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Abstract. The cube attack is an algebraic attack that allows an ad-
versary to extract low degree polynomial equations from the targeted
cryptographic primitive. This work applies the cube attack to a reduced
round version of ACORN, a candidate cipher design in the CAESAR
cryptographic competition. The cube attack on 477 initialization rounds
of ACORN can recover the 128 bit key with a total attack complexity of
about 235. We have also shown that linear equations relating the initial
state of the full version of ACORN can be be easily generated which can
lead to state recovery attack with an attack complexity of about 272.8.
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1 Introduction

The cube attack is an algebraic cryptanalysis method introduced by Dinur and
Shamir at EUROCRYPT 2009 [1]. The attack is applicable to a wide variety of
symmetric ciphers. In this paper, we analyze the applicability of the cube attack
to the authenticated encryption (AE) stream cipher ACORN.

ACORNv1 [2] is a binary feedback shift register based AE stream cipher sub-
mitted to the Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) [3] in May 2014. ACORNv1 is one of the cipher pro-
posals selected for the second round of CAESAR. In September 2015, a tweaked
version named ACORNv2 [4] was included in the second-round submission of
the CAESAR competition.

Both versions of ACORN use a 128-bit secret key and a 128-bit initialization
vector. The cipher provides authentication and encryption functionality for the
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input message. Encryption is performed by XOR-ing the plaintext message bit-
stream with the binary keystream output by the keystream generation function.
Message authentication is provided by a 128-bit tag computed from the plain-
text message, secret key and the initialization vector. The cipher also provides
authentication but not encryption for associated data (AD) if required.

2 ACORN Specification

ACORN uses a 128-bit key, K ∈ {0, 1}128 and a 128-bit initialization vector,

V ∈ {0, 1}128. The cipher takes a plaintext message P ∈ {0, 1}∗ of arbitrary
length lp within the range 0 ≤ lp ≤ 264. The input to the cipher may also in-
clude associated data D ∈ {0, 1}∗, again of arbitrary length ld within the range
0 ≤ ld ≤ 264. The associated data does not require confidentiality and so is not
encrypted, but an integrity mechanism is applied. The output of ACORN con-
sists of ciphertext C ∈ {0, 1}lp and an authentication tag T ∈ {0, 1}64≤ltag≤128,
where ltag denotes the size of the tag. The designer of the cipher strongly rec-
ommends the use of a 128-bit tag. The structure of ACORN is based on six
binary linear feedback shift registers (LFSRs) of lengths 61, 46, 47, 39, 37 and
59, respectively, and an additional 4 bit register. This gives the cipher a total
internal state, S = {s0, · · · , s292} of 293 bits.

Operations performed in the ACORN stream cipher can be divided into four
phases: Initialization, Encryption, Tag Generation and Decryption & Tag Verifi-
cation. The differences between ACORNv1 and ACORNv2 occur mainly in the
initialization phase and in the varying feedback functions used in the specific
rounds of different phases. For the rest of the paper, unless specifically men-
tioned, ACORN will refer to both versions: ACORNv1 and ACORNv2. Figure 1
shows the generic diagram of ACORN encryption and decryption procedure.

ACORN uses three functions: an output keystream generation function, fz,
a nonlinear feedback function, f , and a state update function. ACORN state
update function uses the output of the nonlinear feedback function and the
input message, M to update internal state of the LFSRs. Depending on the phase
the cipher is in, the input message M can denote either the key, initialization
vector, padding vectors, associated data, plaintext or decrypted plaintext. All of
the register stages in the internal state are updated linearly except for the last
register stage, s292. The last register stage, s292, is updated by combining the
output of the nonlinear feedback function f with the input message M . Different
variants of the feedback function f are used in different phases of the cipher. The
output keystream generation function, fz takes input from several register stages
and generates a single keystream bit output at each round of the encryption/
decryption phase and during the final ltag rounds of the tag generation phase.

