two-key leakage
model to one that is secure in the leak-on-update model (Section 3.2). Finally, we show two instantiations of the
explainable update transformation: one based on indistinguishability obfuscation, and the other on differing-
inputs obfuscation (Section 3.3). For clarity of exposition, the following sections will focus on constructions of
PKE, but we remark that the same results can be translated to SIG and OWR.
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3.1 Consecutive Continual Leakage Resilience (2CLR)

In this section, we present a new notion of consecutive continual leakage resilience for public-key encryption
(PKE). We remark that this notion can be easily extended to different cases, such as signatures or leakage
resilient one-way relations [21]. For simplicity and concreteness, we only present the PKE version. Let  denote
the security parameter, and µ be the leakage bound between two updates. Let PKE = {Gen,Enc,Dec,Update}
be an encryption scheme with update.

Setup Phase. The game begins with a setup phase. The challenger calls PKE.Gen(1) to create the initial
secret key sk

0

and public key pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage function f
1

, whose output is at most
µ bits. The challenger updates the secret key (changing it from sk

0

to sk
1

), and then gives the attacker
f
1

(sk
0

, sk
1

). The attacker then repeats this a polynomial number of times, each time supplying an effi-
ciently computable leakage function fi whose output is at most µ bits. Each time, the challenger updates
the secret key from ski�1 to ski according to Update(·), and gives the attacker fi(ski�1, ski).

Challenge Phase. The attacker chooses two messages m
0

, m
1

which it gives to the challenger. The chal-
lenger chooses a random bit b 2 {0, 1}, encrypts mb, and gives the resulting ciphertext to the attacker.
The attacker then outputs a guess b0 for b. The attacker wins the game if b = b0. We define the advantage
of the attacker in this game as |1

2

� Pr[b0 = b]|.

Definition 3.1 (Continual Consecutive Leakage Resilience) We say a public-key encryption scheme is µ-
leakage resilient against consecutive continual leakage (or µ-2CLR) if any probabilistic polynomial time at-
tacker only has a negligible advantage (negligible in ) in the above game.

3.2 Explainable Key-Update Transformation

Now we introduce a notion of explainable key-update transformation, and show how it can be used to upgrade
security of a PKE scheme from 2CLR to CLR with leakage on key updates. Informally, an encryption scheme
has an “explainable” update procedure if given both ski�1 and ski = Update(ski�1, ri), there is an efficient
way to come up with some explained random coins r̂i such that no adversary can distinguish the real coins ri
from the explained coins r̂i. Intuitively, this gives a way to handle leakage on random coins given just leakage
on two consecutive keys.

We start with any encryption scheme PKE that has some key update procedure, and we introduce a trans-
formation that produces a scheme PKE0 with an explainable key update procedure.

Definition 3.2 (Explainable Key Update Transformation) Let PKE = PKE.{Gen,Enc,Dec,Update} be an
encryption scheme with key update. An explainable key update transformation for PKE is a PPT algorithm
TransformGen that takes input security parameter 1, an update circuit C

Update

(that implements the key update
algorithm PKE.Update(1, ·; ·)), a public key pk of PKE, and outputs two programs P

update

,P
explain

with the
following syntax:

Let (pk, sk) be a pair of public and secret keys of the encryption scheme

• P
update

takes inputs sk, random coins r, and P
update

(sk; r) outputs a updated secret key sk0;

• P
explain

takes inputs (sk, sk0), random coins v̄, and P
explain

(sk, sk0; v̄) outputs a string r.

Given a public key pk, we define ⇧

pk

=

S

poly()
j=0

⇧j , where ⇧

0

= {sk : (pk, sk) 2 PKE.Gen}, ⇧i = {sk :

9sk0 2 ⇧i�1, sk 2 Update(sk0)} for i = 1, 2, . . . , poly(). In words, ⇧
pk

is the set of all secret keys sk such
that either (pk, sk) is in the support of PKE.Gen or sk can be obtained by the update procedure Update (up to
polynomially many times) with an initial (pk, sk0) 2 PKE.Gen.

We say the transformation is secure if:
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(a) For any pk, all sk 2 ⇧

pk

, any P
update

2 TransformGen(1,PKE.Update, pk), the following two distri-
butions are statistically close: {P

update

(sk)} ⇡ {PKE.Update(sk)}. Note that the circuit P
update

and
the update algorithm PKE.Update might have different spaces for random coins, but the distributions
can still be statistically close.

(b) For any public key pk and secret key sk 2 ⇧

pk

, the following two distributions are computationally
indistinguishable:

{(P
update

,P
explain

, pk, sk, u)} ⇡ {(P
update

,P
explain

, pk, sk, e)},

where (P
update

,P
explain

) TransformGen(1,PKE.Update, pk), u U
poly(), sk

0
= P

update

(sk;u),
e P

explain

(sk, sk0), and U
poly() denotes the uniform distribution over a polynomial number of bits.

Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryption scheme and TransformGen be an
explainable key update transformation for PKE as above. We define the following transformed scheme PKE0 =
PKE0.{Gen,Enc,Dec,Update} as follows:

• PKE0.Gen(1): compute (pk, sk) PKE.Gen(1).
Then compute (P

update

,P
explain

) TransformGen(1,PKE.Update, pk).
Finally, output pk0 = (pk,P

update

,P
explain

) and sk0 = sk.

• PKE0.Enc(pk0,m): parse pk0 = (pk,P
update

,P
explain

). Then output c PKE.Enc(pk,m).

• PKE0.Dec(sk0, c): output m = PKE.Dec(sk0, c).

• PKE0.Update(sk0): sample sk00  P
update

(sk0) and overwrite the old key, i.e. sk0 := sk00.

Then we are able to show the following theorem for the upgraded scheme PKE0.

Theorem 3.3 Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryption scheme that is µ-2CLR
(without leakage on update), and TransformGen a secure explainable key update transformation for PKE. Then
the transformed scheme PKE0 = PKE0.{Gen,Enc,Dec,Update} described above is µ-CLR with leakage on
key updates.

Proof:
Assume towards contradiction that there is a PPT adversary A and a non-negligible ✏(·) such that for

infinitely many values of , AdvA,PKE0 � ✏() in the leak-on-update model. Then we show that there exists
B that breaks the security of the underlying PKE (in the consecutive two-key leakage model) with probability
✏()� negl(). This is a contradiction.

For notionally simplicity, we will use AdvA,PKE0 to denote the advantage of the adversary A attacking the
scheme PKE0 (according to leak-on-update attacks), and AdvB,PKE to denote the advantage of the adversary B
attacking the scheme PKE (according to consecutive two-key leakage attacks).

We define B in the following way: B internally instantiates A and participates externally in a continual
consecutive two-key leakage experiment on public key encryption scheme PKE0. Specifically, B does the
following:

• Upon receiving pk⇤ externally, B runs
(P

update

,P
explain

)  TransformGen(1,PKE.Update, pk⇤). Note that by the properties of the transfor-
mation, this can be done given only pk⇤. B sets pk0 = (pk⇤,P

update

, P
explain

) to be the public key for the
PKE0 scheme and forwards pk0 to A.

• When A asks for a leakage query f(sk0i�1, ri), B asks for the following leakage query on (ski�1, ski):
f 0(ski�1, ski) = f(ski�1,P

explain

(ski�1, ski)) and forwards the response to A. Note that the output
lengths of f and f 0 are the same.
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• At some point A submits m
0

,m
1

and B forwards them to its external experiment.

• Upon receiving the challenge ciphertext c⇤, B forwards it to A and outputs whatever A outputs.

Now we would like to analyze the advantage of B. It is easy to see that B has the same advantage as A,
however there is a subtlety such that A does not necessarily have advantage ✏(): the simulation of leakage
queries provided by B is not identical to the distribution in the real game that A would expect. Recall that in
the security experiment of the scheme PKE0, the secret keys are updated according to P

update

. In the above
experiment (where B set up), the secret keys were updated using the Update externally, and the random coins
were simulated by the P

explain

algorithm.
Our goal is to show that actually A has essentially the same advantage in this modified experiment as in the

original experiment. We show this by the following lemma:

Lemma 1 For any polynomial n, the following two distributions are computationally indistinguishable.

D
1

⌘ (P
update

,P
explain

, pk, sk
0

, r
1

, sk
1

, . . . , skn�1, rn, skn) ⇡
D

2

⌘ (P
update

,P
explain

, pk, sk
0

, br
1

, bsk
1

, . . . , bskn�1, brn, bskn),

where the initial pk, sk
0

and TransformGen(1, pk) are sampled identically in both experiment; in D
1

ski+1

=

P
update

(ski; ri+1

), and ri+1

’s are uniformly random; in D
2

, bski+1

 Update(bski), bri+1

 P
explain

(

bski, bski+1

).
(Note bsk

0

= sk
0

).

Proof: To show the lemma, we consider the following hybrids: for i 2 [n] define

H(i)
= (P

update

,P
explain

, pk, sk
0

, br
1

, bsk
1

, . . . , bski�1, ri, ski, ri+1

, ski+1

, ri+2

, . . . , skn),

where the experiment is identical to D
2

for up to bski�1. Then it samples a uniformly random ri, sets ski =

P
update

(

bski�1; ri), and proceeds as D
1

.

H(i.5)
= (P

update

,P
explain

, pk, sk
0

, br
1

, bsk
1

, . . . , bski�1, bri, ski, ri+1

, ski+1

, ri+2

, . . . , skn),

where the experiment is identical to H(i) for up to bski�1, and then it samples ski  P
update

(

bski�1), and
bri  P

explain

(

bski�1, ski). The experiment is identical to D
1

for the rest.
Then we establish the following lemmas, and the lemma follows directly.

Lemma 2 For i 2 [n� 1], H(i.5) is statistically close to H(i+1).

Lemma 3 For i 2 [n], H(i) is computationally indistinguishable from H(i.5).

This first lemma follows directly from the property (a) of Definition 3.2. We now prove Lemma 3.
Proof: Suppose there exists a (polysized) distinguisher D that distinguishes H(i) from H(i.5) with non-
negligible probability, then there exist pk⇤, sk⇤, and another D0 that can break the property (b).

From the definition of the experiments, we know that P
update

,P
explain

are independent of the public key
and the first i secret keys, i.e. ~p = (pk, sk

0

, bsk
1

, . . . , bski�1). By an average argument, there exists a fixed

~p⇤ = (pk⇤, sk⇤
0

, bsk
⇤
1

, . . . , bsk
⇤
i�1)

such that D can distinguish H(i) from H(i.5) conditioned on ~p⇤ with non-negligible probability (the probability
is over the randomness of the rest experiment). Then we are going to argue that there exist a polysized distin-
guisher D0, a key pair pk0, sk0 such that D0 can distinguish (P

update

,P
explain

, pk0, sk0, u) from (P
update

,P
explain

,
pk0, sk0, e) where u is from the uniform distribution, sk00 = P

update

(sk0;u), and e P
explain

(sk0, sk00).
Let pk0 = pk⇤, sk0 = bsk

⇤
i�1, and we define D0 (with the prefix ~p⇤ hardwired) who on the challenge input

(P
update

,P
explain

, pk0, sk0, z) does the following:
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• For j 2 [i� 1], D0 samples brj = P
explain

(sk⇤j�1, sk
⇤
j ).

• Set ski�1 = sk0 and ri = z, ski = P
update

(ski�1, z).

• For j � i+ 1, D0 samples rj from the uniform distribution and sets skj = P
update

(skj�1; rj).

• Finally, D0 outputs D(P
update

,P
explain

, pk0, sk⇤
0

, br
1

, sk⇤
1

, . . . , ski�1, ri, ski, ri+1

, . . . , skn).

Clearly, if the challenge z was sampled according to uniformly random (as u), then D0 will output according
to D(H(i)|~p⇤). On the other hand, suppose it was sampled according to P

explain

(as e), then D0 will output
according to D(H i.5|~p⇤). This completes the proof of the lemma.

Remark. The non-uniform argument above is not necessary. We present in this way for simplicity. The uni-
form reduction can be obtained using a standard Markov type argument, which we omit here.

Now, we are ready to analyze the advantage of B (and A). Denote AdvA,PKE0

;D as the advantage of A in the
experiment where the leakage queries are answered according to the distribution D. By assumption, we know
that AdvA,PKE0

;D1
= ✏(), and by definition the leakage queries are answered according to D

1

. By the above
lemma, we know that |AdvA,PKE0

;D1
� AdvA,PKE0

;D2
|  negl(), otherwise D

1

and D
2

are distinguishable.
Thus, we know AdvA,PKE0

;D2
� ✏() � negl(). It is not hard to see that AdvB,PKE = AdvA,PKE0

;D2
, since

B answers A’s the leakage queries exactly according the distribution D
2

. Thus, AdvB,PKE � ✏() � negl(),
which is a contradiction. This completes the proof of the theorem.

3.3 Instantiations via Obfuscation

In this section, we show how to build an explainable key update transformation from program obfuscation.
Our best parameters are achieved using public-coin differing-inputs obfuscation [37] (rather than the weaker
indistinguishability obfuscation (iO) [5, 29]), so we present this version here.

Let PKE = (Gen,Enc,Dec,Update) be a public-key encryption scheme (or a signature scheme with al-
gorithms Verify, Sign) with key-update, and diO be a public-coin differing-inputs obfuscator (for some class
defined later). Let  be a security parameter. Let L

sk

be the length of secret keys in PKE and Lr be the length
of randomness used by Update. For ease of notation, we suppress the dependence of these lengths on . We
note that in the 2CLR case, it is without loss of generality to assume Lr << L

sk

, because we can always use
pseudorandom coins (e.g. the output of a PRG) to do the update. Since only the two consecutive keys are
leaked (not the randomness, e.g. the seed to the PRG), the update with the pseudorandom coins remains secure,
assuming the PRG is secure.

Let H be a family of public-coin collision resistant hash functions, as well as a family of (2, ✏)-good
unseeded extractors8, mapping 2L

sk

+ 2 bits to  bits. Let F
1

and F
2

be families of puncturable pseudo-
random functions, where F

1

has input length 2L
sk

+ 3 bits and output length Lr bits, and it is as well an
(Lr + ,✏)-good unseeded extractor; F

2

has input length  and output length L
sk

+ 2. Here |u
1

| =  and
|u

2

| = L
sk

+ 2, |r0| = 2.
Define the algorithm TransformGen(1, pk) that on input the security parameter, a public key pk and a

circuit that implements PKE.Update(·) as follows:

• TransformGen samples K
1

,K
2

as keys for the puncturable PRF as above, and h  H. Let P
1

be the
program as Figure 1, and P

2

as Figure 2.

• Then it samples P
update

 diO(P
1

), and P
explain

 diO(P
2

). It outputs (P
update

,P
explain

).
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Internal (hardcoded) state: Public key pk, keys K1, K2, and h.

On input secret key sk1; randomness u = (u1, u2).
– If F2(K2, u1)� u2 = (sk2, r0) for (proper length) strings sk2, r0 and u1 = h(sk1, sk2, r0), then output sk2.
– Else let x = F1(K1, (sk1, u)). Output sk2 = PKE.Update(pk, sk1;x).

Figure 1: Program Update

Internal (hardcoded) state: key K2.

On input secret keys sk1, sk2; randomness r 2 {0, 1}
– Set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1)� (sk2, r). Output e = (u1, u2).

Figure 2: Program Explain

Then we can establish the following theorem.

Theorem 3.4 Let PKE be any public key encryption scheme with key update. Assume diO is a secure public-
coin differing-inputs indistinguishable obfuscator for the circuits required by the construction, F

1

, F
2

are punc-
turable pseudorandom functions as above, and H is a family of public-coin collision resistant hash functions
as above. Then the transformation TransformGen defined above is a secure explainable update transformation
for PKE as defined in Definition 3.2.
Proof: Recall we need to demonstrate that for any public key pk⇤ and secret key sk⇤ 2 ⇧

pk

, the following
two distributions are computationally indistinguishable:

{(P
update

,P
explain

, pk⇤, sk⇤, u⇤)} ⇡ {(P
update

,P
explain

, pk⇤, sk⇤, e⇤)},

where these values are generated by
1. (P

update

,P
explain

) TransformGen(1,PKE.Update, pk⇤),
2. u⇤ = (u⇤

1

, u⇤
2

) {0, 1}Lsk

+3,
3. Set x⇤ = F

1

(K
1

, sk⇤||u⇤), sk0 = P
update

(sk⇤;u⇤). Then choose uniformly random r⇤ of length , and set
e⇤
1

= h(sk⇤, sk0, r⇤) and e⇤
2

= F
2

(K
2

, e⇤
1

)� (sk0, r⇤).

We prove this through the following sequence of hybrid steps.

Hybrid 1: In this hybrid step, we change Step 3 of the above challenge. Instead of computing sk0 =

P
update

(sk⇤;u⇤), we compute sk0 = PKE.Update(pk⇤, sk⇤;x⇤):

1. (P
update

,P
explain

) TransformGen(1,PKE.Update, pk⇤),
2. u⇤ = (u⇤

1

, u⇤
2

) {0, 1}Lsk

+3,
3. Set x⇤ = F

1

(K
1

, sk⇤||u⇤), sk0 = PKE.Update(pk⇤, sk⇤;x⇤), and choose uniformly random r⇤ of length .
Then, e⇤

1

= h(sk⇤, sk0, r⇤) and e⇤
2

= F
2

(K
2

, e⇤
1

)� (sk0, r⇤).

Note that the only time in which this changes the experiment is when the values (u⇤
1

, u⇤
2

)  {0, 1}2Lsk

+3

happen to satisfy F
2

(K
2

, u⇤
1

) � u⇤
2

= (sk0, r0) such that u⇤
1

= h(sk⇤, sk0, r0). For any fixed u⇤
1

, sk⇤, sk0, and
a random u

2

⇤ , we know the marginal probability of r0 is still uniform given u⇤
1

, sk⇤, sk0. Therefore, we have
Pru2⇤[h(sk

⇤, sk0, r0) = u⇤
1

] = Prr0 [h(sk
⇤, sk0, r0) = u⇤

1

] < 2

�
+ ✏. This is because h is a (2, ✏)-extractor,

so the output of h is ✏-close to uniform over {0, 1}, and a uniform distribution hits a particular string with
probability 2

�. Since we set ✏ to be some negligible, the two distributions are only different with the negligible
quantity.

8The extractor outputs a distribution that is ✏ close to the uniform distribution if the source has min-entropy 2. Here we set ✏ to be
some negligible. The hash function is chosen from a family of functions, and once chosen, it is a deterministic function.
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Hybrid 2: In this hybrid step, we modify the program in Figure 1, puncturing key K
1

at points {sk
1

||u⇤} and
{sk

1

||e⇤}, and adding a line of code at the beginning of the program to ensure that the PRF is never evaluated
at these two points. See Figure 3. We claim that with overwhelming probability over the choice of u⇤, this
modified program has identical input/output as the program that was used in Hybrid 1 (Figure 1). Note that
on input (sk⇤, e⇤) the output of the original program was already sk0 as defined in Hybrid 1, so the outputs
of the two programs are identical on this input. (This follows because e⇤ anyway encodes sk0, so when the
“If”-statement is triggered in the program of Figure 1, the output is sk0.) As long as u⇤

1

and u⇤
2

do not have
the property that u⇤

1

= h(sk⇤, F
2

(K
2

, u⇤
1

) � u⇤
2

), then the programs have identical output on input (sk⇤, u⇤) as
well. (This follows because sk0 is defined as sk0 = P

update

(sk⇤;F
1

(K
1

, sk⇤||u⇤)) in the challenge game, which
is also the output of the program in Figure 1 when u⇤

1

and u⇤
2

fail this condition.) As we argued in Hybrid
1, with very high probability, u⇤ does not have this property. (We stress that u⇤ is fixed before we construct
the obfuscated program described in Figure 3, so with overwhelming probability over the choice of u⇤, the
two programs have identical input output behavior.) Indistinguishability of Hybrids 1 and 2 follows from the
security of the obfuscation.

Internal (hardcoded) state: Public key pk⇤, keys eK
1

= PRF.Punct(K
1

, {sk⇤||u⇤}, {sk⇤||e⇤}), K
2

, sk0 (as
defined in Hybrid 1) and h.

On input secret key sk
1

; randomness u = (u
1

, u
2

).

– If (sk
1

, u) = (sk⇤, u⇤) or (sk
1

, u) = (sk⇤, e⇤) output the value sk0.
– Else If F

2

(K
2

;u
1

)� u
2

= (sk
2

, r0) such that u
1

= h(sk
1

, sk
2

, r0), then output sk
2

.
– Else let x = F

1

(

eK
1

, sk
1

||u). Output sk
2

= PKE.Update(pk⇤, sk
1

;x).

