
Revisiting the Hybrid Attack: Improved
Analysis and Refined Security Estimates

Thomas Wunderer

Technische Universität Darmstadt, Germany
twunderer@cdc.informatik.tu-darmstadt.de

Abstract. Over the past decade, the hybrid lattice reduction and meet-
in-the middle attack (called the Hybrid Attack) has been used to evaluate
the security of many lattice-based cryprocraphic schemes such as NTRU,
NTRU prime, BLISS, and more. However, unfortunately none of the
previous analyses of the Hybrid Attack is entirely satisfactory: they are
based on simplifying assumptions that may distort the security estimates.
Such simplifying assumptions include setting probabilities equal to 1,
which, for the parameter sets we analyze in this work, are in fact as small
as 2−92. Many of these assumptions yield more conservative security
estimates. However, some lead to overestimating the scheme’s security,
and without further analysis, it is not clear which is the case. Therefore,
the current security estimates against the Hybrid Attack are not reliable
and the actual security levels of many lattice-based schemes are unclear.
In this work we present an improved runtime analysis of the Hybrid At-
tack that gets rid of incorrect simplifying assumptions. Our improved
analysis can be used to derive reliable and accurate security estimates
for many lattice-based schemes. In addition, we reevaluate the secu-
rity against the Hybrid Attack for the NTRU, NTRU prime, and R-
BinLWEEnc encryption schemes as well as for the BLISS and GLP sig-
nature schemes. Our results show that there exist both over- and un-
derestimates of up to 80 bits of security in the literature. Our results
further show that the common claim that the Hybrid Attack is the best
attack on all NTRU parameter sets is in fact a misconception based on
incorrect analyses of the attack.

Keywords: Hybrid Attack, Lattice-based Cryptography, Cryptanalysis, SVP,
LWE, NTRU, BLISS

1 Introduction

In 2007, Howgrave-Graham proposed the hybrid lattice-reduction and meet-in-
the-middle attack [19] (referred to as the Hybrid Attack in the following) against
the NTRU encryption scheme [18]. Several papers [15–17, 19, 26] claim that the
Hybrid Attack is by far the best known attack on NTRUEncrypt. In the following
years, numerous cryptographers have applied the Hybrid Attack to their crypto-
graphic schemes in order to estimate their security. These considerations include

more variants of the NTRU encryption scheme [15,17,26], the recently proposed
encryption scheme NTRU prime [8], a lightweight encryption scheme based on
Ring-LWE with binary error [9, 10], and the signature schemes BLISS [13] and
GLP [13,14]. In [26], Schanck even proposed a quantum version of the Hybrid At-
tack on NTRUencrypt that replaces the meet-in-the-middle phase with Grover’s
search algorithm. All of the above analyses of the Hybrid Attack have in com-
mon, that the authors claim that the Hybrid Attack is the best known attack
on the respective schemes. Unfortunately, they also all have in common that the
analyses are flawed, yielding unreliable security estimates of the schemes. These
flaws are mainly due to simplifying but incorrect assumptions that are made in
order to ease the theoretical analysis of the attack. Most of the time, the authors
are aware of these flaws and explicitly state when such incorrect assumptions
are introduced. Furthermore, many of these assumptions yield more conserva-
tive security estimates, as they give more power to the attacker. While this is
not a problem from a security perspective, in those cases the schemes might be
instantiated more efficiently while preserving the desired security level. On the
other hand, there also exist the more dangerous cases in which the security of a
scheme is overestimated, as we show in this work. In [26], Schanck summarizes
the current state of the analyses of the Hybrid Attack as follows.

“[...] it should be noted that, in the author’s opinion, no analysis of the
hybrid attack presented thus far is entirely satisfactory. [...] it is hoped
that future work will answer some of the outstanding questions related
to the attack’s probability of success as a function of the effort spent in
lattice reduction and enumeration.”

The author further acknowledges that the fact that the Hybrid Attack is con-
sidered the best attack on NTRU might be due to flawed analyses resulting in
overly conservative security estimates.

“The hybrid attack gives the lowest estimate for the time complexity
of NTRU key recovery amongst all known classical attacks. Likewise
for message recovery. Perhaps this is because it is overly optimistic, in
particular by ignoring the probability of failure in approximate collision
search.”

In this quote, Schanck mentions the following common flaw appearing in many
previous runtime analyses of the Hybrid Attack. In many works [8,13,16,17,26]
the authors assume that collisions in the meet-in-the-middle phase of the attack
will always be detected. However, in reality collisions can only be detected with
a very low probability. For instance, for the cryptographic schemes we analyze
in this work this probability is sometimes as low as 2−92, see Table 3, but was
simply set equal to 1 in previous analyses for no other reason than to ease the
runtime analysis of the attack. These numbers showcase how unrealistic some
assumptions made in previous runtime estimates of the Hybrid Attack are in
practice. Therefore, there is reasonable doubt about the accuracy and reliability
of currently existing security estimates against the Hybrid Attack.

2

Our contribution. In this work we rectify the current unsatisfactory state of
affairs regarding the unreliable security estimates against the Hybrid Attack.
This is achieved in the following way. We present a generalized version of the
Hybrid Attack applied to shortest vector problems (SVP) and show how it can
also be used to solve bounded distance decoding (BDD) problems. This general
framework for the Hybrid Attack can naturally be applied to many lattice-based
cryptocraphic constructions, as we also show in this work. We further provide
a detailed and improved analysis of the generalized version of the Hybrid At-
tack, which can be used to derive reliable and accurate security estimates. We
thereby meet the demand of a satisfactory analysis of the Hybrid Attack, which
has been stated in previous works. In our new analysis of the attack we get rid of
unnecessary and incorrect assumptions and clearly state the remaining necessary
heuristics in order to offer as much transparency as possible. We provide exam-
ples of typical unnecessary simplifying assumptions that have frequently been
made in previous analyses of the Hybrid Attack in order to highlight the im-
provements of our analysis. We further show how researchers can use our newly
developed techniques in the future to accurately analyze the security of their
cryptographic schemes against the Hybrid Attack.

Our second main contribution is the following. Since all previous analyses
of the Hybrid Attack are flawed, the security estimates of many lattice-based
cryptographic schemes against the Hybrid Attack are inaccurate and their actual
security level is unclear. We therefore apply our new and improved analysis
to reevaluate the security of various cryptographic schemes against the Hybrid
Attack in order to derive updated security estimates that can be relied upon.
Our detailed security reevaluations against the Hybrid Attack are also meant to
serve as a guideline how to correctly apply the attack and estimate its runtime,
since some steps of the analysis are not obvious and might be overlooked at first
glance. We first revisit the hybrid security estimates of the NTRU [17], NTRU
prime [8], and R-BinLWEEnc [9] encryption schemes and end with the BLISS [13]
and GLP [14] signature schemes. Our results show that there exist severe security
over- and underestimates of up to 80 bits against the Hybrid Attack across the
literature, that we correct in this work. Furthermore, our results show that the
common claim that the Hybrid Attack is the best attack on all NTRU parameter
sets is in fact a misconception based on incorrect analyses of the attack.

Outline. This work is structured as follows. First, we fix notation and pro-
vide the necessary background in the Preliminaries. In Section 3 we describe
a generalized version of the Hybrid Attack on shortest vector problems (SVP)
and further explain how it can also be used to solve bounded distance decod-
ing (BDD) problems. Our detailed and improved runtime analysis of the Hybrid
Attack is presented in Section 4. In the following Section 5 we apply our new im-
proved analysis of the Hybrid Attack to various cryptographic schemes in order
to derive updated and reliable security estimates against the Hybrid Attack that
replace the unreliable previous ones. We end this work by giving a conclusion
and outlook for possible future work.

3

2 Preliminaries

Notation. In this work, we write vectors in bold lowercase letters, e.g., a, and
matrices in bold uppercase letters, e.g., A. Polynomials are written in normal
lower case letters, e.g., a. We frequently identify polynomials a =

∑n
i=0 aix

i with
their coefficient vectors a = (a0, . . . , an), indicated by using the corresponding
bold letter. Let n, q ∈ N, f ∈ Z [x] be a polynomial of degree n and Rq =
Zq[x]/(f). We define the rotation matrix of a polynomial a ∈ Rq as rot(a) =
(a,ax,ax2, . . . ,axn−1) ∈ Zn×nq . Then for a, b ∈ Rq, the matrix-vector product
rot(a) · b mod q corresponds to the product of polynomials ab ∈ Rq.

We use the abbreviation log(·) for log2(·). We further write ‖·‖ instead of ‖·‖2
for the Euclidean norm. For N ∈ N0 and m1, . . . ,mk ∈ N0 with m1 + . . .+mk =
N the multinomial coefficient is defined as(

N
m1, . . . ,mk

)
= N !
m1! · . . . ·mk! .

Lattices and bases. In this work we use the following definition of lattices. A
discrete additive subgroup of Rm for some m ∈ N is called a lattice. Let m be a
positive integer. For a set of vectors B = {b1, ...,bn} ⊂ Rm, the lattice spanned
by B is defined as

Λ(B) =
{

x ∈ Rm | x =
m∑
i=1

αibi for αi ∈ Z

}
.

Let Λ ⊂ Rm be a lattice. A set of vectors B = {b1, ...,bn} ⊂ Rm is called a
basis of Λ if B is R-linearly independent and Λ = Λ(B). Abusing notation, we
identify lattice bases with matrices and vice versa by taking the basis vectors as
the columns of the matrix. The number of vectors in a basis of a lattice is called
the dimension (or rank) of the lattice. Let q be a positive integer. The length
of the shortest non-zero vectors of a lattice Λ is denoted by λ1(Λ). A lattice Λ
that contains qZm is called a q-ary lattice. For a matrix A ∈ Zm×nq , we define
the q-ary lattice

Λq(A) := {v ∈ Zm | ∃w ∈ Zn : Aw = v mod q}.

For a lattice basis B = {b1, . . . ,bm} ⊂ Rm its fundamental parallelepiped is
defined as

P(B) =
{

x =
m∑
i=1

αibi ∈ Rm | −1/2 ≤ αi < 1/2 for all i ∈ {1, . . . ,m}
}
.

