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Abstract—In this paper, we introduce new methods for re-
leasing differentially private graphs. Our techniques are based
on a new way to distribute noise among edges weights. More
precisely, we rely on the addition of noise whose amplitude
is edge-calibrated and optimize the distribution of the privacy
budget among subsets of edges. The generic privacy framework
that we propose can capture all privacy notions introduced so
far in the literature to release graphs in a differentially private
manner. Furthermore, experimental results on real datasets show
that our methods outperform the standard existing techniques, in
particular in terms of the preservation of utility. In addition, these
experiments show that our mechanisms guarantee ε-differential
privacy for a reasonable level of privacy ε, while preserving the
spectral information of the input graph.

I. INTRODUCTION

Nowadays, Online Social Networks (OSNs) are used by
billions of users to connect and share information. On the
one hand, OSNs can provide useful insights on societal
phenomena such as epidemiology, information dissemination,
marketing and sentiment analysis [20], [27], [34], [35]. On
the other hand, OSNs usually refuse to publish the structure
of their social network graphs due to privacy concerns. Indeed,
social graphs can leak sensitive information about individuals
such as their jobs, diseases or acquaintances, just to cite a
few. In particular if the graph is not properly sanitized, re-
identification attacks are possible [12], [26] as well as other
type of inference attacks [10], [23], [37].

Thus, a special attention was paid in the literature to
design sanitization mechanisms for graphs and their adjacency
matrices. In this work, we focus particularly on differential
privacy [6]. Originally introduced in the context of databases,
differential privacy settles a rigorous framework to privately
release data while permitting a control on the trade-off be-
tween utility and privacy. Because of its rigorous privacy
guarantees, this notion is now at the heart of the research
on data privacy, and the literature on this subject is quite
extensive. For instance, techniques for releasing differentially
private graphs were studied in several previous works [1], [13],
[14], [24], [32].

Any differentially private mechanism gives privacy guaran-
tees with respect to some predefined notion of privacy, which
is concretely parametrized by a neighbouring relation between
inputs. In many papers studying differential privacy on graphs
(e.g., [14]), the privacy notion considered is edge privacy,

which aims at hiding the possible addition or the subtraction
of an edge in a graph. A generalization called edge weight was
introduced in [29]. A stronger notion, called node privacy, has
for objective to hide the presence or absence of a node in the
graph [13]. In addition, other works have adopted another point
of view by working on the adjacency matrix instead directly
of the graph itself [33]. Several ways to release differentially
private matrices were also studied: for private spectral graph
analysis [11], [17], for Singular Value Decomposition (SVD)
[4], [8] or for the Johnson-Lindenstrauss transform [2], [18].
The privacy notions adopted in these papers include row
privacy or coefficient privacy.

In our work, we introduce a very generic framework that
allows for applications fitting with any of the privacy notions
mentioned previously. As a consequence, existing privacy
notions for graphs can be used together with the novel edge-
calibrated algorithms that we propose in the current paper.
Furthermore, as illustrated by Example A in the next section,
there are real-life situations for which the generality of our
framework is necessary.

Our main objective is to propose new techniques for re-
leasing differentially private (directed) weighted graphs. Any
weighted graph admits an equivalent representation given by
the adjacency matrix of the graph. For simplicity and without
loss of generality, we design our model to work on this matrix
representation. More formally, our model considers a space
of databases D, and a matrix-valued query ψ : D → Rn×n
for a parameter n. In particular, we associate a matrix A =
ψ(x) ∈ Rn×n to any database x ⊂ D. Our aim is to release
a private version Ã ∈ Rn×n of A in a differentially private
manner, considering the possible inclusion or exclusion of a
single individual in the databases from D. Going back to the
graph representation, possible vertices of ψ(x) are represented
as integers in [n], and the coefficient Aij = ψij(x) corresponds
to a weight on edge (i, j). For example, most social networks
can be represented as a weighted graph in which vertices
correspond to the individuals and an edge connecting two
vertices i and j is weighted by the number of interactions
between individuals i and j.

A differentially private mechanism is generally obtained by
constructing a randomized algorithm whose noise is calibrated
to some quantity measuring the impact on the output when
adding or subtracting an individual in the database. The most



common example of such a quantity is called the (global) sen-
sitivity and was introduced in the seminal paper on differential
privacy [6]. A refinement of this notion called local sensitivity
was introduced in [28], and used in many subsequent papers to
design new differentially private mechanisms [14], [36]. Our
approach is not designed to subsume [28] (or other notions of
local sensitivities invented so far), but rather is complementary
to it. More precisely, techniques from [28] aim at answering
successive queries f(x1), f(x2), . . . adapting the noise to each
instance xi considered. In contrast, our technique aims at
improving the trade-off of a single instance of a matrix query
ψ(A). Thus, we are convinced that our framework and that
of [28] can be combined together to answer multiple matrix
queries ψ(A1), ψ(A2), . . . while decreasing the privacy budget
required. But we leave this as future work.

Summary of our contributions. Our main contribution
is a new method for sanitizing matrix queries that exploits
the variations among sensitivities relative to some subsets of
matrix coefficients to release differentially private matrices.
Instead of sampling noise from the same distribution for
each coefficient of the matrix, we make use of coefficient-
calibrated sensitivities to tune the noise of our differentially
private mechanism. To achieve ε-differential privacy for a fixed
privacy budget ε, we optimize the distribution of the amplitude
of the noise among coefficients so that coefficients with lower
sensitivities are less perturbed than other ones. This contrasts
with most current methods that do not make any adaptation of
noise to the coefficients considered. More precisely, our main
contributions can be summarized as follows.

1) A general framework to study differential privacy on
weighted graphs. We provide a generic definition of the
neighbouring relation, which can be used to capture most of
the contexts already appearing in the literature (see Section
II-B), but also situations not considered so far (see Example
A). Our framework is generic in the sense that a single
individual can affect not only a single coordinate but rather
several coefficients at the same time, with weights that can
vary for each of them. Our formalism is very close to the
one already introduced in [29], although slightly different (see
Section II-B for details).