Figure 3: Program Update, as used in Hybrid 2

Hybrid 3: In this Hybrid we change the challenge game to use truly random x⇤ when computing sk0 =
PKE.Update(pk⇤, sk⇤;x⇤), (instead of x⇤ = F

1

(K
1

; sk⇤||u⇤)). Security holds by a reduction to the pseudo-
randomness of F

1

at the punctured point (sk⇤, u⇤). More specifically, given an adversary A that distin-
guishes Hybrid 2 from Hybrid 3 on values pk⇤, sk⇤, we describe an reduction B that attacks the security of
the puncturable PRF, F

1

. B generates u⇤ at random and submits (sk⇤, u⇤) to his challenger. He receives
eK
1

= PRF.Punct(K
1

, {sk⇤||u⇤}), and a value x⇤ as a challenge. B computes sk0 = PKE.Update(pk⇤, sk⇤;x⇤),
chooses r⇤ at random, and computes e⇤ as in the original challenge game. He creates P

update

using eK
1

and
sampling K

2

honestly. The same K
2

is used for creating P
explain

. B obfuscates both circuits, which completes
the simulation of A’s view.

Hybrid 4: In this hybrid, we puncture K
2

at both u⇤
1

and e⇤
1

, and modify the Update program to output appro-
priate hardcoded values on these inputs. (See Figures 4.) To prove that Hybrids 3 and 4 are indistinguishable,
we rely on security of public-coin differing-inputs obfuscation and public-coin collision resistant hash function.
In particular, we will show that suppose the Hybrids are distinguishable, then we can break the security of the
collision resistant hash function.

Consider the following sampler Samp(1) : outputs C
0

, C
1

as the two update programs as in Hybrids 3 and
4 respectively; and it outputs an auxiliary input aux = (pk⇤, sk⇤, sk0, u⇤, e⇤,K

2

, h, r⇤) sampled as in the both
hybrids. Note that aux includes all the random coins of the sampler. Suppose there exists a distinguisher D for
the two hybrids, then there exists a distinguished D0 that distinguishes (diO(C

0

), aux) from (diO(C
1

), aux).
This is because given the challenge input, D0 can complete the rest of the experiment either according to
Hybrid 3 or Hybrid 4. Then by security of the diO, we know there exists an adversary (extractor) B that given
(C

0

, C
1

, aux) finds an input such that C
0

and C
1

evaluate differently. However, this contradicting the security
of the public-coin collision resistant hash function. We establish this by the following lemma.
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Lemma 4 Assume h is sampled from a family of public-coin collision resistant hash function, (and (2, ✏)-
extracting) as above. Then for any PPT adversary, the probability is negligible to find a differing input given
(C

0

, C
1

, aux) as above.

Proof: By examining the two circuits, we observe that the differing inputs have the following two forms:
(

¯sk, u⇤
1

, ū
2

) such that u⇤
1

= h( ¯sk, F
2

(K
2

;u⇤
1

) � ū
2

), (

¯sk, ū
2

) 6= (sk⇤, u⇤
2

); or (

¯sk, e⇤
1

, ē
2

) such that e⇤
1

=

h( ¯sk, F
2

(K
2

; e⇤
1

) � ē
2

), ( ¯sk, ē
2

) 6= (sk⇤, e⇤
2

). This is because they will run enter the first Else IF in Hybrid
3 (Figure 3), but will enter the modified line (the first Else IF) in Hybrid 4 (Figure 4). We argue that both cases
happen with negligible probability; otherwise security of the hash function can be broken.

For the first case, we observe that the collision resistance and (2, ✏) extracting guarantee that the prob-
ability of finding an pre-image of a random value u⇤

1

is small, even given aux; otherwise there is an ad-
versary who can break collision resistance. For the second case, we know that e⇤

1

= h(sk⇤, sk0, r⇤) =

h( ¯sk, F
2

(K
2

; e⇤
1

) � ē
2

) = h( ¯sk, e⇤
2

� (sk0, r⇤) � ē
2

). Since we know that ( ¯sk, ē
2

) 6= (sk⇤, e⇤
2

), we find a
collision, which again remains hard even given aux.

Thus, suppose there exists a differing-input finder A, we can define an adversary B to break the collision
resistant hash function: on input h, B simulates the sampler Samp with the h. Then it runs A to find a differing
input. Then according to the above argument, either of the two cases will lead to finding a collision.

Internal (hardcoded) state: Public key pk⇤, keys eK
1

= PRF.Punct(K
1

, {sk⇤||u⇤}, {sk⇤||e⇤}), eK
2

=

PRF.Punct(K
2

, {u⇤
1

}, {e⇤
1

}), sk0 (as defined in Hybrid 3) and h.

On input secret key sk
1

; randomness u = (u
1

, u
2

).

– If (sk
1

, u) = (sk⇤, u⇤) or (sk
1

, u) = (sk⇤, e⇤) output value sk0.
– Else If u

1

= u⇤
1

or u
1

= e⇤
1

, let x = F
1

(

eK
1

, sk
1

||u). Output sk
2

= PKE.Update(pk⇤, sk
1

;x).
– Else

– If F
2

(K
2

;u
1

)� u
2

= (sk
2

, r0) such that u
1

= h(sk
1

, sk
2

, r0), then output sk
2

.
– Else let x = F

1

(

eK
1

, sk
1

||u). Output sk
2

= PKE.Update(pk⇤, sk
1

;x).

Figure 4: Program Update, as used in Hybrid 4

Hybrid 5: In this hybrid, we puncture K
2

at both u⇤
1

and e⇤
1

, and modify the Explain program to out-
put appropriate hardcoded values on these inputs. (See Figures 5.) Similar to the argument for the previ-
ous hybrids, we argue that Hybrids 4 and 5 are indistinguishable by security of the public-coin differing-
inputs obfuscation and public-coin collision resistant hash function. Consider a sampler Samp(1) : out-
puts C

0

, C
1

as the two explain programs as in Hybrids 4 and 5 respectively; and it outputs an auxiliary input
aux = (pk⇤, sk⇤, sk0, u⇤, e⇤, eK

2

, h, r⇤) sampled as in the both hybrids (note that aux includes all the random
coins of the sampler). Similar to the above argument: suppose there exists a distinguisher D that distin-
guishers Hybrids 4 and 5, then we can construct a distinguisher D0 that distinguishes (diO(C

0

), aux) from
(diO(C

1

), aux). This is because given the challenging input, D0 can simulate the hybrids. Then by security of
the diO, there exists an adversary (extractor) B that can find differing inputs. Now we want to argue that sup-
pose the h comes from a public-coin collision resistant hash family, then no PPT adversary can find differing
inputs. This leads to a contradiction.

Lemma 5 Assume h is sampled from a family of public-coin collision resistant hash function, (and (2, ✏)-
extracting) as above. Then for any PPT adversary, the probability is negligible to find a differing input given
(C

0

, C
1

, aux) as above.

Proof: The proof is almost identical to that of Lemma 4. We omit the details.
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Internal (hardcoded) state: key eK
2

= PRF.Punct(K
2

, {u⇤
1

}, {e⇤
1

}), u⇤, e⇤.

On input secret keys sk
1

, sk
2

; randomness r 2 {0, 1}

– If u⇤
1

= h(sk
1

, sk
2

, r), output u⇤. Else If e⇤
1

= h(sk
1

, sk
2

, r), output e⇤.
– Else, set u

1

= h(sk
1

, sk
2

, r). Set u
2

= F
2

(K
2

, u
1

)� (sk
2

, r). Output e = (u
1

, u
2

).

Figure 5: Program Explain, as used in Hybrid 5

Hybrid 6: In this hybrid, we change both e⇤
1

and e⇤
2

to uniformly random. Hybrids 5 and 6 are indistinguishable
by the security of the puncturable PRF F

2

, and by the fact that h is (2, ✏)-extracting. Clearly in this hybrid,
the distributions of {(P

update

,P
explain

, pk⇤, sk⇤, u⇤)} and {(P
update

,P
explain

, pk⇤, sk⇤, e⇤)} are identical. From
the indistinguishable arguments that the original game and Hybrid 6 are indistinguishable, we can argue that
the distributions in the original game are indistinguishable. This concludes the proof.

4 2CLR from “Leakage Resilient Subspaces”

We show that the PKE scheme of Brakerski et al. [12] (BKKV), which has been proven CLR, can achieve 2CLR
(with a slight adjustment in the scheme’s parameters). We note that our focus on PKE here is justified by the
fact that we show generically in the full version [18] that any CLR (resp. 2CLR) PKE scheme implies a CLR
“one-way relation” (OWR) [21]; to the best of our knowledge, such an implication was not previously known.
Therefore, by the results of Dodis et al. [21], this translates all our results about PKE to the signature setting as
well. In the full version [18] of the paper, we show that the approach of Dodis et al. [21] for constructing CLR
OWRs can be extended to 2CLR one-way relations, but we achieve weaker parameters this way.

Recall that in the work [12], to prove that their scheme is CLR, they show “random subspaces are leakage
resilient”. In particular, they show that for a random subspace X , the statistical difference between

�

X, f(v)
�

and
�

X, f(u)
�

is negligible, where f is an arbitrary length-bounded function, v is a random point in the
subspace, and u is a random point in the whole space. Then by a simple hybrid argument, they show that
�

X, f
1

(v
0

), f
2

(v
1

), . . . , ft(vt�1)
�

and
�

X, f
1

(u
0

), f
2

(u
1

), . . . , ft(ut�1)
�

are indistinguishable, where f
1

, . . . , ft
are arbitrary and adaptively chosen length-bounded functions , v

0

, v
1

, . . . , vt�1 are independent random points
in the subspace, and u

0

, u
1

, . . . , ut�1 are independent random points in the whole space. This lemma plays the
core role in their proof.

In order to show that their scheme satisfies the 2CLR security, we consider random subspaces under “con-
secutive” leakage. That is, we want to show:

�

X, f
1

(v
0

, v
1

), f
2

(v
1

, v
2

), . . . , ft(vt�1, vt)
�

⇡
�

X, f
1

(u
0

, u
1

), f
2

(u
1

, u
2

), . . . , ft(ut�1, ut)
�

,

for arbitrary and adaptively chosen fi’s, i.e. each fi can be chosen after seeing the previous leakage values
f
1

, . . . , fi�1. However, this does not follow by a hybrid argument of
�

X, f(v)
�

⇡
�

X, f(u)
�

, because in the
2CLR case each point is leaked twice. It is not clear how to embed a challenging instance of (X, f(z)) into the
larger experiment while still being able to simulate the rest.

To handle this technical issue, we establish a new lemma showing random subspaces are “consecutive”
leakage resilient. With the lemma and a hybrid argument, we can show that the above experiments are indistin-
guishable. Then we show how to use this fact to prove that the scheme of BKKV is 2CLR.

Lemma 6 Let t, n, `, d 2 N, n � ` � 3d, and q be a prime. Let (A,X) Zt⇥n
q ⇥ Zn⇥`

q such that A ·X = 0,
T, T 0  Rkd(Z`⇥d

q ), U  Zn⇥d
q such that A · U = 0, (i.e. U is a random matrix in Ker(A)), and f :
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Zt⇥n
q ⇥ Zn⇥2d

q !W be any function9 . Then we have:

�

��

A,X, f(A,XT,XT 0), XT 0
�

,
�

A,X, f
�

A,U,XT 0
�

, XT 0
��

 ✏,

as long as |W |  (1� 1/q) · q`�3d+1 · ✏2.

Proof: We will actually prove something stronger, namely we will prove, under the assumptions of the
Lemma 6, that

�

⇣⇣

A,X, f(A,X · T,X · T 0), X · T 0, T 0
⌘

,
⇣

A,X, f(A,U,X · T 0), X · T 0, T 0
⌘⌘

 1

2

s

3|W |
(1� 1/q)q`�3d+1

< ✏ .

Note that this implies the Lemma by solving for ✏, after noting that ignoring the last component in each tuple
can only decrease statistical difference.

For the proof, we will apply Lemma 7 as follows. We will take hash function H to be H : Zn⇥`
q ⇥ Z`⇥d

q !
Zn⇥d
q where HK(D) = KD (matrix multiplication), and take the set Z to be Zn⇥`

q ⇥ Z`⇥d
q . Next we take

random variable K to be uniform on Zn⇥`
q (denoted as the matrix X), D to be uniform on Rkd(Z`⇥d

q ), and
finally Z = (A,XT 0, T 0) where A is uniform conditioned on AX = 0, T 0 2 Rkd(Z`⇥d

q ) is independent
uniform. We define U|Z as the uniform distribution such that AU = 0. This also means that U is a random
matrix in the kernel of A.

It remains to prove under these settings that

Pr

⇥

(D,D0, Z) 2 BAD
⇤

 1

(1� 1/q)q`�3d+1

with BAD defined as in Lemma 7. For this let us consider

�

�

(HK|Z (T1

), HK|Z (T2

)), (U|Z , U 0|Z)
�

where Z = (A,XT 0, T 0) as defined above. The above statistical distance is zero as long as the outcomes of
T
1

, T
2

, T 0 are all linearly independent. This is so because ` � 3d. Now, by a standard formula the probability
that T

1

, T
2

, T 0 have a linear dependency is bounded by 1

(1�1/q)q`�3d+1 , and we are done.
We note that this lemma is slightly different that the original lemma in the work [12]: the leakage function

considered here also takes in a public matrix A, which is used as the public key in the system. We observe that
both our work and [12] need this version of the lemma to prove security of the encryption scheme.

We actually prove Lemma 6 as a consequence of a new generalization of the Crooked Leftover Hash Lemma
(LHL) [26, 6] we introduce (to handle hash functions that are only pairwise independent if some bad event does
not happen), as follows.

Lemma 7 Let H : K ⇥ D ! R be a hash function and (K,Z) be joint random variables over (K,Z) for the
set K and some set Z . Define the following set

BAD =

n

�

d, d0, z
�

2 D ⇥D ⇥ Z : �

�

(HK|Z=z
(d), HK|Z=z

(d0)), (U|Z=z, U
0
|Z=z)

�

> 0

o

, (1)

where U|Z=z, U
0
|Z=z denote two independent uniform distributions over R conditioned on Z = z, and K|Z=z

is the conditional distribution of K given Z = z. We note that R might depend on z, so when we describe a
uniform distribution over R, we need to specify the condition Z = z.

Suppose D and D0 are i.i.d. random variables over D, (K,Z) are random variables over K⇥Z satisfying
Pr [ (D,D0, Z) 2 BAD ]  ✏0. Then for any set S and function f : R⇥ Z ! S it holds that

�((K,Z, f(HK(D), Z)), (K,Z, f(U|Z , Z)))  1

2

p

3✏0 |S| .
9Note: Rk denotes rank. Here we use n as the dimension (different from [12] who used m) to avoid overloading notation.
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Proof: The proof is an extension of the proof of the Crooked LHL given in [6]. First, using Cauchy-Schwarz
and Jensen’s inequality we have

�((K,Z, f(HK(D), Z)), (K,Z, f(U|Z , Z)))

5 1

2

v

u

u

t|S|Ek,z

"

X

s

(Pr [ f(Hk(D), z) = s ]� Pr

⇥

f(U|Z=z, z) = s
⇤

)

2

#

,

where U|Z=z is uniform on R conditioned on Z = z, and the expectation is over (k, z) drawn from (K,Z).
Thus, to complete the proof it suffices to prove the following lemma.

Lemma 8

Ek,z

"

X

s

⇣

Pr [ f(Hk(D), z) = s ]� Pr

⇥

f(U|Z=z, z) = s
⇤

⌘

2

#

 3✏0 . (2)

Proof: By the linearity of expectation, we can express Equation 2 as:

Ek,z

X

s

Pr [ f(Hk(D), z) = s ]2 � 2Ek,z

X

s

Pr [ f(Hk(D), z) = s ]Pr
⇥

f(U|Z=z, z) = s
⇤

+EzCol(f(U|Z=z, z)), (3)

where U|Z=z is uniform on R conditioned on Z = z, and Col is the collision probability of its input random
variable. Note that since f(U|Z=z, z) is independent of k, we can drop it in the third term. In the following, we
are going to calculate bounds for the first two terms.

For any s 2 S , we can write Pr [ f(Hk(D), z) = s ] =
P

d Pr [D = d ]�f(Hk(d),z),s where �a,b is 1 if a = b
and 0 otherwise, and thus

X

s

Pr [ f(Hk(D), z) = s ]2 =
X

d,d0

Pr [D = d ]Pr
⇥

D = d0
⇤

�f(Hk(d),z),f(Hk(d0),z) .

So we have

Ek,z

X

s

Pr [ f(Hk(D), z) = s ]2 = Ek,z

2

4

X

d,d0

Pr [D = d ]Pr
⇥

D = d0
⇤

�f(Hk(d),z),f(Hk(d0),z)

3

5

= Ez

2

4

X

d,d0

Pr [D = d ]Pr
⇥

D = d0
⇤

Ek

⇥

�f(Hk(d),z),f(Hk(d0),z)

⇤

3

5


X

z,d,d0 /2BAD
Pr [Z = z ]Pr [D = d ]Pr

⇥

D = d0
⇤

Ek

⇥

�f(Hk(d),z),f(Hk(d0),z)

⇤

+ ✏0

= Ez

⇥

Col(f(U|Z=z, z))
⇤

+ ✏0, (4)

where BAD is defined as in equation (1) from Lemma 7. The inequality holds because, by our definition of
BAD, if (z, d, d0) /2 BAD, (Hk(d), Hk(d0)) are distributed exactly as two uniformly chosen elements (condi-
tioned on Z = z), and because Pr[(z, d, d0) 2 BAD]  ✏0.

By a similar calculation, we have:

Ek,z

X

s

Pr [ f(Hk(D), z) = s ]Pr
⇥

f(U|Z=z, z) = s
⇤

� Ez

⇥

Col(f(U|Z=z, z))
⇤

� ✏0 . (5)

For the same reason, Hk(D) is uniformly random except for the bad event, whose probability is bounded by ✏0.
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Putting things together, the inequality in Equation 2 follows immediately by plugging the bounds in Equa-
tions 4 and 5. This concludes the proof.

Here we describe the BKKV encryption scheme, and show it is 2CLR-secure. We begin by presenting
the main scheme in BKKV, which uses the weaker linear assumption, but achieves a worse leakage rate (that
can tolerate roughly 1/8 · |sk| � o()). In that work [12], it is also pointed out that under the stronger SXDH
assumption, the rate can be improved to tolerate roughly 1/4 · |sk|� o(k), with essentially the same proof. The
same argument also holds in the 2CLR setting. To avoid repetition, we just describe the original scheme in
BKKV, and prove that it is actually 2CLR under the linear assumption.

• Parameters. Let G,GT be two groups of prime order p such that there exists a bilinear map e : G⇥G!
GT . Let g be a generator of G (and so e(g, g) is a generator of GT ). An additional parameter ` � 7 is
polynomial in the security parameter. (Setting different ` will enable a tradeoff between efficiency and
the rate of tolerable leakage). For the scheme to be secure, we require that the linear assumption holds in
the group G, which implies that the size of the group must be super-polynomial, i.e. p = !(1).

• Key-generation. The algorithm samples A  Z2⇥`
p , and Y  Ker2(A), i.e. Y 2 Z`⇥2

p can be viewed
as two random (linearly independent) points in the kernel of A. Then it sets pk = gA, sk = gY . Note
that since A is known, Y can be sampled efficiently.

• Key-update. Given a secret key gY 2 G`⇥2, the algorithm samples R  Rk
2

(Z2⇥2
p ) and then sets

sk0 = gY ·R.

• Encryption. Given a public key pk = gA, to encrypt 0, it samples a random r 2 Z2

p and outputs
c = gr

T ·A. To encrypt 1, it just outputs c = gu
T where u Z`

p is a uniformly random vector.

• Decryption. Given a ciphertext c = gv
T and a secret key sk = gY , the algorithm computes e(g, g)vT ·Y .

If the result is e(g, g)0, then it outputs 0; otherwise 1.

Then we are able to achieve the following theorem:

Theorem 4.1 Under the linear assumption, for every ` � 7, the encryption scheme scheme above is µ-bit
leakage resilient against two-key continual and consecutive leakage, where µ =

(`�6)·log p
2

� !(). Note that
the leakage rate would be µ

|sk|+|sk| ⇡ 1/8, as ` is chosen sufficiently large.

Proof: The theorem follows directly from the following lemma:

Lemma 9 For any t 2 poly(), r  Z2

p, A  Z2⇥`
p , random Y 2 Ker2(A), and polynomial sized functions

f
1

, f
2

, . . . , ft where each fi : Z`⇥2
p ⇥Z`⇥2

p ! {0, 1}µ and can be adaptively chosen (i.e. fi can be chosen after
seeing the leakage values of f

1

, . . . , fi�1), the following two distributions, D
0

and D
1

, are computationally
indistinguishable:

D
0

= (g, gA, gr
T ·A, f

1

(sk
0

, sk
1

), . . . ft(skt�1, skt))

D
1

= (g, gA, gu, f
1

(sk
0

, sk
1

), . . . ft(skt�1, skt)),

where sk
0

= gY and ski+1

= (ski)
Ri for Ri a random 2 by 2 matrix of rank 2.

Basically, the distribution D
0

is the view of the adversary when given an encryption of 0 as the challenge
ciphertext and continual leakage of the secret keys; D

1

is the same except the challenge ciphertext is an en-
cryption of 1. Our goal is to show that no polynomial sized adversary can distinguish between them.