The determinant det(Λ) of a lattice Λ ⊂ Rm is defined as the m-dimensional
volume of the fundamental parallelepiped of a basis of Λ. Note that the determi-
nant of the lattice is well defined, i.e., it is independent of the basis. The Hermite
delta (or Hermite factor) δ of a lattice basis B = {b1, . . . ,bm} ⊂ Rm is defined

4

via the equation ‖b1‖ = δm det(Λ)1/m. It provides a measure for the quality of
the basis.

Lattice-based cryptography is based on the presumed hardness of computa-
tional problems in lattices. Two of the most important lattice problems are the
following.
Shortest vector problem (SVP). Given a lattice basis B, the task is to find
a shortest non-zero vector in the lattice Λ(B).
Bounded distance decoding (BDD). Given α ∈ R≥0, a lattice basis B ⊂ Rm
and a target vector t ∈ Rm with dist(t, Λ(B)) < αλ1(Λ(B)), the task is to find
a vector e ∈ Rm with ‖e‖ < αλ1(Λ(B)) such that t− e ∈ Λ(B).

Babai’s Nearest Plane. Babai’s Nearest Plane algorithm [4] (denoted by NP in
the following) is an important building block of the Hybrid Attack. For more
details on the algorithm we refer to Babai’s original work [4] or Lindner and
Peikert’s work [21]. We use the Nearest Plane algorithm in a black box manner.
For the reader it is sufficient to know the following. The input for the Nearest
Plane algorithm is a lattice basis B ⊂ Zm and a target vector t ∈ Rm and the
corresponding output is a vector e ∈ Rm such that t− e ∈ Λ(B). We denote the
output by NPB(t) = e. If there is no risk of confusion, we might omit the basis
in the notation, writing NP(t) instead of NPB(t). The output of Nearest Plane
algorithm satisfies the following condition, as shown in [5].

Lemma 1. Let B ⊂ Zm be a lattice basis and t ∈ Rm be a target vector. Then
NPB(t) is the unique vector e ∈ P(B) that satisfies t − e ∈ Λ(B), where B is
the Gram-Schmidt basis of B.

The lengths of the Gram-Schmidt vectors of a reduced basis can be estimated
by the following heuristic (for more details, we refer to [21]).

Heuristic 1 (Geometric Series Assumption (GSA)). Let B = {b1, . . . ,bm} ⊂
Zm be a reduced lattice basis with Hermite delta δ and let D denote the determi-
nant of Λ(B). Further let b1, . . . ,bm denote the corresponding Gram-Schmidt
vectors of B. Then the length of bi is approximately∥∥bi

∥∥ ≈ δ−2(i−1)+mD
1
m .

3 The Hybrid Attack

In this section we present a generalized version of the Hybrid Attack to solve
shortest vector problems. Our framework for the Hybrid Attack is the following:
the task is to find a shortest vector v in a lattice Λ, given a basis of Λ of the
form

B′ =
(

B C
0 Ir

)
∈ Zm×m,

where 0 < r < m is the meet-in-the-middle dimension, B ∈ Z(m−r)×(m−r), and
C ∈ Z(m−r)×r. In Appendix A.1 we show that for q-ary lattices, where q is prime,

5

one can always construct a basis of this form, provided that the determinant of
the lattice is at most qm−r. Additionally, in Section 5 we show that our this
framework can be applied to many lattice-based cryptographic schemes.

The main idea of the attack is the following. Let v be a short vector contained
in the lattice Λ. We split the short vector v into two parts v = (vl,vg)t with
vl ∈ Zm−r and vg ∈ Zr. The second part vg represents the part of v that
is recovered by guessing (meet-in-the-middle) during the attack, while the first
part vl is recovered with lattice techniques (solving BDD problems). Because of
the special form of the basis B′, we have that

v =
(

vl
vg

)
= B′

(
x
vg

)
=
(

Bx + Cvg
vg

)
for some vector x ∈ Zm−r, hence Cvg = −Bx + vl. This means Cvg is close
to the lattice Λ(B), since it only differs from the lattice by the short vector vl,
and therefore vl can be recovered solving a BDD problem if vg is know. The
idea now is that if we can correctly guess the vector vg, we can hope to find vl
using the Nearest Plane algorithm (see the Preliminaries) via NPB(Cvg) = vl,
which is the case if the basis B is sufficiently reduced. Solving the BDD problem
using Nearest Plane is the lattice part of the attack. The lattice Λ(B) in which
we need to solve BDD has the same determinant as the lattice Λ(B′) in which
we want to solve SVP, but it has smaller dimension, i.e., m − r instead of r.
Therefore we expect the newly obtained BDD problem to be easier to solve than
the original SVP instance.

In the following we explain how one can speed up the guessing part of the
attack by Odlyzkos meet-in-the-middle approach. Using this technique one is
able to reduce the number of necessary guesses to the square root of the number
of guesses needed in a naive brute-force approach. Odlyzko’s meet-in-the-middle
attack on NTRU was first described in [20] and applied in the hybrid lattice-
reduction and meet-in-the-middle attack against NTRU in [19]. The idea is that
instead of guessing vg directly in a large set M of possible vectors, we guess
sparser vectors v′g and v′′g in a smaller set N of vectors such that v′g + v′′g = vg.
In our attack the larger set M will be the set of all vectors with a fixed number
2ci of the non-zero entries equal to i for all i ∈ {±1, . . . ,±k}, where k = ‖vg‖∞.
The smaller set N will be the set of all vectors with only half as many, i.e.,
only ci, of the non-zero entries equal to i for all i ∈ {±1, . . . ,±k}. Assume
that NPB(Cvg) = vl. First, we guess vectors v′g and v′′g in the smaller set
N . We then compute v′l = NPB(Cv′g) and v′′l = NPB(Cv′′g). We hope that if
v′g + v′′g = vg, then also v′l + v′′l = vl, i.e., that Nearest Plane is additively
homomorphic on those inputs. The probability that this additive property holds
is one crucial element in the runtime analysis of the attack. We further need to
detect when this property holds during the attack, i.e., we need to be able to
recognize matching vectors v′g and v′′g with v′g + v′′g = vg and v′l + v′′l = vl,
which we call a collision. In order to do so, we store v′g and v′′g in (hash) boxes
whose addresses depend on v′l and v′′l , respectively, such that they collide in at
least one box. To define those addresses properly, note that in case of a collision

6

we have v′l = −v′′l +vl. Thus v′l and −v′′l differ only by a vector of infinity norm
y = ‖vl‖∞. Therefore, the addresses must be crafted such that for any x ∈ Zm
and z ∈ Zm with ‖z‖∞ ≤ y it holds that the intersection of the addresses
of x and x + z is non-empty, i.e., A(m,y)

x ∩ A(m,y)
x+z 6= ∅. Furthermore, the set

of addresses should not be unnecessarily large so the hash tables do not grow
too big and unwanted collisions are unlikely to happen. The following definition
satisfies these properties, as can easily be verified.

Definition 1. Let m, y ∈ N. For a vector x ∈ Zm the set A(m,y)
x ⊂ {0, 1}m is

defined as

A(m,y)
x =

{
a ∈ {0, 1}m

∣∣∣∣ (a)i = 1 for all i ∈ {1, . . . ,m} with (x)i > dy2 − 1e,
(a)i = 0 for all i ∈ {1, . . . ,m} with (x)i < −by2 c

}
.

We illustrate Definition 1 with some examples.

Example. Let m = 5 be fix. For varying bounds y and input vectors x we have

A(5,1)
(7,0,−1,1,−5) = {(1, 0, 0, 1, 0), (1, 1, 0, 1, 0)}

A(5,2)
(8,0,−1,1,−2) = {(1, 0, 0, 1, 0), (1, 1, 0, 1, 0), (1, 0, 1, 1, 0), (1, 1, 1, 1, 0)}

A(5,3)
(2,−1,9,1,−2) = {(1, 0, 1, 0, 0), (1, 0, 1, 1, 0), (1, 1, 1, 0, 0), (1, 1, 1, 1, 0)}

A(5,4)
(2,−5,0,7,−2) = {(1, 0, 0, 1, 0), (1, 0, 0, 1, 1), (1, 0, 1, 1, 0), (1, 0, 1, 1, 1)}

The Hybrid Attack on SVP without precomputation is presented in Algo-
rithm 1. A list of the attack parameters and the parameters used in the runtime
analysis of the attack and their meaning is given in Table 1. In order to in-
crease the chance of Algorithm 1 being successful one performs a basis reduction
step as precomputation. Therefore, the complete Hybrid Attack, presented in
Algorithm 2, is in fact a combination of a basis reduction step and Algorithm 1.

The Hybrid Attack on BDD

The Hybrid Attack can also be applied to BDD instead of SVP by rewriting a
BDD instance into an SVP instance. This can be done in the following way (see
for example [1]). Let B′ be a lattice basis of the form

B′ =
(

B C
0 Ir

)
∈ Zm×m,

with B ∈ Z(m−r)×(m−r),C ∈ Z(m−r)×r and let t be a target vector for BDD.
Suppose t − v ∈ Λ(B′), where v is the short (bounded) vector we are looking
for. Then the short vector (v, 1)t is contained in the lattice Λ(B′′) spanned by

B′′ =
(

B′ t
0 1

)
∈ Z(m+1)×(m+1),

7

Algorithm 1: The Hybrid Attack on SVP without basis reduction
Input : m, r ∈ N with r < m, y, k ∈ N, c−k, . . . , ck ∈ N0 with r =

∑k

i=−k
ci,

B′ =
(

B C
0 Ir

)
∈ Zm×m, where B ∈ Z(m−r)×(m−r) and C ∈ Z(m−r)×r

1 while true do
2 guess v′g ∈ {−k, . . . , k}r with exactly ci entries equal to i for all

i ∈ {−k, . . . , k};
3 calculate v′l = NPB(Cv′g) ∈ Zm−r ;
4 store v′g in all the boxes addressed by A(m−r,y)

v′
l

∪ A(m−r,y)
−v′

l

;

5 for all v′′g 6= v′g in all the boxes addressed by A(m−r,y)
v′

l

∪ A(m−r,y)
−v′

l

do
6 set vg = v′g + v′′g and calculate vl = NPB(Cvg) ∈ Zm−r;

7 if v =
(

vl

vg

)
∈ Λ(B′) and ‖vl‖∞ ≤ y and ‖vg‖∞ ≤ k then

8 return v;

Algorithm 2: The Hybrid Attack on SVP including basis reduction
Input : m, r ∈ N with r < m, y, k ∈ N, c−k, . . . , c−1, c1, . . . , ck ∈ N0,

B′ =
(

B C
0 Ir

)
∈ Zm×m, where B ∈ Z(m−r)×(m−r) and C ∈ Z(m−r)×r

1 reduce B to some basis B̃;

2 run Algorithm 1 on input m, r, y, k, c−k, . . . , c−1, c1, . . . , ck,

(
B̃ C
0 Ir

)
;

which is of the required form for the Hybrid Attack on SVP. Therefore we can
apply the Hybrid Attack on SVP to find (v, 1)t, solving the BDD problem.
The SVP lattice Λ(B′′) has the same determinant as the BDD lattice Λ(B′)
and dimension m + 1 instead of m. However, the additional dimension can be
ignored, since we know the last entry of (v, 1)t and therefore do not have to
guess it during the meet-in-the-middle phase. Note that by definition of BDD it
is very likely that ±v are the only short vectors in the lattice Λ(B′′). By fixing
the last coordinate to be plus one, only v, not also −v, can be found by the
attack.