2) Block Laplacian mechanism. Our main contribution is
the design of a new type of mechanism, that we coin as block
noisy mechanism. Although it can be applied with many types
of noise, we illustrate our technique with Laplacian noise. Our
new “Block Laplacian” mechanism is a variant of Laplacian
mechanism that takes advantage of the possible inhomogeneity
of sensitivities on coefficients of the considered matrix-query
ψ. More precisely, Block Laplacian mechanism adds noise
on coefficients adaptively with respect to their sensitivities. In
Theorem 5, we describe explicitly the optimal parameters for
Block Laplacian mechanism to be ε-differentially private.

3) Practical use of block noisy mechanisms. In many real-
life situations, the graph structure at stake is rather complex,
and the required knowledge on edges sensitivities is not always
available. For such cases, we design a differentially private
mechanism that, at the cost of a possible loss of accuracy,

allows to give tight approximations of sensitivities. Moreover,
as first noticed in [3] (see also [4], [8]), additive-noise dif-
ferentially private mechanisms (so far Laplacian or Gaussian
mechanisms) can be combined with rank k-approximation
induced by SVD to obtain more accurate results (at least for
small values of k). Thus, our mechanism can be post-processed
by SVD as well, and we show in our experiments that this
post-processing improves the resulting utility.

4) Experimental validation. When combining Block Lapla-
cian mechanism with SVD post-processing, we call the re-
sulting algorithm BlockLaplacianThenSVD. We use our im-
plementations of the Block Laplacian mechanism and Block-
LaplacianThenSVD to compare them experimentally to Lapla-
cian mechanism and LaplacianThenSVD , as well as to non-
private k-rank approximation, as a measure of the quality of
these private algorithms. We apply these algorithms on real
datasets of Call Detailed Records (CDRs) of a major mobile
phone operator, in a real-life scenario explained in details in
Example A. Our experiments show that for small values of
the rank parameter k, our algorithm BlockLaplacianThenSVD
require only a limited level of noise, for a reasonable level of
privacy (i.e., ε ∼ 1). Moreover, we illustrate how the quality
of these algorithms degrades as parameter k grows larger. We
believe that this study is of independent interest to understand
more deeply the level of privacy offered by differential privacy
in real-life scenarii.

Outline. This paper is organized as follows. First, Section II
introduces our model, our motivating example for concrete
applications and the basic notions related to differential pri-
vacy. Then, Section III develops our new framework for
Laplacian noise mechanisms. Afterwards, Section IV provides
a framework for using our new algorithms in practice, in
particular when sensitivities of the released graphs are not well
understood. Our experiments are explained and analyzed in
Section V. Finally, we compare our techniques to the existing
literature in Section VI, before concluding in Section VII.
We refer to the Appendix VIII for privacy proofs, additional
experimental results, and an analysis of “Block Gaussian”
mechanism .

II. DIFFERENTIAL PRIVACY ON GRAPHS AND MATRICES

This section introduces the basic notions related to differen-
tial privacy used in this paper as well as describing our main
motivating example for this work.

A. Matrix model for private graphs

In this paper, we consider the situation in which a sanitizer
owns databases x ⊂ D and wants to release some graphs
(ψ(x))x⊂D in a differentially private manner. We chose to
give an equivalent representation of graphs ψ(x) as matrices
via their adjacency matrices, for simplicity in mathematical
manipulations (e.g., SVD).

To define our model and our neighbouring relation more
formally, let n be a parameter and let ψ : D → Rn×n be a
query function mapping any (sub)database x ⊂ D to a n× n



real-valued matrix A = ψ(x) ∈ Rn×n. We fix ψ once and for
all, which is why we omit to write it in the sequel.

We study randomized mechanisms A : A 7→ Ã releasing
a differentially private version Ã of matrix A with respect to
the following notion of neighbourhood on matrices.

Definition 1 (Neighbouring relation): We say that two sub-
databases x, x′ ⊂ D are neighbours, which we denote by x ∼
x′, if they differ from the records of a single individual from
the database D. In this situation, these two matrices A,A′ ∈
Rn×n are said to be neighbours, and we denote by A ∼ A′

the fact that they come from two neighbouring sub-databases
x, x′ ⊂ D (i.e., if A = ψ(x) and A′ = ψ(x′) for x ∼ x′).

We now describe one of the main example that motivated
this work, namely the sanitization of mobility traces. Mobility
traces are known to be privacy-sensitive due to re-identification
and inference attacks possible on this type of data [30], [9].

Example A (Mobility analysis from mobile phone usage):
In this example, D contains mobility data generated by phone
usage, also named Call Details Records (CDRs). More pre-
cisely, assume that the sanitizer owns some datasets x ⊂ D,
each containing the following information related to calls of
users: timestamp and location of calls (given by the location
of the corresponding antenna) during some fixed period.

More formally, we consider a phone network composed
of n antennas. The phone operator owns the information
xI1 , . . . , xIN of N individuals I1, . . . , IN . For a given pair
of antennas (i, j) (called transition (i, j) in the sequel), we
count the number of times a call at antenna i was followed by
a call at antenna j, during the observation period: we denote
by ψij(xIk) = AIkij ∈ N this particular variable for user Ik.
For each transition (i, j), i, j ∈ [n], we then aggregate the
scores over all individuals as follows:

Aij =

N∑
k=1

AIkij .

This aggregated value can be represented by a matrix A =
(Aij)ij , and the objective is to release A privately with respect
to the impact of the addition or subtraction of an individual
in the database.

Remark that the above modelling is very generic and could
applied to many other situations, such as e.g., social networks
or history of log files. A crucial notion when designing
differentially private mechanisms is the sensitivity of the query
or the object to release. In fact, any differentially private
mechanism calibrates the amplitude of the noise applied to this
sensitivity. Hereafter, we provide the definition of sensitivity
that we have adopted in our methods, which is the analog of
the sensitivity of a query, thinking of A as the answer of a
query. We point out that we could define the sensitivity in
other ways, depending on the mechanism we want to design
and the type of noise used to perturb the output.