We show the lemma in the following steps:
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1. We first consider two modified experiment D0
0

and D0
1

where in these experiments, all the secret keys are
sampled independently, i.e. sk0i+1

 Ker2(A). In other words, instead of using a rotation of the current
secret key, the update procedure resamples two random (linearly independent) points in the kernel of
A. Denote D0b = (g, gA, gz, f

1

(sk0
0

, sk0
1

), . . . ft(sk
0
t�1, sk

0
t)) for gz is sampled either from gr

T ·A or gu

depending on b 2 {0, 1}. Intuitively, the operations are computed in the exponent, so the adversary
cannot distinguish between the modified experiments from the original ones. We formally prove this
using the linear assumption.

2. Then we consider the following modified experiments: for b 2 {0, 1}, define

D00b = (g, gA, gz, f
1

(gu0 , gu1
), f

2

(gu1 , gu2
), · · · , ft(gut�1 , gut

)),

where the distribution samples a random X 2 Z`⇥(`�3)
p such that A · X = 0; then it samples each

ui = X · Ti for Ti  Rk
2

(Z(`�3)⇥2
p ); finally it samples z either as rT ·A or uniformly random as in D0b.

We then show that D00b is indistinguishable from D0b using the new geometric lemma.

3. Finally, we show that D00
0

⇡ D00
1

under the linear assumption.

To implement the approach just described, we establish the following lemmas.

Lemma 10 For both b 2 {0, 1}, Db is computationally indistinguishable from D0b.

To show this lemma, we first establish a lemma:

Lemma 11 Under the linear assumption, (g, gA, gY , gY ·U
) ⇡ (g, gA, gY , gY

0

), where A Z2⇥`
p , Y, Y 0 Ker2(A),

and U  Rk
2

(Z2⇥2
p ).

Suppose there exists a distinguisher A that breaks the above statement with non-negligible probability,
then we can construct B that can break the linear assumption (the matrix form). In particular, B distinguishes
(g, gC , gC·U

) from (g, gC , gC
0

) where C and C 0 are two independent and uniformly random samples from
Z(`�2)⇥2
p , and U is uniformly random matrix from Z2⇥2

p . Note that when p = !(1) (this is required by the
linear assumption), then with overwhelming probability, (C||C 0) is a rank 4 matrix, and (C||C · U) is a rank 2
matrix. The linear assumption is that no polynomial time adversary can distinguish the two distributions when
given in the exponent.

B does the following on input (g, gC , gZ), where Z is either C · U or a uniformly random matrix C 0:

• B samples a random rank 2 matrix A 2 Z2⇥`
p . Then B computes an arbitrary basis of Ker(A) (note that

Ker(A) = {v 2 Z`
p : A · v = 0}), denoted as X . By the rank-nullity theorem (see any linear algebra

textbook), the dimension of Ker(A) plus Rk(A) is `. So we know that X 2 Z`⇥(`�2)
p , i.e. X contains

(`� 2) vectors that are linearly independent.

• B computes gX·C and gX·Z . This can be done efficiently given (gC , gZ) and X in the clear.

• B outputs A(g, gA, gX·C , gX·Z
).

We observe that when p = !(1), the distribution of A is statistically close to a random matrix, and U is
statistically close to a random rank 2 matrix. Then it is not hard to see that gX·C is identically distributed to gY ,
and gX·Z is distributed as g(X·C)·U if Z = C · U , and otherwise as gY 0 . So B can break the linear assumption
with probability essentially the same as that of A. This completes the proof of the lemma.

Then Lemma 10 can be proven using the lemma via a standard hybrid argument. We show that D
0

⇡ D0
0

and the other one can be shown by the same argument. For i 2 [t+ 1], define hybrids Hi as the experiment as
D

0

except the first i secret keys are sampled independently, as D0
0

; the rest are sampled according to rotations,
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as D
0

. It is not hard to see that H
1

= D
0

, Ht+1

= D0
0

, and Hi ⇡ Hi+1

using the lemma. The argument is
obvious and standard, so we omit the detail.

Then we recall the modified distribution D00b : for b 2 {0, 1},

D00b = (g, gA, gz, f
1

(gu0 , gu1
), f

2

(gu1 , gu2
), · · · , ft(gut�1 , gut

)),

where the distribution samples a random X 2 Z`⇥(`�2)
p such that A ·X = 0; then it samples each ui = X · Ti

for Ti  Rk
2

(Z(`�2)⇥2
p ), and z is sampled either rT ·A or uniformly random. We then establish the following

lemma.

Lemma 12 For b 2 {0, 1}, D0b is computationally indistinguishable from D00b .

We prove the lemma using another hybrid argument. We prove that D0
0

⇡ D00
0

, and the other follows from
the same argument. We define hybrids Qi for i 2 [t] where in Qi, the first i secret keys (the exponents) are
sampled randomly from Ker2(A) (as D0

0

), and the rest secret keys (the exponents) are sampled as X · T (as
D00

0

). Clearly, Q
0

= D00
0

and Qt+1

= D0
0

. Then we want to show that Qi is indistinguishable from Qi+1

using
the extended geometric lemma (Lemma 6).

For any i 2 [t+1], we argue that suppose there exists an (even unbounded) adversary that distinguishes Qi

from Qi+1

with probability better than ✏, then there exist a leakage function L and an adversary B such that B
can distinguish

⇣

A,X,L(A,X · T,X · T 0), X · T 0
⌘

from
⇣

A,X,L(A,U,X · T 0), X · T 0
⌘

in Lemma 6 with
probability better than ✏� negl() (dimensions will be set later). We will set the parameters of Lemma 6 such
that the two distributions have negligible statistical difference; thus ✏ can be at most a negligible quantity.

Now we formally set the dimensions: let X be a random matrix in Z`⇥(`�3); T, T 0 be two random rank 2
matrices in Z(`�3)⇥2

p , i.e. Rk
2

⇣

Z(`�3)⇥2
p

⌘

; L : Z`⇥2
p ⇥Z`⇥2

p ! {0, 1}2µ; recall that 2µ = (`�6) · log p�!(),

and thus |L|  p`�6 · �!(1). By Lemma 6, for any (even computationally unbounded) L, we have

�

⇣⇣

A,X,L(A,X · T,X · T 0), X · T 0
⌘

,
⇣

A,X,L(A,U,X · T 0), X · T 0
⌘⌘

< �!(1) = negl().

Let g be a random generator of G, and ! is some randomness chosen uniformly. We define a particular
function L⇤, with g,! hardwired, as follows: L⇤(A,w, v) on input A,w, v does the following:

• It first samples Y
0

, . . . , Yi�1  Ker2(A), using the random coins !. Then it sets skj = gYj for j 2 [i�1].

• It simulates the leakage functions, adaptively, obtains the values
f
1

(sk
0

, sk
1

), . . . , fi�1(ski�2, ski�1), and obtains the next leakage function fi.

• It computes fi(ski�1, gw), and then obtains the next leakage function fi+1

.

• Finally it outputs fi(ski�1, gw)||fi+1

(gw, gv).

Recall that fi, fi+1

are two leakage functions with µ bits of output, so L⇤ has 2µ bits of output. Now we
construct the adversary B as follows:

• Let g be the random generator, ! be the random coins as stated above, and L⇤ be the function defined
above. Then B gets input (A,X,L⇤(A,Z,X · T 0), X · T 0) where Z is either uniformly random or X · T .

• B samples Y
0

, . . . , Yi�1  Ker2(A), using the random coins !. Then it sets skj = gYj for j 2 [i � 1].
We note that the secret keys (in the first i � 1 rounds) are consistent with the values used in the leakage
function for they use the same randomness !.

• B sets ski+2

= gX·T 0 .
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• B samples Ti+3

, . . . , Tt+1

 Rk
2

(Z(`�3)⇥2
p ) and sets skj = gX·Tj for j 2 {i+ 3, . . . , t+ 1}.

• B outputs A
⇣

gA, gz, f
1

(sk
0

, sk
1

), f
2

(sk
1

, sk
2

), · · · , fi�1(ski�2, ski�1), L⇤(Z,X·T 0), fi+2

(ski+2

, sk0i+3

),

. . . , ft(sk
0
t, sk

0
t+1

)

⌘

.

Then it is not hard to see that if Z comes from the distribution XT , then the simulation of B and L⇤

distributes as Qi, and otherwise Qi�1. Thus, suppose suppose A can distinguish Qi from Qi+1

with non-
negligible probability ✏, then B can distinguish the two distributions with a non-negligible probability. This
contradicts Lemma 6.

Finally, we show that D00
0

is computationally indistinguishable from D00
1

under the linear assumption.

Lemma 13 Under the linear assumption, the distributions D00
0

and D00
1

are computationally indistinguishable.

We use the same argument as the work [12]. In particular, we will prove that suppose there exists an
adversary A that distinguishes D00

0

from D00
1

, then there exists an adversary B that distinguishes the distributions
{gC : C  Z3⇥3

p } and {gC : C  Rk
2

(Z3⇥3
p )}. We assume that the second distribution samples two random

rows, and then sets the third row as a random linear combination of the first two rows. As argued in the
work [12], this assumption is without loss of generality.

Now we describe the adversary B. B on input gC does the following.

• B samples a random matrix X  Z`⇥(`�3)
p , and a random matrix B  Z3⇥`

p such that B ·X = 0.

• B computes gCB , and sets its first two rows as gA and the last row as gz .

• B samples T
1

, . . . , Tt  Rk
2

(Z(`�3)⇥2
p ), and sets ski = gXTi for i 2 [t].

• B outputs A(g, gA, gz, f
1

(sk
0

, sk
1

), . . . , ft(skt�1, skt)).

As argued in the work [12], if C is uniformly random, then (A, z) is distributed uniformly as D00
1

. If
C is of rank 2, then (A, z) is distributed as (A, rTA) for some random r 2 Z2

p as D00
0

. Thus, suppose A
can distinguish D00

0

from D00
1

with non-negligible probability, then B breaks the linear assumption with non-
negligible probability.

Lemma 9 (D
0

⇡ D
1

) follows directly from Lemmas 10, 12, and 13. This suffices to prove the theorem. We
present the proofs of Lemmas 10, 12, and 13.

5 Bounded and continual leakage-resilient encryption schemes from Obfusca-
tion

5.1 Making Sahai-Waters PKE Leakage-Resilient

We show that by modifying the Sahai-Waters (SW) public key encryption scheme [46] in two simple ways,
the scheme already becomes non-trivially leakage resilient in the one-time, bounded setting. Recall that in this
setting, the adversary, after seeing the public key and before seeing the challenge ciphertext, may request a
single leakage query of length L bits. We require that semantic security hold, even given this leakage.

Our scheme can tolerate an arbitrary amount of one-time leakage. Specifically, for any L = L() =

poly(), we can obtain a scheme which is L-leakage resilient by setting the parameter ⇢ in Figure 6 depending
on L. However, our leakage rate is not optimal, since the size of the secret key sk, grows with L. In Section 5.2,
we will show how to further modify the construction to achieve optimal leakage rate.
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At a high-level, we modify SW in the following ways: (1) Instead of following the general paradigm of
encrypting a message m by xoring with the output of a PRF, we first apply a strong randomness extractor Ext
to the output of the PRF and then xor with the message m; (2) We modify the secret key of the new scheme to
be an iO of the underlying decryption circuit. Recall that in SW, decryption essentially consists of evaluating a
puncturable PRF. In our scheme, sk consists of an iO of the puncturable PRF, padded with poly(L) bits.

We show that, even given L bits of leakage, the attacker cannot distinguish Ext(y) from random, where y
is the output of the PRF on a fixed input t⇤. This will be sufficient to prove security. We proceed by a sequence
of hybrids: First, we switch sk to be an obfuscation of a circuit which has a PRF key punctured at t⇤ and a
point function t⇤ ! y hardcoded. On input t 6= t⇤, the punctured PRF is used to compute the output, whereas
on input t⇤, the point function is used. Since the circuits compute the same function and—due to appropriate
padding—they are both the same size, security of the iO implies that an adversary cannot distinguish the two
scenarios. Next, just as in SW, we switch from t⇤ ! y to t⇤ ! y⇤, where y⇤ is uniformly random of length
L + L

msg

+ 2 log(1/✏) bits; here we rely on the security of the punctured PRF. Now, observe that since y⇤ is
uniform and since Ext is a strong extractor for inputs of min-entropy L

msg

+2 log(1/✏) and output length L
msg

,
Ext(y⇤) looks random, even under L bits of leakage.

Encryption scheme E = (E .Gen, E .Enc, E .Dec) using obfuscator iO and PRG G.

Key Generation: (pk, sk0) E .Gen(1)
Compute k  PRF.Gen(1), where PRF : {0, 1} ⇥ {0, 1}⇢ ! {0, 1}⇢. Let Ck be the circuit described in
Figure 7, and let C

Enc

 iO(Ck).
Let Ck,+⇢ be the circuit described in Figure 8, and let C

Dec

 iO(Ck,+⇢).
Output pk = (C

Enc

) and sk = (C
Dec

).

Encryption: c E .Enc(pk,m)

On input message m 2 {0, 1}Lmsg , sample r  {0, 1}, w  {0, 1}d, and output c =

(G(r), w,Ext(C
Enc

(r), w)�m), where PRG G : {0, 1} ! {0, 1}⇢, and Ext : {0, 1}⇢⇥{0, 1}d ! {0, 1}Lmsg .

Decryption: m̂ E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := C

Dec

(t).

If y 6= ?, output m̂ = Ext(y, w)� v. Otherwise, output m̂ = ?.

Figure 6: The one-time, bounded leakage encryption scheme, E .

Internal (hardcoded) state: k.

On input: r
– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Figure 7: This program Ck is obfuscated using iO and placed in the public key to be used for encryption.

Internal (hardcoded) state: k.

On input: t
– Output z = PRF.Eval(k, t).

Figure 8: The circuit above is padded with poly( + ⇢) dummy gates to obtain the circuit Ck,+⇢. Ck,+⇢ is then
obfuscated using iO and placed in the secret key.

Theorem 5.1 Assume

• PRF : {0, 1} ⇥ {0, 1}⇢ ! {0, 1}⇢ is a puncturable pseudorandom function.
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• iO is indistinguishability obfuscator for circuits in this scheme.

• Ext : {0, 1}⇢ ⇥ {0, 1}d ! {0, 1}Lmsg is a (L
msg

+ 2 log(1/✏), ✏)-strong extractor, where ✏ = negl().

Then E is L-leakage resilient against one-time key leakage where

L = ⇢� 2 log(1/✏)� L
msg

First, note that extractors that satisfy the requirements of Theorem 5.1 can be constructed via the Leftover
Hash Lemma (c.f. [36]).

In order to prove Theorem 5.1, we prove (in Lemma 14) that even under leakage, it is hard for any PPT
adversary A to distinguish the output of the extractor, Ext from uniform random. Given this, Theorem 5.1
follows immediately.

Lemma 14 For every PPT leaking adversary A, who is given oracle access to a leakage oracle O and may
leak at most ⇢� 2 log(1/✏)� L

msg

bits of the secret key, there exist random variables pk0, esk such that:
⇣

pk, t, w,Ext(y, w), f (sk) AO(·)
(pk)

⌘

c⇡
⇣

pk0, U⇢, w, UL
msg

, f (esk) AO(·)
(pk0)

⌘

where y = C
Dec

(t = G(r)) and the distributions are taken over coins of A and choice of (pk, sk)  
E .Gen(1), w, r and choice of pk0, esk, w, respectively.

We prove the lemma via the following sequence of hybrids: Note that Hybrids 1, 2 are essentially identical
to the Sahai-Waters hybrids. We differ from Sahai-Waters when we modify the secret key in Hybrids 3 and 4.

Hybrid 0: This hybrid is identical to the real game.
Let DA

H0
denote the distribution (pk, t, w,Ext(y, w), f (sk) AO(·)

(pk)) as in the left side of Lemma 14.

Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom t = G(r) in the challenge
ciphertext with uniform random t⇤  {0, 1}⇢.

Let DA
H1

denote the distribution (pk, t⇤, w,Ext(y, w), f (sk)  AO(·)
(pk)) where y = C

Dec

(t⇤) and the
distribution is taken over coins of A, choice of (pk, sk), w, t⇤ as described above.

Claim 5.2 For every PPT adversary A,
DA

H0

c⇡ DA
H1

.

Proof: The proof is by reduction to the security of the pseudorandom generator G. Assume towards contra-
diction that there exists a PPT adversary A, a corresponding PPT distinguisher D and a polynomial p(·) such
that for infinitely many , D distinguishes DA

H0
and DA

H1
with probability at least 1/p(). We construct a PPT

adversary S that distinguishes the output of the PRG from uniform random with probability at least 1/p(), for
infinitely many . S does the following: S runs E .Gen(1) honestly to generate (pk, sk). S hands pk to A and
responds to leakage query f by applying the leakage function directly to sk to compute f (sk). Upon receiving
its challenge t0 as the external PRG challenge, S sets y = C

Dec

(t0), hands (pk, t0, w,Ext(y, w), f (sk)) to the
distinguisher D, and outputs whatever D does. The reader can verify that S’s distinguishing advantage is the
same as D’s.

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used in C
Enc

with a punctured key,
ek = PRF.Punct(k, t⇤), and denote it as C 0

Enc

. We denote the resulting public key by pk0.
Let DA

H2
denote the distribution

�

pk0, t⇤, w,Ext(y, w), f (sk) AO(·)
(pk0)

�

where y = C
Dec

(t⇤) and the
distribution is taken over coins of A, and choice of (pk0, sk), w, t⇤ as described above.

Claim 5.3 For every PPT adversary A,
DA

H1

c⇡ DA
H2

.
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Internal (hardcoded) state: ek = PRF.Punct(k, t⇤).

On input: r

– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Figure 9: Program Cek. This program replaces Ck. It is obfuscated and placed in the public key to be used for
encryption.

Proof: The proof is by a reduction to the security of the indistinguishability obfuscation. The main observation
is that with all but negligible probability, t⇤ is not in the range of the PRG , in which case C

Enc

and the modified
circuit C 0

Enc

used in Hybrid 2 have identical behavior. Thus, with high probability for all inputs neither program
can call on PRF.Punct(k, t⇤). Therefore, puncturing t⇤ out from the key k will not effect the input/output
behavior. Therefore, if there is a difference in advantage, we can create an algorithm B that breaks the security
of indistinguishability obfuscation.

B runs as the challenger, but where t⇤ is chosen at random. When it is to create the obfuscated program
it submits both programs C

0

= Ck and C
1

= Cek to an iO challenger. If the iO challenger chooses the first
then we are in Hybrid 1. If it chooses the second then we are in Hybrid 2. Any adversary with non-negligible
advantages in the two hybrids leads to B as an attacker on iO security.

Hybrid 3: This hybrid is the same as Hybrid 2 except we replace C
Dec

= iO(Ck,+⇢) with C 0
Dec

= iO(C 0ek),
where C 0ek is specified below in Figure 10. Note that we puncture k at the challenge point t⇤. We denote by sk0

the resulting secret key.

Internal (hardcoded) state: (t⇤,� = PRF.Eval(k, t⇤)),ek = PRF.Punct(k, t⇤).

On input: t

– If t = t⇤, output �.
– Otherwise, output PRF.Eval(ek, t).

Figure 10: Program C 0ek. This program replaces Ck,+⇢. It is obfuscated and placed in the secret key.

Let DA
H3

denote the distribution
⇣

pk0, t⇤, w,Ext(y, w), f (sk0) AO(·)
(

cpk)
⌘

where y = C 0
Dec

( t⇤) and the
distribution is taken over coins of A, and choice of (pk, sk0), w, t⇤ as described above.

Claim 5.4 For every PPT adversary A,
DA

H2

c⇡ DA
H3

.

Proof: The proof is by a reduction to the security of the indistinguishability obfuscation. The main observation
is that the size of the circuit does not change since the description of Ck,+⇢ is padded with poly( + ⇢)
gates (for appropriate poly). Thus, Ck,+⇢ and C 0ek are the same size. Moreover, puncturing t⇤ out from
the key k will not effect the input/output behavior since on input t⇤ we output the hardcoded value � =

PRF.Eval(k, t⇤). Therefore, if there is a difference in advantage, we can create an algorithm B that breaks the
security of indistinguishability obfuscation.

B runs as the challenger, but where t⇤ is chosen at random. When it is to create the obfuscated program it
submits both programs C

0

= Ck,+⇢ and C
1

= C 0ek to an iO challenger. If the iO challenger chooses the first
then we are in Hybrid 1. If it chooses the second then we are in Hybrid 2. Any adversary with non-negligible
advantages in the two hybrids leads to B as an attacker on iO security.

Hybrid 4: This hybrid is the same as Hybrid 3 except we replace the hardcoded � with y⇤, where y⇤ is
uniformly random. We denote by esk the resulting secret key. Note that the public key pk0 remains the same.
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Let DA
H4

denote the distribution
⇣

pk0, t⇤, w,Ext(y⇤, w), f (esk) AO(·)
(pk0)

⌘

where y⇤ = C 0
Dec

(t⇤) and

the distribution is taken over coins of A, and choice of (pk0, esk), w, t⇤ as described above.