4 Analysis

In this section we analyze the runtime of the Hybrid Attack. First, in our Main
Result in Section 4.1, we estimate the runtime of the attack in case sufficient
success conditions are satisfied. In Section 4.2, we then show how to determine
the probability that those sufficient conditions are satisfied, i.e., how to determine
(a lower bound on) the success probability. We conclude the runtime analysis
of the attack by showing how to optimize the attack parameters to minimize
its runtime in Section 4.3. We end the section by highlighting typical flaws of

8

Parameter Meaning
m lattice dimension
r meet-in-the-middle dimension
B′ lattice basis of the whole lattice
B partially reduced lattice basis of the sublattice
ci number of i-entries guessed during attack
y infinity norm bound on vl
k infinity norm bound on vg
Y expected Euclidean norm of vl
Ri Gram-Schmidt lengths corresponding to B
ri scaled Gram-Schmidt lengths corresponding to B
Table 1. Attack parameters and parameters in the runtime analysis

previous analyses of the Hybrid Attack, see Section 4.4. This showcases the
improvements achieved by our new, precise analysis of the attack. Our new
analysis is more detailed than all previous analyses of the Hybrid Attack, while
at the same time applicable to a wider range of attack scenarios.

4.1 Runtime Analysis

We now present our main result about the runtime of the generalized Hybrid
Attack. It shows that under sufficient conditions the attack is successful and
estimates the expected runtime.

Main Result. Let all inputs be denoted as in Algorithm 1, Y ∈ R≥0, and
let R1, . . . , Rm−r denote the lengths of the Gram-Schmidt basis vectors of the
basis B. Further let S ⊂ Λ(B′) denote the set of all non-zero lattice vectors
v = (vl,vg)t ∈ Λ(B′), where vl ∈ Zm−r and vg ∈ Zr with ‖vl‖∞ ≤ y, ‖vl‖ ≈ Y ,
‖vg‖∞ ≤ k, exactly 2ci entries of vg are equal to i for all i ∈ {±1, . . .± k}, and
NPB(Cvg) = vl. Assume that the set S is non-empty.

Then Algorithm 1 is successful and the expected number of loops can be esti-
mated by

L =
(

r
c−k, . . . , ck

)p · |S| · ∏
i∈{±1,...,±k}

(
2ci
ci

)− 1
2

,

where

p =
m−r∏
i=1

(
1− 1

riB((m−r)−1
2 , 1

2)

∫ −ri

−ri−1

∫ z+ri

max(−1,z−ri)
(1− t2)

(m−r)−3
2 dtdz

)
,

B(·, ·) denotes the Euler beta function (see [24]), and

ri = Ri
2Y for all i ∈ {1, . . . ,m− r}.

Furthermore, the expected number of operations can be estimated by 215L.

9

In the following remark we explain the meaning of the (attack) parameters
that appear in the Main Result in more detail.
Remark 1. 1. The parameters r, y, k, c−k, . . . , ck are the attack parameters

that can be chosen by the attacker. The meet-in-the-middle dimension and
the remaining lattice dimension are determined by the parameter r. The
remaining parameters must be chosen in such a way that the requirements
of the Main Result are likely to be fulfilled in order to obtain a high success
probability of the attack. Choosing those parameters depends heavily on the
distribution of the short vectors v ∈ S. In order to obtain more flexibility,
this distribution is not specified in the Main Result. However, in Section 5
we show how one can choose the attack parameters and calculate the success
probability for several distributions arising in various cryptographic schemes.
At this point we only want to remark that y should be (an upper bound on)
‖vl‖∞, k (an upper bound on) ‖vg‖∞, and 2ci the (expected) number of
entries of vg that is equal to i for i ∈ {±1, . . . ,±k}.

2. The attacker can further influence the Gram-Schmidt lengths R1, . . . , Rm−r
by providing a different basis than B with Gram-Schmidt length that lead to a
more efficient attack. This is typically done by performing a basis reduction
on B or parts of B as precomputation, see Algorithm 2. The lengths of the
Gram-Schmidt vectors achieved by the basis reduction with Hermite delta δ
are typically estimated by the GSA (see the Preliminaries). However, for
q-ary lattices the GSA needs to be modified in order to accurately reflect
reality. For further details, see Appendix A.2. Notice that spending more
time on basis reduction increases the probability p in the Main Result and
the probability that the condition NPB(Cvg) = vl holds, as can be seen later
in this section and Section 4.2.

3. Because of the previous remark, the complete attack – presented in Algo-
rithm 2 – is actually a combination of precomputation (basis reduction) and
Algorithm 1. Therefore the runtime of both steps must be considered and they
have to be balanced in order to estimate the total runtime. We show how to
optimize the total runtime in Section 4.3.
In the following we show how the Main Result can be derived. For the rest

of this section let all notations be as in the Main Result. We further assume in
the following that the assumption of the Main Result, i.e., S 6= ∅, is satisfied.
We first provide the following useful definition already given in [19] and [10]. We
use the notation of [10].

Definition 2. Let n ∈ N. A vector x ∈ Zn is called y-admissible for some vector
y ∈ Zn if NP(x) = NP(x− y) + y.

This means, that if x is y-admissible then NP(x) and NP(x − y) yield the
same lattice vector. We recall the following Lemma from [10] about Definition 2.
It showcases the relevance of the definition by relating it to the equation NP(t1)+
NP(t2) = NP(t1 + t2), which is necessary to hold for our attack to work.
Lemma 2. [Lemma 2 of [10]] Let t1 ∈ Rn, t2 ∈ Rn be two arbitrary target
vectors. Then the following are equivalent.

10

1. NP(t1) + NP(t2) = NP(t1 + t2).
2. t1 is NP(t1 + t2)-admissible.
3. t2 is NP(t1 + t2)-admissible.

Success of the Attack and Number of Loops

We now estimate the expected number of loops in case Algorithm 1 terminates.
In each loop of the algorithm we sample a vector v′g in the set

W = {w ∈ Zr | exactly ci entries of w are equal to i ∀i ∈ {−k, . . . , k}}.

The attack succeeds if v′g ∈ W and v′′g ∈ W such that v′g + v′′g = vg and
NPB(Cv′g) + NPB(Cv′′g) = vl for some vector v = (vl,vg)t ∈ S are sampled in
different loops of the algorithm. By Lemma 2 the second condition is equivalent
to the fact that NPB(Cv′g) is vl-admissible. We assume that the algorithm only
succeeds in this case. We are therefore interested in the following subset of W :

V =
{

w ∈W vg −w ∈W and NPB(Cw) is vl-admissible
for some v = (vl,vg)t ∈ S

}
.

For all v = (vl,vg)t ∈ S, with vl ∈ Zm−r and vg ∈ Zr let p(v) denote the
probability

p(v) = Pr
w←W

[NPB(Cw) is vl-admissible]

and p1(v) denote the probability

p1(v) = Pr
w←W

[vg −w ∈W].

By construction we have that p1(v) is constant for all v ∈ S, so we can simply
write p1 instead of p1(v). We make the following reasonable assumption on p(v)
and p1.

Assumption 1. For all v = (vl,vg)t ∈ S, with vl ∈ Zm−r and vg ∈ Zr we
assume that the independence condition

p(v) = Pr
w←W

[NPB(Cw) is vl-admissible|vg −w ∈W]

holds, where B is the Gram-Schmidt basis of B. We further assume that p(v) is
equal to some constant probability p for all v ∈ S.

Based on Assumption 1, we can make the following reasonable assumption.

Assumption 2. We assume that

|V |
|W |

= Pr
w←W

[w ∈ V] = p1p|S|.

11

From Assumption 2 it follows that |V | = p1p|W ||S|. The probability p1 is
calculated by

p1 =

∏
i∈{±1,...,±k}

(
2ci
ci

)
|W |

, where |W | =
(

r
c−k, . . . , ck

)
.

We further make the following assumption, which is fulfilled unless the proba-
bility p is extremely small (p is calculated later).

Assumption 3. We assume that V 6= ∅.

Assumption 3 implies that the attack is successful, since by Lemma 2 if
v′g ∈ V then also v′′g = vg − v′g ∈ V for all v = (vl,vg)t ∈ S. Such two vectors
v′g and v′′g in V will eventually be guessed in two separate loops of the algorithm
and they are recognized as a collision, since by the assumption ‖vl‖∞ ≤ y of
the Main Result they share at least one common address. By Assumption 2
we expect that during the algorithm we sample in V every 1

p1p|S| loops and by
the birthday paradox we expect to find a collision v′g ∈ V and v′′g ∈ V with
v′′g + v′g = vg after L ≈ 1

p1p|S|

√
|V | loops. In conclusion, we can estimate the

expected number of loops by

L ≈
√
|V |

p1p|S|
=

√
|W |√
p1p|S|

=
(

r
c−k, . . . , ck

)p|S| ∏
i∈{±1,...,±k}

(
2ci
ci

)− 1
2

.

It remains to calculate the probability p. This can be done analogously as in
Heuristic 3 of [10] and the calculations following it. For a convincing justification
of the heuristic we refer to [10]. Following the calculations of [10] we obtain the
following assumption.