Definition 2 (`1-sensitivity for matrices): The `1-sensitivity
for matrices ∆`1 is given by the formula

∆`1 = max
A′∼A

∑
i,j

|Aij −Aij ′|

in which the max is taken over all possible pairs of neighbours
A ∼ A′.

B. Relationship with existing privacy notions for graphs and
matrices

Many privacy notions for graphs can be interpreted in
terms of Definition 1, by setting the appropriate notion of
neighbouring relation. In particular, our methods can directly
be applied in contexts in which the following notions of
privacy occur.

Edge privacy for graphs [14]. In this notion, two graphs are
neighbours if they differ by a single edge. This is a particular
case of Definition 1 in which an individual is represented as
a single edge.

Node privacy for graphs [13]. With this notion, two graphs
are neighbours if they differ by a single vertex. Node privacy
can also be modelled by Definition 1, in which we identify
an individual as a single vertexacting only on the weights
corresponding to edges connected to this vertex.

Row privacy for matrices [8]. Two matrices are neighbours
if they differ by a single row. This notion is a particular
instance of Definition 1 in which each row of the matrix can
be perturbed by one and only one individual.

Remark that Example A cannot be modelled by any of the
above privacy notion, since it allows individuals to act through
weights on arbitrary edges of the graph.

Edge weight privacy [29] The closest neighbouring notion
to ours is given by Definition 2.1 in [29], which introduced
differential privacy with respect to edge weight for the first
time. However, our notion is slightly different since we do
not assume a uniform bound on Aij−A′ij , even after normal-
ization. Rather, we provide a practical mechanism that can
handle situations in which there is no a priori knowledge on
such a bound on sensitivities (see Section IV). As in [29],
our individuals can be represented as weight functions, but
in practice (see Example A), we only use weight functions
restricted to a small subset of edges.

C. Achieving differential privacy on matrices

We start with the definition of differential privacy stated in
the context of matrices. Let P(E) denote the probability that
the event E occurs.

Definition 3 (ε-differential privacy for matrices): Let

A : Rn×n → Rn×n

A 7→ Ã

be a randomized mechanism, and ε > 0. We say that a
mechanism A is ε-differentially private if

P(Ã ∈ S)

P(Ã′ ∈ S)
≤ eε for all S ⊂ Rn×n and all A ∼ A′.

The most basic ε-differentially private mechanism [3] that
releases a private version Ã of a matrix A is called the Lapla-
cian mechanism and is obtained by the following formula:

Ã = A+B ,



in which B ∈ Rn×n is a random matrix such that coeffi-
cients (Bij)ij are independent Laplace random variables with
parameter λ = ε

∆`1
.

In many real-life scenarii (such as the one described in
Example A), it occurs that some coefficients of the matrix
A are not sensitive by nature. In practice, this means that
no individual from the database has an impact on such
coefficients. To preserve the coherence of the output as well
as the accuracy of the model, these non-sensitive coefficients
should not be perturbed by the mechanism. In the sequel, we
will use the notation

S = { (i, j) ∈ [n]2 |Aij 6= Aij
′ for some A ∼ A′ } ,

to represent the set of all sensitive coefficients of matrices
resulting from our database D. The complement of this set,
which is the set of non-sensitive coefficients, is invariant
under the neighbouring relation ∼. In particular, the Laplacian
mechanism described above remains ε-differentially private if
only coefficients (i, j) ∈ S are perturbed by Laplacian random
variables.

Example A (Non-sensitive coefficients for CDRs): Going
back to Example A about mobility data issued CDRs, it
appears that many transitions (i, j) are non-sensitive (i.e., no
transition occurs between antenna i and antenna j, which
means Aij = 0). Indeed, CDRs reflect the mobility patterns
of the users, which results in a sparse transition graph and
thus also a sparse matrix. Hence for Example A, we have the
following description for the set of sensitive coefficients :

S = { (i, j) | AIij 6= 0 for at least one user I }.

III. BLOCK SENSITIVITIES AND BLOCK LAPLACIAN
MECHANISM ON MATRICES

This section describes the main contribution of our work,
which is a differentially private mechanism adapted to block
sensitivities. For simplicity in the following privacy proofs, we
investigate the case of Laplacian random variables to introduce
our methods. The interested reader is referred to the Appendix
for the analog results for Gaussian mechanisms.

The first part of this section provides explanations and gives
the intuition behind our technique and the design of Block
Laplacian mechanism depending on a given partition of the
coefficients of matrices, and their corresponding sensitivities.
Afterwards, the second part shows how our framework can be
used in the situation in which only coefficient sensitivities are
known, which is a more realistic case.

A. Sensitivity on groups of coefficients and Block Laplacian
mechanism

When restricted to sensitive coefficients, the standard Lapla-
cian mechanism on a matrix A uses the same amplitude
perturbation λ = ε

∆`1
for all coefficients Aij , (i, j) ∈ S (see

Section II-C). However, due to particular characteristics of the
dataset D and the matrix query ψ, it may happen that the
sensitivity is mostly located on some specific coefficients. In
contrast, some other coefficients could be almost private while

being sensitive, in the sense that the inclusion or exclusion of
a single individual in databases from D does not significantly
impact them. In this situation, almost private coefficients
should not be perturbed as much as the most sensitive ones.
Hereafter, we show that it is possible to design a mechanism
that we call Block Laplacian mechanism, which perturbs the
almost private coefficients with a lower level of noise. In a
nutshell, the Block Laplacian mechanism allows for much
better utility than standard Laplacian noise, while providing
exactly the same privacy guarantees.

For simplicity in the rest of this section, we write the `1-
sensitivity as ∆ instead of ∆`1 . We also fix a partition (Sk)Kk=1

of the set S of sensitive coefficients, and we denote by nk the
cardinality of the set Sk. We are interested in the changes
occurring in each block of indices Sk of matrices A = ψ(x),
x ⊂ D, when we add or subtract an individual in the database.

Definition 4 (Block sensitivities for matrices): The block
sensitivities for matrices (∆Sk)k relative to the partition
(Sk)Kk=1 are defined as follows:

∆Sk = max
A′∼A

∑
(i,j)∈Sk

|Aij −Aij ′| .