Claim 5.5 For every PPT adversary A,
DA

H3

c⇡ DA
H4

.

Proof: The proof is through a reduction to the security of the puncturable PRF. Recall, the security notion
of puncturable PRFs states that, given PRF.Punct(k, t⇤), an adversary cannot distinguish PRF.Eval(k, t⇤)
from random. The reduction is straightforward: to break the security of the PRF, S generates t⇤ at random
and submits it to his challenger. He receives PRF.Punct(k, t⇤), along with either y⇤ = PRF.Eval(k, t⇤) or
y⇤  {0, 1}⇢ as a challenge. He uses y⇤, and samples all the remaining necessary keys for simulating cpk and
bsk. He chooses w at random and computes Ext(y⇤, w). He answers leakage queries on esk honestly. The reader
can verify that S’s advantage is the same as A’s advantage in distinguishing the two hybrids.

Claim 5.6
DA

H4

s⇡
⇣

pk0, U⇢, w, UL
msg

, f (esk) AO(·)
(

fpk)
⌘

Note that the right side above is the same as the right side of Lemma 14
Proof: We claim that the min-entropy of y⇤ conditioned on pk0, f (esk) is at least L

msg

+ 2 log(1/✏). Note that
y⇤ initially has min entropy ⇢ since it is chosen uniformly at random. Thus, leaking ⇢ � 2 log(1/✏) � L

msg

number of bits of the secret key reduces y⇤’s min entropy by at most ⇢ � 2 log(1/✏) � L
msg

. Therefore, y⇤

maintains min-entropy at least L
msg

+ 2 log(1/✏). and so the claim follows by the properties of the strong
extractor, Ext.

This concludes the proof of Lemma 14.

5.2 Improving the Leakage Rate

In this section, we show how to modify the previous construction to achieve optimal leakage rate. The key
observation is that the leakage rate tolerated by the previous construction is low because the entire obfuscated
circuit iO(Ck,+⇢) must be stored in the secret key. Ideally, since the circuit is obfuscated, we would like to put
it in the public key. However, this cannot possibly work since anyone can then decrypt the challenge ciphertext.
Therefore, we store a collision-resistant hash h(ct

dummy

) in the obfuscated circuit, and include a ciphertext
encrypted using a symmetric key encryption scheme, ct

dummy

, in the secret key: the circuit will only decrypt
if the user provides a proper pre-image to the hardcoded value h(ct

dummy

). This scheme seems to preserve
semantic security, but we must prove security in the LR setting. Specifically, we must show that even when
leaking 1� o(1)-fraction of ct

dummy

, the adversary cannot find a valid input to the obfuscated circuit. To prove
this, the idea is that in the hybrids, we switch ct

dummy

from a “dummy input” to an encryption of the point
function t⇤ ! y⇤, where y⇤ is random. The obfuscated circuit will also be changed (as in the proof of the
previous construction) so that on input t⇤, it outputs the output of the point function. Note that even under
leakage, y⇤ has high min-entropy and thus Ext(y⇤) will still look random. Finally, we note that in order for the
argument to work, we must now rely on public-coin differing-inputs obfuscation, since in the hybrid arguments
the obfuscated circuits in the public key will produce different outputs on inputs ct

dummy

6= ct0
dummy

, such that
h(ct0

dummy

) = h(ct
dummy

), which are hard for an efficient adversary to find.

Theorem 5.7 Assume

• E is a semantically-secure symmetric key encryption scheme with ciphertexts of length L
ct

(, L
msg

) for
L
msg

-bit messages and security parameter .

• h is a collision-resistant hash function. with output length L
h

() for security parameter .
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Encryption Scheme E = (E .Gen, E .Enc, E .Dec)

Key Generation: (pk, sk) E .Gen(1)
Compute the following:

• (sk
E

) E.Gen(1),

• h H,

• k  PRF.Gen(1), where PRF : {0, 1} ⇥ {0, 1}⇢ ! {0, 1}⇢.

• ct
dummy

 E.Enc(sk
E

, 0||0⇢; r
0

), and h⇤ = h(ct
dummy

).

Let Ck be the circuit described in Figure 12, and let C
Enc

 diO(Ck).
Let keys = {sk

E

, h⇤}, let C
keys

be the circuit described in Figure 13, and let C
Dec

 diO(C
keys

).
Output pk = (C

Enc

, C
Dec

) and sk = (ct
dummy

).

Encryption: c E .Enc(pk,m)

On input message m 2 {0, 1}Lmsg , sample r  {0, 1}, w  {0, 1}d, and output c =

(G(r), w,Ext(C
Enc

(r), w)�m), where PRG G : {0, 1} ! {0, 1}⇢, and Ext : {0, 1}⇢ ⇥ {0, 1}d !
{0, 1}Lmsg .

Decryption: m̂ E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := C

Dec

(ct
dummy

, t).

If y 6= ?, output m̂ = Ext(y, w)� v. Otherwise, output m̂ = ?.

Figure 11: The one-time, bounded leakage encryption scheme, E .

Internal (hardcoded) state: k.

On input: r

– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Figure 12: This program Ck is obfuscated and placed in the public key to be used for encryption.

Internal (hardcoded) state: keys = {k, h⇤}.

On input: ct
dummy

, t

– If h(ct
dummy

) 6= h⇤ output ?.
– Otherwise, output z = PRF.Eval(k, t).

Figure 13: This program C
keys

is obfuscated and placed in the public key. It is used during decryption.

• PRF : {0, 1} ⇥ {0, 1}⇢ ! {0, 1}⇢ is a puncturable pseudorandom function.

• diO is a public-coin, differing-input obfuscator for circuits in this scheme.

• Ext : {0, 1}⇢ ⇥ {0, 1}d ! {0, 1}Lmsg is a (L
msg

+ 2 log(1/✏), ✏)-strong extractor, where ✏ = negl().

Then E is L-leakage resilient against one-time key leakage where

L = |sk| · ⇢� 2 log(1/✏)� L
msg

� L
h

()

(L
ct

(,+ ⇢))
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Proof: First, note that extractors that satisfy the requirements of Theorem 5.7 can be constructed via the
Leftover Hash Lemma (c.f. [36]). We can choose a semantically-secure symmetric key encryption scheme with
L
ct

(, + ⇢) = O() +  + ⇢, for messages of length  + ⇢, as this is achieved by appropriate modes of
operation. Finally, choosing a collision-resistant hash function h with output length L

h

() = O(), and setting
⇢ = !(), ✏ = 2

o(), L
msg

= ⇥(), yields an encryption scheme for messages of length ⇥() with leakage
rate 1� o(1).

In order to prove Theorem 5.7, we prove (in Lemma 15) that even under leakage, it is hard for any PPT
adversary A to distinguish the output of the extractor, Ext from uniform random. Given this, Theorem 5.7
follows immediately.

Lemma 15 For every PPT leaking adversary A, who is given oracle access to a leakage oracle O and may
leak at most ⇢� 2 log(1/✏)� L

msg

bits of the secret key, there exist random variablesfpk, esk such that:
⇣

pk, t, w,Ext(y, w), f (sk) AO(·)
(pk)

⌘

c⇡
⇣

fpk, U⇢, w, UL
msg

, f (esk) AO(·)
(

fpk)
⌘

where y = C
Dec

(ct
dummy

, t = G(r)) and the distributions are taken over coins of A and choice of (pk, sk) 
E .Gen(1), w, r and choice offpk, esk, w, respectively.

We prove the lemma via the following sequence of hybrids:

Hybrid 0: This hybrid is identical to the real game.
Let DA

H0
denote the distribution (pk, w,Ext(y, w), f (sk) AO(·)

(pk)) as in the left side of Lemma 15.

Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom t = G(r) in the challenge
ciphertext with uniform random t⇤  {0, 1}⇢.

Let DA
H1

denote the distribution (pk, t⇤, w,Ext(y, w), f (sk)  AO(·)
(pk)) where y = C

Dec

(ct
dummy

, t⇤)
and the distribution is taken over coins of A, choice of (pk, sk), w, t⇤ as described above.

Claim 5.8 For every PPT adversary A,
DA

H0

c⇡ DA
H1

.

Proof: The proof is by reduction to the security of the pseudorandom generator G. Assume towards contra-
diction that there exists a PPT adversary A, a corresponding PPT distinguisher D and a polynomial p(·) such
that for infinitely many , D distinguishes DA

H0
and DA

H1
with probability at least 1/p(). We construct a PPT

adversary S that distinguishes the output of the PRG from uniform random with probability at least 1/p(), for
infinitely many . S does the following: S runs E .Gen(1) honestly to generate (pk, sk). S hands pk to A and
responds to leakage query f by apply the leakage function directly to sk to compute f (sk). Upon receiving its
challenge t0 as the external PRG challenge, S sets y = C

Dec

(ct
dummy

, t0), hands (pk, t0, w,Ext(y, w), f (sk)) to
the distinguisher D, and outputs whatever D does. The reader can verify that S’s distinguishing advantage is
the same as D’s.

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used in C
Enc

with a punctured key,
ek = PRF.Punct(k, t⇤), and denote it as C 0

Enc

. We denote the resulting public key by pk0.
Let DA

H2
denote the distribution

�

pk0, t⇤, w,Ext(y, w), f (sk) AO(·)
(pk0)

�

where y = C
Dec

(ct
dummy

, t⇤)
and the distribution is taken over coins of A, and choice of (pk0, sk), w, t⇤ as described above.

Claim 5.9 For every PPT adversary A,
DA

H1

c⇡ DA
H2

.

Proof: The proof is by a reduction to the security of the indistinguishability obfuscation (iO). The main
observation is that with all but negligible probability, t⇤ is not in the range of the PRG , in which case C

Enc

and
the modified circuit C 0

Enc

used in Hybrid 2 have identical behavior. Thus, with high probability for all inputs
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Internal (hardcoded) state: ek = PRF.Punct(k, t⇤).

On input: r

– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Figure 14: Program Cek. This program replaces Ck. It is obfuscated and placed in the public key to be used for
encryption.

neither program can call on PRF.Punct(k, t⇤). Therefore, puncturing t⇤ out from the key k will not effect the
input/output behavior. Therefore, if there is a difference in advantage, we can create an algorithm B that breaks
the security of indistinguishability obfuscation.

B runs as the challenger, but where t⇤ is chosen at random. When it is to create the obfuscated program
it submits both programs C

0

= Ck and C
1

= Cek to an iO challenger. If the iO challenger chooses the first
then we are in Hybrid 1. If it chooses the second then we are in Hybrid 2. Any adversary with non-negligible
advantages in the two hybrids leads to B as an attacker on iO security.

Hybrid 3: This hybrid is the same as Hybrid 2 except:

• we replace ct
dummy

with ct00
dummy

, where ct00
dummy

is an encryption of t⇤||y and y = PRF.Eval(k, t⇤).

• we replace h⇤ with h
00⇤

= h(ct00
dummy

).

We denote the resulting public key by pk00 and the resulting secret key by sk00.
Let DA

H3
denote the distribution

�

pk00, t⇤, w,Ext(y, w), f (sk00) AO(·)
(pk00)

�

where y = C
Dec

(ct00
dummy

,

t⇤) and the distribution is taken over coins of A, and choice of (pk00, sk00), w, t⇤ as described above.

Claim 5.10 For every PPT adversary A,
DA

H2

c⇡ DA
H3

.

The proof is by a reduction to the semantic security of E.

Hybrid 4: This hybrid is the same as Hybrid 3 except we replace C
Dec

= diO(C
keys

) with C 0
Dec

= diO(C
keys

0

),
where C

keys

0 is specified below in Figure 15. We denote bycpk the resulting public key.

Internal (hardcoded) state: keys0 = {sk
E

,ek = PRF.Punct(k, t⇤), h00⇤}.

On input: ct
dummy

, t

– If h(ct
dummy

) 6= h
00⇤ output ?.

– Compute ↵||� = E.Dec(sk
E

, ct
dummy

).

– If t = ↵, output �.
– Otherwise, output PRF.Eval(ek, t).

Figure 15: Program C
keys

0 . This program replaces C
keys

. It is obfuscated and placed in the public key. It is
used during decryption.

Let DA
H4

denote the distribution
⇣

cpk, t⇤, w,Ext(y, w), f (sk00) AO(·)
(

cpk)
⌘

where

y = C 0
Dec

( ct00
dummy

, t⇤) and the distribution is taken over coins of A, and choice of (cpk, sk00), w, t⇤ as described
above.

Claim 5.11 For every PPT adversary A,
DA

H3

c⇡ DA
H4

.
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Proof: We define the following sampler Samp and show that the circuit family C associated with Samp is a
differing-inputs circuit family.
Samp(1) does the following:

• Set keys = (k, h
00⇤
) and set keys0 = (sk

E

,ek, h
00⇤
).

• Let C
0

= C
keys

and let C
1

= C
keys

0 .

• Set aux = (sk
E

, h, h
00⇤, ct00

dummy

, r t⇤, y), where r is the randomness used for ct00
dummy

.

• Return (C
0

, C
1

, aux).

Note that aux contains all of the random coins used by Samp.
We now show that for every PPT adversary A there exists a negligible function negl such that

Pr[C
0

(x) 6= C
1

(x) : (C
0

, C
1

, aux) Samp(1), x A(1

, C
0

, C
1

, aux)]  negl().

Assume towards contradiction that there exists a PPT adversary A and a polynomial p(·) such that for in-
finitely many , A outputs a distinguishing input with probability at least 1/p(). We construct a PPT adversary
S that finds a collision on h.
On input h H, S does the following:

• S simulates Samp by doing the following:

– Run (sk
E

) E.Gen(1), k  PRF.Gen(1).
Choose t⇤ at random and set ek = PRF.Punct(k, t⇤).

– S computes y = PRF.Eval(k, t⇤) to generate ct00
dummy

. It computes h⇤ = h(ct00
dummy

).

– Set keys = (k, h
00⇤
) and keys0 = (sk

E

,ek, h
00⇤
).

– Let C
0

= C
keys

and let C
1

= C
keys

0 .

– Set aux = (sk
E

, h, h
00⇤ ct00

dummy

, r t⇤, y).

• S runs A(1

, C
0

, C
1

, aux) and receives x in return.

• S parses x as (m, t) and outputs (m).

Note that C
0

(ct00
dummy

, ·) and C
1

(ct00
dummy

, ·) are functionally equivalent. Furthermore, on any input (m, t)

where h(m) 6= h
00⇤, both circuits output ?. Therefore, if A finds a distinguishing input x = (m, t), then it

must be the case that both of the following hold:

• (m 6= ct00
dummy

)

• h(m) = h
00⇤.

Thus, whenever A outputs a differing input, S successfully finds a collision on h. Therefore, we have that for
infinitely many , S outputs a collision with probability at least 1/p().

Claim 5.11 follows from the fact that diO is a public-coin differing-inputs obfuscator and from the fact
that the circuit family C associated with Samp is a differing inputs family. This is the case since DA

H3
can be

simulated given (diO(C
0

), aux) and DA
H4

can be simulated given (diO(C
1

), aux).

Hybrid 5: This hybrid is the same as Hybrid 4 except we replace ct00
dummy

with ect
dummy

, where ect
dummy

is an
encryption of t⇤||y⇤, where y⇤ is uniformly random. We denote by esk the resulting secret key. We replace h⇤

with eh⇤ = h(ect
dummy

) and denote byfpk the updated public key.
Let DA

H5
denote the distribution

⇣

fpk, t⇤, w,Ext(y⇤, w), f (esk) AO(·)
(

fpk)
⌘

where y⇤ = C 0
Dec

(

ect
dummy

,

t⇤) and the distribution is taken over coins of A, and choice of (fpk, esk), w, t⇤ as described above.
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Claim 5.12 For every PPT adversary A,
DA

H4

c⇡ DA
H5

.

Proof: The proof is through a reduction to the security of the puncturable PRF. Recall, the security notion
of puncturable PRFs states that, given PRF.Punct(k, t⇤), an adversary cannot distinguish PRF.Eval(k, t⇤)
from random. The reduction is straightforward: to break the security of the PRF, S generates t⇤ at random
and submits it to his challenger. He receives PRF.Punct(k, t⇤), along with either y⇤ = PRF.Eval(, t⇤) or
y⇤  {0, 1}⇢ as a challenge. He uses y⇤, and samples all the remaining necessary keys for simulating cpk and
bsk. He chooses w at random and computes Ext(y⇤, w). He answers leakage queries on bsk honestly. The reader
can verify that S’s advantage is the same as A’s advantage in distinguishing the two hybrids.

Claim 5.13
DA

H5

s⇡
⇣

fpk, U⇢, w, UL
msg

, f (esk) AO(·)
(

fpk)
⌘

Note that the right side above is the same as the right side of Lemma 15
Proof: We claim that the min-entropy of y⇤ conditioned onfpk, f (esk) is at least L

msg

+2 log(1/✏). Note that y⇤

initially has min entropy ⇢ since it is chosen uniformly at random. Recall that, ct
dummy

has length L
ct

(,+⇢),
and h has output length L

h

(). Thus, conditioning on fpk reduces y⇤’s min entropy by at most L
h

() (since
only eh⇤ contains information about y⇤). Moreover, leaking another ⇢� 2 log(1/✏)� L

msg

� L
h

() number of
bits of ct

dummy

reduces y⇤’s min entropy further by at most ⇢ � 2 log(1/✏) � L
msg

. Therefore, y⇤ maintains
min-entropy at least L

msg

+ 2 log(1/✏), and the claim follows by the properties of the strong extractor, Ext.

This concludes the proof of Lemma 15.

5.3 Extending to Continual Leakage

In this section, we show how to extend our “leakage-resilient” version of the Sahai-Waters PKE scheme to con-
tinual leakage. Recall that in the previous construction, the secret key consists of a signed ciphertext. An initial
idea for how to achieve (consecutive) CLR is to refresh the secret key by re-randomizing the ciphertext. Specif-
ically, in the real construction, the ciphertext in the secret key just encrypts zeros and is rerandomized, but in the
proof it contains the PRF output and the underlying plaintext is refreshed from round to round. However, since
the underyling plaintext changes from round to round, we run into some technical difficulties. Specifically, an
adversary who knows the underlying secret key for the ciphertext embedded in the construction’s secret key
will be able to distinguish consecutive hybrids. On the other hand, an adversary who does not know the secret
key for the ciphertext will not be able to produce a correctly distributed obfuscated circuit to be placed in the
public key. To resolve this, the idea is to use an encryption scheme with special properties: The challenge ci-
phertext remains semantically secure while at the same time, the adversary can efficiently simulate a decryption
oracle which either successfully decrypts the submitted ciphertext or indicates that the submitted ciphertext is
a re-randomization of the challenge ciphertext. Note that this notion is a strengthening of the notion of re-
randomizable RCCA (relaxed CCA) security. Specifically, we define a new special “DIO-compatible” notion
of “relaxed” [15] or “controlled” malleability CCA security for rerandomizable encryption [17]. We then show
how to realize our new notion from the decision linear (DLIN) assumption in bilinear groups, following [17].
Our resulting continual leakage-resilient scheme presented in Section 5.3.4 combines this assumption with diO.

5.3.1 Rerandomizable Encryption

A rerandomizable encryption scheme is a tuple of algorithms RPKE = (Gen,Enc,Dec,ReRand) defined as
follows. First, the triple (Gen,Enc,Dec) is a standard encryption scheme. Second,

(PK, SK, c) ⇡c (PK, SK, c0)
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where
(PK, SK) Gen(1) ; c Enc(PK,m) ; c0  ReRand(PK, c) .

5.3.2 DIO-Compatible RCCA Encryption

Intuitively, an RCCA encryption scheme [15] is like a CCA-secure encryption scheme that allows replay at-
tacks. We define a special type of RCCA encryption scheme that we call DIO compatible, inspired by the
definition of controlled malleability of Chase et al. [17]. The intuition for DIO-compatible RCCA encryption,
is that the security proof allows for placing the secret key of the encryption scheme in an obfuscation, while
arguing about semantic security of a challenge ciphertext. Specifically, the way this is achieved is by requiring
that the DIO-compatible RCCA encryption have a specific hybrid structure for proving security. In each hybrid
there is an efficient algorithm which simulates the decryption oracle. Moreover, indistinguishability of consec-
utive hybrids reduces either to the security of an underlying primitive, or reduces to the fact that, even given the
code of the simulated decryption oracle, the attacker cannot find a distinguishing input. A detailed definition
follows.

Syntax. A DIO-compatible RCCA encryption scheme is a tuple of algorithms RCCA = (Gen,Enc, SimEnc,Dec)
where

• Algorithm Gen(1) outputs keys (PK, (SK
1

, SK
2

), ⌧
sim

).

• Algorithm Enc(PK,m) outputs a ciphertext c.

• Algorithm SimEnc(⌧
sim

,m) outputs a ciphertext c
sim

.

• Algorithm Dec(SK
1

, c) outputs a message value in {m,?}.