During the initialization phase, ACORN takes as its input message, M , a
sequence formed by the concatenation of the key, initialization vector, padding
bits and associated data. Note that, in the original description of ACORN the
designer considered only loading of the key, initialization vector and the padding
bits as part of the initialization phase. However, we consider the associated
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Fig. 1. Generic Diagram of ACORN

data loading process as part of the initialization phase, because no keystream
bits are output until after that process is complete. The initialization phases
in ACORNv1 and ACORNv2 differ with respect to the feedback function used
during the different rounds of the cipher, and also in the selection of the padding
bits. For ACORNv1, the padding bits are constant whereas in ACORNv2 the
padding bits are derived from the key bits. Both versions of ACORN have an
initialization phase of ld + 2048 rounds.

The encryption procedure is same for both ACORNv1 and ACORNv2. The
cipher takes the plaintext, P , as the input message, M , and computes the output
ciphertext, C, by XOR-ing the output keystream Z and plaintext P .

After all the plaintext bits have been processed, the keystream generator
goes through a 1024 round finalization process. During these 1024 rounds, the
input message M is a 1024-bit padding vector consisting of one bit with value
1 followed by 1023 bits of value 0. The difference in the finalization phase of
ACORNv1 and ACORNv2 is the feedback function used during the different
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rounds. During the last ltag rounds of the finalization phase, the output bits Z
are computed and used as the tag.

The decryption procedure is the same as the encryption phase except that at
each round the decrypted plaintext P ′ is computed by XOR-ing the ciphertext
bit C with the corresponding keystream Z and this bit is fed back in to the
internal state instead of the original plaintext. After all the ciphertext bits have
been processed, the tag verification process first generates the tag using the same
tag generation procedure as used earlier. Finally, the tag is verified by matching
the generated tag with the received tag from the sender.

3 Cube Attack

The cube attack was introduced by Dinur and Shamir at EUROCRYPT 2009 [1].
The attack can be seen as a generalization of the Higher Order Differential attack
[5] and the Algebraic IV differential attack (AIDA) [6]. The goal of the attack
is to recover the secret key of a cryptosystem. In the original attack model,
the adversary is given a blackbox that evaluates an unknown polynomial, Q
constructed over lk secret variables and lv public variables. The adversary is also
assumed to have access to a single output bit. This is a known plaintext attack
which initially was applied to a reduced round version of the Trivium stream
cipher [7], [8]. Later, several other symmetric ciphers were analyzed based on
this attack [9], [10], [11], [12], [13].

A cube attack is a kind of algebraic attack which aims to recover the secret
variable of a cryptographic scheme by manipulating and solving the polynomial
equations defined by the scheme. Most of the symmetric cryptographic schemes
can be defined by a single master polynomial over GF (2), which contains some
secret variables (e.g., secret key) and public variables (e.g., plaintext, ciphertext,
IV, AD). The variants of the equations can be derived by changing these secret
and public variables. The idea of the cube attack is to generate sufficient number
of closely related low degree equations by manipulating the public variables.
An adversary can then solve the generated low degree equations to recover the
secret variables of the cryptosystem. The low degree equations are derived by
evaluating the master polynomial equation over all the possible values of some
specific public variables (known as the cube) and then summing the resultant
equations. This is called the cube attack since we sum over all the possible
values of the n-dimensional Boolean cube. The observation found here is that,
if an appropriate cube was chosen then summing over all the possible values of
the cube will eliminate all the higher degree terms from the resultant equation.
In general, the cube attack is performed in two phases: Preprocessing phase and
Online Phase. These are described below:

3.1 Preprocessing Phase

In the preprocessing phase the adversary has access to both the public and secret
variables. The goal of this phase is to construct linear equations in terms of the
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secret variables by using suitably chosen cubes. Let the blackbox polynomial,
Q(K,V ) be constructed over the set of lk secret variables in K and lv public
variables in V . Let K = {k0, · · · , klk−1} denote the set of the secret variables and
V = {v0, · · · , vlv−1} denote the set of the public variables of the cryptosystem.
The adversary manipulates these secret and public variables to construct a linear
variant of the blackbox polynomial, Q.