For convenience of notations, we denote ∆Sk by ∆k when
the context is clear. If the partition has a single element (i.e.,
S1 = S), then we recover sensitivity as defined in Section
II-A. We are now ready to state our main result.

Theorem 5 (Block Laplacian mechanism): Let ε > 0 and let
(Sk)1≤k≤K be a partition of the set S of sensitive coefficients.
We define

λk =
ε

∆k
× 1∑K

j=1

√
nj∆j

nk∆k

.

The Block Laplacian mechanism A : A 7→ Ã is defined by
the following formula:

Ãij = Aij +Bij

in which :
- Bij = 0 if (i, j) /∈ S;
- Bij is a Laplace random variable of mean 0 and standard
deviation σk =

√
2

λk
if (i, j) ∈ Sk. In this case, mechanism A

is ε-differentially private. Moreover, (λk)k defined as above
is an optimal choice in the following sense: writing λk = εk

∆k

for all k, our choice realizes the minimum of the mean-error
function

ϕ(ε1, . . . , εK) =

K∑
k=1

nk ×
∆k

εk

under the constraint that ε =
∑K
k=1 εk.

Note that the second part of Theorem 5 asserts that, once a
partition (Sk)k is fixed, our choice of (λk)k (or equivalently
(εk)k) minimizes the mean-error among the possible other
divisions (ε′k)k of the privacy budget ε =

∑
k ε
′
k. More

precisely, our choice of (λk)k is made to minimize the `1
mean-error on coefficients E(

∑
i,j |Aij−A′ij |). We chose the

latter distance since it is natural when using mechanisms like



the Laplacian one. However, one could prefer to minimize
another distance [8], such as the `2 mean-error on coefficients√
E(|Aij −A′ij |2), also called the Frobenius norm. In this

case, the optimal budget division requires other values of
(λk)k, obtained by minimizing the `2 theoretical error.

The choice of the partition (Sk)k is not trivial, and depends
completely on the structural properties of the pair data/query
we are looking at, which is the pair D/ψ with our notations.
Hence to provide an accurate model, the owner of the sensitive
data needs to have some knowledge about the localization of
coefficient sensitivities of its possible output matrices A =
ψ(x). If the graph structure at stake is too complex to provide
an a priori useful information on sensitivities, we propose in
Section IV-B a mechanism that handles the computation of
sensitivities while providing differential privacy guarantees.

B. Designing the partition (Sk)k from the knowledge of coef-
ficients sensitivities

The quality of the Block Laplacian mechanism depends on
a clever choice of some partition (Sk)k of the coefficients. In
this section, we explain how to design such a good partition
when only coefficient sensitivities ∆ij are known to the
sanitizer (and not all sensitivities ∆k for all possible choice
of partition (Sk)k). This reduction for designing a partition is
particularly interesting when no knowledge at all is available
on sensitivities, as explained in the Section IV-B.

The sensitivity on coefficient (i, j) is defined as

∆ij = max
A∼A′

|Aij −Aij ′|.

For a given threshold τ > 0, we can easily define a partition
Pτ = (S1, S2) as follows:

S1 = { (i, j) | ∆ij > τ } and S2 = { (i, j) | ∆ij ≤ τ }.

The best value τ for our purpose is the one that minimizes the
mean error of Block Laplacian mechanism, which is straight-
forwardly and efficiently computable from Theorem 5. More
details on the computation of the best τ , and generalization to
the case K > 2 are given in the Appendix.

This design of partition (Sk)k provides good performance
with Block Laplacian mechanism when a single individual
affects a small number of coefficients of the matrix, as shown
by our experiments in Section V. Indeed, if the action of a
single individual is restricted to a small subset of coefficients,
then sensitivities ∆ij relative to each coefficient (i, j) can be
used to approximate well-adapted partitions. Let m denote a
bound on the maximum number of coefficients affected by a
single individual. Then, fix τ > 0 and let Pτ = (S1, S2) be as
above. It is easily seen that ∆2 ≤ m × τ , and that for small
values of m, τ , a noise calibrated to ∆2 certainly perturbs
coefficients of S2 much less than a noise calibrated to global
sensitivity ∆.

Example A (m, S1, S2 in the case of CDRs): In Example
A and for our data (see Section V), the value of m is rather
small. More precisely, it is around 20∗20 for a matrix of size
n = 1666, which means that an individual contributes to at
most 400 coefficients from 1666 ∗ 1666 coefficients in total.

Moreover, most of the calls are made on site (e.g., at home or
at work), which means that most of the cells impacted are the
ones related to transitions of the form (i, i), which correspond
to diagonal coefficients. Thus, sensitive transitions in S1 are
more likely to be diagonal transitions (i, i), and non-sensitive
transitions non-diagonal transitions (i, j) for i 6= j.

IV. IMPROVEMENTS FOR PRACTICAL USE OF BLOCK
LAPLACIAN MECHANISM

The aim of this section is two-fold. First, we explain how to
design a differentially private mechanism when no information
about sensitivities is known, and then we apply this principle
to design a version of Block Laplacian mechanism for such
situations. Second, we recall that a combination of Block
Laplacian mechanism and a k-rank approximation can provide
better results.

A. A differentially private mechanism for unknown sensitivi-
ties

In this section, we consider only one-dimensional queries
f : D → R that are linear with respect to individual data, i.e.,
f(x) =

∑
I∈x f(xI) in which xI is the data of individual

I and I ∈ x means that the data of this individual xI
is part of the dataset x. Now, we design a differentially
private mechanism, that can be used in situations when no
accurate approximation on the sensitivity ∆ = ∆(f) is
known to the sanitizer. The idea of query-truncation behind
this mechanism, which already appeared in Algorithm 1 from
[13], is as follows. First, we choose a reference-database x0

upon which our protocol depends. Afterwards, we compute
∆x0

= maxI∈x0
|f(xI)|, and we choose an individual I0 from

x0 realizing this maximum, which means that ∆x0
= f(xI0).

