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Edgar González∗1, Guillermo Morales†1, and Feliú Sagols‡2
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Abstract

Several cryptographic methods have been developed based on the difficulty to determine the set
of solutions of a polynomial system over a given field. We build a polynomial ideal whose algebraic
set is related to the set of isomorphisms between two graphs. The problem isomorphism, posed in
the context of Graph Theory, has been extensively used in zero knowledge authentication protocols.
Thus, any cryptographic method based on isomorphism can be translated into an equivalent method
based on the problem of finding rational points in algebraic sets associated to polynomial ideals.

Keywords— zero knowledge procedures, graph isomorphism problem, multivariate polynomial system.

1 Introduction

Public Key Cryptography (PKC) is based on one-way maps. Public Key Encryption and Digital Signa-
tures are two of the most relevant applications of PKC. In order to ensure secure communication, public
keys are used for message encryption or signature verification, while private keys are used for message
decryption or signature creation.

Recently, the NP-hard problem to solve a multivariate quadratic system, denoted MQ, has been
exploited in PKC, since it is believed to resist quantum computers attacks [1]. This is an advantage
with respect to more popular methods as RSA, DSA and ECDSA. Most of the PKC systems based
on MQ consist of the following. An easily solvable quadratic map Q : Fnq → Fmq , two affine bijective
transformations S : Fnq → Fnq , T : Fmq → Fmq , and a quadratic system P obtained as P := T ◦Q◦S, which
in turn must be difficult to solve. The system P is used as the public key, while Q,S and T conform
the private key. The main purpose of S and T is to hide the algebraic structure that makes Q easy to
solve. In [2], [3], MQ was used for cryptographic purposes, producing the so-called Matsumoto-Imai
crypto-system. Similar schemes have appeared later, as Unbalanced Oil-Vinegar (UOV) [4], Hidden Field
Equations (HFE) [5], QUARTZ [6], and several variations intended to repair security weakness problems.
Many of the aforementioned schemes have shown vulnerabilities against cryptographic analysis, mainly
because the proposed constructions generate weak and easily solvable instances of MQ.

In a general way, attacks on schemes based on MQ can be classified in two categories:

• General attacks. The solutions to the public system P are searched directly on the system itself.

• Structure based attacks. The construction of P is used to obtain information about the resulting
system algebraic structure.

Some successful algorithms to attack MQ protocols use Buchberger Algorithm [7] to compute Gröbner
bases. For instance, the algorithms F4 [8] and F5 [9] are based on linearization, which was used as well
in the procedure XL [10] (eXtended Linearization), and Zhuang-Zi Algorithm [11].
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The algorithms Rank Attack, (High Rank, MinRank and Separation of Oil and Vinegar) [12](see Sec-
tion [VI.5.4]), are structure based attacks and succeeded in breaking the schemes UOV and HFE [13, 14].
Other successful attacks used linearization equations [15] to solve instances produced by the Matsumoto
and Imai scheme in its original form.

Our approach reduces instances of the Graph Isomorphism Problem (isomorphism) to instances of
MQ. Thus, the most direct attack to our method may consist in either to calculate a solution to the
translated polynomial system or to locate a graph isomorphism. It is worth to mention that recently a
procedure claiming to solve isomorphism instances in quasi-polynomial time was published [16]. Thus
the problem to find appropriate instances for cryptographic purposes is more relevant.

The key idea in our reduction is the difficulty to find rational points in the algebraic set determined
by polynomial ideals. In practice, we propose and test authentication schemes to verify its security
through currently available effective computational tools, mainly the computer program PoliBoRy [17],
even though the known algorithms to solve MQ have super-polynomial time complexity.

This paper is constituted as follows. In Section 2 we introduce basic concepts about graph theory
and polynomial ideals. Section 3 recalls zero-knowledge protocols. We continue with the reduction of
isomorphism instances to the MQ problem in Section 4. In Section 5 some cryptographic applications
are developed. Finally, in Section 6 we give a complexity estimation of the given procedures.

2 Preliminaries

Let us recall elementary graph theory and polynomial ideals concepts.

2.1 Graphs

A graph G is a pair (V,E), where V is the set of vertices, and E ⊆ V (2) = {a ⊂ V | #a = 2} is a set of
edges. The cardinalities of V and E are called, respectively, the order and the size of the graph. Two
vertices vi, vj , vi 6= vj , are adjacent if vivj ∈ E. Two edges e1, e2 ∈ E are adjacent if they share a
common vertex. For a given graph G, V (G) denotes its set of vertices, and E(G) its set of edges. If
E(G) = V (2) the graph is complete, it is unique up to isomorphism. We denote the complete graph on
n vertices by Kn .