• Algorithm Dec(SK
2

, c) outputs a message value in {m,?, SimFlag}.

Correctness. For correctness we require that Pr[Dec(SK
1

,Enc(PK,m)) = m] = 1 where (PK, (SK
1

, SK
2

), ⌧
sim

)

is output by Gen(1). (This can be relaxed to allow negligble probability of failure.)

Security. For security we require10

• Indistinguishability of simulated ciphertexts from real ciphertexts: For any efficient adversary A and
message m

A(PK,Enc(PK,m), SK
1

)

c⇡ A(PK, SimEnc(⌧
sim

,m), SK
1

) .

• Indistinguishability of simulated ciphertexts under chosen plaintext attack: For any efficient adver-
sary A, and any message pair (m

0

,m
1

),

A(PK, SK
2

, SimEnc(⌧
sim

,m
0

))

c⇡ A(PK, SK
2

, SimEnc(⌧
sim

,m
1

)) .

• Simulation soundness: For any efficient A and message m the probability that the following experiment
outputs 1 is negligible:

(PK, (SK
1

, SK
2

), ⌧
sim

) Gen(1) ; c SimEnc(⌧
sim

,m) ; c⇤  A(SK
1

, SK
2

, c)
Return 1 if

10We note that the presented conditions only refer to single-message security, which is all that is needed in our applications. More
generally they could provide the adversary many challenge encryptions (say, via appropriate encryption oracles).
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1. Dec(SK
2

, c⇤) = SimFlag
V

Dec(SK
1

, c⇤) 6= m

2. Dec(SK
2

, c⇤) 6= SimFlag
V

Dec(SK
2

, c⇤) 6= Dec(SK
1

, c⇤)

where the probability is taken over the randomness used in key generation, SimEnc, and by A when
computing c⇤.

Rerandomizability. We say that a DIO-compatible RCCA-secure encryption scheme is rerandomizable if it
has an additional algorithm ReRand defined analogously to rerandomizable encryption.

5.3.3 A Construction of DIO-Compatible RCCA-secure Rerandomizable PKE

In our extension to continual leakage, we need a DIO-Compatible RCCA-secure rerandomizable scheme. We
now sketch how a CM-CCA encryption scheme of Chase et al. [17] instantiates this notion based on the
Decision-Linear Assumption [7]. (Compared to their security analysis, we prove something stronger since
we require an RCCA scheme of a particular “DIO-compatible” form, but we use the same RCCA construction
of [17] and what we require follows by basically the same analysis.)

The instantiation uses a rerandomizable encryption scheme and a matching rerandomizable CM-NIZK
proof system as defined in [17]. By “matching” we mean that the NIZK proof system is controlled-malleable
with respect to whatever operation the underlying encryption scheme uses for rerandomization.

The Instantiation. For simplicity, we assume the NIZK in the scheme is “same-string” (the CRS does not
change distribution); otherwise, the definition in Section 5.3.2 needs to be extended a bit (in a straightforward
but messy way). For our construction we have RCCA = (Gen,Enc, SimEnc,Dec) as follows:

• Algorithm Gen(1) outputs the public-key of the encryption scheme and the NIZK CRS as the PK. It
outputs the decryption key of the encryption scheme as SK

1

and the NIZK extraction trapdoor as SK
2

. It
outputs the NIZK simulation trapdoor as ⌧

sim

.

• Algorithm Enc(PK,m) honestly encrypts message using the encryption scheme as c1 and gives an honest
proof of plaintext knowledge as c2; it outputs ciphertext c = c1kc2.

• Algorithm SimEnc(⌧
sim

,m) honestly encrypts a “dummy message” as c1
sim

and gives a simulated proof
of plaintext knowledge as c2

sim

; it outputs ciphertext c = c1
sim

kc2
sim

.

• Algorithm Dec
1

(SK
1

, c = c1kc2) decrypts c1 using SK
1

and outputs the result if c2 verifies (which one
can check publicly).

• Algorithm Dec(SK
2

, c = c1kc2) runs the NIZK extraction on c2 using SK
2

. If it fails then it outputs
SimFlag, otherwise it outputs the result of the extraction.

Security. The fact that our instantiation satisfies our security requirements follows readily from the anal-
ysis of [17, Appendix F]. In particular, simulation soundness uses the fact that simulation soundness of the
underlying NIZK from [17] holds even when the adversary is given the extraction trapdoor.

Concrete parameters. As the underlying rerandomizable encryption scheme we use the DLIN-based en-
cryption scheme of BBS [7] (which is rerandomizable via exponentiation), and as the NIZK proof system as
in [17] we combine a a Groth-Sahai proof of plaintext knowledge (which is itself rerandomizable and supports
exponentiation malleability of the underlying statement) along with the signature scheme from Abe et al. [1].
The overall ciphertext in our resulting DIO-Compatible RCCA-secure Rerandomizable PKE scheme contains
a constant number of group elements, although this constant is large (on the order of several hundred).
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5.3.4 Our Construction

To guarantee security in the presence of continual leakage, we modify our construction in two ways. First,
we strengthen the security of the encryption scheme used to encrypt ct

dummy

, requiring that it provide relaxed
CCA security (RCCA) [15]. Recall that such encryption schemes allow users to re-randomize ciphertexts, while
guaranteeing the ciphertexts are otherwise secure against chosen ciphertext attacks.

The other change that we make to the scheme of Section 5.2 comes up in the proof of security. Because
we are leaking over multiple rounds, storing t⇤ in a list no longer suffices. After enough rounds, the value will
be fully recovered by the adversary, and he will distinguish neighboring hybrids. To fix this, we instead store
random values whose inner product yields the challenge point, along with a hash of the challenge. In our proof
of security, the most interesting hybrids are hybrid 4, where use RCCA security, hybrid 5, where we reduce to
diO, and hybrid 8, where we use the fact that inner product is a good 2-source (and, therefore, strong) extractor.
The other hybrids are fairly straightforward.

Encryption Scheme E = (E .Gen, E .Enc, E .Dec, E .Update)

Key Generation: (pk, sk
0

) E .Gen(1)
Compute the following:

• (PK
RCCA

, SK
RCCA

) RCCA.Gen(1),

• (vk, td) SIG.Gen(1),

• k  PRF.Gen(1).

• �  SIG.Sign(td, 02+⇢+L
msg

).

• ct
dummy

 RCCA.Enc(PK
RCCA

, �||02+⇢+L
msg

; r
0

), where r
0

 {0, 1}.

Let Ck be the circuit described in Figure 17, and compute C
Enc

 diO(Ck).
Let keys = {SK

RCCA

, k, vk}, let C
keys

be the circuit in Figure 18, and compute C
Dec

 diO(C
keys

).
Output pk = (PK

RCCA

, C
Enc

, C
Dec

) and sk
0

= (ct
dummy

).

Encryption: c E .Enc(pk,m)

On input message m 2 {0, 1}Lmsg , sample r  {0, 1}, and output c = (G(r), C
Enc

(r)�m), where
G is some fixed pseudorandom generator.

Decryption: m̂ E .Dec(ski, c)
In round i, on input ciphertext c = (t, v), compute y := C

Dec

(ski, t).
If y 6= ?, output m̂ = y � v. Otherwise, output m̂ = ?.

Key Update: ski  E .Update(ski�1)
In round i, on input secret key ski�1, randomly choose ri  {0, 1}, compute and output ski  
RCCA.ReRand(PK

RCCA

, ski�1; ri).

Figure 16: The continual-leakage resistant encryption scheme, E .

Theorem 5.14 Assume

• RCCA is a DIO-Compatible RCCA-secure Rerandomizable PKE with ciphertexts of length L
ct

(, L
msg

)

for L
msg

-bit messages and security parameter .

• SIG is a strong existentially unforgeable digital signature scheme with signatures of length L
sig

(, L
msg

)

for L
msg

-bit messages and security parameter .
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Internal (hardcoded) state: k.

On input: r

– Output z = PRF.Eval(k,G(r)), where G is some fixed pseudorandom generator.

Figure 17: Program Ck. This program is obfuscated and placed in the public key to be used for encryption.

Internal (hardcoded) state: keys = {k, vk, SK
RCCA

}.

On input: ct
dummy

, t

– Compute (�0,m) = RCCA.Dec(SK
RCCA

, ct
dummy

).
– If SIG.Verify(�0,m; vk) = 0 output ?.
– Output z = PRF.Eval(k, t).

Figure 18: Program C
keys

. This program is obfuscated and placed in the public key. It is used during decryp-
tion.

• PRF is a puncturable pseudorandom function {0, 1} ⇥ {0, 1}⇢ ! {0, 1}Lmsg for some ⇢ = ⇢() =

!(2).

• G is a pseudorandom generator {0, 1} ! {0, 1}⇢.

• diO is a differing-inputs obfuscator for circuits in this scheme.

• H is a family of collision resistant hash functions with output size  bits.

Then E is L-2CLR where

L

|sk| =
(1/6� o(1))⇢

L
ct

⇣

, 2+ ⇢+ L
msg

+ L
sig

(, 2+ ⇢+ L
msg

)

⌘

We choose a DIO-Compatible RCCA-secure Rerandomizable PKE with L
ct

(, L
msg

) = c
1

·L
msg

, for some
constant c

1

, which is achieved by the Chase et al. [17] scheme, and a signature scheme with L
sig

(, L
msg

) =

o(L
msg

), which can be constructed from collision-resistant hash functions, and setting ⇢ = ⇢() = !(2)
yields an encryption scheme for messages of length ⇥() with constant leakage rate c

1

/4� o(1).
In order to prove Theorem 5.14, we prove (in Lemma 16) that even under leakage, it is hard for any PPT

adversary A to distinguish the output of the PRF y from uniform random. Given this, Theorem 5.14 follows
immediately.

In fact, we will prove a slightly stronger lemma, by allowing O to leak on two consecutive keys in any given
round. By combining this property with the results from Section 3, we prove that this construction achieves
security when the adversary is allowed to leak on updates. More specifically, in the lemma below, in round i,
we allow the adversary to specify a leakage function fi(·, ·), and O returns fi(ski�1, ski).

Lemma 16 For every PPT leaking adversary A, who is given oracle access to a leakage oracle O and may
leak at most L bits of the secret key, there exist random variablesfpk, esk

0

, . . . , eskn such that:
⇣

pk, t⇤, y, {fi(ski�1, ski)}ni=1

 AO(·)
(pk)

⌘

c⇡
⇣

fpk, U⇢, UL
msg

, {fi(eski�1, eski)}ni=1

 AO(·)
(

fpk)
⌘

where y = C
Dec

(ct
dummy

, t = G(r)), n is the number of key-update rounds requested by A, and the distribu-
tions are taken over coins of A and choice of (pk, sk

0

) E .Gen(1), ski  E .Update(ski�1), r and choice of
fpk, esk

0

, . . . , eskn, w, respectively.
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Proof: We prove the lemma via the following sequence of hybrids:

Hybrid 0: This hybrid is identical to the real game.
Let DA

H0
denote the distribution (pk, t, y, {fi(ski�1, ski)}ni=1

 AO(·)
(pk)) as in the left side of Lemma 16.

Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom t = G(r) in the challenge
ciphertext with uniform random t⇤  {0, 1}⇢.

Let DA
H1

denote the distribution (pk, t⇤, y, {fi(ski�1, ski)}ni=1

 AO(·)
(pk)) where y = C

Dec

(skn, t⇤) and
the distribution is taken over coins of A, choice of (pk, sk

0

)  E .Gen(1), ski  E .Update(ski�1), t⇤ as
described above.

Claim 5.15 For every PPT adversary A,
DA

H0

c⇡ DA
H1

.

Proof: The proof follows from the security of the PRG used in C
Enc

. We refer the reader to the proof of Claim
5.8. We note that the reduction holds even if the adversary were given all ski in full.

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used in C
Enc

with a punctured
key, ek = PRF.Punct(k, t⇤). We denote the resulting public key by pk0. Let DA

H2
denote the distribution

�

pk0, t⇤, y, {fi(ski�1, ski)}ni=1

 AO(·)
(pk0)

�

where y = C
Dec

(skn, t⇤) and the distribution is taken over coins
of A, and choice of (pk0, sk

0

, . . . , skn), t⇤ as described above.

Claim 5.16 For every PPT adversary A,
DA

H1

c⇡ DA
H2

.

Proof: The proof follows from the security of the obfuscation used in C
Enc

. We refer the reader to the proof
of Claim 5.9. We note again that the reduction holds even if A is given all ski in full.

Hybrid 3

(j): We define a sequence of n hybrids, where n is the number of key-update rounds requested
by the adversary. In hybrid 3

(j), in the first j update rounds, instead of refreshing ct
dummy

by computing
ct

dummy

= RCCA.ReRand(PK
RCCA

, ct
dummy

), we replace the secret key with a fresh ciphertext:
ct

dummy

= RCCA.Enc(PK
RCCA

,�||02+⇢+L
msg

). For rounds i > j, the secret key is still refreshed through
a re-randomization. We denote the resulting set of secret keys by {sk(3|j)

0

, . . . , sk(3|j)n }. Let DA
H3|j

denote the
distribution
⇣

pk0, t⇤, y, {fi(sk(3|j)i�1 , sk(3|j)i )}ni=1

 AO(·)
(pk0)

⌘

where y = C
Dec

( sk
(3|j)
n , t⇤) and the distribution is taken

over coins of A, and choice of (pk0, sk(3|j)
0

, . . . , sk(3|j)n ), t⇤ as described above.

Claim 5.17 For every PPT adversary A, and every j 2 [n]

DA
H3|j�1

c⇡ DA
H3|j

.

Proof: The proof is through a reduction to the property that the distribution of fresh ciphertexts and the distri-
bution of re-randomized ciphertexts are indistinguishable, even given the secret key skj . The reduction adver-
sary S receives (pk, skj) from his challenger and uses them to generate the public keys for E , along with the
secret keys {sk

0

= RCCA.Enc(PK
RCCA

,�||02+⇢+L
msg

), . . . , skj�1 = RCCA.Enc(PK
RCCA

,�||02+⇢+L
msg

)}.
He submits ciphertext skj�1 along with the underlying plaintext value as his challenge and receives c⇤ which
is either a re-randomization skj�1, or a fresh encryption. He computes skj+1

by re-randomizing his challenge
ciphertext, and for i 2 {j + 1, . . . , n}, he computes ski by re-randomizing ski�1. These ciphertexts are dis-
tributed either identically to those in hybrid 3

(j�1) or to those in hybrid 3

(j) and can be used by S to perfectly
simulate the responses to A’s leakage queries. It follows that the advantage of S is the same as the advantage
of distinguishing DA

H3|j�1
from DA

H3|j
.
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Hybrid 4: In this hybrid step, we again change the update phase. Instead of replacing ct
dummy

with a
fresh encryption of �||02+⇢+L

msg , we will replace ct
dummy

with a fresh encryption of �0||((si,↵i, H(t⇤))|| y).
Here si,↵i, H, y,�0 are defined as follows: si  F⇢/

q where q = 2

; H  H where H is a family of
collision-resistant hash functions, and H(t⇤) is of size ; ↵i = hsi, t⇤i is of size , where t⇤ is interpreted
as an element in F⇢/

q , and ↵i is interpreted as an element in Fq; y = PRF.Eval(k, t⇤) is of size L
msg

and
�0 = SIG.Sign(td, ((si,↵i, H(t⇤))|| y)).

Let sk00i denote the secret key after update round i when computed as described above. Let DA
H4

denote
the distribution

�

pk0, t⇤, y, {fi(sk00i�1, sk00i )}ni=1

 AO(·)
(pk0)

�

where y = C
Dec

( sk00n, t⇤) and the distribution is
taken over coins of A, and choice of (pk0, sk00

1

, . . . , sk00n), t⇤ as described above.

Claim 5.18 For every PPT adversary A,
DA

H3|n

c⇡ DA
H4

.

Proof: The proof proceeds through an iteration of sub-hybrid steps, where in the jth iteration we change only
the jth ciphertext. Let Hybrid 4

(j) denote the hybrid game where we have changed only the content of the first
j ciphertexts. Let sk(4|j)i denote the secret key that is generated in the ith update round of hybrid 4

(j). Let DA
H4|j

denote the distribution
⇣

pk0, t⇤, y, {fi(sk(4|j)i�1 , sk(4|j)i )}ni=1

 AO(·)
(pk0)

⌘

where y = C
Dec

( sk
(4|j)
n , t⇤) and the

distribution is taken over coins of A, and choice of (pk0, sk(4|j)
0

, . . . , sk(4|j)n ), t⇤ as described above. The proof
follows then from the following claim. (Note that hybrid 4

(0) is equivalent to hybrid 3

(n).)

Claim 5.19 For j 2 {0, . . . , n� 1},
DA

H4|j

c⇡ DA
H4|j+1

Proof: We now define the set of hybrids that allows us to prove Claim 5.19. We note that, by the definitions
of hybrids 4(j) and 4

(j+1) given above, for any i 6= j, sk(4|j)i = sk
(4|j+1)

i . Therefore, in each of the following
sub-hybrids, we only need to make change to sk

(4|j)
j .

Hybrid 4a(j): In this hybrid we modify the update procedure in round j. Instead of replacing ct
dummy

with
a fresh encryption RCCA.Enc(PK

RCCA

,�||02+⇢+L
msg

), we set sk(4a|j)j = RCCA.SimEnc(⌧
sim

,�||02+⇢+L
msg

).
The other keys remain as they are in hybrid 4

(j).

Let sk(4a|j)i denote the secret key that is generated in the ith update round of hybrid 4a(j). Let DA
H4a|j

denote the distribution
⇣

pk0, t⇤, y, {fi(sk(4a|j)i�1 , sk(4a|j)i )}ni=1

 AO(·)
(pk0)

⌘

where y = C
Dec

( sk
(4a|j)
n , t⇤) and

the distribution is taken over coins of A, and choice of (pk0, sk(4a|j)
0

, . . . , sk(4a|j)n ), t⇤ as described above. We
claim the following

Claim 5.20 For any PPT adversary A,
DA

H4|j

c⇡ DA
H4a|j

Proof: The proof follows by a reduction to the RCCA property ensuring the indistinguishability of simulated
ciphertexts from real ciphertexts. Recall, For any efficient adversary S

SEnc(PK
RCCA

,·)
(PK

RCCA

, SK
1

)

c⇡ SSimEnc(⌧
sim

,·)
(PK

RCCA

, SK
1

) .

To build the reduction, S receives keys (PK
RCCA

, SK
1

) for the RCCA scheme, which suffices to build the pk
of E . For update rounds i < j, he constructs ski by creating a fresh encryption of �0||((si,↵i, H(t⇤))|| y) (as
defined above), and for i > j, he constructs ski by creating a fresh encryption of �||02+⇢+L

msg . To create
skj , he submits �||02+⇢+L

msg to his challenger and uses the challenge ciphertext in the jth update round. The
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distribution of secret keys generated by S is either identical to that in hybrid 4

(j), or to that in hybrid 4a(j). It
follows that S’s advantage is the same as the distinguishing advantage between DA

H4|j
and DA

H4a|j
.

Hybrid 4b(j): In this hybrid we modify the circuit C
keys

into C
keys

0 described in Figure 19. In words, the
change involves using SK

2

instead of SK
1

. If decryption under SK
2

outputs a message, we still verify the
signature just as in C

keys

, and if decryption outputs SimFlag, we proceed as though the signature has been
verified. Intuitively, these circuits have differing-inputs security because of the “simulation soundness” property
of the RCCA encryption scheme. Denote the resulting public key by pk(4b|j). Let DA

H4b|j
denote the distribution

⇣

pk(4b|j), t⇤, y, {fi(sk(4a|j)i�1 , sk(4a|j)i )}ni=1

 AO(·)
(pk(4b|j))

⌘

where y = C
Dec

( sk
(4a|j)
n , t⇤) and the distribution

is taken over coins of A, and choice of (pk(4b|j), sk(4a|j)
0

, . . . , sk(4a|j)n ), t⇤ as described above. We claim the
following

Internal (hardcoded) state: keys0 = {k, vk, SK
2

}.

On input: ct
dummy

, t

– If RCCA.Dec(SK
2

, ct
dummy

) = SimFlag, output z = PRF.Eval(k, t).

– If RCCA.Dec(SK
2

, ct
dummy

) = ?, output ?.
– Else, parse RCCA.Dec(SK

2

, ct
dummy

) as (�0,m).
– If SIG.Verify(�0,m; vk) = 0 output ?.
– Otherwise, output z = PRF.Eval(k, t).

Figure 19: Program C
keys

0 . This program is obfuscated and placed in the public key, replacing C
keys

. It is used
during decryption.

Claim 5.21 For any efficient adversary A,

DA
H4a|j

c⇡ DA
H4b|j

Proof: We define the following sampler Samp and show that the circuit family C associated with Samp is a
differing-inputs circuit family.
Samp(1) does the following:

• Set keys = (SK
1

, k, vk) and set keys0 = (SK
2

, k, vk).

• Let C
0

= C
keys

and let C
1

= C
keys

0 .