Then, we define fx0
as fx0

(xI) = f(xI) if |f(xI)| ≤ ∆x0
,

and fx0(xI) = f(xI0) if |f(xI)| > ∆x0 (this correctly defines
f(x) for all x ∈ D by linearity). We also define the mechanism
Ax0

by

Ax0(f)(x) = fx0(x) + Zx0 for all x ∈ D,

in which Zx0
is a random Laplacian of parameter

√
2∆x0

ε .
Theorem 6: The mechanism Ax0

as defined above is ε-
differentially private.

The most important remark is that the sanitizer is not
allowed to change the reference-database x0 in order to
preserve the differential privacy guarantees. For instance, if
x0 and x1 are two distinct databases, and Ax0

, Ax1
are each

ε-differentially private, then the composition of Ax0
and Ax1

is not 2ε-differentially private (in contrast to the composition
theorem in [7]). The reference-database x0 should reflect the
global behaviour of databases x ⊂ D. In this case, the error
due to the truncation operation f → fx0

is small. For instance,
this can be achieved by taking x0 as large as possible (this
depends on the amount of data owned by the sanitizer): only
a few outliers I out of x0 may satisfy |f(xI)| > Mx0

. We
highlight the fact that protocol Ax0 does not depend on a
particular instance x ∈ D, if the sanitizer fixes x0 once and



for all. This approach should not be mistaken with instance-
based mechanisms of the form f(x) +Zx, in which the noise
Zx depends on the instance value x [28].

B. Block Laplacian mechanism when coefficient sensitivities
are unknown

Hereafter we use the idea of the previous section, combined
with our results from Section III, to design a version of Block
Laplacian mechanism when no information is known about
the sensitivities ∆ij . We only sketch how techniques described
previously in this paper could be combined (see the Appendix
for more details).

To apply the result of the previous section, we need to
assume that each coefficient query ψij is linear (as described
in Section IV-A), and we denote the result of this query on
individual I by AIij . The various techniques seen so far could
be combined as follows.

1) Choose a reference-database x0 ⊂ D.
2) Compute the sensitivities of the reference ∆x0,ij =

maxI∈x0
|AIij |

3) Compute a partition (Sx0,1, Sx0,2) and the correspond-
ing sensitivities (∆x0,1,∆x0,2), using Search for 2-
blocks partition with ∆x0,ij instead of ∆ij .

4) For each 1 ≤ k ≤ K, find Ik0 realizing the maximum
∆x0,k =

∑
(i,j)∈Sx0,k

|AI0ij |.
5) Define the truncation version Ax0

of matrix A by the
following formulae, for (i, j) ∈ Sx0,k :

AIx0,ij = AIij if
∑

(i,j)∈Sx0,k

|AIij | ≤ ∆x0,k

= A
Ik0
ij otherwise.

6) Given a privacy parameter ε, define the randomized
mechanism Ax0

: A → Ã by Ãij = Ax0,ij + Bij in
which Bij is a random matrix defined as in the statement
of Theorem 5, in which Sk (resp. ∆k) is replaced by
Sx0,k (resp. ∆x0,k).

Theorem 7: Assuming the linearity of each coefficient query
ψij , the mechanism Ax0 defined above is ε-differentially
private.

The previous protocol relies on the computation of sen-
sitivities ∆x0,ij , which is far more efficient and reasonable
than computing all sensitivities ∆x0,S1

,∆x0,S2
for all possible

choice of partitions S = S1 tS2. Note that Example A meets
the linearity assumptions of this section.

C. Improving the performance using the Singular Value De-
composition

A well-known fact is that the amount of noise in additive-
noise mechanisms can be reduced by performing a k-rank
approximation on the perturbed matrix for a rather small pa-
rameter k. Since this operation is performed after the addition
of noise, differential privacy guarantees are still preserved.
Such a post-processing was already used in previous works
on differential privacy [3], and especially in [22] to produce
recommendation systems with differential privacy guarantees.

The benefits of using this approach will be demonstrate in our
experiments conducted in the next section.

V. EXPERIMENTS ON REAL-LIFE DATASETS

Our experiments have two main objectives. The first one is
to provide experimental evidences that the use of block sen-
sitivities in additive noise mechanisms, outperforms uniform
amplitude noise mechanisms. Secondly, BlockLaplacian and
BlockLaplacianThenSVD depend on several parameters ε, k,
K, (τi)i, and our experiments show the dependence of the
accuracy of our results on these parameters.

A. Experimental setting

In this section, we provide the details of our experimental
setting such as the description of the algorithms and datasets
used as well as the evaluation metrics upon which we rely.

Mechanisms and notations.
1) L stands for Laplacian mechanism (see Section II-C),

and BL for Block Laplacian mechanism (see Section
III-A).

2) LSV D (respectively BLSV D) stands for Lapla-
cianThenSVD (respectively BlockLaplacianThenSVD)
discussed in Section IV-C.

3) SV D is the standard k-rank approximation.
The differentially private mechanisms L, LSV D are compared
with respect to the same level of privacy ε, and over a unique
number N of individuals in the data. The parameters ε and N
are detailed in the next section.

Evaluation of our results. The standard distance used in
the literature to measure the closeness of two matrices is
the Frobenius norm, which is induced by the `2-norm on
coefficients. In this paper, we chose to evaluate our results with
a close variant of the Frobenius distance, which is given by
the `1-norm on coefficients and measures the distance between
two matrices A,B ∈ Rn×n by the following formula:

|A−B|1 =
∑

1≤i,j≤n

|Aij −Bij |.

This measure is more natural for algorithms using Laplacian
random noise since it relates more closely to the subsequent
definition of sensitivity, whereas the `2-norm would be more
adapted to Gaussian random noise.

Moreover, as we consider large matrices and large datasets,
the quality of the results may not be easy to interpret. To
ease this interpretation, we normalize the above distance as
follows. We choose randomly 2l datasets x1, . . . , x2l ⊂ D all
of the same size N , and we consider the associated matrices
A1 = ψ(x1), . . . , A2l = ψ(x2l). Afterwards, we define the
normalization factor by

dl =
1

l
×

l∑
k=1

|A2i−1 −A2i|1 ,

and our distance d for evaluation by

d(A,B) =
1

dl
× |A−B|1.