We say that a graph G is bipartite if there exists a partition {V1, V2} of V such that no edge has both
vertices in the same set Vi, i ∈ {1, 2}. Equivalently, every edge has an extreme in V1 and the other in
V2. The graph is complete bipartite if any vertex of V1 is adjacent to every vertex of V2 and vice versa.

Two graphs G1 = (V1, E1), G2 = (V2, E2) are isomorphic if there exists a bijective map φ : V1 → V2
such that two vertices vi, vj ∈ V are adjacent in G1 if and only if φ(vi), φ(vj) are adjacent in G2. The
bijective map φ is an isomorphism from G1 to G2. The Graph Isomorphism Problem (isomorphism)
of two graphs G1, G2 consists in finding an isomorphism φ : G1 → G2 provided that G1 and G2 are
isomorphic, or proving that they are not isomorphic otherwise.

A matching is a subset M ⊆ E such that no pair of edges e1, e2 ∈ M are adjacent. We say that the
matching is complete if every vertex of G is an extreme of an edge in M .

2.2 Algebraic sets and rational points

We consider an arbitrary field K and R = K[X1, . . . , Xn], the ring of polynomials in n variables
X1, . . . , Xn with coefficients in K. An additive subgroup I ⊆ R is an ideal if for every f ∈ I, gf ∈ I for
any g ∈ R. Let f ∈ R. The ideal generated by f is 〈f〉 = {gf |g ∈ R}. Similarly, for an arbitrary set of
m polynomials F ⊆ R, the ideal generated by F is

〈F 〉 = {g1f1 + . . .+ gmfm|gi ∈ R, fi ∈ F, i = 1, . . . ,m}.

Let K denote the algebraic closure of K, then the algebraic set defined by I is given by

VI = {x ∈ Kn|f(x) = 0 for every f ∈ I}.

The set VI(K) = VI
⋂
Kn is known as the set of K-rational points of VI . In the following, we will focus

on finite fields Fq, where q is the power of a prime p. Then we may refer to the set of Fq-rational points
as rational points for simplicity.

It arises naturally the problem of characterising the set of rational points VI(Fq) given an ideal I.
This problem can be stated in two versions: as a decision problem, or as a search problem.
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Decision problem
Instance: An ideal I ⊂ Fq[X1, . . . , Xn] and a point x ∈ Fnq .

Solution:

{
1 if x ∈ VI(Fq)
0 if x 6∈ VI(Fq)

Search problem
Instance: An ideal I ⊂ Fq[X1, . . . , Xn].
Solution: Either a proof that VI(Fq) = ∅ or a point x ∈ Fnq such that x ∈ VI(Fq).

If the ideal I is provided by a finite set of generators {f1, . . . , fm}, the Decision Problem is trivial:
it suffices to check whether fi(x) = 0 for i = 1, . . . ,m. However, the Search Problem implies finding a
solution x ∈ Fnq of the system of simultaneous equations {fi(X) = 0| i = 1, . . . ,m}, which can be a very
complex task if the degrees of the generators are high.

Today, the most useful methods to solve systems of polynomial equations are based on Buchberger
Algorithm to find Gröbner Basis of the ideals generated by the polynomials in the system. Improved
versions of Buchberger Algorithm, such as F4 and F5 are useful in solvingMQ directly. These algorithms
have provided effective cryptographic attacks against some schemes, such as the HFE, or against some
particular selection of parameters in other schemes. This is the case of UOV [18], when the number
of vinegar variables exceeds greatly the quantity of oil variables. Even though, the worst case time
complexity of these algorithms is doubly exponential [19].

3 Zero knowledge protocols

Informally, a zero knowledge proof allows an entity to show the possession of certain information without
exposing details. The idea is to consider the verifier as a potential adversary who tries to acquire
information.

A zero knowledge protocol consists of a verification process between two entities. A verifier, who
executes the process. And a prover, who tries to convince the verifier that he or she possesses valid
identity credentials.

This verification process has to follow certain rules. It must be computed efficiently, whereas finding
the required proof has to be a computationally difficult task for any other entity distinct to the prover.