In the preprocessing phase, the adversary selects a cube of size lc where 1 ≤
lc ≤ lv and randomly chooses a subset of lc public variables vi ∈ V . This selected
subset of the public variables is known as the cube. The blackbox polynomial
is evaluated and summed over all the possible values of this cube to determine
if there exist any linear equation for that selection of the cube. The rest of the
values of the public variables are usually set to zero. Let Qc denote the equation
obtained after summing over all the possible values of the cube.

At first, a linearity test is performed to verify that the equation obtained
for the chosen cube is linear. This can be done by using the BLR test [14],
which chooses two random input vectors x, y ∈ {0, 1}lk and then verifies that
Q[0] + Q[x] + Q[y] = Q[x + y]. This is a probabilistic test which confirms that
Qc is linear if the test always succeeds. On the other hand, Qc is non-linear if
the test fails. The probability of the derived polynomial Qc being nonlinear is
2−j , given that the polynomial Qc passes the BLR test j times.

The adversary finds out the linear relation if the chosen cube passes the
linearity test. To find out the linear coefficients of the secret variable ki for a
particular cube, the adversary sets ki to 1 and all the other secret variables are
set to zero. The public variables are set to zero everywhere except the lc cube
bits. Summing over all the possible values of the cube bits will give one bit of
output which is the linear coefficient of ki. The constant (either 0 or 1) in the
linear equation for any cube is computed by summing over all the possible values
of the cube with input values of zero everywhere except the chosen cube. This
procedure is done to find out all the linear coefficient of the secret variables.
The left hand side of the linear expression is then reconstructed once all the
coefficients for the particular cube have been found. In the preprocessing phase,
the adversary performs the procedure for different combinations of cubes and
tries to find out sufficient number of cubes which output a linear equation. Note
that not all choices of the cube will result in a linear equation.

3.2 Online Phase

In the online phase the adversary has access to the public variables and the cubes
obtained during the preprocessing phase, to try to recover the secret variables.
An adversary evaluates and sums the output of the master polynomial over all
possible values of a cube to determine the right hand side of the corresponding
linear equation. The resultant equations then can be solved by Gaussian elim-
ination to recover the secret variables. Algorithm 1 provides a pseudo-code for
the generic cube attack.
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Algorithm 1 Algorithm for Cube Attack

Inputs: Output kesytream bits, Number of linearity test, Initial cube size, Number
of cubes tested
Output: Secret variables of the cryptosystem
Preprocessing Phase
Select a random cube: Estimate the degree, d of the polynomial, choose a initial cube
size lc ≤ d− 1 and select a subset of lc public variables vi
Do the linearity test and construct the linear equation
for Number of Cubes Tested do

for Number of linearity test do
if nonlinear then

if Cubes Tested < Number of Cubes Tested then
Select another cube of size lc and do the linearity test

else
Increase the number of cube variables lc

end if
else

Compute the coefficients of the secret variables by summing over all the
possible values of the cube
if all the coefficinets are zero then

Select another subset of lc public variables
else

Output the coefficients
Construct the linear equations

end if
end if

end for
end for
Do the preprocessing phase till sufficient number of linear equations are generated
Online Phase
Find the right hand side of the linear equations:
for Each possible cube found in prepreocessing phase do

Compute the output bit
Sum all the output bits for all the possible values of the cube

end for
Solve the linear equations to recover the secret variables

4 Cube Attack on ACORN

This section provides a description of the application of the cube attack to the
authenticated encryption stream cipher ACORN. The attack can be performed
either in the initialization phase, encryption phase or in the decryption phase.
ACORN does not take any external input during the tag generation phase and
therefore a cube attack is not applicable in this phase. In the following, we discuss
the applicability of the cube attack to the initialization and encryption phases
of ACORN.
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4.1 Cube Attack during the Initialization Phase

In the initialization phase the key, initialization vector and associated data are
loaded in to the internal state of ACORN. In general, the cube can be selected
either from the input key, the initialization vector or the input associated data
set. However, an adversary needs to have the ability to manipulate the key bits
if the cube bits are chosen from the input key. On the other hand, the attack
scenario falls under the nonce-reuse scenario when the cube bits are chosen from
the associated data set. This is since multiple associated data will be authen-
ticated using the same key and initialization vector, if we choose to select the
cube bits from the the associated data set. The designer of ACORN does not
claim any security when the same initialization vector is used with a given (the
same) key to encrypt or authenticate multiple sets of data.