Assuming convergence of (dl)l to some average value, the
intuition behind our choice of metric d is that a value d(A, Ã)
close to 1 should be interpreted as a good result, when large
datasets are considered. Indeed, this means that the sanitized
matrix Ã is as close from A as two matrix queries over random
samples of individuals both of the same size, and thus that Ã
captures statistical information contained in matrix A.

Call Details Records. Our dataset is composed of Call
Details Records from a major telecom operator. In particular,
CDRs contain timestamps and location of mobile phone calls
(in terms of the antennas in which the calls transit). From
these data, we can build the mobility matrices of users as
explained in Example A. Afterwards, we count the number of
transitions between antennas over a period of two weeks. The
total number n of antennas is equal to 1600 in our dataset.

B. Results and analysis

Experiments were implemented in Scala programming lan-
guage using the BigData library Spark. The following results
are obtained from CDRs of a population of N = 33000 mobile
phone users. A significant convergence of (dl)l is obtained for
l ∼ 10. For our dataset and queries, low values for parameter
K are sufficient for Block Laplacian mechanism to outperform
standard Laplacian mechanism (more precisely, K = 2 with
τ = 10, or K = 3 with τ1 = 10, τ2 = 100). We believe that
for other applications with a more complex graph structure,
larger values of K allow for even better improvements. We
give details in the Appendix on how we proceed to choose
K, which follows the heuristic introduced in Section III-B.
Our experiments show that block-sensitivities mechanisms
outperform their global-sensitivity analogs. However, results
of BL are still far from being reasonable since we obtain in
the best cases d(A, Ã) ∼ 2.103 (see the Appendix for the
display of results).
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By contrast, the algorithms LSV D and BLSV D reach
some admissible values (that is d(A, Ã) ∼ 1), while providing
a relatively high level of privacy (ε = 0.1). Moreover, when
k is chosen sufficiently small, the error is very close to
that of k-rank approximation without noise perturbation (i.e,
d(A, Ã) ∼ d(A,Ak)). This means that the spectral information
of a sanitized matrix (namely the smallest eigenvalues and

their respective eigenvectors) is statistically close (in the sense
of distance d) to that of an unperturbed matrix. Such results
were already obtained in [22], using LSV D. Our experiments
show that for all values of k, BLSV D outperforms LSV D,
which means that results from [22] can be improved by using
block-sensitivities mechanisms.
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VI. RELATED WORK

To the best of our knowledge, the closest idea in spirit
with our algorithms is the matrix mechanism introduced in
[19]. For both our works, the aim is to optimize the privacy
budget on coefficients. While optimizations from [19] need to
solve rank-constrained semi-definite program, our distribution
of noise among coefficients relies only on a theoretical result
given in Theorem 5 (at least when the graph structure is
well-understood by the sanitizer). Even if no knowledge on
coefficients sensitivities is available, we propose in Section IV
an efficient framework to apply our techniques. Compared to
[19], we also use a much more general neighbouring relation,
allowing for more applications on real-datasets.

The idea of using SVD as a post-processing of an additive
noise mechanism appeared first in [3]. Other related techniques
can be found in [4] and [8], and an application to recom-
mendation systems was done in [22]. As mentioned before,
algorithm BLSVD uses idea from [3] combined with our new
additive noise mechanism, and outperforms (at least on the
data we considered) prior techniques as explained in Section
V. In particular, the authors of [22] proved that a combination
of Laplacian mechanism and k-rank approximation may be
used to release differentially private recommendation systems
with reasonable accuracy. Since the combination of Block
Laplacian mechanism and k-rank approximation results in a
better accuracy for a same level of noise, our algorithms can
a fortiori be used to sanitize recommendation systems.

Differentially private graphs were studied by various authors
[1], [13], [14], [24], [32]. Most of these previous works aim
at releasing graph statistics in a differentially private manner,
and to obtain (if needed) a synthetic graph by sampling from
these private statistics using ad-hoc techniques such as the
Kronecker model [25], [15] or the exponential model [16],
[21]. However, these sampling techniques do not fit with many



real-life situations, such as for instance with the example that
has motivated this work. Moreover, we point out that our meth-
ods are much more flexible regarding possible neighbouring
notions of privacy (see Section II-B for a comparison with
edge and node privacy from [14] and [13]).

Authors of [33] focused on privacy-preserving spectral
graph analysis, which aims at publishing private eigenvec-
tors and eigenvalues of the adjacency matrix. Other efforts
were made in [11] and [17] to give theoretical bounds for
differentially private spectral theory. The main drawback of
the latter techniques is a lack of control on neighbour spectral
projections (see for instance the bounds from Theorems 4
and 6 in [8]). For this reason, we prefer to adopt a rank
k-approximation post-processing, which was already used
successfully on real-datasets in [22].

VII. CONCLUSION

In this paper, we introduce new methods for releasing
differentially private graphs that are based on a new way to
distribute noise among edges weights. In addition, the generic
privacy framework that we propose can capture all privacy
notions introduced so far in the literature to release graphs
in a differentially private manner. Experimental results on
real datasets show that our methods outperform the standard
existing techniques in particular with respect to utility.
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VIII. APPENDIX

In this appendix, we provide the proofs of our theorems,
theoretical results on Block Gaussian mechanism (the analog
of Block Laplacian mechanism with Gaussian random vari-
ables), the pseudo-codes of our algorithms as well as more
results about our experiments.

A. Proofs
In the following, we use the notation gZ to denote the

distribution of a random variable Z. First we recall the design
of the standard Laplacian mechanism for matrices before
giving its proof (to be compared to the proof of Theorem
5).

Theorem 8 (Laplacian mechanism for matrices [3]): Let
ε > 0 be the privacy parameter and λ = ε

∆`1
. The Laplacian

mechanism for matrices is defined as A : Rn×n → Rn×n,
A 7→ Ã by

Ã = A+B

in which B is a random matrix such that coefficients (Bij)ij
are independent random variables chosen as follows:
- Bij = 0 for (i, j) /∈ S.
- Bij is a Laplacian random variable with mean 0 and standard
deviation σ =

√
2
λ for (i, j) ∈ S. In this case, mechanism A

is ε-differentially private.