Assumption 4. We assume that the probability p is approximately

p ≈
m−r∏
i=1

(
1− 1

riB((m−r)−1
2 , 1

2)

∫ −ri

−ri−1

∫ z+ri

max(−1,z−ri)
(1− t2)

(m−r)−3
2 dtdz

)
,

where B(·, ·) and r1, . . . , rm−r are defined as in the Main Result.

In order to calculate p one needs to estimate the lengths ri, as discussed in
the following remark.

Remark 2. Note that the probability p depends on the scaled Gram-Schmidt
lengths ri and therefore on the quality of the basis, i.e., its Hermite delta δ. For
the scaling factor one simply needs to estimate ‖vl‖. The Gram-Schmidt lengths
obtained after performing a basis reduction with quality δ can be predicted by
the GSA, see the Preliminaries. For q-ary lattices, this assumption needs to be
modified appropriately, see Appendix A.2.

This concludes the estimation for the necessary number of loops.

12

Number of Operations

We now estimate the expected total number of operations of the Hybrid Attack
under the conditions of the Main Result. In order to do so we need to estimate
the runtime of one inner loop and multiply it by the expected number of loops.
As in [19]and [10] we make the following assumption, which is plausible as long
the sets of addresses are not extremely large.

Assumption 5. We assume that the number of operations of one inner loop of
Algorithm 1 is dominated by the number of operations of one Nearest Plane call.

We want to remark that we see Assumption 5 as one of the more critical
ones. Obviously, it does not hold for all parameter choices1, but it is reasonable to
believe that it holds for many relevant parameter sets, as claimed in [19]and [10].
However, the claim in [19] is based on the observation that for random vectors
in Zmq it is highly unlikely that adding a binary vector will flip the sign of many
coordinates (i.e., that a random vector in Zmq has many minus one coordinates).
While this is true, the vectors in question are in fact not random vectors in Zmq
but outputs of a Nearest Plane call, and thus potentially shorter than typical
vectors in Zmq . Therefore it can be expected that adding a binary vector will
flip more signs. Additionally, in general it is not only a binary vector that is
added, but a vector of infinity norm y, which makes flipping signs even more
likely. However, we believe that Assumption 5 is still plausible for most relevant
parameter sets and small y, and even in the worst case the assumption leads to
more conservative security estimates.

According to [10] we use Lindner and Peikert’s estimate [21] for the number
of operations of the Nearest Plane algorithm.

Assumption 6. We assume that the average number of operations of one Near-
est Plane call is approximately 215.

In conclusion, under the conditions of the Main Result the expected number
of operations of Algorithm 1 is approximately 215L.

4.2 Determining the success probability.

In the Main Result it is guaranteed that Algorithm 1 is successful if the the
lattice Λ contains a non-empty set S of short vectors of the form v = (vl,vg)t,
where vl ∈ Zm−r and vg ∈ Zr, with ‖vl‖ ≈ Y , ‖vl‖∞ ≤ y, ‖vg‖∞ ≤ k, exactly
2ci entries of vg are equal to i for all i ∈ {±1, . . .± k}, and NPB(Cvg) = vl. In
order to determine a lower bound on the success probability, one must calculate
the probability that the set S of such vectors is non-empty, since

psucc ≥ Pr[S 6= ∅].
1 For instance, if the infinity norm y is too big, it is likely to have exponentially many
addresses per vector and storing a vector at all addresses takes more time than a
Nearest Plane call.

13

However, this probability depends heavily on the distribution of the short vec-
tors contained in Λ and is therefore not done in the Main Result, allowing for
more flexibility. In consequence, this analysis must be performed for the specific
distribution at hand originating from the cryptographic scheme that is to be
analyzed. The most involved part in calculating the success probability is typ-
ically calculating the probability pNP that NPB(Cvg) = vl. As shown in [10],
the probability pNP is approximately

pNP ≈
m∏
i=1

(
1− 2

B((m−r)−1
2 , 1

2)

∫ max(−ri,−1)

−1
(1− t2)

(m−r)−3
2 dt

)
,

where ri are defined as in the Main Result and obtained as in Remark 2.

4.3 Optimizing the Runtime

The final step in our analysis is to determine the runtime of the complete Hybrid
Attack (Algorithm 2) including precomputation, which is the sum of the runtime
of the basis reduction Tred and the runtime of the actual attack Thyb divided by
the success probability psucc. All these quantities depend on the attack parameter
r and the quality of the basis B given by the lengths of the Gram-Schmidt
vectors achieved by the basis reduction performed in the precomputation step of
the attack. The quality of the basis can be measured by its Hermite Delta δ(see
the Preliminaries). In order to unfold the full potential of the attack, one must
minimize the runtime over all possible attack parameters r and δ. Therefore we
have to minimize the function

Ttotal(δ, r) = Tred(δ, r) + Thyb(δ, r)
psucc(δ, r)

.

One might ask why Tred(δ, r) is not divided by the success probability psucc(δ, r).
We made this choice mainly for the following reason. In our opinion it is realistic
to assume that given a reduced basis with quality δ it is significantly easier to
find another reduced basis with quality δ than it is to find one given an arbitrary
non-reduced basis. We therefore assume that even if the attack is not successful
and needs to be run again, the large precomputation cost for the basis reduction
only needs to be paid once.

In order to calculate Ttotal(δ, r) one must calculate Thyb(δ, r), psucc(δ, r), and
Tred(δ, r). How to calculate Thyb(δ, r) is shown in the Main Result. The success
probability psucc(δ, r) is calculated in Section 4.2. Estimating the necessary run-
time Tred(δ, r) for a basis reduction of quality δ is highly non-trivial and still an
active research area. For our security estimates we follow the approach of [17,26],
also applied in [8]. In more detail, we use the BKZ 2.0 simulator of the full ver-
sion of [12] to determine the necessary block size β and number of rounds k. We
then use the (conservative) estimate

Estimate(β, n, k) = 0.000784314β2 + 0.366078β + log(n · k) + 0.875

14

provided in [17,26] to determine the (base-two) logarithm of the runtime, where
n is the lattice dimension. For our implementations we used the publicly available
sage code on van Vredendaal’s website [27].

The optimization of the total runtime Ttotal(δ, r) is performed in the follow-
ing way. For each possible r we find the optimal δr that minimizes the runtime
Ttotal(δ, r). The optimal runtime is then given by min{Ttotal(δr, r)}, the smallest
of those minimized runtimes. Note that for fixed r the optimal δr can easily be
found in the following way. For fixed r the function Tred(δ, r) is monotonically
decreasing in δ and the function Thyb(δ,r)

psucc(δ,r) is monotonically increasing in δ. There-
fore Ttotal(δ, r) is (close to) optimal when both those functions are balanced, i.e.,
take the same value. Thus the optimal δr can for example be found by a simple
binary search.

4.4 Typical Flaws in Previous Analyses of the Hybrid Attack

We end this section by listing the major flaws we frequently found in previous
analyses of the Hybrid Attack which lead to unreliable and inaccurate security
estimates. We also found several minor flaws in previous analyses but in this
section we restrict our focus to the flaws we think have the most influence on the
security estimates. We remark that some flaws lead to overestimating the security
of the schemes and others to underestimating it. In some analyses, both types
of flaws occurred at the same time and somewhat magically almost canceled out
each others effect on the security estimates for some parameter sets. Even though
the security estimates in those cases are not wrong per se, they can not be relied
upon, since without further analysis it is not clear if the estimates are correct,
over-, or underestimates. We straighten out this unsatisfying state of affairs by
providing updated security estimates for various cryptographic schemes using
our newly developed, detailed, and accurate way to analyze the Hybrid Attack,
see Section 5.

Ignoring the probability p. One of the most frequently encountered prob-
lems that appeared in several works is the lack of a (correct) calculation of the
probability p defined in Assumption 1. As can be seen in the Main Result, this
probability plays a crucial role in the runtime analysis of the attack. Neverthe-
less, in several works [8,13,16,17,26] the authors completely ignore the presence
of this probability by setting p = 1 for the sake of simplicity. However, even
though we took the probability into account when optimizing the attack pa-
rameters2, for the parameter sets we analyze in Section 5 the probability p was
sometimes as low as 2−92, see Table 3. Note that the wrong assumption p = 1
overestimates the power of the attacker, since it assumes that collisions can al-
ways be detected by the attacker although this is not the case, resulting in more
conservative security estimates than necessary. We also remark that in some
2 If the probability p is ignored in the optimization process, it can even be lower for
the “optimized” attack parameters.

15

works the probability p is not completely ignored but determined in a purely ex-
perimental way [19] or calculated using additional unnecessary assumptions [15],
introducing inaccuracies into the analysis.

Unnecessary demands on the basis reduction. In most works [8, 13, 15–
17, 19, 26], the authors demand a sufficiently good basis reduction such that
the Nearest Plane algorithm must unveil the searched short vector (or at least
with very high probability). To be more precise, Lemma 1 of [19] is used to
determine what sufficiently good exactly means. In our opinion this demand,
which leads to overestimating the security of the schemes, is unreasonable, and
instead we account for the probability of this event in the success probability. In
our opinion, this approach reflects the attacker’s power in a more accurate way.
In addition, in most cases Lemma 1 of [19] is not even applicable in the way it is
claimed in several works. We briefly sketch way this is the case. Often, Lemma 1
of [19] is applied to determine the necessary quality of a reduced basis such that
Nearest Plane (on correct input) unveils a vector v of infinity norm at most
y. However, this lemma is only applicable if the basis matrix is in triangular
form, which is not the case is general. Therefore, one needs to transform the
basis with an orthonormal matrix Y in order to obtain a triangular basis. This
basis however does not span the same lattice but an isomorphic one, which
contains the transformed vector vY, but (in general) not the vector v. While
the transformation Y preserves the Euclidean norm of the vector v, it does not
preserve its infinity norm. Therefore the lemma can not be applied with the same
infinity norm bound y, which is done in most works. In fact, in the worst case the
new infinity norm bound can be up to

√
my, where m is the lattice dimension.

In consequence one would have to apply Lemma 1 of [19] with infinity norm
bound

√
my instead of y, which demands a much better basis reduction. This

problem is already mentioned – but not solve – in [26]. We remark that assuming
one can apply Lemma 1 of [19] with the same infinity norm bound y anyways
is a conservative, but not realistic assumption, that is no longer needed in our
analysis.