We consider the scenario where the cube is chosen from the initialization
vector set. This requires the preprocessing phase to identify suitable cube bits
chosen from the input initialization vector, which generate linear equations in
terms of the key bits. Each of the linear equations is computed by summing
the output function of ACORN for all the possible values of the corresponding
cube. Therefore in the online phase, an adversary first needs to compute the
right hand side of these equations for the corresponding cube. This is a known
plaintext attack, where an adversary encrypts the plaintext with the key and
chosen initialization vectors (varying the cube bits obtained from the prepro-
cessing phase) and sums the output bits over n-dimensional Boolean cube to
compute the right hand side of the corresponding equation. The secret key can
be recovered by solving these equations if sufficient number of equations are gen-
erated. The attack requires an output bit from the ACORN output function for
nc× 2lc chosen initialization vectors where nc and lc represent the total number
and the length of the cubes, respectively. So, the complexity of finding the right
hand side of the linear equations during the online phase of the attack is no more
than nc×2lc . This will be followed by solving the equations using Gaussian elim-
ination, which will require approximately n3

c operations when nc = 128. Thus
the total complexity of the attack is about nc× 2lc +n3

c . If the equations gener-
ated are insufficient, i.e., nc < 128, an adversary can have partial key recovery
by solving the equations and the rest of the key bits can be found by doing an
exhaustive search on the rest of the key bits.

4.2 Cube Attack during the Encryption Phase

In the encryption phase, plaintext bits are loaded in to the internal state of
ACORN. Therefore plaintext can be considered as the public variables in this
phase and cubes can be chosen from the input plaintext set. In this case, during
the preprocessing phase an adversary manipulates the plaintext bits to generate
linear equations in terms of the state bits. The linear equations are computed
by summing the output function of ACORN for all the possible values of the
corresponding cube. In the online phase, the adversary first needs to find the
right hand side of these equations. This is a chosen plaintext attack, where an
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adversary encrypts the chosen plaintext (varying the cube bits obtained from
the preprocessing phase) with the same key and initialization vector and sums
the output bits over n-dimensional Boolean cube to compute the right hand
side of the corresponding equation. Finally the initial state of the cipher can be
recovered by solving the generated equations if sufficient equations are generated,
i.e., nc = 293. The attack requires the output bit from the ACORN output
function for nc×2lc chosen plaintext vectors. Following the similar computation
as shown in the previous section, the total attack complexity of the state recovery
attack requires about nc × 2lc + n3

c operations.
Unlike the initialization phase, the encryption phase of ACORN does not

need to go through a large number of rounds before producing the output bits.
So the degree of the output polynomial is expected to be low if an adversary
searches for the cube bits from the plaintext variables. Note that cube attack
is more effective on low degree polynomials since a lower degree polynomial
will require a smaller cube size. For ACORN an adversary can manipulate the
plaintext bits to generate linear equation from the 58th round of the encryption
phase when the first plaintext bit p0 reaches to the output keysetream generation
function fz. The degree of the output polynomial of ACORN at the 58th round
of encryption phase is only 3. Therefore, at that point of the encryption phase
an adversary needs a cube size of 2 at most. This makes it trivial to find linear
relations in terms of the state bits.

Note that this attack falls under the nonce-reuse scenario. This means an
adversary chooses different set of cubes from the plaintext variables and evaluate
the output function of ACORN with a fixed key and initialization vector. As
mentioned earlier, the designer of ACORN does not claim any security when the
same initialization vector is used with the same key to encrypt or authenticate
multiple sets of data.