Proof of Theorem 8. By definition, the mechanism A is
ε-differentially private if and only if for all matrices A′ ∼ A,
and all subsets S = (Sij)ij ∈ Rn2

, we have

P(Ã ∈ S)

P(Ã′ ∈ S)
≤ eε.

Since the Ãij are independent random variables, and Ãij =
Aij = Aij

′ for (i, j) /∈ S, we need to show∏
(i,j)∈S

P(Ãij ∈ Sij)
P(Ã′ij ∈ Sij)

≤ eε for all S = (Sij)ij ∈ Rn
2

.

We have gÃij (y) = µ × e−λ|y−Aij | and gÃ′ij (y) = µ ×
e−λ|y−A

′
ij | (µ being the relevant normalization coefficient).

The previous condition on probabilities is equivalent to the
following condition expressed in terms of the relevant distri-
bution: ∏

(i,j)∈S

gÃij (yij)

gÃ′ij (yij)
≤ eε for all (yij) ∈ Rn

2

.

Using the triangle inequality, the following holds
gÃij (yij)

gÃ′ij (yij)
= e− λ×(|y−Aij |−|y−A′ij |)

≤ e−λ×|Aij−A
′
ij |.

Hence, from the definition of sensitivity ∆`1 , it follows that∏
(i,j)∈S

gÃij (yij)

g ˜A′ij(yij)

≤ eλ×
∑

(i,j)∈S |Aij−A
′
ij |

≤ e(ε/∆`1 )×
∑

(i,j)∈S |Aij−A
′
ij |

≤ eε.

This completes the proof.
Now we provide the proof regarding Block Laplacian mech-

anism.
Proof of Theorem 5. First, we set εk = ε×

√
n.k∆k∑K

j=1

√
nj∆j

so

that λk = εk
∆k

. From this, it is clear that
∑K
k=1 εk = ε. The

proof of privacy of Theorem 5 is similar to that of Theorem 8,
in which we replace λ by the relevant λij . This change occurs
at the end of the computation in the following manner.∏

(i,j)∈S

gÃij (yij)

g ˜(A′ij
(yij)

≤
∏

(i,j)∈S

eλij×|Aij−A
′
ij |

= e
∑

(i,j)∈S λij×|Aij−A
′
ij |

= e
∑K
k=1 λk×

∑
(i,j)∈Sk

|Aij−A′ij |

≤ e
∑K
k=1 λk×∆k

= e
∑K
k=1 εk

≤ eε.
Hence A is ε-differentially private.

We are left with proving the second assertion of Theorem
5. To realize this, we need to prove that our choice of
(λk)k (or equivalently (εk)k) minimizes the `1 mean-error on
coefficients err := E(

∑
ij |Aij − Ãij |). First note that the

following equalities hold:

err =
∑

(i,j)∈S

E(|Bij |)

=

K∑
k=1

∑
(i,j)∈Sk

E(|Bij |)

=

K∑
k=1

nk ×
∆k

εk
.

It is now easy to show that our choice of (εk)k, that is
εk = ε×

√
nk∆k∑K

j=1

√
nj∆j

, minimizes the functional ϕ(ε1, ...εK) =∑K
k=1 nk×

∆k

εk
under the constraint ϕ(ε1, ...εK) =

∑K
k=1 εk =

ε. Using Lagrange multipliers, a local extremum for ϕ satisfies
gradϕ(ε1, ...εK) = µ × gradϕ(ε1, ...εK) for some scalar µ.
This equation together with the constraint gives the form of
(εk)k as stated in Theorem 5. In particular, such an extremum
is unique and it is obviously a minimum, which concludes the
proof.

In the following, we give proof of Theorem 6.
Proof of Theorem 6. The proof goes as the classical

proof for Laplacian mechanism, once noticed that |fx0
(x) −

fx0
(x′)| ≤ ∆x0

for all x ∼ x′, x, x′ ∈ D. It is clear that the
latter inequalities hold by considering the two possible cases
for x ∼ x′:

1) |f(x) − f(x′)| = |f(xI)| ≤ ∆x0
, then fx0

(x) −
fx0(x′) = fx0(xI) = f(xI).

2) |f(x) − f(x′)| = |f(xI)| > ∆x0 , then fx0(x) −
fx0

(x′) = fx0
(xI) = f(xI0).

The proof of Theorem 7 is simply a combination of the
previous proofs of Theorem 5 and Theorem 6.



Proof of Theorem 7. Let two neighbouring matrices A ∼
A′ and let (i, j) ∈ Sx0,k. By the linearity of coefficient-
queries ψij , we have |Ax0,ij − A′x0,ij

| = |AIx0,ij
| for some

user I . The latter quantity is always bounded by ∆x0,k by
the definition of the truncation operation A 7→ Ax0

. Set

εx0,k =
ε×
√
nx0,k

∆x0,k∑K
j=1

√
nx0,j

∆x0,j
so that λx0,k =

εx0,k

∆x0,k
. Using

notations from Section IV-B Ã = Ax0
+ B, the following

equalities hold:

∏
(i,j)∈S

gÃij (yij)

gÃ′ij (yij)
≤

∏
(i,j)∈S

eλx0,ij×|Ax0,ij−A
′
x0,ij |

= e
∑

(i,j)∈S λx0,ij
×|Ax0,ij

−A′x0,ij
|

= e
∑K
k=1 λx0,k

×
∑

(i,j)∈Sx0,k
|Ax0,ij

−A′x0,ij
|

≤ e
∑K
k=1 λx0,k

×∆x0,k

= e
∑K
k=1 εx0,k

≤ eε.

Thus, Ax0
is ε-differentially private.