• Set aux = (vk, {sk(4a|j)i }ni=0

, t⇤, y)

• Return (C
0

, C
1

, aux).

We now show that for every PPT adversary A there exists a negligible function negl such that

Pr[C
0

(x) 6= C
1

(x) : (C
0

, C
1

, aux) Samp(1), x A(1

, C
0

, C
1

, aux)]  negl().

Assume towards contradiction that there exists a PPT adversary A and a polynomial p(·) such that for in-
finitely many , A outputs a distinguishing input with probability at least 1/p(). We construct a PPT adversary
S that breaks the simulation soundness property of the RCCA scheme.
Upon receiving (PK

RCCA

, SK
1

, SK
2

) Gen(1) from the challenger, S does the following:

• Run k  PRF.Gen(1) and (vk, td) SIG.Gen(1). Choose t⇤ at random, compute y = PRF.Eval(k, t⇤),
and set keys = (SK

1

, k, vk) and keys0 = (SK
2

, k, vk).
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• Sample �  SIG.Sign(td, 02+⇢+L
msg

) and submit m⇤ = (�||02+⇢+L
msg

) as a challenge message.

• S receives challenge c⇤  SimEnc(⌧
sim

,m⇤) and simulates Samp by doing the following:

– Let C
0

= C
keys

and let C
1

= C
keys

0 .

– S sets skj = c⇤. For i 6= j, S uses PK
RCCA

to generate ski honestly, as done in hybrid 4a(j) above.

– Set aux = (vk, {ski}ni=0

, t⇤, y)

• S runs A(1

, C
0

, C
1

, aux) and receives x in return. He outputs x.

Note that if Dec(SK
2

, x) = SimFlag and Dec(SK
1

, x) = m⇤, then both C
0

and C
1

output y = PRF.Eval(k, t⇤).
On the other hand, if Dec(SK

2

, x) = SimFlag and Dec(SK
1

, x) 6= m⇤, then x violates the simulation soundness
property of the RCCA scheme and S wins his game. Similarly, if Dec(SK

2

, x) 6= SimFlag and Dec(SK
2

, x) =
Dec(SK

1

, x), then C
0

and C
1

have the same output (either y or?). If Dec(SK
2

, x) 6= SimFlag and Dec(SK
2

, x) 6=
Dec(SK

1

, x) then, again, S wins his game.
Claim 5.21 follows from the fact that diO is a differing-inputs obfuscator and from the fact that the circuit

family C associated with Samp is a differing inputs family. This is the case since DA
H4a|j

can be simulated given
(diO(C

0

), aux) and DA
H4b|j

can be simulated given (diO(C
1

), aux).

Hybrid 4c(j): In this hybrid we modify the update procedure in round j. Instead of replacing ct
dummy

with
the simulated ciphertext RCCA.SimEnc(⌧

sim

,�||02+⇢+L
msg

), we compute

sk
(4c|j)
j = RCCA.SimEnc(⌧

sim

,�0||((si,↵i, H(t⇤))|| y))

as described in Hybrid 4. The other keys remain as they are in hybrid 4b(j). Let sk(4c|j)i denote the secret key
that is generated in the ith update round of hybrid 4c(j). Let DA

H4c|j
denote the distribution

⇣

pk(4b|j), t⇤, y, {fi(sk(4c|j)i�1 , sk(4c|j)i )}ni=1

 AO(·)
(pk(4b|j))

⌘

where y = C
Dec

( sk
(4c|j)
n , t⇤) and the distribution is taken over coins of A, and choice of

(pk(4b|j), sk(4c|j)
0

, . . . , sk(4c|j)n ), t⇤ as described above. We claim the following

Claim 5.22 For any efficient adversary A,

DA
H4b|j

c⇡ DA
H4c|j

Proof: The proof follows by a reduction to the RCCA property that ensures the indistinguishability of simu-
lated ciphertexts, even when given SK

2

. Recall, for any efficient adversary S , and any message pair (m
0

,m
1

),

ASimEnc(⌧
sim

,·)
(PK

RCCA

, SK
2

, SimEnc(⌧
sim

,m
0

))

c⇡ ASimEnc(⌧
sim

,·)
(PK

RCCA

, SK
2

, SimEnc(⌧
sim

,m
1

)) .

To build the reduction, S receives keys (PK
RCCA

, SK
2

) for the RCCA scheme, which suffices to build the
pk of E . For update rounds i < j, he constructs ski by creating a fresh encryption RCCA.Enc(PK

RCCA

,
�0||((si,↵i, H(t⇤))|| y)) (as defined above), and for i > j, he constructs ski by creating a fresh encryption of
�||02+⇢+L

msg . To create skj , he submits challenge plaintext pair: (�||02+⇢+L
msg

), (�0||((si,↵i, H(t⇤))|| y))
to his challenger and uses the challenge ciphertext in the jth update round. The distribution of secret keys
generated by S is either identical to that in hybrid 4b(j), or to that in hybrid 4c(j). It follows that S’s advantage
is the same as the distinguishing advantage between DA

H4b|j
and DA

H4c|j
.
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Hybrid 4d(j) In this hybrid, we modify C
keys

0 back to the circuit C
keys

used in the real world. I.e. we return to
using SK

1

. Denote the resulting public key by pk(4d|j). Let DA
H4d|j

denote the distribution

⇣

pk(4d|j), t⇤, y, {fi(sk(4c|j)i�1 , sk(4c|j)i )}ni=1

 AO(·)
(pk(4d|j))

⌘

where y = C
Dec

( sk
(4c|j)
n , t⇤) and the distribution is taken over coins of A, and choice of

(pk(4d|j), sk(4c|j)
0

, . . . , sk(4c|j)n ), t⇤ as described above. We claim the following

Claim 5.23 For any efficient adversary A,

DA
H4c|j

c⇡ DA
H4d|j

Proof: The proof follows from the security of diO. The proof is nearly identical to the proof of Claim 5.21,
so we omit it.

Hybrid 4e(j): In this hybrid we modify the update procedure in round j. Instead of replacing ct
dummy

with a
simulated ciphertext, we return to using a real ciphertext by computing

sk
(4e|j)
j = RCCA.Enc(�0||((si,↵i, H(t⇤))|| y))

The other keys remain as they are in hybrid 4d(j). Let sk(4e|j)i denote the secret key that is generated in the ith
update round of hybrid 4e(j). Let DA

H4e|j
denote the distribution

⇣

pk(4d|j), t⇤, y, {fi(sk(4e|j)i�1 , sk(4e|j)i )}ni=1

 AO(·)
(pk(4d|j))

⌘

where y = C
Dec

( sk
(4e|j)
n , t⇤) and the distribution is taken over coins of A, and choice of

(pk(4d|j), sk(4e|j)
0

, . . . , sk(4e|j)n ), t⇤ as described above. We claim the following

Claim 5.24 For any efficient adversary A,

DA
H4d|j

c⇡ DA
H4e|j

Proof: The proof is again by the indistinguishability of a simulated ciphertext from a real ciphertext given
sk

1

. The proof proceeds identically to the proof of Claim 5.20, so we omit it.

We note that hybrid 4e(j) is identical to hybrid 4

(j+1), so this concludes the proofs of Claims 5.18 and 5.19.

Hybrid 5: In this hybrid game we replace: C
Dec

= diO(C
keys

) with C 00
Dec

= diO(C
keys

00

), where C
keys

00

is the circuit described in Figure 20. The difference between keys and keys00 is that we puncture k at the
challenge point t⇤ in keys00. The difference between C

keys

00 and C
keys

is that C
keys

00 will attempt to use the point
obfuscation before turning to the PRF key. See Figure 20 for details. Denote the resulting public key by pk(5),
and let sk(5)i denote the secret key after the ith round of update, computed as described in the previous hybrid.
Let DA

H5
denote the distribution

⇣

pk(5), t⇤, y, {fi(sk(5)i�1, sk
(5)

i )}ni=1

 AO(·)
(pk(5))

⌘

where y = C 00
Dec

( sk
(5)

n , t⇤) and the distribution is taken

over coins of A, and choice of (pk(5), sk(5)
0

, . . . , sk(5)n ), t⇤ as described above. We claim the following

Claim 5.25 For any efficient adversary A,
DA

H4

c⇡ DA
H5
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Internal (hardcoded) state: keys00 = {k⇤ = PRF.Punct(k, t⇤), vk, SK
1

, H}.

On input: ct
dummy

, t

– Compute (�0, (s,↵, H(t0)|| y)) = RCCA.Dec(SK
1

, ct
dummy

).
– If SIG.Verify(�0, (s,↵, H(t0)|| y); vk) = 0 output ?.
– If hs, ti = ↵

V

H(t) = H(t0), output y.
– Else, output PRF.Eval(k⇤, t).

Figure 20: Program C
keys

00 . This program replaces C
keys

. Recall it is obfuscated and placed in the public key.
It is used during decryption.

Proof: The proof follows from the security of diO, and from the collision resistance of H and the security
of the signature scheme. We define the following sampler Samp and show that the circuit family C associated
with Samp is a differing-inputs circuit family.
Samp(1) does the following:

• Set keys = (SK
1

, k, vk) and keys00 = (SK
1

, k⇤, vk, H).

• Let C
0

= C
keys

and let C
1

= C
keys

00 .

• Set aux = (vk, {sk(5)i }ni=0

, t⇤, y)

• Return (C
0

, C
1

, aux).

We now show that for every PPT adversary A there exists a negligible function negl such that

Pr[C
0

(x) 6= C
1

(x) : (C
0

, C
1

, aux) Samp(1), x A(1

, C
0

, C
1

, aux)]  negl().

Assume towards contradiction that there exists a PPT adversary A and a polynomial p(·) such that for
infinitely many , A outputs a distinguishing input with probability at least 1/p(). Denote the event that A
does so by Win. We show that the value output by A will either enable us to find a collision under H , or to
break the existential unforgeability of the signature scheme.

Let (ct0
dummy

, t0) denote the output of A when given circuits and auxiliary input sampled as described
above. Let (�0||m0) = RCCA.Dec(sk

1

, ct0
dummy

). Letting Coll denote the probabilistic event that (�0||m0) =

Dec(SK
1

, sk(5)
1

) = · · · = Dec(SK
1

, sk(5)n ) (where the randomness is over the coins of the Samp and the coins
of A), we divide our analysis into the following two cases.

Claim 5.26 There exists an attacker S that finds collisions on H with probability Pr[ Win | Coll ].

Proof: Upon receiving H  H from the challenger, S does the following:

• Run (PK
RCCA

, SK
1

)  RCCA.Gen(1), k  PRF.Gen(1) and (vk, td)  SIG.Gen(1). Choose t⇤ at
random, and compute k⇤ = PRF.Punct(k, t⇤). Set keys = (SK

1

, k, vk) and keys00 = (SK
1

, k⇤, vk, H).

• S simulates Samp by doing the following:

– S samples s F⇢/
q and computes ↵ = hs, t⇤i. He computes y = PRF.Eval(k, t⇤). He uses these

values, along with challenge H and signing key td, to generate sk
(5)

i honestly.

– Set aux = (vk, {sk(5)i }ni=0

, t⇤, y)

• S runs A(1

, C
0

, C
1

, aux) and receives x = (ct00
dummy

, t00) in return. He outputs t00 as a collision with t⇤

under H .
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Because we condition on event Coll, we have that
RCCA.Dec(SK

1

, ct00
dummy

) = �00||(s,↵, H(t⇤)|| y), where s and t⇤ are the values sampled by S when simulating

sk
(5)

i , ↵ = hs, t⇤i, and SIG.Verify(�00, (s,↵, H(t⇤)|| y)) = 1. It follows that the only way for (ct00
dummy

, t00) to
constitute a differing input is if the following condition holds:

t00 6= t⇤
^

PRF.Eval(k, t00) 6= y
^

hs, t00i = ↵
^

H(t00) = H(t⇤)

To see why this condition is necessary, note that if t00 = t⇤, or if PRF.Eval(k, t00) = y, both circuits output y. If
hs, t00i 6= ↵, or H(t00) 6= H(t⇤), both circuits output PRF.Eval(k, t00). Now, since t00 6= t⇤, but H(t00) = H(t⇤),
S has succeeded in finding a collision for function H .

Claim 5.27 There exists an attacker S that finds forgeries with respect to Sign with probability
Pr[ Win | Coll ].

Proof: Upon receiving vk from the challenger, S , who has the access to the signing oracle SIG.Sign(td, ·),
does the following:

• Run (PK
RCCA

, SK
1

)  RCCA.Gen(1), k  PRF.Gen(1). Choose t⇤ at random, and compute k⇤ =
PRF.Punct(k, t⇤). Choose H  H. Set keys = (SK

1

, k, vk) and keys00 = (SK
1

, k⇤, vk, H).

• S simulates Samp by doing the following:

– S samples s F⇢/
q and computes ↵ = hs, t⇤i. He computes y = PRF.Eval(k, t⇤). He uses these

values to define message m = (s,↵, H(t⇤)||y) and uses his external signing oracle SIG.Sign(td, ·)
to get signature �. He generates sk(5)i by repeatedly encrypting (�,m).

– Set aux = (vk, {sk(5)i }ni=0

, t⇤, y)

• S runs A(1

, C
0

, C
1

, aux) and receives x = (ct00
dummy

, t00) in return. Then he computes (�00,m00) =

RCCA.Dec(SK
1

, ct00
dummy

), and outputs (m00,�00) as a forged signature.

Because we are conditioning on the event Coll, it follows that S never obtains (�00,m00) through his signing
oracle. Furthermore, note that if SIG.Verify(vk,m00,�00) = 0, then both C

0

and C
1

output ?. It follows that
(m00,�00) is a successful forgery, and S wins his game. Note that we require a strongly unforgeable signature
scheme, because, while Coll states that (m00,�00) 6= (m,�), it may be that m00 = m.

From Claims 5.26 and 5.27, and the security of H and Sign, it follows that Pr[Win] < negl. Claim 5.23
follows from the fact that diO is a differing-inputs obfuscator and from the fact that the circuit family C associ-
ated with Samp is a differing inputs family. This is the case since DA

H4
can be simulated given (diO(C

0

), aux)

and DA
H5

can be simulated given (diO(C
1

), aux).

Hybrid 6: In this game we modify the key update phase (in every round) to use (s,↵, H(t⇤)|| y⇤), where y⇤ is
chosen uniformly at random, rather than as PRF.Eval(k, t⇤). Let DA

H6
denote the distribution

⇣

pk(6), t⇤, y, {fi(sk(6)i�1, sk
(6)

i )}ni=1

 AO(·)
(pk(6))

⌘

where y = C 00
Dec

( sk
(6)

n , t⇤) and the distribution is taken

over coins of A, and choice of (pk(6), sk(6)
0

, . . . , sk(6)n ), t⇤ as described above. We claim the following

Claim 5.28 For any PPT adversary A,
DA

H5

c⇡ DA
H6

Proof: The proof is by reduction to the security of the punctured PRF. Specifically, S attacks the PRF by
submitting t⇤ to his challenger and receiving (PRF.Punct(k, t⇤), y⇤) as a challenge. He then generates all the
other necessary keys to simulate the view of A. And uses A’s guess to form his own.

Hybrid 7: In this game we replace C 00
Dec

with C 000
Dec

by changing k⇤ in C 00
Dec

in the previous hybrid with the
original k.
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Claim 5.29 For any PPT adversary A,
DA

H6

c⇡ DA
H7

Proof: The proof is by a reduction to the security of the indistinguishability obfuscation. The main observation
is that if H(t0) = H(t) and hs, ti = ↵, then both circuits output y⇤. If this doesn’t hold, then C 00

Dec

returns
y00 = PRF.Eval(k⇤, t), and C 000

Dec

returns y000 = PRF.Eval(k, t); note that y00 = y000 on points t 6= t⇤. Therefore,
changing k⇤ into k will not effect the input/output behavior. If there is a difference in advantage, we can create
an algorithm B that breaks the security of indistinguishability obfuscation.

Hybrid 8

(j): In this sequence of hybrids we modify the key update procedure as follows. Instead of replacing
ct

dummy

with an encryption of (s,↵, H(t⇤)|| y⇤), where hs, t⇤i = ↵, in the first j key-update rounds we instead
replace it with a fresh encryption of (si,↵i, H(t⇤)|| y⇤) where si  F⇢/

q and ↵i  Fq. Note that the difference
in this hybrid is that ↵i is no longer necessarily equal to ↵ = hsi, t⇤i.

Let DA
H8|j

denote the distribution
⇣

pk(8|j), t⇤, y⇤, {fi(sk(8|j)i�1 , sk(8|j)i )}ni=1

 AO(·)
(pk(8|j))

⌘

where y⇤  
{0, 1}Lmsg is chosen uniformly at random, and the distribution is taken over coins of A, and choice of
(pk(8|j), sk(8|j)

0

, . . . , sk(8|j)n ), w, and y⇤ as described above. Noting that hybrid 8

(0) is the same as hybrid 7, We
claim the following

Claim 5.30 For any PPT adversary A, and any j 2 {0, . . . , n� 1}

DA
H8|j

c⇡ DA
H8|j+1

The heart of this proof relies on Theorem 5.31 which is stated and proven next. Intuitively, the claim in this
theorem is that, for any leakage function f with bounded output length, it is hard to tell from
(t⇤, f (sj , H(t⇤),↵j ,↵j+1

)) whether ↵j = hsj , t⇤i. The argument uses the fact that the inner product is a strong
two-source extractor.

Lemma 17 (Strong Inner-Product Two-Source Extractor) Let ~X, ~Y , Z be correlated variables, where ~X, ~Y
have their support in Fm

q , and are independent conditioned on Z. Let U be uniform and independent on Fq.
Then

�((Z, Y, h ~X, ~Y i), (Z, Y, U))  2

�s

for some s � 1 +

1

2

(kX + kY � (m+ 1) log q), where kX :=

eH1(

~X|Z), kY :=

eH1(

~Y |Z)

The worst-case version of this lemma is Theorem 1 of Lee et al. [41]. The average-case version that we use
above follows as in Wichs’ thesis [50, Lemma 4.1.4]. (Wichs does not state his lemma for the strong extraction
property but this follows readily given the result of Lee et al. [41].)

Theorem 5.31 Let S
1

, T be random on Fm
q and U be random on Fq. Fix any s

2

2 Fm
q and let A

2

= hs
2

, T i.
Suppose H outputs  bits and f outputs L0 bits. Then

� ((T, f (S
1

, H(T ), hS
1

, T i, A
2

)), (T, f (S
1

, H(T ), U,A
2

)))  2

�s0 , (6)

where s0 = (m log q � 3L0 � 1� � 2 log q)/3.

Thus for the statistical distance in Equation 6 to be negligible we need

(m log q � 3L0 � 1� � 2 log q)/3 � log(1/✏0) ,

for some negligible ✏0. Taking  = log 1/✏0 = log q and setting m = !() such that m ·  = ⇢(), L0 =
⇢/3�O(), we can tolerate 2CLR leakage functions of length L = L0/2, which we will argue later.
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Proof: Let BAD be the set of ` such that conditioning on f (S
1

, H(T ), U,A
2

) = ` gives S
1

too little min-
entropy. That is,

BAD := {` such that H1(S
1

| f (S
1

, H(T ), U,A
2

) = `) < m log q � L0 � s0 � 1} .

Additionally, for fixed t, ↵
2

= hs
2

, ti, let St be the set of ` defined as,

St
:= {` such that Pr[f (S

1

, H(t), U,↵
2

) = `] > Pr[f (S
1

, H(t), hS
1

, ti,↵
2

) = `]}.

We claim that

� ((T, f (S
1

, H(T ), U,A
2

)), (T, f (S
1

, H(T ), hS
1

, T i, A
2

)))

= Et � (f (S
1

, H(t), U,↵
2

), f (S
1

, H(t), hS
1

, ti,↵
2

))

 Et

0

@

X

`2BAD\St

Pr [f (S
1

, H(t), U,↵
2

) = `]� Pr [f (S
1

, H(t), hS
1

, ti, A
2

) = `]

1

A

+Et

 

X

`2BAD\St

Pr [f (S
1

, H(t), U,↵
2

) = `]

!


X

`/2BAD
(Et |Pr [f (S1

, H(t), U,↵
2

) = `]� Pr [f (S
1

, H(t), hS
1

, ti,↵
2

) = `]|)

+

X

`2BAD
(Et Pr [f (S1

, H(t), U,↵
2

) = `])

=

X

`/2BAD
(Et |Pr [f (S1

, H(t), U,↵
2

) = `]� Pr [f (S
1

, H(t), hS
1

, ti,↵
2

) = `]|)

+ Pr[f (S
1

, H(T ), U,A
2

) 2 BAD]


X

`/2BAD
(Et |Pr [f (S1

, H(t), U,↵
2

) = `]� Pr [f (S
1

, H(t), hS
1

, ti,↵
2

) = `]|) + 2

�s0�1 (7)

 2

L0 · 2�s0�1�L0

+ 2

�s0�1, (8)
= 2

�s0 .

where (7) is due to Markov’s inequality and the definition of the set BAD. (8) is due to the following claim:

Claim 5.32 For any ` /2 BAD in the range of f ,

Et |Pr [f (S1

, H(t), U,↵
2

) = `]� Pr [f (S
1

, H(t), hS
1

, ti,↵
2

) = `]|  2

�s0�1�L0

.