5 Experimental Results

Our experimental analysis of the cube attack on ACORN is conducted using Sage
version 6.4.1 [15] on a standard 3.4GHz Intel Core i7 PC with 16GB memory.
Experiments are performed on both the initialization and encryption phases of
ACORN to identify suitable cubes. The following sections discuss the application
of the cube attack to these two different phases of ACORN.

5.1 Cube Attack using the Initialization Vector

The initialization of ACORN has a large number of rounds: ld + 2048 rounds.
This has a minimum value of 2048 when there are no associated data inputs, i.e.,
ld = 0. The degree of the output function of ACORN grows with the increase in
the number of rounds and is expected to be quite high when the full 2048 rounds
are used. So, the size of the cube is also expected to be high if we choose to find
a cube after 2048 rounds. This requires a significant amount of computational
time. We therefore tested the cube attack on reduced round versions of ACORN.
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For a reduced round version of ACORNv1, with initialization phase of 500
rounds, we have a total of 21 linear equations in terms of the secret key bits.
These equations are derived during the preprocessing phase of the cube attack.
For this 8000 random cubes of size 2 were tested; however, none of these cubes
passed the linearity test. So we increased the cube size and checked if there exist
linear equations when the cube size is increased. No suitable cubes were found
for a cube size of 3 and 4 after searching over 1000 random cubes. For a cube size
of 5, 1000 randomly chosen cubes were tested among which 20 passed the linear-
ity test, but for most of these cubes the linear coefficient of the secret variable
was found to be 0, i.e., the cube summation results only in a constant. Only 3
cubes {v120, v124, v93, v7, v63}, {v31, v124, v115, v18, v122}, {v39, v51, v124, v76, v115}
were found which give linear coefficient in terms of the secret variable. These
cubes were obtained by running the preprocessing phase for about a week. Note
that there are possibly more cubes of size 5 after 500 initialization round, how-
ever to find more cubes an adversary needs to increase the cube search space.
Instead of increasing the search space, we used the following method to ob-
tain a new cube from another cube which was found from the randomly chosen
cube: Increase the cube indices and the number of rounds by one and choose
the new cube as a valid one if it satisfies the linearity test. This reduces the
time complexity in the preprocessing phase since the adversary does not need
to search for a suitable random cube from a total possible search space of

(
128
5

)
.

With this technique, we were able to find total 12 cubes of size 5 which gives
12 linear equations in terms of the secret key bits. Further experiments are per-
formed by choosing the cubes from a smaller subset of the previously found
cubes, i.e., the cubes of size 5 were selected from the subset of the cube indices
{120, 124, 93, 7, 63, 31, 115, 18, 122, 39, 51, 76}. This technique gave us two more
new cubes: {v39, v93, v31, v124, v122}, {v120, v51, v124, v7, v63} at round 500 and an
additional cube at round 503: {v42, v125, v21, v127, v118}. Using these cubes, com-
bined with the previously mentioned technique, we were able to find 9 more cubes
which result in distinct linear equations. In total 21 linear equations are found
after the 500 initialization round of ACORNv1. Therefore for a reduced round
version of ACORNv1 with 500 initialization round, adversary can guess 107 key
bits and the remaining 21 bits can be found by solving these linear equations.
This is dominated by the exhaustive search. In the following we discuss about
reducing the dominance of the exhaustive search by reducing the initialization
round further.

Observing the linear equations generated for round 500, we have found that
the equations consist only of the first 99 variables of the key. Therefore, an
adversary needs 99 independent linear equations to find out these 99 key bits.
To reduce the dominance of the exhaustive search we have further examined on
generating more linear relations by reducing the number of rounds and the cube
indices. The new cube is considered valid if it still satisfies the linearity test. The
experiment is repeated by reducing the number of rounds and the cube indices,
till 99 or more cubes are found. These equations were found after reducing the
round of ACORN initialization phase from 500 to 477. Example of the linear
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equations obtained for reduced round initialization (477) of ACORNv1 are given
in Table 1 in the Appendix. All of these cubes passed at least 100 linearity tests.