A strategy describes the next action to be performed by each entity at any stage of the process. This
could be regarded as a game. Assuming that the verifier takes the first move, then he asks a question
to the prover involving the assertion to be verified. If the prover’s claim is true, then an authentic
verifier can be convinced by an authentic prover. If the assertion is false, then it should be impossible
for a non-authentic prover to convince the verifier, or at most, the non-authentic prover should have a
very small success probability. These properties characterise the interactive proof systems. In order to
formalise the interaction between prover and verifier, let us refer to a strategy as a function depending
on a common input and the interactions made so far. For a pair of strategies A and B, we denote by
rA, rB their respective randomness. Assuming that A takes the first move, the interaction of A and B
after t rounds on a common input x is denoted by A(x, rA, β1, . . . , βt) and B(x, rB , α1, . . . , αt) where
αi = A(x, rA, β1, . . . , βi−1) and βi = B(x, rB , α1, . . . , αi). A probabilistic strategy is then a probability
distribution over a set of deterministic strategies, defined by its randomness. An entity uses a probabilistic
polynomial time strategy if its next step can be computed a number of steps that is polynomial in the
size of x.

Definition 1 An interactive proof system for a set S consists of an interaction between two entities, a
verifier who runs a strategy V in probabilistic polynomial time, and a prover, who runs a computationally
unbounded strategy P with the following characteristics:

• Completeness. For all x ∈ S, the verifier V always accepts after interacting with the authentic
prover P on a common input x.

• Soundness. For all x 6∈ S and every strategy P ∗, the verifier V rejects with probability at least 1
2

after interacting with P ∗ on a common input x.

Definition 2 The strategy of a prover P is perfect zero knowledge over a set S if for any probabilistic
polynomial time strategy V ∗ of a verifier, there exists a probabilistic polynomial time algorithm A∗ such
that (P, V ∗)(x) ≡ A∗(x) for all x ∈ S, where (P, V ∗)(x) is a random variable that represents the output
of the verifier V ∗ after interacting with the prover P on a common input x, and A∗(x) is a random
variable representing the output if algorithm A∗ in the input x.
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v1 w1

v3 w3
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X2,2
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X4,4

(a) To decide if G1 y G2 are isomorphic, we must find
a perfect matching M using the edges in dashed lines,
preserving adjacencies between G1 and G2.

v2 w2

v1 w1

v3 w3

v4 w4

X2,2

X3,4

(b) Both edges v2w2 and v3w4 cannot belong simultane-
ously to M because v2v3 ∈ E(G1), but w2w4 /∈ E(G2).
So, we may define the equation X2,2X3,4 = 0 in I.

Figure 1: Process to identify isomorphic graphs.

The symbol ≡ in the last definition represents an equality. If we allow this equality to change to
a bounded statistical proximity, then the definition of quasi-perfect or statistical zero knowledge arises.
Generally, this is the meaning given to the phrase zero knowledge, the proximity thus meaning computa-
tionally indistinguishable. More detailed information about Zero Knowledge Proofs can be found in [20]
Ch 9.

4 Ideal associated to isomorphism

Let G1 and G2 be two graphs, both having order n and size e. Henceforth, we will write V (G1) =
{v1, . . . , vn} and V (G2) = {w1, . . . , wn}. Let KV (G1),V (G2) denote the complete bipartite graph with
bipartition V (G1), V (G2).

If G1 and G2 are isomorphic, then there exists a perfect matching M in KV (G1),V (G2) such that
viwk, vjwl ∈M if and only if and only if vivj ∈ E(G1) and wkwl ∈ E(G2). In other words:

1. if vivj is an edge in G1 but wkwl is not an edge in G2, then both edges viwk and vjwl cannot lie
simultaneously in the matching M ,

2. if wkwl is an edge in G2 but vivj is not an edge in G1, then both edges viwk and vjwl cannot lie
simultaneously in the matching M .

The perfect matching M plays the role of the bijection φ in the isomorphism definition, as stated in
Section 2. From the point of view of Set Theory, a function is just a collection of pairs whose first
elements belong to the domain of the function, and the second ones are elements of the co-domain [21].
Conditions 1) and 2) constitute an alternative way to assert:

vivj ∈ E(G1) ⇐⇒ φ(vi)φ(vj) ∈ E(G2).