Missing or incorrect optimization. In some works such as [13, 19] the op-
timization of the attack parameters is either completely missing, ignoring the
fact that there is a trade-off between the time spent on basis reduction and the
actual attack, or incorrect. As a result one only obtains bounds on the estimated
security level but not precise estimates.

Other inaccuracies. Further inaccuracies we encountered include the follow-
ing.

• Implicitly assuming that the meet-in-the-middle part vg of the short vector
has the right number of i-entries for each i [8, 13, 16, 17, 26]. This is not
the case in general and therefore needs to be accounted for in the success
probability.

16

• Simplifying the structure of the secret key when convenient in order to ease
the analysis [17,26]. This can drastically change the norm of the secret vector
and in consequence manipulate the runtime estimates.

• Assuming that an attacker could maybe utilize some algebraic structure
without any evidence that this is the case [15,17,26]. This assumption results
in unnecessarily conservative security estimates.

• Assuming that the GSA holds for q-ary lattices without modification [9]. We
show how the GSA can be modified for q-ary lattices in Appendix A.2.

5 Updating Security Estimates Against the Hybrid
Attack

In the recent years, the Hybrid Attack has been applied to various lattice-based
cryptographic schemes in order to evaluate their security. However, most of these
security estimates are unreliable due to flaws in their analysis of the Hybrid At-
tack. Therefore, the security estimates must be updated in such a way that they
can be relied upon. In Section 4 we presented a detailed way to accurately es-
timate the runtime of the Hybrid Attack. In this section we apply the Hybrid
Attack to various cryptographic schemes and correctly analyze its runtime in
order to reevaluate their security and derive updated and reliable security esti-
mates.
The section is structures as follows. Each scheme is analyzed in a separate sub-
section. We begin with subsections on the encryption schemes NTRU, NTRU
prime and R-BinLWEEnc and end with subsections on the signature schemes
BLISS and GLP. In each subsection we first give a brief introduction to the
scheme and explain how the previous security analysis against the Hybrid At-
tack is flawed. We then apply the Hybrid Attack to the scheme and analyze its
complexity according to Section 4. This analysis is performed the following four
steps steps.

1. Constructing the lattice. We first construct a lattice of the required form
which contains the secret key as a short vector.

2. Determining the attack parameters.We find suitable attack parameters
ci (depending on the meet-in-the-middle dimension r), infinity norm bounds
y and k, and estimate the Euclidean Y .

3. Determining the success probability. We determine the success proba-
bility of the attack according to Section 4.2.

4. Optimizing the runtime.We optimize the runtime of the attack according
to Section 4.3.

We end each subsection by providing a table of updated security estimates
against the Hybrid Attack obtained by our analysis. In the tables we also pro-
vide the optimal attack parameters (δr, r) derived by our optimization process
and the corresponding probability p with whom collisions can be detected. In
our runtime optimization of the attack we optimized with a precision of up to
one bit. As a result there may not be one unique optimal attack parameter pair

17

(δr, r) and for the table we simply pick one that minimizes the runtime (up to
one bit precision).

5.1 NTRU

The NTRU encryption system was officially introduced in [18] and is one of the
most important lattice-based encryption schemes today due to its high efficiency.
The Hybrid Attack was first developed to attack NTRU [19] and has been ap-
plied to various proposed parameter sets since [15–17, 19, 26]. In this work we
restrict our studies to the most recent parameter selection paper [17]. In [17],
the authors analyze the Hybrid Attack making typical simplifying assumptions
such as setting the probability p equal to one or demanding a certain quality of
the basis reduction. Furthermore, for simplicity the authors sometimes treat the
private keys as if they were trinary vectors, even though they are of the harder
to analyze product form. In consequence we conclude that the security estimates
given in [17] are not reliable. We therefore accurately reevaluate the security of
the NTRU EESS # 1 parameter sets given in Table 3 of [17] in order to provide
new, reliable security estimates.

Constructing the Lattice

The NTRU cryptosystem is defined over the ring Rq = Zq[X]/(XN − 1), where
N, q ∈ N and N is prime. The parameters N and q are public. Furthermore there
exist public parameters d1, d2, d3, dg ∈ Z. For the parameter sets considered
in [17], the private key is a pair of polynomials (f, g) ∈ R2

q , where g is a trinary
polynomial with exactly dg+1 ones and dg minus ones and f = 1+3F invertible
in Rq with F = A1A2 + A3 for some trinary polynomials Ai with exactly di
one and di minus one entries. The corresponding public key is (1, h), where
h = f−1g. In the following we assume that h and 3 are invertible in Rq. We
further identify polynomials with their coefficient vectors. We can recover the
private key by finding the secret vector v = (F,g)t.3 Since h = (1 + 3F)−1g we
have 3−1h−1g = F + 3−1 and therefore it holds that

v +
(

3−1

0

)
=
(

3−1h−1g + qw
g

)
=
(
qIn 3−1H
0 In

)(
w
g

)
for some w ∈ Zn, where H is the rotation matrix of h−1. Hence v can be
recovered by solving BDD on input (−3−1,0)t in the q-ary lattice

Λ = Λ

((
qIn 3−1H
0 In

))
,

3 Note that we put g in the half of the vector v that is guessed in the meet-in-the-
middle part of the attack. The reason for this choice is that we exactly know the
structure of g but not the structure of the product form polynomial F.

18

since (−3−1,0)t − v ∈ Λ.4 A similar way to recover the private key was already
mentioned in [26]. The lattice Λ has dimension 2n and determinant qn. Since we
take the BDD approach for the Hybrid Attack, we assume that only v, not its
rotations or additive inverse, can be found by the attack, see Section 3. Hence
we assume that the set S, as defined in the Main Result, contains of at most one
element.

Determining the Attack Parameters

Let v = (F,g)t = (vl,vg)t with vl ∈ Z2n−r and vg ∈ Zr. Since g is a trinary
vector, we can set the infinity norm bound k on vg equal to one. In contrast,
determining an infinity norm bound on the vector vl is not that trivial, since
F is not trinary but of product form. For a specific parameter set this can
either be done theoretically or experimentally. The same holds for estimating the
Euclidean norm of vl. For our runtime estimates we determined the expected
Euclidean norm of F experimentally and set the expected Euclidean norm of vl
to

‖vl‖ ≈
√
‖F‖2 + n− r

r
· (2dg + 1).

We set 2c−1 = r
n ·(dg+1) and 2c1 = r

n ·dg to be equal to the expected number of
minus one entries and one entries, respectively, in g.5 For simplicity we assume
that c−1 and c1 are integers in the following in order to avoid writing down the
rounding operates.

Determining the Success Probability

The next step is to determine the success probability psucc, i.e., the probability
that v has exactly 2c−1 entries equal to minus one, 2c1 entries equal to one,
and NPB(Cvg) = vl holds, where B is as given in the Main Result. Assuming
independence, the success probability is approximately

psucc = pc · pNP,

where pc is the probability that v has exactly 2c−1 entries equal to minus one
and 2c1 entries equal to one and pNP is defined and calculated as in Section 4.2.
Obviously, pc is given by

pc =

(
r

2c̃0, 2c−1, 2c1

)(
n− r

d0 − 2c̃0, dg − 2c−1, dg + 1− 2c1

)
(

n
d0, dg, dg + 1

) ,

4 It is also possible to construct a lattice that contains (f ,g) as a short vector instead.
However, since f = 1 + 3F has norm larger than F , this leads to a less efficient
attack.

5 Note that this must not necessarily be the optimal choice for the ci. However, we
expect that this choice comes very close to the optimal one and therefore restrict
our studies to this case.

19

where 2c̃0 = r − 2c−1 − 2c1 and d0 = n − (dg + 1) − dg. As explained earlier,
since we use the BDD approach of the Hybrid Attack, we assume that |S| = 1
in case the attack is successful.

Optimizing the Runtime
We determined the optimal attack parameters to estimate the minimal runtime
of the Hybrid Attack for the NTRU EESS # 1 parameter sets given in Table 3
of [17]. The results, including the optimal r, corresponding δr, and resulting
probability p that collisions can be found, are presented in Table 2. Our anal-
ysis shows that the security estimates against the Hybrid Attack given in [17]
drastically underestimate the security for all parameter sets. Compared to our
analysis, the overestimates of [17] range from 39 to 73 bits of security when con-
sidering their conservative estimates, and from 23 to 30 bits when considering
their non-conservative estimates. In addition, our results show that for all of the
analyzed parameter sets the Hybrid Attack performs worse than a purely com-
binatorial meet-in-the-middle search, see Table 3 of [17]. Our results therefore
disprove the common claim that the Hybrid Attack is necessarily the best attack
on NTRU.

Parameter set n = 401 n = 439 n = 593 n = 743
Optimal r 108 116 200 290
Optimal δr 1.00550 1.00517 1.00422 1.00364

p 2−51 2−63 2−75 2−85

Security 155 bits 175 bits 262 bits 353 bits
Table 2. Optimal attack parameters and security levels against the Hybrid Attack
against NTRU.

5.2 NTRU prime
The NTRU prime encryption scheme was recently introduced [8] in order to elim-
inate worrisome algebraic structures that exist within NTRU [18] or Ring-LWE
based encryption schemes such as [3,22]. The authors considered the application
of the Hybrid Attack to their scheme to derive their security estimates. However,
their analysis follows the methodology of [17] and is therefore flawed in the same
way and consequently the security estimates are not reliable, see Section 5.1. We
therefore reevaluate the security of NTRU prime, eliminating the flaws in the
analysis and providing reliable security estimates.

Constructing the Lattice
The Streamlined NTRU prime family of cryptosystem is parameterized by three
integers (n, q, t) ∈ N3, where n and q are odd primes. The base ring for Stream-

20

lined NTRU prime is Rq = Zq[X]/(Xn−X−1). The private key is (essentially) a
pair of polynomials (g, f) ∈ R2

q , where g is drawn uniformly at random from the
set of all trinary polynomials and f is drawn uniformly at random from the set
of all trinary polynomials with exactly 2t non-zero coefficients. The correspond-
ing public key is h = g(3f)−1 ∈ Rq. In the following we identify polynomials
with their coefficient vectors. As described in [8], the secret vector v = (g, f) is
contained in the q-ary lattice

Λ = Λ

((
qIn 3H
0 In

))
,

where H is the rotation matrix of h, since(
qIn 3H
0 In

)(
w
f

)
=
(
qw + 3hf

f

)
=
(

g
f

)
= v

for some w ∈ Zn. The determinant of the lattice Λ is given by qn and its
dimension is equal to 2n. Note that in the case of Streamlined NTRU prime the
rotations of a trinary polynomial are not necessarily trinary, but it is likely the
some are. The authors of [8] conservatively assume that the maximum number
of good rotations of v that can be utilized by the attack is n− t, which we also
assume in the following. Counting their additive inverses leaves us 2(n− t) short
vectors that can be found by the attack.