During the online phase of the attack, an adversary first needs to find the
right hand side of these linear equations. An adversary encrypts the plaintext
with the key and chosen initialization vectors (varying the cube bits) and sums
the respective output bits over the n-dimensional Boolean cube to compute the
right hand side of the corresponding equation. This requires a total 99×25 ≈ 211.6

chosen initialization vectors. Therefore, an adversary can expect to recover the
key bits with complexity less than exhaustive search, if the initialization phase
of ACORN is reduced to 477.

We implemented the attack to verify the online phase of the cube attack on
the 477 initialization round version of ACORNv1. We started by computing the
right hand side of each equation by summing the output bits for all the possible
values of the corresponding cube. This requires to have an access of 211.6 specific
output bits. The equations are then solved once the right hand side of all the
equations are computed. We found that the solution was not unique for some
of the key bits. Some of the solutions for the secret key bits are found to be
dependent on the key bits: k91, k94, k95, k96, k97, k98. This is because some of the
computed equations are linearly dependent. Guessing these six key bits correctly
results in a unique solution which provides the key bits for k0, · · · , k90, k92, k93.
We also need to guess the rest of the 29 key bits to recover the whole key.
Therefore, the attack require to guess total 29 + 6 = 35 of the key bits. The
linear equations can be solved using row reduction and back substitution, and
the resulting solutions must then be checked with each of the 229 possibilities
for the remaining key bits. So, in practice the total attack complexity is about
211.6 + 933 + 6× 93× 26 + 26 × 229 ≈ 235.

We have also performed the experiments for the reduced round variant of
ACORNv2. For this experiment, we tested the same cubes that were found for
ACORNv2 (as above). Interestingly we noticed that the same cube sets result
in linear equations for ACORNv2 as well. This was also verified by running the
online phase of the attack to recover the key bits.

5.2 Cube Attack using Plaintext

This section discusses the application of the cube attack to the encryption phase
of ACORN. Unlike the initialization phase, the degree of the output polynomial
during the encryption phase is expected to be comparatively low. Therefore cube
attack using the plaintext can be applied to the full version of ACORN. In the
following, we describe the cube attack to the encryption phase of ACORN.

For searching suitable cubes we first represented the internal state, S of
ACORN symbolically and checked the output function Z while loading each bit
of plaintext P . At each round of the plaintext loading we looked into the symbolic
output function to determine whether it becomes linear when differentiating it
with respect to a subset of plaintext variables. Any such set of plaintext, if it
exists, is equivalent to the set of cubes in the cube attack. For the first 57 round
of the plaintext loading phase no such set were found because the plaintext bit
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does not reach the output function till the 58th round. At the 58th round of the
plaintext loading, we found that differentiating the output equation Z58 with
respect to plaintext p0 results in a linear equation. That also means that if we
do a cube attack numerically, then summing the output polynomial Z58 over the
cube p0 will result a linear equation. However, when running the experiments
symbolically, the software runs out of resource after a few number of rounds. The
symbolic computation with Sage was able to successfully compute the output
function until 148th round of the plaintext loading phase. This method gave
us 103 linear equations with 293 unknowns. This is not sufficient to reduce the
complexity below the exhaustive search of 2128.

To find more cubes that produce linear equations we performed the exper-
iment numerically. We started with the cubes {p0}, {p0, p7} and {p0, p21} for
round 58, 107 and 121, respectively, which are found using the symbolic com-
putation. We then used the following method to obtain a new cube: Increase
the cube indices and the number of round by one and choose the new cube as a
valid one if it satisfies the linearity test. 100 linearity tests were performed for
each of the cube. Note that in the original cube attack, the cubes were chosen
randomly which increases the search time significantly. With this technique, we
have obtained 245 linear equations with 293 variables. Among the 245 cubes
for these equations, 42 are of size 1 and the rest are of size 2. Example of the
linear equations obtained for the cube attack using plaintext are given in Table 2
shown in the Appendix.