In Figure 1 we illustrate the above notions.
Now, we translate the notion of isomorphism between graphs to a strictly algebraic language. The

idea is to perform a proper reduction from isomorphism to MQ motivated by conventional reductions
of several problems in graphs to Boolean quadratic polynomials [20, 22].

Let G1 and G2 be a pair of graphs of order n such that there exists a perfect matching M in
KV (G1),V (G2). In addition, viwk, vjwl ∈M if and only if vivj ∈ E(G1) and wkwl ∈ E(G2). We consider
the polynomial ring over a fixed field K with a set of variables X = {Xi,j} for i, j ∈ {1, . . . , n}, and we
will consider the polynomial ring K[X]. We restrict the values for each variable to {0, 1}, so the solutions
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will be obtained as elements of the vector space Fn2

2 . A variable Xi,j takes the value 1 if and only if the
edge viwj is an element of the matching M . We proceed as follows.

In order to restrict the values of every variable to the set {0, 1} we introduce the set of polynomials:

X2
i,j −Xi,j for i, j ∈ {1, . . . , n} (1)

Finally, we include the following polynomials to
Now, to restrict the set of one valued variables to only those that represent a perfect matching in M

the following polynomials must be satisfied:∑
j=1
n Xi,j − 1 for i = 1, . . . n (2)∑
i=1
n Xi,j − 1 for j = 1, . . . n

Here, the first set of polynomials force each vertex of G1 to have an incident edge in M . The second one
works in the same way for G2.

In order to ensure that only matchings coming from isomorphisms between G1 and G2 can be obtained
as a zero of the ideal, we introduce a further set of polynomials:

Xi,kXj,l for any i, j, k, l such that

(vivj ∈ E(G1) ∧ wkwl /∈ E(G2))∨
(vivj /∈ E(G1) ∧ wkwl ∈ E(G2)) (3)

Hence, if the set of rational points defined by the ideal I generated by the polynomials in (1), (2) and (3)
is not empty, then G1 and G2 are isomorphic.

5 Cryptographic applications

Now, we apply the theory developed in Section 4 to construct a zero knowledge authentication protocol
based on the isomorphism and MQ problems.

Let G1 and G2 be a pair of isomorphic graphs. Let P1 be the set of polynomials associated to the set of
isomorphisms between G1 and G2, and let x be a solution of system P1. Then x could be considered as a
matching M on KV (G1),V (G2), or an isomorphism φ between G1 and G2 as it was explained in Section 4.
In order to create a zero knowledge authentication protocol, we obtain a new set of polynomials as
follows:

Consider a new graph G3 such that there exists an isomorphism ψ : G2 → G3:

G1 G2 G3

φ ψ

Let us find a new set P2 of polynomials with its set of solutions associated to the perfect matchings
of KV (G1),V (G3), but using a more direct construction. For each vertex ur ∈ V (G3) there exists wk ∈
V (G2) such that ψ(wk) = ur. This defines a permutation σψ on {1, . . . , n} such that ψ(wk) = uσψ(k),
∀wk ∈ V (G2). Using the fact that

wkwl ∈ E(G2) ⇐⇒ ψ(wk)ψ(wl) ∈ E(G3),

we write the polynomials of P2 satisfying condition (3) as

Xi,σψ(k)Xj,σψ(l). (4)

The other polynomials in P2 are built directly from expresions (1) and (2).
A solution for P2 can be found easily from x by applying the permutation σψ. Analogously, we can

obtain another set of polynomials P3 generating the isomorphisms between G2 and G3 by considering
γ = ψ ◦ φ.

Authentication protocol. Alice is the prover and Bob the verifier:
Key Generation:
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• Alice generates a pair of isomorphic graphs G1, G2 along with an isomorphism φ between them.
The public key is the associated system P1 with the characteristics aforementioned. The private
key is a solution to the system P1, which can be obtained from the matching M representing the
isomorphism φ.

Authentication Protocol:

1. Alice selects at random a permutation σ of the set of vertices {1, . . . , n} and generates a new set
P2 of polynomials as seen on (4). She sends the system P2 to Bob as a compromise.

2. Bob chooses a random bit b ∈ {0, 1} and sends it to Alice.

3. Alice receives b as a challenge:

• if b = 0, she must send a solution x′ of the system P2 to Bob,

• if b = 1, she sends the permutation σ used to generate P2.

4. Bob performs the following steps to authenticate Alice:

• if b = 0, he checks that x′ is a solution of P2,

• if b = 1, he applies the permutation σ to P1 and checks if he obtains the system P2.