Determining the Attack Parameters

Let v = (f ,g)t = (vl,vg)t with vl ∈ Z2n−r and vg ∈ Zr. Since v is trinary, we
can set the infinity norm bounds y and k equal to one. The expected Euclidean
norm of vl is given by

‖vl‖ ≈
√

2
3n+ n− r

n
2t.

We set 2c1 = 2c−1 = r
n ·

t
2 equal to the expected number of one entries (or minus

one entries, respectively) in f . For simplicity we assume that c1 is an integer in
the following.

Determining the Success Probability

Next, we determine the success probability psucc = Pr[S 6= ∅], where S denotes
the following subset of the lattice Λ:

S =

w ∈ Λ |
w = (wl,wg)t with wl ∈ {−1, 0, 1}2n−r,wg ∈ {−1, 0, 1}r,
exactly 2ci entries of wg are equal to i ∀i ∈ {−1, 1},
NPB(Cwg) = wl

 ,

where B is as defined in the Main Result. We assume that S is a subset of all
the rotations of v that can be utilized by the attack and their additive inverses.

21

In particular, we assume that S has at most 2(n− t) elements. Note that if some
vector w is contained in S, then we also have −w ∈ S. Assuming independence,
the probability pS that v ∈ S is approximately given by

pS ≈

(
r

2c̃0, 2c−1, 2c1

)(
n− r

2t− 4c1

)
22t−4c1(

n
2t

)
22t

· pNP,

where d0 = n − 2t and 2c̃0 = r − 4c1 and pNP is defined and calculated as in
Section 4.2. Assuming independence, all of the n − t good rotations of v are
contained in S with probability pS as well. Therefore, the probability psucc that
we have at least one good rotation is approximately

psucc = Pr[S 6= ∅] ≈ 1− (1− pS)n−t.

Next, we estimate the size of the set S in the case S 6= ∅, i.e., Algorithm 1 is
successful. In that case, at least one rotation is contained in S. Then also its
additive inverse is contained in S, hence |S| ≥ 2. We can estimate the size of S
in case of success to be

|S| ≈ 2 + 2(n− t− 1)pS ,

where pS is defined as above.

Optimizing the Runtime

We applied our new techniques to estimate the minimal runtimes for several
NTRU prime parameter sets proposed in Appendix D of [8]. Besides the “case
study parameter set”, for our analysis we picked one parameter set that offers the
lowest bit security and one that offers the highest according to the analysis of [8].
Our resulting security estimates are presented in Table 3. Our analysis shows
that the authors of [8] drastically underestimate the security of their scheme for
all parameter sets we evaluated. The amount of underestimation ranges from 44
bits to 80 bits.

Parameter set n = 607,q = 18749 n = 739,q = 9829 n = 929,q = 12953
Optimal r 142 235 326
Optimal δr 1.00473 1.00413 1.00356

p 2−72 2−79 2−92

Security 208 bits 272 bits 367 bits
Table 3. Optimal attack parameters and security levels against the Hybrid Attack
against NTRU prime.

22

5.3 R-BinLWEEnc

In [9], Buchmann et al. presented R-BinLWEEnc, a lightweight public key en-
cryption scheme based on binary Ring-LWE6. To determine the security of their
scheme the authors evaluate the hardness of binary LWE against the Hybrid
Attack. They use the methodology of [10]. However, they do not use the method-
ology of the updated full version of [10], but the original one, which makes an
unreasonable assumption and is therefore not reliable and has been updated in
the full version. For instance, the bit security of the R-BinLWEEnc-II parameter
set should be updated from 84 bits to 103 bits when using the updated version
of [10]. However, even the analysis of the Hybrid Attack provided in the updated
version of [10] is not completely satisfying. This is due to three issues. First, the
authors assume that the overall runtime is given by Ttotal(δ, r) = Tred(δ,r)+Thyb(δ,r)

psucc(δ)

instead of Ttotal(δ, r) = Tred(δ, r)+ Thyb(δ,r)
psucc(δ) , which in our opinion does not reason-

ably reflect reality (see Section 4.3). Second, the authors use the over-simplified
formula of [21] to estimate the necessary runtime for basis reduction, which,
although being conservative, does not provide accurate predictions (see for ex-
ample [2]). Finally, the authors do not take into considerations that the GSA
needs to be modified for q-ary lattices to properly fit reality, see Appendix A.2.
Therefore we reevaluate the security of binary LWE against the Hybrid Attack
in order to obtain reliable security estimates for R-BinLWEEnc.

Constructing the Lattice

Let m,n, q ∈ Z with m > n and (A,b′ = As + e′ mod q) be a binary LWE
instance with A ∈ Zm×nq , s ∈ Znq , and binary error e′ ∈ {0, 1}.7 To obtain a
more efficient attack, we first subtract the vector consisting of all 1/2-entries
from both sides of the equation b′ = As + e′ mod q to obtain a new LWE
instance (A,b = As + e mod q), where e ∈ {±1/2}m. In the following we
only consider this transformed LWE instance with smaller error. Obviously e is
contained in the q-ary lattice Λ = Λq(A′) = {v ∈ Zm | ∃w ∈ Zn+1 : v = A′w
mod q}, where A′ = (A | b) ∈ Zm×(n+1)

q . Note that constructing the lattice this
way we only need the error vector e′ to be binary and not also the secret s as
in [9,10]. The dimension of the lattice Λ is equal to m and with high probability
its determinant is qm−(n+1), see for example [6].

Determining the Attack Parameters

Let v = e = (vl,vg)t with vl ∈ {±1/2}m−r and vg ∈ {±1/2}r. Then obviously
we have ‖v‖∞ ≤ 1/2, so we set the infinity norm bounds y = k = 1/2. Since vl
6 For more details on (the hardness of) LWE, Ring-LWE, and binary LWE we refer
to [2, 6, 10,22,23,25].

7 Note that with our approach we only need that error vector e′ is binary, and not
also that the secret vector s is binary, as demanded in [9, 10].

23

is a uniformly random vector in {±1/2}m−r, the expected Euclidean norm of vl
is

‖vl‖ ≈
√
m− r

4 .

We set 2c−1/2 = 2c1/2 = r
2 to be the expected number of −1/2 and 1/2 entries

of vg. In the following we assume that c−1/2 = c1/2 is an integer in order to not
have to deal with rounding operators.

Determining the Success Probability

We can approximate the success probability psucc by psucc ≈ pc · pNP, where pc
is the probability that vg hat exactly 2c−1/2 entries equal to −1/2 and 2c1/2
entries equal to 1/2 and pNP is defined as in Section 4.2. Using the fact that
2c−1/2 + 2c1/2 = r, we therefore obtain

psucc ≈ pc · pNP = 2−r
(

r
2c1/2

)
pNP.

We assume that if the attack is successful then |S| = 2, where S is defined as in
the Main Result, since e and −e are assumed to be the only vectors that can be
found by the attack.

Optimizing the Runtime

We reevaluated the security of the R-BinLWEEnc parameter sets proposed in [9].
Our security estimates, the optimal attack parameters r and δr, and the corre-
sponding probability p are presented in Table 4. Our new and accurate security
estimates are quite close to the ones originally given in [9], which is rather sur-
prising, considering the fact that the authors do not even use the runtime esti-
mates for the Hybrid Attack provided in the updated, but the old version of [10].
Nevertheless, we want to stress that even though we obtained similar security
estimates, our reevaluation was necessary and valuable since the original esti-
mates were fraught with doubt. In addition, our results show that the updated
version of [10] overestimates the security of the R-BinLWEEnc-II parameter set
by 15 bits (the other two parameter sets are not analyzed in [10]).

Parameter set R-BinLWEEnc-I R-BinLWEEnc-II R-BinLWEEnc-III
Optimal r 112 92 264
Optimal δr 1.00703 1.00741 1.00490

p 2−29 2−30 2−45

Security 98 bits 88 bits 195 bits
Table 4. Optimal attack parameters and security levels against the Hybrid Attack
against R-BinLWEEnc.

24

5.4 BLISS

The signature scheme BLISS, introduced in [13], is one of the most important
lattice-based signature schemes. In the original paper, the authors considered
the Hybrid Attack on their signature scheme for their security estimates, but the
analysis is rather vague. For instance, as frequently done, the authors assume
that collisions will always be detected, neglecting the fact that this is only the
case with a very small probability. In addition, the authors demand a basis
reduction of a certain quality for the attack. Furthermore, the authors do not
optimization the attack parameters, which ignores the fact that a non-trivial
trade-off between basis reduction and the Hybrid Attack is necessary for accurate
runtime estimates. The estimates given in [13] are therefore not reliable, and we
provide a detailed security analysis of the proposed parameter sets in order to
update the security estimates.

Constructing the Lattice

In the BLISS signature scheme the setup is the following. Let n be a power of two,
d1, d2 ∈ N such that d1 + d2 ≤ n holds, q a prime modulus with q ≡ 1 mod 2n,
and Rq = Zq[x]/(xn + 1). The signing key is of the form (s1, s2) = (f, 2g + 1),
where f ∈ R×q , g ∈ Rq, each with d1 coefficients in {±1} and d2 coefficients
in {±2}, and the remaining coefficients equal to 0. The public key is essentially
a = s2/s1 ∈ Rq. We assume that a is invertible inRq, which is the case with very
high probability. Hence we obtain the equation s1 = s2a

−1 ∈ Rq, or equivalently
f = 2ga−1 + a−1 mod q. In the following we identify polynomials with their
coefficient vectors.