In the online phase of the attack an adversary needs to compute the right
hand side of these equations and then solve the equations to recover the state
bits. An adversary first encrypts the chosen plaintexts (varying the cube bits)
with the same key and initialization vector and sums the respective output bits
over the n-dimensional Boolean cube to compute the right hand side of the
corresponding equation. This requires about 42 × 21 + 203 × 22 ≈ 29.81 chosen
plaintext bits to find the right hand side of these 245 equations.

To verify the online phase of the attack, we implemented the attack by solving
these linear equations. We first computed the right hand side of each equation
by summing the output bits for all the possible values of the corresponding
cube. This requires an adversary to have access to 29.81 specific output bits. We
then represented these linear equations by a matrix and found that the rank
of the matrix is 234. Applying Gaussian elimination to the underdetermined
system yields a row reduced matrix that can be used with each guess of the 59
underdetermined variables to calculate the remaining 234 variables. This process
enables us to recover all the state bits. Therefore in practice the total attack
complexity is about 29.81 + 2343 + 59× 234× 259 ≈ 272.8.

6 Conclusion

We applied the cube attack to the reduced round version of ACORN. Our anal-
ysis shows that cube attack can recover the secret key with a complexity of 235

when the number of initialization rounds is reduced to 477. We have also tested
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and verified the attack by recovering the actual key bits for a randomly cho-
sen key. The attack can be possibly extended to higher number of initialization
rounds, but it will require a larger cube size which requires a search over very
large cube spaces. It is difficult to evaluate the performance of the cube attack
for larger versions of ACORN without knowing the suitable choices of the cube.
Due to the high time complexity of searching larger cubes, our experiments were
conducted only for smaller cube sizes. Also, note that the cubes identified for
the 477 initialization rounds are only of size 5, whereas the degree of the output
function after 477 round is expected to be much higher than 5. This suggests
that the key and the initialization vector are not mixed properly yet after the
477 rounds; however, it would be interesting to check if this behaviour continues
for higher rounds of the initialization phase as well.

We have also shown that it is trivial to recover the state bits of the full
version of ACORN with complexity less than exhaustive search, if the same key
and initialization vector is used to encrypt or authenticate multiple sets of input
plaintext. This does not threaten the security of ACORN if it is used as the
designers suggested.
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Appendix

Table 1: Example of Linear Equations obtained for ACORN with
477 Initialization Rounds

Cube Indexes Round Linear Equation
16, 28, 101, 53, 92 477 k3 ⊕ k8 ⊕ k15 ⊕ k17 ⊕ k19 ⊕ k23 ⊕ k25 ⊕ k28 ⊕ k29 ⊕ k62
...

...
...

42, 54, 127, 79, 118 503 k1⊕k2⊕k7⊕k9⊕k11⊕k14⊕k15⊕k18⊕k20⊕k21⊕k22⊕
k29⊕k34⊕k41⊕k43⊕k45⊕k49⊕k51⊕k54⊕k55⊕k88⊕1

19, 73, 11, 104, 102 480 k1 ⊕ k16 ⊕ k18 ⊕ k21 ⊕ k22 ⊕ k55
...

...
...

42, 96, 34, 127, 125 503 k0 ⊕ k2 ⊕ k4 ⊕ k5 ⊕ k8 ⊕ k10 ⊕ k11 ⊕ k12 ⊕ k19 ⊕ k24 ⊕
k39 ⊕ k41 ⊕ k44 ⊕ k45 ⊕ k78 ⊕ 1

13, 106, 97, 0, 104 482 k1 ⊕ k2 ⊕ k3 ⊕ k4 ⊕ k7 ⊕ k9 ⊕ k10 ⊕ k11 ⊕ k14 ⊕ k18 ⊕
k21 ⊕ k25 ⊕ k29 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k35 ⊕ k38 ⊕ k40 ⊕
k43 ⊕ k44 ⊕ k68 ⊕ k77

...
...