There are many other authentication protocol schemes, which are based directly on the problem
Isomorphism of Polynomials (IP) and MQ [23], [24] and even in a more general case [25] than the one
presented here. The last generalisation allows to generate a multivariate system Q at random, and to
create new systems by applying an invertible affine map S to get P = Q ◦S. In our case, the polynomial
is not selected at random, and the affine map can be regarded as a permutation of the rows from the
identity matrix, which is of course invertible. However, some advantages can be listed.

• Since the algebraic set is related to the set of isomorphisms of two graphs, trying to solve the
system is at least as difficult as isomorphism.

• The amount of data sent in each iteration of the process can be reduced, since we do not need to
send an affine transformation, but only the permutation required to get the new system.

• Furthermore, in each iteration a new system comes up by applying a simple permutation on the
indices of the variables, which is faster than applying an affine transformation.

Thus, we can at least rely on the difficulty of solving isomorphism as a lower bound for the security of
this protocol.

5.1 Security notes

An entity, say Eve, who tries to impersonate Bob may proceed in two different ways.
If Eve predicts that Bob will challenge with b = 0, then she can generate an arbitrary system P ′2 and

create a solution to this challenge. In this case, Eve sends P ′2 to Bob and has the chance to provide a
solution to P ′2. However, Eve will not be capable of providing a permutation that transforms P1 into
P ′2. Otherwise, if Eve believes that Bob will challenge with the bit b = 1, then she can generate a
random permutation and create a system P ′2 that will be sent to Bob. In this way, Eve can provide the
permutation used to obtain the new system. But, since she does not have a solution to P1, it will be
difficult to provide a solution for P ′2.

Now, if Bob tries to obtain supplementary information while interacting with Alice, then, in the same
fashion, he will receive only a piece of information in any of the following two cases.

If Bob challenges Alice with b = 0, then he will know a solution of the associated system P2. Not
knowing how the system P1 has been transformed into P2, he will not be able to recover the original
solution x. If Bob challenges with b = 1, then he will have the permutation σ applied to P1, but as he
does not know a solution for P2, he will not be able to recover x.

Thus, the scheme can be broken if any of the following problems can be solved efficiently for the
instances that come up from this technique:

• The MQ problem: if we can find a solution x′ to the polynomial P1, then we can forge a valid
private key.
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• The Isomorphism of Polynomials Problem: The permutation applied to the system P1 can be
regarded as an invertible linear transformation S such that P2 = P1 ◦ S. In our case, S is a
permutation matrix.

• The Graph Isomorphism Problem, as has been stated before.

6 Complexity analysis

In order to create the set of polynomials associated to two isomorphic graphs G1 and G2, we need to
consider all pairs (i, j) with i, j ∈ {1, . . . , n} to generate the polynomials that satisfies conditions (1)
and (2). This will take O(n2) steps.

Next, to add the set of polynomials that correspond to condition (3) and provide a solution for the
resulting system, we proceed as follows:

• For each edge vivj ∈ E(G1), we look for every edge wkwl in the complement G2. We add the
corresponding polynomials Xi,kXj,l to the system.

• For each edge wkwl ∈ E(G1), we go over al the edges wkwl in the complement G1. We add the
corresponding polynomials Xi,kXj,l to the system.

• Finally, given a fixed isomorphism φ : G1 → G2 we build the matching M given by the set of edges
of the form viφ(vi), and proceed as we have argued before.

If e is the size of G, then the quantity of equations generated in step 3 is bounded by n2e, so the
resulting system can be accomplished in polynomial time in the order and size of G.

7 Conclusions

By means of the reductions presented in this paper, the conventional procedures of zero knowledge
authentication protocols can be settled as procedures based on the problem of finding solutions to a
system of quadratic equations. Equivalently, the procedures for key generation, which consist on the
generation of difficult instances of the Graph Isomorphism Problem, can be reduced to procedures for
key generation for the corresponding reductions to zero knowledge authentication based on the problem
of finding solutions to the system.

Since every system of polynomials equations can be regarded as a system of polynomial equations of
degree 2, the authentication protocols presented are comparable to the MQ problem.
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Applied Algebra, no. 139, pp. 61–88, 1999.

[9] ——, “A new efficient algorithm for computing Gröbner bases without reduction to zero (F5),”
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