In Order to recover the signing key, it is sufficient to find the vector v =
(f ,g)t. Similar to our previous analysis of NTRU in Section 5.1 we have that

v +
(
−a−1

0

)
=
(

2ga−1 + qw
g

)
=
(
qIn 2A
0 In

)(
w
g

)
for some w ∈ Zn, where A is the rotation matrix of a−1. Hence v can be
recovered by solving BDD on input (a−1,0)t in the q-ary lattice

Λ = Λ

((
qIn 2A
0 In

))
,

since (a−1,0)t−v ∈ Λ. The determinant of the lattice Λ is qn and its dimension
is equal to 2n.

Determining the Attack Parameters

In the following let v = (f ,g)t = (vl,vg)t with vl ∈ Zm−r and vg ∈ Zr. Since
we are using the Hybrid Attack to solve a BDD problem, the rotations of v can
not be utilized in the attack (or at least is is not known how), see Section 3. We

25

therefore assume that v is the only rotation useful in the attack, i.e. that the
set the set of good rotations S contains at most v. The first step is to determine
proper bounds y on ‖vl‖∞ and k on ‖vg‖∞ and find suitable guessing parameters
ci. By construction we obviously have ‖v‖∞ ≤ 2, thus we can set the infinity
norm bounds y = k = 2. The expected Euclidean norm of vl is given by

‖vl‖ ≈
√
d1 + 4d2 + n− r

n
(1d1 + 4d2).

We set 2ci equal to the expected number of i-entries in vg, i.e., c−2 = c2 = r
n ·

1
4d2

and c−1 = c1 = r
n ·

1
4d1. For simplicity we assume that c1 and c2 are integers in

the following.

Determining the Success Probability

Next, we determine the success probability psucc, which is the probability that
NPB(Cvg) = vl and exactly 2ci entries of vg are equal to i for i ∈ {±1, . . . ,±k}.
The probability pc that exactly 2ci entries of vg are equal to i for all i ∈
{±1, . . . ,±k} is given by

pc =

(
r

2c̃0, 2c−2, 2c2, 2c−4, 2c4

)(
n− r

d0 − 2c̃0, d1 − 4c2, d2 − 4c4

)
2d1+d2−4(c2+c4)(

n
d0, d1, d2

)
2d1+d2

,

where d0 = n− d1 − d2 and 2c̃0 = r− 2(c−2 + c2 + c−4 + c4) and pNP is defined
as in Section 4.2. The success probability is approximately given by

psucc ≈ pc · pNP.

As explained earlier, we assume that S ⊂ {v}, so if Algorithm 1 is successful
we have |S| = 1.

Optimizing the Runtime

We performed the optimization process for the BLISS parameter sets proposed
in [13]. The results are presented in Table 5. Besides the security level against
the Hybrid Attack, we provide the optimal attack parameters r and δr leading
to a minimal runtime of the attack as well as the probability p. Our results show
that the security estimates for the BLISS-I, BLISS-II, and BLISS-III parameter
sets given in [13] are quite accurate, whereas the BLISS-IV parameter set is
actually 20 bits less secure than originally claimed. In addition, the authors of [13]
claim that there are at least 17 bits of security margins built into their security
estimates, which is wrong for all parameter sets according to our analysis.

26

Parameter set BLISS-I BLISS-II BLISS-III BLISS-IV
Optimal r 150 150 116 96
Optimal δr 1.00596 1.00596 1.00538 1.00523

p 2−38 2−38 2−55 2−72

Security 134 bits 134 bits 163 bits 172 bits
Table 5. Optimal attack parameters and security levels against the Hybrid Attack for
BLISS.

5.5 GLP
The GLP signature scheme was introduced in [14]. In the original work the au-
thors did not consider the Hybrid Attack when deriving their security estimates,
but later, in [13], the Hybrid Attack was also applied to the GLP-I parameter
set. However, the analysis in [13] of the Hybrid Attack against GLP is there-
fore flawed in the same way as the analysis of the BLISS signature scheme, see
Section 5.4. Furthermore, the GLP-II parameter set has not been analyzed re-
garding the Hybrid Attack so far. We therefore reevaluate the security of the
GLP-I parameter set against the Hybrid Attack and firstly evaluate the Hybrid
Attack security of the GLP-II parameter set.

Constructing the Lattice
For the GLP signature scheme the setup is the following. Let n be a power of two,
q a prime modulus with q ≡ 1 mod 2n, and Rq = Zq[x]/(xn + 1). The signing
key is of the form (s1, s2), where s1 and s1 are sampled uniformly at random
among all polynomials of Rq with coefficients in {−1, 0, 1}. The corresponding
public key is then of the form (a, b = as1 +s2) ∈ R2

q, where a is drawn uniformly
at random in Rq. So we know that 0 = −b + as1 + s2. Identifying polynomials
with their coefficient vectors we therefore have that

v :=

−1
s1
s2

 ∈ Λ := Λ⊥q (A) = {w ∈ Z2n+1 | Aw ≡ 0 mod q} ⊂ Z2n+1,

where A = (b|rot(a)|In) and rot(a) is the rotation matrix of a. Because of how
the lattice is constructed we do not assume that rotations of v can by utilized
by the attack.8 Therefore, with very high probability v and −v are the only
non-zero trinary vectors contained in Λ, which we assume in the following. Since
q is prime and A has full rank, we have that detΛ = qn, see for example [7]. In
Appendix A.1 we show how to construct a basis of the form

B′ =
(
qIn ?
0 In+1

)
∈ Z(2n+1)×(2n+1)

for the q-ary lattice Λ.
8 It is possible to construct a lattice which contains all the rotations as short vectors,
but this unnecessarily blows up the lattice dimension.

27

Determining the Attack Parameters

Ignoring the first −1 coordinate, the short vector v is drawn uniformly from
{−1, 0, 1}2n+1. Let v = (vl,vg)t with vl ∈ Zm−r and vg ∈ Zr. Then obviously
‖vl‖∞ ≤ 1 and ‖vg‖∞ ≤ 1 hold, so we can set the infinity norm bounds y and
k equal to one. The expected Euclidean norm of vl is approximately

‖vl‖ ≈
√

2(m− r)/3.

We set 2c−1 = 2c1 = r
3 to be the expected number of ones and minus ones. For

simplicity we assume that c−1 = c1 is an integer in the following.

Determining the Success Probability

The success probability psucc of the attack is approximately psucc ≈ pc · pNP,
where pc is the probability that vg hat exactly 2c−1 minus one entries and 2c1
one entries and pNP is defined as in Section 4.2. Calculating pc yields

psucc ≈ pc · pNP = 3−r
(

r
r/3, r/3, r/3

)
pNP.

As previously mentioned, we assume that if the attack is successful then |S| = 2.

Optimizing the Runtime

We performed the optimization for the GLP parameter sets proposed in [14]. The
results, including the optimal attack parameters r and δr and the probability p,
are shown in Table 6. For the GLP-I parameter set we obtain a 84 bits security
level against the Hybrid Attack, lowering the originally claimed security level of
100 bits in [14], where the authors do not consider the Hybrid Attack. However,
Ducas et al. [13] already considered the Hybrid Attack against GLP, estimating
the security against the attack to about 75 to 80 bits. According to our analysis,
this is a slight overestimation of the potential of the Hybrid Attack against the
GLP-I parameter set. In [13], the authors did not analyze the Hybrid Attack
for the GLP-II parameter set. Güneysu et al. [14] claimed a security level of
at least 256 bits (not considering the Hybrid Attack) for the GLP-II parameter
set, whereas we show that it only offers 226 bits of security against the Hybrid
Attack.

6 Conclusion and Future Work

In this work we described a general version of the Hybrid Attack and presented
improved and detailed techniques to accurately analyze the runtime of the Hy-
brid Attack. For the first time, this enables researchers to correctly analyze the
security of their cryptographic schemes against the Hybrid Attack such that
the resulting security estimates can be relied upon. We strongly encourage re-
searchers to use our new improved methods for future security estimates instead

28

Parameter set GLP-I GLP-II
Optimal r 48 168
Optimal δr 1.00781 1.00455

p 2−31 2−67

Security 84 bits 226 bits
Table 6. Optimal attack parameters and security levels against the Hybrid Attack for
different parameter sets of GLP.

of the inaccurate approaches used previously. In the final part of this work we
reevaluated various cryptographic schemes regarding their security against the
Hybrid Attack. Our analysis shows that the old security estimates of previous
works were in fact unreliable, as they differ by up to 80 bits from our accu-
rate estimates. By updating these unreliable estimates we contributed to the
trustworthiness of security estimates of lattice based cryptography.

For future work, we hope that more provable statements about the practical-
ity of the Hybrid Attack can be derived. For instance, our results show that the
Hybrid Attack is not the best known attack on all NTRU instances as previously
thought. It would be interesting to prove that under certain conditions on the
key structure the Hybrid Attack is always outperformed by some other attack.
Another possible line of future work is applying the Hybrid Attack to a broader
range of cryptographic schemes than already done in this work.

Acknowledgements. This work has been co-funded by the DFG as part of project
P1 within the CRC 1119 CROSSING. We thank Florian Göpfert and John
Schanck for helpful discussions and comments.