...
34, 127, 118, 21, 125 503 k0⊕ k3⊕ k4⊕ k8⊕ k10⊕ k11⊕ k15⊕ k16⊕ k17⊕ k22⊕

k23 ⊕ k24 ⊕ k25 ⊕ k28 ⊕ k30 ⊕ k31 ⊕ k32 ⊕ k35 ⊕ k39 ⊕
k42 ⊕ k46 ⊕ k50 ⊕ k51 ⊕ k52 ⊕ k53 ⊕ k56 ⊕ k59 ⊕ k61 ⊕
k64 ⊕ k65 ⊕ k89 ⊕ k98 ⊕ 1

113, 117, 86, 0, 56 493 k5 ⊕ k7 ⊕ k10 ⊕ k11 ⊕ k44 ⊕ 1
...

...
...

123, 127, 96, 10, 66 503 k0 ⊕ k15 ⊕ k17 ⊕ k20 ⊕ k21 ⊕ k54
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113, 44, 117, 0, 56 493 k5⊕ k7⊕ k8⊕ k11⊕ k12⊕ k13⊕ k16⊕ k18⊕ k19⊕ k20⊕
k27 ⊕ k32 ⊕ k44 ⊕ k47 ⊕ k49 ⊕ k52 ⊕ k53 ⊕ k86

...
...

...
123, 54, 127, 10, 66 503 k4⊕k5⊕k8⊕k9⊕k15⊕k17⊕k18⊕k21⊕k22⊕k23⊕k26⊕

k28⊕k29⊕k30⊕k37⊕k42⊕k54⊕k57⊕k59⊕k62⊕k63⊕k96
42, 125, 21, 127, 118 503 k2⊕k3⊕k8⊕k10⊕k12⊕k15⊕k16⊕k19⊕k21⊕k22⊕k23⊕

k30⊕k35⊕k42⊕k44⊕k46⊕k50⊕k52⊕k55⊕k56⊕k89⊕1

Table 2: Example of Linear Equations obtained for ACORN by
Choosing the Cube Set from the Plaintext Bits

Cube
Indexes

Round Linear Equation

0 58 s73 ⊕ s78 ⊕ s119 ⊕ s214 ⊕ s217 ⊕ s251
...

...
...

41 99 s68 ⊕ s78 ⊕ s113 ⊕ s114 ⊕ s117 ⊕ s119 ⊕ s160 ⊕ s218 ⊕ s224 ⊕ s233 ⊕
s238 ⊕ s255 ⊕ s258 ⊕ s292

0, 7 107 s11 ⊕ s34 ⊕ s72 ⊕ s170 ⊕ s176 ⊕ s209
...

...
...

83, 90 190 s18 ⊕ s33 ⊕ s41 ⊕ s63 ⊕ s71 ⊕ s73 ⊕ s76 ⊕ s79 ⊕ s94 ⊕ s108 ⊕ s109 ⊕
s112⊕ s114⊕ s117⊕ s154⊕ s155⊕ s160⊕ s175⊕ s181⊕ s187⊕ s193⊕
s214⊕ s216⊕ s218⊕ s219⊕ s222⊕ s224⊕ s225⊕ s226⊕ s233⊕ s238⊕
s253 ⊕ s255 ⊕ s258 ⊕ s259 ⊕ s292

0, 21 121 s83 ⊕ s88 ⊕ s127 ⊕ s129 ⊕ s131 ⊕ s174
...

...
...

118, 139 239 s63 ⊕ s83 ⊕ s107 ⊕ s109 ⊕ s115 ⊕ s119 ⊕ s122 ⊕ s124 ⊕ s151 ⊕ s153 ⊕
s158⊕ s159⊕ s160⊕ s162⊕ s165⊕ s168⊕ s169⊕ s175⊕ s179⊕ s183⊕
s187⊕ s193⊕ s198⊕ s200⊕ s201⊕ s204⊕ s206⊕ s211⊕ s213⊕ s215⊕
s218⊕ s219⊕ s222⊕ s224⊕ s225⊕ s226⊕ s233⊕ s238⊕ s245⊕ s247⊕
s249 ⊕ s253 ⊕ s255 ⊕ s258 ⊕ s259 ⊕ s292
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