Proof: First, for fixed t,� and bh = H(t), we have:

Pr[f (S
1

,bh, hS
1

, ti,↵
2

) = ` ^ hS
1

, ti = �] = Pr[f (S
1

,bh,�,↵
2

) = ` ^ hS
1

, ti = �]

= Pr[f (S
1

,bh,�,↵
2

) = `] · Pr[hS
1

, ti = � | f (S
1

,bh,�,↵
2

) = `].
(9)

and

Pr[f (S
1

,bh, U,↵
2

) = ` ^ U = �] = Pr[f (S
1

,bh,�,↵
2

) = ` ^ U = �]

= Pr[f (S
1

,bh,�,↵
2

) = `] · Pr[U = �]. (10)
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Now, we have that:

Et T |Pr [f (S
1

, H(t), U,↵
2

) = `]� Pr [f (S
1

, H(t), hS
1

, ti,↵
2

) = `]|

=

X

bh,↵2

Pr[H(T ) = bh ^ hs
2

, T i = ↵
2

] · E
t T 0

�

�

�

Pr[f (S
1

,bh, U,↵
2

) = `]� Pr[f (S
1

,bh, hS
1

, ti,↵
2

) = `]
�

�

�


X

bh,↵2

Pr[H(T ) = bh ^ hs
2

, T i = ↵
2

]

· E
t T 0

X

�

�

�

�

Pr[f (S
1

,bh, U,↵
2

) = ` ^ U = �]� Pr[f (S
1

,bh, hS
1

, ti,↵
2

) = ` ^ hS
1

, ti = �]
�

�

�

(11)

=

X

bh,↵2

Pr[H(T ) = bh ^ hs
2

, T i = ↵
2

]

·
X

�

✓

E
t T 0

�

�

�

Pr[f (S
1

,bh, U,↵
2

) = ` ^ U = �]� Pr[f (S
1

,bh, hS
1

, ti,↵
2

) = ` ^ hS
1

, ti = �]
�

�

�

◆

=

X

bh,↵2

Pr[H(T ) = bh ^ hs
2

, T i = ↵
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where T 0 is uniform on the set {t | H(t) = bh ^ hs
2

, ti = ↵
2

}, (11) follows by triangle inequality, (12) follows
from (9) and (10), (13) follows since the quantity Pr[f (S

1

,bh,�,↵
2

) = `] is always less than or equal to 1.
To see why (14) holds, note that X :=

⇣

S
1

| f (S
1

,bh,�,↵
2

) = `
⌘

and Y :=

⇣

T | H(T ) = bh ^ hs
2

, T i = ↵
2

⌘

are independent sources. Furthermore,

kX :=

eH1
⇣

S
1

| f (S
1

,bh,�,↵
2

) = `
⌘

� m log q � L0 � s0 � 1

by the assumption ` /2 BAD. And

kY :=

eH1
⇣

T | H(T ) = bh ^ hs
2

, T i = ↵
2

⌘

� m log q � � log q

by the “chain rule” for average min-entropy [25, Lemma 2.2]. Thus the last inequality follows by Lemma 17.

We now use theorem 5.31 to prove Claim 5.30.
Proof: We show that if A can distinguish hybrid 8

(j) from 8

(j+1) with some advantage ✏0, then there is a
distinguisher S and functions f ⇤ and H with output lengths at most L0 = 2L bits and  bits respectively, such
that S distinguishes the two distributions (T, f ⇤(S

1

, H(T ), hS
1

, T i, A
2

)) and (T, f ⇤(S
1

, H(T ), U,A
2

)) from
one another with the same advantage. Since this violates the assertion in Theorem 5.31, the claim follows
directly.
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S simulates the view of A as follows. He samples (pk
RCCA

, sk
1

, sk
2

)  RCCA.Gen(1), (vk, td)  
SIG.Gen(1), k  PRF.Gen(1), and constructs C

Dec

and C
Enc

as described in the previous hybrid. Then, to
simulate the replies to A’s leakage queries, S acts as follows. For i 2 {0, . . . , j � 1}, he samples si  F⇢/

q ,
and ↵i  Fq. For i 2 {0, . . . , j + 1} he samples randomness r(1)i to be used in signing the necessary plaintext
values, and r(2)i to be used in encrypting the necessary values. Finally, he samples r

tape

to be used as A’s
random tape, and y⇤  {0, 1}Lmsg . We denote the union of these sets of random values by rand. He then
submits function f ⇤

rand,td,pk
RCCA

to his challenger, where f ⇤
rand,td,pk

RCCA

is defined as in Figure 21.

Internal (hardcoded) state: rand =

n

{si,↵i, r
(1)

i , r(2)i }j�1i=0

, r(1)j , r(2)j , r(1)j+1

, r(2)j+1

, y⇤, r
tape

o

, td, pk
RCCA

.

On input: sj , H(t⇤),↵j ,↵j+1

– For i 2 {0, . . . , j + 1},
– let mi = (si, H(t⇤),↵i||y⇤),
– let �i = SIG.Sign(td,mi ; r

(1)

i ),
– let ski = RCCA.Enc(pk

RCCA

,�i || mi ; r
(2)

i ).

– Run the code of A using random tape r
rand

until he has made j+1 leakage queries. For i 2 {1, . . . , j+
1}, reply to leakage query fi by computing fi(ski�1, ski).

– Output fj(skj�1, skj), fj+1

(skj , skj+1

)

Figure 21: The function f ⇤
rand,td,pk

RCCA

is the leakage function sent by reduction adversary S to his chal-
lenger. In response, he receives either a sample from (T, f ⇤

rand,td,pk
RCCA

(S
1

, H(T ), hS
1

, T i,↵
2

)), or from
(T, f ⇤

rand,td,pk
RCCA

(S
1

, H(T ),�,↵
2

)).

S receives challenge value (t⇤, fj�1(skj�2, skj�1), fj(skj�1, skj),↵j+1

). Once he knows t⇤, we note that S
has all the information needed to simulate A’s view for the first j � 2 leakage queries. He does so precisely as
was done by his challenger when running f ⇤

rand,td,pk
RCCA

, using identical random values, and eliciting identical
leakage queries. To simulate the replies to leakage queries fj�1 and fj he uses the two outputs of f ⇤

rand,td,pk
RCCA

.
By our setting of parameters, output size of f is L, and output size of f ⇤ is L0 = 2L. To simulate the

replies to query fj+1

, S computes ↵j+1

= hsj+1

, t⇤i, where, recall, sj+1

was fixed prior to his challenge
query. He simulates sk(8|j)j+1

by signing and encrypting (sj+1

, H(t⇤),↵j+1

||y⇤) with random coins r(1)j+1

, r(2)j+1

.

For j+1 < i < n, he constructs sk(8|j)i by sampling si  F⇢/
q , computing ↵i = hsi, t⇤i, and then signing and

encrypting (si, H(t⇤),↵i||y⇤) using uniformly chosen coins. He simulates leakage queries fj+1

, . . . , fn using
the sk

(8|j)
j+1

, . . . , sk(8|j)n . The above simulation is distributed exactly as Hybrid 8

(j) when S’s challenge comes
from
(T, f ⇤

rand,td,pk
RCCA

(Sj , H(T ), hSj , T i,↵j+1

)), and it is distributed exactly as Hybrid 8

(j+1) when S’s challenge
comes from (T, f ⇤

rand,td,pk
RCCA

(Sj , H(T ),�,↵j+1

)), which concludes the proof.

Hybrid 9: In this hybrid, we change the circuit C
Dec

such that after decrypting ct
dummy

, it verifies the sig-
nature, but otherwise ignores the content. Note that by the end of the Hybrid 8 sequence, the inner prod-
uct relationship has been “broken”, so with all but negligible probability over the choices of si,↵i, we are
already ignoring the plaintext values anyway. Let C(9)

keys

denote the resulting circuit, and let pk(9) denote
the modified public key that results from obfuscating the updated circuit. Let DA

H9
denote the distribution

⇣

pk(9), t⇤, y⇤, {fi(sk(9)i�1, sk
(9)

i )}ni=1

 AO(·)
(pk(9))

⌘

where y⇤ is chosen uniformly at random, and the distri-

bution is taken over coins of A, and choice of (pk(8), sk(8)
0

, . . . , sk(8)n ), y⇤ as described above. We claim the
following
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Claim 5.33 For any PPT adversary A,
DA

H8|n

c⇡ DA
H9

Proof: The proof follows from a reduction to the security of the diO scheme. The argument that these two
circuits have differing-input security follows almost identically as in the proof of Claim 5.25, with a reduction
to the either the security of the signature scheme, or the collision resistance of H . We omit repeating the proof.

Hybrid 10: In this hybrid, we replace the content of ct
dummy

with a fresh encryption of �||02+⇢+L
msg , where

� is a signature on 0

2+⇢+L
msg . Let sk(10)i denote the resulting secret key in update round i. Let pk(10) denote

the public key (which is generated in the same fashion as in hybrid 9.). Let DA
H10

denote the distribution
⇣

pk(10), t⇤, y⇤, {fi(sk(10)i�1 , sk
(10)

i )}ni=1

 AO(·)
(pk(10))

⌘

where y⇤ is chosen uniformly at random, and the dis-

tribution is taken over coins of A, and choice of (pk(10), sk(10)
0

, . . . , sk(10)n ), y⇤ as described above. We claim
the following

Claim 5.34 For any PPT adversary A,
DA

H9

c⇡ DA
H10

Proof: The proof follows from the security of the RCCA scheme. We transition through a sequence of hybrids
(and sub-hybrids), changing one plaintext value at a time, just as we did in Claim 5.19. Note that, just as in
that Claim, our circuit only verifies the signature on the plaintext, and makes no use of the value otherwise.
Since we only need to verify the signature, we can replace decryption with SK

1

by a check for SimFlag after
decrypting with SK

2

, and use diO security, as we did previously. We omit the details of the proof.
Finally, we have the following claim, where the right hand side is the same as in Lemma 16.

Claim 5.35
DA

H10

s⇡
⇣

fpk, U⇢, UL
msg

, {fi(eski�1, eski)}ni=1

 AO(·)
(

fpk)
⌘

Proof: Note that pk(10) and sk
(10)

0

, . . . , sk(10)n contain no information about y⇤.
This concludes the proof of Lemma 16.

6 Continual Leakage Resilience for One Way Relation

Dodis et al. [21] defined one-way relation (OWR) in the regular continual leakage resilience setting, and present
a construction based on a simpler primitive – leakage-indistinguishable re-randomizable relation (LIRR). In this
section, we first extend their definition to 2CLR and CLR with leakage on key updates. Then we prove their
LIRR-based construction actually achieves the 2CLR security. By using our generic transformation, we can
have a construction for achieving CLR with leakage on key updates. Additionally, we give a new construction
of 2CLR OWR based on 2CLR PKE, which can be obtained from the previous sections.

6.1 Continual Leakage Model

A one-way relation scheme OWR consists of two algorithms: (OWR.Gen,OWR.Verify). In the continual
leakage setting, we require an additional algorithm OWR.Update which updates the secret keys. Note that the
public key remains unchanged.

• OWR.Gen(1)! (pk, sk
0

). The key generation algorithm takes in the security parameter , and outputs
a secret key sk

0

and a public key pk.
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• OWR.Verify(pk, sk)! {0, 1}. The verification algorithm takes in the public key pk, a secret key sk, and
outputs either 0 or 1.

• OWR.Update(ski�1)! ski. The update algorithm takes in a secret key ski�1 and produces a new secret
key ski for the same public key.

Correctness. The OWR scheme satisfies correctness if for any polynomial q = q(), it holds that for all i 2
{0, 1, . . . , q}, OWR.Verify(pk, ski) = 1, where (pk, sk

0

) OWR.Gen(1), and ski+1

 OWR.Update(ski).

Security. We define continual leakage security for one-way relations in terms of the following game between
a challenger and an attacker. We let  denote the security parameter, and the parameter µ controls the amount
of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls OWR.Gen(1) to create the initial
secret key sk

0

and public key pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of leakage queries. Each time, say
in the i-th query, the attacker provides an efficiently computable leakage function fi whose output is at
most µ bits, and the challenger chooses randomness ri, updates the secret key from ski�1 to ski, and
gives the attacker the leakage response `i. In the CLR model, the leakage attack is applied on a single
secret key, and the leakage response `i = fi(ski�1). In the 2CLR model, the leakage attack is applied on
consecutive two secret keys, i.e., `i = fi(ski�1, ski). In the model of CLR with leakage on key updates,
the leakage attack is applied on the current secret key and the randomness used for updating the secret
key, i.e., `i = fi(ski�1, ri).

Recovery Phase. The attacker outputs some sk⇤. The attacker wins the game if
OWR.Verify(pk, sk⇤) = 1. We define the success probability of the attacker in this game as
Pr[OWR.Verify(pk, sk⇤) = 1].

Definition 6.1 (Continual Leakage Resilience) We say a One Way Relation scheme is µ-CLR secure (respec-
tively, µ-2CLR secure, or µ-CLR secure with leakage on key updates) if any PPT attacker only has a negligible
advantage (negligible in ) in the above game.

6.2 Construction based on Leakage-Indistinguishable Re-randomizable Relation

6.2.1 Leakage-Indistinguishable Re-randomizable Relation

In [21], Dodis et al introduce a new primitive, leakage-indistinguishable re-randomizable relation (LIRR), and
show that this primitive can be used to construct OWR in the CLR model where the adversary is allowed to leak
on the secret key in each round of leakage attack. LIRR allows one to sample two types of secret-keys: “good”
keys and “bad” keys. Both types of keys look valid and are acceptable by the verification procedure, but they
are produced in very different ways. In fact, given the ability to produce good keys, it is hard to produce any
bad key and vice-versa. On the other hand, even though the two types of keys are very different, they are hard
to distinguish from each other. More precisely, given the ability to produce both types of keys, and µ bits of
leakage on a “challenge” key of an unknown type (good or bad), it is hard to come up with a new key of the same
type. More formally, a LIRR consists of PPT algorithms (Setup, SampG, SampB,Update,Verify, isGood) with
the following syntax:

• (pk, sG, sB, dk)  Setup(1): This algorithm returns a public-key pk, a “good” sampling-key sG, a
“bad” sampling key sB , and a distinguishing-trapdoor dk.

• skG  SampG
pk

(sG) and skB  SampB
pk

(sB): These algorithms sample good/bad secret-keys using
good/bad sampling keys respectively. We omit the subscript pk when clear from context.
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• b isGood(pk, sk, dk): This algorithm uses dk to distinguish good secret-keys sk from bad ones.

• ski  Update(ski�1) and b  Verify(pk, sk): These two algorithms have the same syntax as in the
definition of OWR in the CLR model.

Definition 6.2 We say (Setup, SampG, SampB,Update,Verify, isGood) is a µ leakage-indistinguishable re-
randomizable relation (LIRR) if it satisfies the following properties:

Correctness: If (pk, sG, sB, dk) Setup(1), skG  SampG(sG), skB  SampB(sB) then

Pr



Verify(pk, skG) = 1

V

isGood(pk, skG, dk) = 1

V

Verify(pk, skB) = 1

V

isGood(pk, skB, dk) = 0

�

= 1� negl()

Re-Randomization: We require that (pk, sG, sk0, sk1)
c⇡ (pk, sG, sk0, sk

0
1

) where

(pk, sG, sB, dk) Setup(), sk
0

 SampG(sG) and sk
1

 Update(sk
0

), sk0
1

 SampG(sG)

Hardness of Bad Keys: Given sG, it’s hard to produce a valid “bad key”. Formally, for any PPT A,

Pr



(pk, sG, sB, dk) Setup(1), sk⇤  A(pk, sG) :
Verify(pk, sk⇤) = 1

V

isGood(pk, sk⇤, dk) = 0

�

 negl()

Hardness of Good Keys: Given sB , it’s hard to produce a valid “good key”. Formally, for any PPT A,

Pr



(pk, sG, sB, dk) Setup(1), sk⇤  A(pk, sB) :
isGood(pk, sk⇤, dk) = 1

�

 negl()

µ Leakage-Indistinguishability: Given both sampling keys sG, sB , and µ bits of leakage on a secret-key sk
(which is either good or bad), it is hard to produce a secret-key sk⇤ which is in the same category as sk.
Formally, for any PPT adversary A, we have |Pr[A wins ]� 1/2|  negl() in the following game:

• The challenger chooses (pk, sG, sB, dk)  Setup(1) and gives pk, sG, sB to A. The challenger
chooses a random bit b 2 {0, 1}. If b = 1 then it samples sk  SampG(sG), and otherwise it
samples sk SampB(sB).

• The adversary A can make up to q queries in total to the leakage-oracle

• The adversary outputs sk⇤ and wins if isGood(pk, sk⇤, dk) = b.

6.2.2 Construction

A µ LIRR can be used to construct a µ-2CLR secure OWR, as follows:

• Gen(1): Sample (pk, sG, ·, ·) Setup(1), sk SampG(sG) and output (pk, sk)

• Update(·),Verify(·, ·): Same as for LIRR

Note that the CLR-OWR completely ignores the the bad sampling algorithm SampB, the “bad” sampling key
sB , the distinguishing algorithm isGood, and the distinguishing key dk of the LIRR. These are only used in
the argument of security. Moreover, the “good” sampling key sG is only used as an intermediate step during
key-generation to sample the secret-key sk, but is never explicitly stored afterwards.

Theorem 6.3 Given any 2µ-LIRR scheme, the construction above is a µ-2CLR secure OWR.

Proof: The proof is very similar to that in [21]. To prove the theorem statement, we develop a sequence of
games.
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Game H
0

: This is the original µ-2CLR Game as Definition 6.1. The adversary is allowed to apply leakage
function on consecutive two secret keys in each round of leakage attack.

Games H
0.i - H

1

: Let q be the total number of leakage rounds for which A runs. We define the Games
H

0.i for i = 0, 1, . . . , q as follows. The challenger initially samples (pk, sG, sB, dk)  Setup(1), and
sk

0

 SampG(sG) and gives pk to A. The game then proceeds as before with many leakage rounds, except
that the secret keys in rounds j  i are generated as skj  SampG(sG), independently of all previous rounds,
and in the rounds j > i, they are generated as skj  Update(skj�1). Note that Game H

0.0 is the same as
Game H

0

, and we define Game H
1

to be the same as Game H
0.q.

Claim 6.4 For i = 1, . . . , q, it holds that |Pr[A wins |H
0.(i�1)]� Pr[A wins |H

0.i]|  negl()

Proof: We use the re-randomization property to argue that, for i = 1, . . . , q, the winning probability of A is
the same in Game H

0.(i�1) as in Game H
0.i, up to negligible factors. We construct a reduction B, with input

(pk, sG, sk
0, sk00). Here sk0  SampG(sG), and sk00 is sampled based on randomly chosen b: if b = 1, then

sk00  SampG(sG) and if b = 0, then sk00  Update(sk0).
More concretely, the reduction B emulates a copy of A internally. In addition B emulates the view for A:

for all j < i, B generates skj  SampG(sG), and for all j > i+ 1, B generates skj  Update(skj�1); B sets
ski := sk0 and ski+1

:= sk00. Upon receiving a leakage query fj from A, the reduction B returns fj(skj�1, skj)
to A.

If B’s challenger uses sk00 which is generated through SampG then that corresponds to the view of A in
Game H

0.i and if sk00 is generated through Update, then corresponds to Game H
0.(i�1). Therefore, if A is able

to distinguish the two worlds, then B is able to break the re-randomization property.

Game H
2

: Game H
2

is the same as Game H
1

, except the winning condition: now the adversary only wins
if, at the end, it outputs sk⇤ such that isGood(pk, sk⇤, dk) = 1.

Claim 6.5 |Pr[A wins |H
1

]� Pr[A wins |H
2

]|  negl()

Proof: The winning probability of A in Game H
2

is at least that of Game H
1

minus the probability that
sk⇤ satisfies Verify(pk, sk⇤) = 1 ^ isGood(pk, sk⇤, dk) = 0. However, since the entire interaction between the
challenger and the adversary in games H

1

,H
2

can be simulated using (pk, sG), we can use the “hardness of
bad keys” property to argue that the probability of the above happening is negligible. Therefore the probability
of A winning in Game H

2

is at least that of Game H
1

, up to negligible factors.

Games H
2.i - H

3

: Let q be the total number of leakage rounds for which A runs. We define the Games H
2.i

for i = 0, 1, . . . , q as follows. The challenger initially samples (pk, sG, sB, dk) Gen(1) and gives pk to A.
The game then proceeds as before with many leakage rounds, except that the secret keys in rounds j  i are
generated as skj  SampB(sB), and in the rounds j > i, they are generated as skj  SampG(sG). Note that
Game H

2.0 is the same as Game H
2

, and we define Game H
3

to be the same as Game H
2.q.