References

1. M. R. Albrecht, R. Fitzpatrick, and F. Göpfert. On the efficacy of solving LWE by
reduction to unique-svp. In H. Lee and D. Han, editors, Information Security and
Cryptology - ICISC 2013 - 16th International Conference, Seoul, Korea, November
27-29, 2013, Revised Selected Papers, volume 8565 of Lecture Notes in Computer
Science, pages 293–310. Springer, 2013. 7

2. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. J. Mathematical Cryptology, 9(3):169–203, 2015. 23

3. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
- a new hope. IACR Cryptology ePrint Archive, 2015:1092, 2015. 20

4. L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem
(shortened version). In K. Mehlhorn, editor, STACS ’86, volume 82 of Lecture
Notes in Computer Science, pages 13–20. Springer, 1985. 5

5. L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986. 5

6. S. Bai and S. D. Galbraith. Lattice decoding attacks on binary LWE. In W. Susilo
and Y. Mu, editors, Information Security and Privacy - 19th Australasian Con-
ference, ACISP 2014, Wollongong, NSW, Australia, July 7-9, 2014. Proceedings,

29

volume 8544 of Lecture Notes in Computer Science, pages 322–337. Springer, 2014.
23

7. D. J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-Quantum Cryptog-
raphy. Springer, 2009. 27

8. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU
prime. IACR Cryptology ePrint Archive, 2016:461, 2016. 2, 3, 14, 15, 16, 20, 21,
22

9. J. A. Buchmann, F. Göpfert, T. Güneysu, T. Oder, and T. Pöppelmann. High-
performance and lightweight lattice-based public-key encryption. In R. Chow and
G. Saldamli, editors, Proceedings of the 2nd ACM International Workshop on IoT
Privacy, Trust, and Security, CPSS@AsiaCCS, Xi’an, China, May 30 - June 3,
2016, pages 2–9. ACM, 2016. 2, 3, 17, 23, 24

10. J. A. Buchmann, F. Göpfert, R. Player, and T. Wunderer. On the hardness of
LWE with binary error: Revisiting the hybrid lattice-reduction and meet-in-the-
middle attack. In D. Pointcheval, A. Nitaj, and T. Rachidi, editors, Progress in
Cryptology - AFRICACRYPT 2016 - 8th International Conference on Cryptology
in Africa, Fes, Morocco, April 13-15, 2016, Proceedings, volume 9646 of Lecture
Notes in Computer Science, pages 24–43. Springer, 2016. 2, 10, 12, 13, 14, 23, 24

11. R. Canetti and J. A. Garay, editors. Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science.
Springer, 2013. 30, 31

12. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In D. H. Lee
and X. Wang, editors, Advances in Cryptology - ASIACRYPT 2011 - 17th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume 7073 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2011. 14

13. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and
bimodal gaussians. In Canetti and Garay [11], pages 40–56. 2, 3, 15, 16, 25, 26,
27, 28

14. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based cryp-
tography: A signature scheme for embedded systems. In E. Prouff and P. Schau-
mont, editors, Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th
International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, vol-
ume 7428 of Lecture Notes in Computer Science, pages 530–547. Springer, 2012.
2, 3, 27, 28

15. P. S. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, and W. Whyte. Choos-
ing ntruencrypt parameters in light of combined lattice reduction and MITM ap-
proaches. In M. Abdalla, D. Pointcheval, P. Fouque, and D. Vergnaud, editors,
Applied Cryptography and Network Security, 7th International Conference, ACNS
2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings, volume 5536 of
Lecture Notes in Computer Science, pages 437–455, 2009. 1, 2, 16, 17, 18, 33

16. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.
Hybrid lattice reduction and meet in the middle resistant parameter selection for
ntru-encrypt. Submission/contribution to ieee p1363, 1:2007–02, 2007. 1, 2, 15, 16,
18

17. J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, W. Whyte, and Z. Zhang.
Choosing parameters for ntruencrypt. IACR Cryptology ePrint Archive, 2015:708,
2015. 1, 2, 3, 14, 15, 16, 17, 18, 20, 33

30

18. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryp-
tosystem. In J. Buhler, editor, Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings,
volume 1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998.
1, 18, 20

19. N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In A. Menezes, editor, Advances in Cryptology - CRYPTO 2007,
27th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 19-23, 2007, Proceedings, volume 4622 of Lecture Notes in Computer Science,
pages 150–169. Springer, 2007. 1, 6, 10, 13, 16, 18, 33

20. N. Howgrave-Graham, J. H. Silverman, and W. Whyte. A meet-in-the-middle at-
tack on an NTRU private key. https://www.securityinnovation.com/uploads/
Crypto/NTRUTech004v2.pdf. 6

21. R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption.
In A. Kiayias, editor, Topics in Cryptology - CT-RSA 2011 - The Cryptographers’
Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18,
2011. Proceedings, volume 6558 of Lecture Notes in Computer Science, pages 319–
339. Springer, 2011. 5, 13, 23

22. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. J. ACM, 60(6):43, 2013. 20, 23

23. D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters.
In Canetti and Garay [11], pages 21–39. 23

24. F. W. Olver. NIST handbook of mathematical functions. Cambridge University
Press, 2010. 9

25. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In H. N. Gabow and R. Fagin, editors, Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages
84–93. ACM, 2005. 23

26. J. Schanck. Practical lattice cryptosystems: Ntruencrypt and ntrumls. 2015. 1, 2,
14, 15, 16, 17, 18, 19, 33

27. C. van Vredendaal. Scarecryptow — personal website of christine van vreden-
daal. http://scarecryptow.org/publications/ntruprime.html, 2016. [Online;
accessed 07-June-2016]. 15

31

https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
https://www.securityinnovation.com/uploads/Crypto/NTRUTech004v2.pdf
http://scarecryptow.org/publications/ntruprime.html

A Appendix

On q-ary Lattices

A.1 Constructing a Basis of the Required Form

In the following lemma we show that for q-ary lattices, where q is prime, there
always exists a basis of the form required for the attack. The size of the identity
in the bottom right corner of the basis depends on the determinant of the lattice.
In the proof we also show how to construct such a basis.

Lemma 3. Let q be prime, m ∈ N, and Λ ⊂ Zm a q-ary lattice.

1. There exists some k ∈ Z, 0 ≤ n ≤ m such that det(Λ) = qk.
2. Let det(Λ) = qk. Then there is a matrix A ∈ Zm×(m−k)

q of rank m− k (over
Zq) such that Λ = Λq(A).

3. Let det(Λ) = qk and A =
(

A1
A2

)
with A1 ∈ Zk×(m−k)

q and A2 ∈ Z(m−k)×(m−k)
q

be a matrix of rank m−k (over Zq) such that Λ = Λq(A). If A2 is invertible
over Zq, then the columns of the matrix

B′ =
(
qIk A1A−1

2
0 Im−k

)
∈ Zm×m (1)

form a basis of the lattice Λ.

Proof:

1. Obviously det(Λ) | det(qZm) = qm, since qZm ⊂ Λ, and therefore det(Λ) is
some non-negative power of q, because q is prime.

2. We have (Zm : qZm) = (Zm : Λ) · (Λ : qZm) and therefore

(Λ : qZm) = (Zm : qZm)
(Zm : Λ) = det(qZm)

det(Λ) = qm−k.

Let A′ ∈ Zm×mq be some lattice basis of Λ. Since Λ/qZm is in one-to-one
correspondence to the Zq–vector space spanned by A′.This vector space has
to be of dimension m − k and therefore A′ has rank m − k over Zq. This
implies that there is some matrix A consisting of m− k columns of A′ such
that Λ = Λ(qIm | A) = Λq(A).

3. By assumption A2 is invertible and thus we have

Λ =
{

v ∈ Zm | ∃w ∈ Z(m−k) : v = Aw mod q
}

=
{

v ∈ Zm | ∃w ∈ Z(m−k) : v =
(

A1
A2

)
A−1

2 w mod q

}
=
{(

A1A−1
2

Im−k

)
w | w ∈ Z(m−k)

}
+ qZm.

32

Therefore the columns of the matrix(
qIm

∣∣A1A−1
2

Im−k

)
∈ Zm×(m+(m−k))

form a generating set of the lattice Λ, which can be reduced to the basis B′.

�

A.2 Modifying the GSA for q-ary Lattices

Typically, the Gram-Schmidt lengths obtained after performing a basis reduction
with quality δ can be approximated the Geometric Series Assumption (GSA),
see the Preliminaries. However, for q-ary lattices, this assumption needs to be
modified in order to accurately reflect the reality. This has already been consid-
ered and confirmed with experimental results in previous works, see for exam-
ple [15, 17, 19, 26]. However, in this work we derive simple formulas predicting
the quality of the reduction, and therefore explain how to obtain these formulas
in more detail. We begin by sketching the reason why the unmodified GSA does
not hold for q-ary lattices, given a lattice basis B of the form

B =
(
qIa ?
0 Ib

)
∈ Zd×d,

where d = a + b. How to construct such a basis for a q-ary lattice is shown in
Appendix A.1. Then, if the basis reduction is not strong enough, i.e. the Hermite
delta is too large, the GSA predicts that the first Gram-Schmidt vectors of the
reduced basis have norm bigger than q. However, in practice this will not happen,
since in this case the first vectors will simply not be reduced. This means, that
instead of reducing the whole basis B, one can just reduce the last vectors that
will actually be reduced. Let k denote the (so far unknown) number of the
last vectors that are actually reduced (i.e., their corresponding Gram-Schmidt
vectors according to the GSA have norm smaller than q). We assume that the
basis reduction is sufficiently weak that k < d and sufficiently strong such that
k > b. We write B in the form

B =
(
qId−k D

0 B1

)
for some B1 ∈ Zk×k and D ∈ Z(d−k)×k. Now instead of B we only reduce B1 to
B′1 = B1U for some unimodular U ∈ Zk×k. This yields a reduced basis

B′ =
(
qId−k DU

0 B′1

)
of B. The Gram-Schmidt basis of this new basis B′ is given by

B′ =
(
qId−k 0

0 B′1

)
.

33

Therefore, the lengths of the Gram-Schmidt basis vectors B′ are q for the first
d − k vectors and then equal to the lengths of the Gram-Schmidt basis vectors
B′1, which are smaller than q. In order to predict the lengths of B′ we can apply
the GSA to the lengths of the Gram-Schmidt basis vectors B′1, since they are
actually reduced. What remains is to determine k. Assume we apply a Basis
reduction on B1 that results in a reduced basis B′1 of Hermite Delta δ. By our
construction we can assume that the first Gram-Schmidt basis vector of B′1 has
norm roughly equal to q, so the GSA implies

δk det(Λ(B1) 1
k) = q.

Using the fact that det(Λ(B1)) = qk−b and k < d, we can solve for k and obtain

k = min
(⌊√

b

logq(δ)

⌋
, d

)
.

Summarizing, we expect that after the basis reduction our Gram-Schmidt basis
B′1 has lengths R1, . . . , Rd, where

Ri =
{

q, if i ≤ d− k
δ−2(i−(d−k)−1)+kq

k−b
k , else , and k = min

(⌊√
b

logq(δ)

⌋
, d

)
.

(2)
Note that it might also happen that the last Gram-Schmidt length are pre-

dicted to be smaller than 1. In this case these last vectors will also not be
reduced in reality, since the basis matrix has the identity in the bottom right
corner. Therefore, in this case the GSA has to be further modified. However, for
realistic attack parameters this phenomenon never occurred during our runtime
optimizations and therefore we do not include it in our formulas and leave it to
the reader to do the easy calculations if needed.

34

	Revisiting the Hybrid Attack: Improved Analysis and Refined Security Estimates