Claim 6.6 For i = 1, . . . , q, it holds that |Pr[A wins |H
2.(i�1)]� Pr[A wins |H

2.i]|  negl().

Proof: We use the 2µ-Leakage Indistinguishability property to argue that, for i = 1, . . . , q, the winning
probability of A is the same in Game H

2.(i�1) as in Game H
2.i, up to negligible factors. We construct a

reduction B, with input (pk, sG, sB) and with leakage access to sk. Here sk is sampled based on randomly
chosen b: if b = 1, then sk SampG(sG) and if b = 0, then sk SampB(sB).

More concretely, the reduction B emulates a copy of A internally. In addition B emulates the view for A:
in each leakage-round j < i, B uses sB to generate skj  SampB(sB); and in round j > i, B uses sG to
generate skj  SampG(sG). Upon receiving a leakage query fj from A in leakage round j, if j < i � 1, B
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returns fj(skj�1, skj) to A; if j = i�1, B defines ˆfj = fj(skj�1, ·), and then applies ˆfj on sk, and returns ˆfj(sk)
to A; if j = i, B defines ˆfj = fj(skj , ·), and then applies ˆfj on sk, and returns ˆfj(sk) to A; if j > i, B returns
fj(skj�1, skj) to A. At the end, B outputs the value sk⇤ output by A. Note that B made queries ˆfi�1 and ˆfi,
which are 2µ bits in total.

If B’s challenger uses a good key then that corresponds to the view of A in Game H
2.i and a bad key

corresponds to Game H
2.(i�1). Therefore, letting b be the bit used by B’s challenger, we have:

|Pr[B wins ]� 1/2|
= |Pr[isGood(pk, sk⇤, dk) = b]� 1/2|
= 1/2 · |Pr[isGood(pk, sk⇤, dk) = 1|b = 1]� Pr[isGood(pk, sk⇤, dk) = 1|b = 0]|
= 1/2 ·

�

�

Pr[A wins |H
2.(i�1)]� Pr[A wins |H

2.i]
�

�

Claim 6.7 Pr[A wins |H
3

]  negl()

Proof: We now argue that probability of A winning Game H
3

is negligible, by the “hardness of good
keys”. Notice that A’s view in Game H

3

can be simulated entirely just given (pk, sB). Therefore, there
is a PPT algorithm which, given (pk, sB) as inputs, can run Game H

3

with A and output sk⇤ such that
isGood(pk, sk⇤, dk) = 1 whenever A wins. So the probability of A winning in Game H

3

is negligible.
By the hybrid argument, the probability of A winning in Game H

0

is at most that of A winning in Game H
3

, up
to negligible factors. That is, Pr[A wins |H

0

]  negl(). Therefore, since the latter is negligible, the former
must be negligible as well, which concludes the proof of the theorem.

Based on the result in [21], we have the following corollary.

Corollary 6.8 Fix a constant K � 1, and assume that the K-linear assumption holds in the base groups of
some pairing. Then, for any constant ✏ > 0, there exists a µ-2CLR secure OWR scheme with relative-leakage
µ
|sk| �

1

2(K+1)

� ✏.

Furthermore, based our transformation in Section 3, we obtain a OWR scheme against continual leakage
on update.

Corollary 6.9 Under the K-linear assumption, and differing inputs obfuscation there exist µ-CLR OWRs with
leak on key updates, where µ

|sk| �
1

2(K+1)

� ✏, for some negligible ✏. The resulting scheme achieves leakage

rate 1

4(K+1)

� o(1).

6.3 A Generic Construction based on PKE

In this section, we describe a generic construction of CLR-secure OWR (resp., 2CLR-secure, and CLR with
leakage on key updates) from CLR-secure PKE (resp., 2CLR-secure, and CLR with leakage on key updates).
A OWR requires verification of the relation to be deterministic; but a PKE does not necessarily give a OWR
because there might not be a deterministic way to check the key pair (pk, sk) of a PKE. Here we present a way
to check the key pair of a PKE deterministically, so that one can use PKE to construct OWR.

Theorem 6.10 Let E be a public key encryption scheme secure in the model of CLR (respectively, of 2CLR,
and of CLR with leakage on key updates) with leakage rate ⇢, then for appropriate choice of polynomial p(·),
the one way relation scheme OWR in Figure 22 is secure in the model of CLR (respectively, of 2CLR, and of
CLR with leakage on key updates) with leakage rate ⇢.
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Construction OWR = OWR.{Gen,Update,Verify}

Here E = E .{Gen,Enc,Dec,Update} is a PKE scheme, and p(·) is some polynomial.

Key Generation: (pk, sk
0

) OWR.Gen(1)

• Compute (pkE , skE
0

) E .Gen(1).
• Choose p = p() random messages m

1

, . . . ,mp from the message space of E .

• For i 2 [p], compute a random encryption ei = E .Enc(mi).

• Ouput public key pk = (pkE , (m
1

, e
1

), . . . , (mp, ep)) and secret key sk
0

= skE
0

.

Key Update: ski+1

 OWR.Update(ski)

Set ski+1

 E .Update(ski).

Verification: b OWR.Verify(sk0, pk)

Upon receiving key pair (sk0, pk), parse pk = (pkE , (m
1

, e
1

), . . . , (mp, ep)).

If for all i 2 [p], E .Dec(sk0, ei) = mi, then set b := 1; otherwise, set b := 0.

Figure 22: The transformation of PKE to OWR.

Proof: [Sketch.] A well-known result from learning theory known as Occam’s Razor (see for example, Kearns
and Vazirani [39], Theorem 2.1)11, says that if a class of circuits has size |C| and a circuit C 2 C agrees with a
target circuit C⇤ 2 C on poly(log(|C|), 1/✏, log(1/�)) number of random inputs, then with probability 1 � �,
C agrees with C⇤ over the uniform distribution with probability 1 � ✏. In the following, we will always set
log(1/�) �  and so �  1/2.

Assume we have an adversary A breaking the security of the one-way relation, we use it to construct an
adversary A0 breaking the security of the encryption scheme E . The class C consists of the circuits E .Dec(esk, ·)
for all possible sk. Clearly, log(|C|) = |sk| = poly(). Now, C corresponds to the circuit E .Dec(sk0, ·),
where sk0 is the secret key submitted by A such that OWR.Verify(sk0, pk) = 1. Furthermore, C⇤ is the circuit
E .Dec(sk, ·), where sk is a real secret key. Note that C and C⇤ agree on p() = poly(log(|C|), 1/✏, 1/ log(�))
random inputs, since E .Verify(sk0, pk) = 1. Thus, we are guaranteed that with probability 1� � over choice of
input/output pairs (mi, ei) in pk, sk0 decrypts correctly on a fresh random input with probability 1� ✏. We are
now ready to define the adversary A0.
A0 internally instantiates A, while participating externally in a leakage (resp., on consecutive two keys, and on
both key and update) on encryption scheme E . Specifically, A0 does the following:

• Upon receiving pkE from the external experiment, do the following:

– Choose p = p() random messages m
1

, . . . ,mp from the message space of E .

– For i 2 [p], compute a random encryption ei = E .Enc(mi).

– Ouput public key pk = (pkE , (m
1

, e
1

), . . . , (mp, ep)) to the internal adversary A. Note that secret
key sk

0

= skE
0

is a correctly distributed secret key for this pk.

• Whenever A submits a leakage query f , A0 submits the same query to its external challenger who applies
it to the secret key (resp., on consecutive two keys, and on both key and update) and forwards the answer
to A.

11We note that the statement of Occam’s Razor theorem in [39] is for the case of Boolean functions. However, the analysis can be
easily extended to the non-Boolean case.
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• Finally, A submits sk0 to A0. If there exists i 2 [p] such that E .Dec(sk0, ei) 6= mi, then A0 outputs random
b0.

• Otherwise, A0 chooses two independent, uniformly random messages m
0

,m
1

and submits to its external
challenger.

• A0 then receives the challenge ciphertext c⇤.

• A0 computes m⇤ = E .Dec(sk0, c⇤). If m⇤ = m
0

, A0 outputs 0. Otherwise, A0 outputs 1.

Note that A0 perfectly simulates A’s view in the OWR game. Therefore, it is not hard to see that if A
succeeds with probability p

1

= p
1

() � 8/2, then A0 succeeds with probability 1/2·(1�p
1

)+(p
1

��)(1�✏).
For ✏  1/7, we have that (p

1

��)(1� ✏) � 3p
1

/4. Thus, A0 succeeds with probability 1/2+p
1

/4 and obtains
advantage AdvA0,E = p

1

/4. This, in turn, implies that A must succeed with negligible p
1

() probability, since
otherwise we contradict the security of E .

7 Continual Leakage Resilience for Digital Signatures

In the previous Section, we constructed one-way relations secure against continual leakage and leak on update.
By combining our results with the work of Dodis et al. [21] we obtain a continual leakage resilient signature
scheme with leakage on update (but no leakage on the randomness used for signing). By combining our results
with the work of Boyle et al. [11] we obtain a continual, fully leakage resilient signature scheme with leakage
on update. By “fully” leakage resilient signature scheme we mean a signature scheme which allows leakage on
the randomness used for signing.

In addition to applications for constructing digital signature schemes, by combining our OWR construc-
tions with the results of [21], we also immediately obtain constructions of identification (ID) schemes and
authenticated key agreement (AKA) protocols.

7.1 Continual Leakage Model

A digital signature scheme SIG consists of three algorithms: (SIG.Gen, SIG.Sign, SIG.Verify). In the continual
leakage setting, we require an additional algorithm SIG.Update which updates the secret keys. Note that the
verification key remains unchanged.

• SIG.Gen(1)! (vk, sk
0

). The key generation algorithm takes in the security parameter , and outputs a
secret key sk

0

and a public verification key vk.

• SIG.Sign(m, ski) ! �. The signing algorithm takes in a message m and a secret key ski, and outputs a
signature �.

• SIG.Verify(vk,�,m)! {0, 1}. The verification algorithm takes in the verification key vk, a signature �,
and a message m. It outputs either 0 or 1.

• SIG.Update(ski�1) ! ski. The update algorithm takes in a secret key ski�1 and produces a new secret
key ski for the same verification key.

Correctness. The signature scheme satisfies correctness if SIG.Verify(vk,�,m) outputs 1 whenever vk, sk
0

is produced by SIG.Gen, and � is produced by SIG.Sign(m, ski) for some ski obtained by calls to SIG.Update,
starting with sk

0

. (If the verification algorithm is randomized, we may relax this requirement to hold with all
but negligible probability.)
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Security. We define continual leakage security for signatures in terms of the following game between a chal-
lenger and an attacker (this extends the usual notion of existential unforgeability to our leakage setting). The
game is parameterized by two values: the security parameter , and the parameter µ which controls the amount
of leakage allowed. For the sake of simplicity, we assume that the signing algorithm calls the update algorithm
on each invocation. Since updates in our scheme do occur with each signature, we find it more convenient to
work with the simplified definition given below.

Setup Phase The game begins with a setup phase. The challenger calls Gen(1) to create the signing key,
sk

0

, and the verification key, vk. It gives vk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of signing queries and leakage
queries. Each time, say in the i-th query, the attacker specifies a message mi and provides an efficiently
computable leakage function fi whose output is at most µ bits, and the challenger chooses randomness
ri, updates the secret key from ski�1 to ski, and gives the attacker the corresponding signature for mes-
sage mi as well as the leakage response `i. In the CLR model, the leakage attack is applied on a single
secret key, and the leakage response `i = fi(ski�1). In the 2CLR model, the leakage attack is applied
on consecutive two secret keys, i.e., `i = fi(ski�1, ski). In the CLR with leakage on key updates, the
leakage attack is applied on the current secret key and the randomness used for updating the secret key,
i.e., `i = fi(ski�1, ri).

Forgery Phase The attacker gives the challenger a message, m⇤, and a signature �⇤ such that m⇤ has not
been previously queried. The attacker wins the game if (m⇤,�⇤) passes the verification algorithm using
vk.

Definition 7.1 (Continual Leakage Resilience) We say a Digital Signature scheme is µ-CLR secure (respec-
tively, µ-2CLR secure, or µ-CLR secure with leakage on key updates) if any PPT attacker only has a negligible
advantage (negligible in ) in the above game.

7.2 NIZK and True-Simulation Extractability

Dodis et al. [21] constructed CLR-secure signature based on CLR-secure OWR and another primitive named
true-simulation extractable (tSE) NIZK. We here recall the syntax and security properties of NIZK. We note
that, the definitions below are taken from [21] for completeness.

Let R be an NP relation on pairs (y, x) with corresponding language LR = {y | 9x s. t. (y, x) 2 R}. A
NIZK argument for a relation R consists of four PPT algorithms (Setup,Prove,Verify, Sim) with syntax:

• (crs, tk) Setup(1): Creates a common reference string (CRS) and a trapdoor key to the CRS.

• ⇡  Prove
crs

(y, x): Creates an argument that y 2 LR.

• Sim
crs

(y, tk): Creates a simulated argument that y 2 LR.

• b Verify
crs

(y,⇡): Verifies whether or not the argument ⇡ is correct.

For the sake of clarity, we write Prove,Verify, Sim without the crs in the subscript when the crs can be
inferred from the context.

Definition 7.2 We say that (Setup,Prove,Verify) are a NIZK argument system for the relation R if the follow-
ing three properties hold.

Completeness: For any (y, x) 2 R, if (crs, tk) Setup(1), ⇡  Prove(y, x), then V erify(y,⇡) = 1.

Soundness: For any PPT adversary A,

Pr[Verify(y,⇡⇤) = 1 ^ y 62 LR : (crs, tk) Setup(1), (y,⇡⇤) A(crs)]  negl(1)
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Composable Zero-Knowledge: For any PPT adversary A we have Pr[Awins ] � 1/2  negl(1) in the
following game:

• The challenger samples (crs, tk) Setup(1) and gives (crs, tk) to A.

• The adversary A chooses (y, x) 2 R and gives these to the challenger.

• The challenger samples ⇡
0

 Prove(y, x), ⇡
1

 Sim(y, tk), b {0, 1} and gives ⇡b to A.

• The adversary A outputs a bit b0, and wins if b0 = b.

Definition 7.3 (True-Simulation Extractability [22]) Let NIZK = (Setup,Prove, Verify, Sim) be an NIZK
argument for an NP relation R, satisfying the completeness, soundness and zero-knowledge properties. We say
that NIZK is true-simulation extractable (tSE) if:

• Apart from outputting a CRS and a trapdoor key, Setup also outputs an extraction key: (crs, tk, ek)  
Setup(1).

• There exists a PPT algorithm Ext
ek

such that for all A we have Pr[Awins ]  negl(1) in the following
game:

1. The challenger runs (crs, tk, ek) Setup(1) and gives crs to A.

2. ASIM
tk

() is given access to a simulation oracle SIM
tk

(), which it can adaptively access. A query
to the simulation oracle consists of a pair (y, x). The oracle checks if (y, x) 2 R. If true, it ignores
x and outputs a simulated argument Sim

tk

(y). Otherwise, the oracle outputs ?.

3. A outputs a pair (y⇤,�⇤), and the challenger runs x⇤  Ext
ek

(y⇤,�⇤).

A wins if (y, x⇤) 62 R, Verify(y⇤,�⇤) = 1, and y⇤ was not part of a query to the simulation oracle.

7.3 Construction from OWR

Next we recall Dodis et al’s construction and then show that actually their construction is 2CLR-secure if
the underlying OWR is 2CLR-secure. In the following, OWR := (OWR.Gen(1),OWR.Update(sk)) is a
2CLR-secure one-way relation and NIZK := (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a is tSE-NIZK for
the relation

R = {(y, x) | y = (pk,m), x = sk s.t. Verify(pk, sk) = 1}.

Although input m seems useless in the above relation, looking ahead, m will play the role of the message to be
signed. Note that we have the important property that when the message m changes, the statement y = (pk,m)

also changes.

• SIG.Gen(1) : Output (vk, sk) where vk = (pk, crs), (pk, sk) OWR.Gen(1) and crs NIZK.Setup(1).

• SIG.Sign
sk

(m): Output �  NIZK.Prove((pk,m), sk).

• SIG.Verify
vk

(m,�): Output b := NIZK.Verify(pk,m),�).

• SIG.Update(sk): Output OWR.Update(sk).

Theorem 7.4 If one-way relation OWR is µ-2CLR secure and NIZK is true-simulation extractable, then the
above signature scheme is µ-2CLR secure.

Proof: The proof here is very similar to that in [21]. We prove the above theorem through a sequence of
games.
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Game H
0

: This is the original µ-2CLR game described in Definition 7.1, in which signing queries are an-
swered honestly by running �  NIZK.Prove((pk,m), sk) and A wins if she produces a valid forgery (m⇤,�⇤).

Game H
1

: In this game, the signing queries are answered by generating simulated arguments, i.e., �  
NIZK.Sim

tk

(pk,m). Games H
0

and H
1

are indistinguishable by the zero-knowledge property of NIZK. Here
the simulated arguments given to A as answers to signing queries are always of true statements.

Game H
2

: In this game, we modify the winning condition so that the adversary only wins if it produces a valid
forgery (m⇤,�⇤) and the challenger is able to extract a valid secret key sk⇤ for pk from (m⇤,�⇤). That is, A wins
if both SIG.Verify(m⇤,�⇤) = 1 and OWR.Verify(pk, sk⇤) = 1, where sk⇤  NIZK.Ext

ek

((pk,m⇤),�⇤). The
winning probability of A in Game H

2

is at least that of Game H
1

minus the probability that NIZK.Verify((pk,m⇤),�⇤) =
1 and OWR.Verify(pk, sk⇤) = 0. By the true-simulation extractability of the argument NIZK we know that this
probability is negligible. Therefore, the winning probability of A in Game H

2

differs from that in Game H
1

by
a negligible amount.

We have shown that the probability that A wins in Game H
0

is the same as that in Game H
2

, up to
negligible factors. We now argue that the probability that A wins in Game H

2

is negligible, which proves
that the probability that A wins in Game H

0

is negligible as well. To prove that the probability that A wins
in Game H

2

is negligible, we assume otherwise and show that there exists a PPT algorithm B that breaks the
µ-2CLR security of OWR. On input pk, B generates (crs, tk, ek) NIZK.Setup(1) and emulates A on input
vk = (crs, pk). In each leakage round, B answers A’s leakage queries using the leakage oracle and answers
signing queries mi by creating simulated arguments �i  NIZK.Sim

tk

(pk,mi). When A outputs her forgery
(m⇤,�⇤), B runs sk⇤  NIZK.Ext

ek

((pk,m⇤),�⇤) and outputs sk⇤. Notice that Pr[B wins ] = Pr[A wins ], so
that if Pr[A wins ] is non-negligible then B breaks the µ-consecutive two-key security of OWR. We therefore
conclude that the probability that A wins in Game H

2

is negligible. This concludes the proof of the theorem.

Based on the result in [21], we have the following corollary.

Corollary 7.5 Fix a constant K � 1, and assume that the K-linear assumption holds in the base groups of
some pairing. Then, for any constant ✏ > 0, there exists a µ-2CLR secure signature scheme with relative-
leakage µ

|sk| �
1

2(K+1)

� ✏.

Acknowledgements

We thank the anonymous reviewers for their helpful comments.

References

[1] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Constant-size structure-
preserving signatures: Generic constructions and simple assumptions. In X. Wang and K. Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 4–24. Springer, Dec. 2012.

[2] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against
memory attacks. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 474–495. Springer,
Mar. 2009.

[3] P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation and applications.
Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689.

59

http://eprint.iacr.org/2013/689


[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Aug. 2001.

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. Journal of the ACM, 59(2):6, 2012.

[6] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
335–359. Springer, Aug. 2008.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pages 41–55. Springer, Aug. 2004.

[8] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In K. Sako and
P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer, Dec. 2013.

[9] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 52–73. Springer, Feb. 2014.

[10] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In H. Krawczyk,
editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Mar. 2014.

[11] E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. In K. G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 89–108. Springer, May 2011.

[12] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket: Public-
key cryptography resilient to continual memory leakage. In 51st FOCS, pages 501–510. IEEE Computer
Society Press, Oct. 2010.

[13] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In B. S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 90–104. Springer, Aug. 1997.

[14] R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party computation from indistin-
guishability obfuscation. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 557–585. Springer, Mar. 2015.

[15] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 565–582. Springer, Aug. 2003.

[16] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-analysis
attacks. In M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 398–412. Springer, Aug.
1999.

[17] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and applications.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 281–300.
Springer, Apr. 2012.

[18] D. Dachman-Soled, S. D. Gordon, F.-H. Liu, A. O’Neill, and H.-S. Zhou. Leakage-resilient public-key
encryption from obfuscation. 2016. Full version.

[19] D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable, multiparty computa-
tion in constant rounds. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 586–613. Springer, Mar. 2015.

60



[20] D. Dachman-Soled, F.-H. Liu, and H.-S. Zhou. Leakage-resilient circuits revisited - optimal number
of computing components without leak-free hardware. In E. Oswald and M. Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 131–158. Springer, Apr. 2015.
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