B. Designing blocks partition from coefficient sensitivities

Hereafter, we provide more details on the algorithm in-
troduced in Section III-B to design a partition (Sk)k from
sensitivities ∆ij . For two given thresholds τ1 and τ2, it is
easy to compare two partitions Pτ1 , Pτ2 once a norm is fixed
to measure the output error. Indeed, the choice of the best
partition should minimize the average error among all possible
partitions. In the case of the Block Laplacian mechanism with
K = 2 and the `1-mean error as a measure on outputs, the
target function to minimize is F (n1, n2,∆1,∆2) =

√
n1∆1 +√

n2∆2 (
√
n1∆1 +

√
n2∆2 is precisely the `1-mean error

on coefficients of Block Laplacian mechanism). To automate
the search of the best partition Pτ , we propose the following
algorithm.

Search for 2-blocks partition
Input: Possible thresholds τ1, τ2, ...τr ∈ [0,∆],
error function F to minimize
Output: Index i of the best partition Pτi for Block noisy
(e.g., Laplacian or Gaussian) mechanism
1. Compute ∆ij for all i, j
2. For k in 1 : r do
3. Compute Pτk = (S1, S2)
4. Compute (∆1,∆2) associated to Pτk
5. Compute F (n1, n2,∆1,∆2)

and denote by Tk the result
6. Return the index of the minimal value in
T = [T1, ...Tr].

It is straightforward to generalize the previous search for
2-blocks partition into a search for K-blocks partition, for

K > 2. Indeed, given the thresholds τ1, τ2, ...τK−1, we define
the partition P(τ i)i = (S1, ...SK) as follows:

S1 = { (i, j) | ∆ij ≤ τ1 }
S2 = { (i, j) | τ1 < ∆ij ≤ τ2 }
. . .

SK = { (i, j) | τK−1 < ∆ij }.

Note that the algorithm Search for 2-blocks partition can
be made much more efficient by using a dichotomous search
of the index, instead of an exhaustive look at the thresholds
τ1, ...τK−1.

C. Block Gaussian mechanism

As mentioned in the core of the paper, block noisy mech-
anisms may be designed with other random variables than
Laplacian ones. For instance, the results of the current section
shows that one can use random Gaussian variables calibrated
to block-sensitivities.

It appears that differentially private mechanisms based on
Gaussian random variables satisfy a slightly weaker guarantee
of privacy than ε-differential privacy, which is called (ε, δ)-
differential privacy.

Definition 9: ((ε, δ)-differential privacy, [6]) A random-
ized mechanism A : Rn×n → Rn×n is said to be (ε, δ)-
differentially private if for all A,A′ ∈ Rn×n, A ∼ A′, and all
E ⊂ Rn×n, we have:

P(A(A) ∈ E) ≤ eεP(A(A′) ∈ E) + δ.

The advantage of using Gaussian random variables in a
differentially private mechanism instead of Laplacian random
variables is that the mechanism can be calibrated to the `2-
sensitivity ∆`2 on coefficients, rather than the `1-sensitivity
∆`1 .

Definition 10: (∆`2 -sensitivity for matrices) The `2-
sensitivity for matrices ∆`2

S for the block S ⊂ S is given
by the formula

∆`2
S = max

A∼A′

√ ∑
(i,j)∈S

|Aij −A′ij |2

in which the max is taken over all pairs of neighbours A ∼ A′.
For S = S, ∆`2 = ∆`2

S is simply called the `2-sensitivity.
Block `2-sensitivities can be defined in the same manner, by

restricting the sum to the indices appearing in the correspond-
ing block. For any S ⊂ Rn×n, we always have ∆`2

S ≤ ∆`1
S and

in higher dimensions (that is for |S| ≥ 2), sensitivity ∆`2
S can

be much smaller than ∆`1
S . Hence, by using Gaussian random

variables instead of Laplacian random variables, one can hope
for a much more precise model while incurring only a small
loss in privacy.

The following theorem is the matrix version of the Gaussian
mechanism used so far in the literature.

Theorem 11: (Gaussian mechanism for matrices, [8]) Let
ε, δ > 0 be the privacy parameters, and S be the set of
sensitive coefficients and let 1

σ =
√
λ = ε

∆`2×
√

2 ln( 1.25
δ )

. The



Gaussian mechanism for matrices is defined as A : Rn×n →
Rn×n, A 7→ Ã by

Ã = A+B

in which B is a matrix whose coefficients are independent
random variables chosen as follows:
- Bij = 0 for (i, j) /∈ S;
- Bij is a centered Gaussian random variable with standard
deviation σ for (i, j) ∈ S.
Then mechanism A is (ε, δ)-differentially private.

Like Laplacian random variables, Gaussian random vari-
ables can also be calibrated to block (`2-) sensitivities. We
have designed the amplitudes of noise to minimize the `1
mea- error on coefficients. This choice of `1-norm instead of
`2-norm allow us to compare Block Gaussian mechanism to
Block Laplacian mechanism in the experimental part of the
paper.

Theorem 12: (Block Gaussian mechanism) Let ε, δ > 0,
and let (Sk)1≤k≤K be a partition of the set of sensitive
coefficients S. We define

1

σk
=

√
λk =

1

∆`2
k

× εk√
2 ln( 1.25

δk
)

in which (δk)k and (εk)k satisfy the following conditions:
-
∏K
k=1(1− δk) ≥ 1− δ;

-
∑K
k=1 εk = ε.

The Block Gaussian mechanism A : Rn×n → Rn×n, A 7→ Ã
is defined as

Ã = A+B

in which the coefficients of matrix B are independent random
variables given by:
- Bij = 0 if (i, j) /∈ S;
- Bij is a Gaussian random variable with standard deviation
σk if (i, j) ∈ Sk.
Then mechanism A is (ε, δ)-differentially private. Moreover,
if we set µk = nk × ∆`2

k ×
√

2 ln( 1.25
δk

), then the choice

εk =
ε×√µk∑K
j=1

√
µj

realizes the minimum of the `1-mean error
function

ϕ(ε1, ε2, ...) =
1√
π
×

K∑
k=1

µk
εk

under the constraint that ε =
∑K
k=1 εk.

Proof of Theorem 12. To prove that our mechanism A is
(ε, δ)-differentially private, it is sufficient to show that for all
A ∈ Rn×n, there exist subsets EA ⊂ Rn×n such that:
(1) gÃ(Y )

gÃ′ (Y ) ≤ e
ε for all Y ∈ EA, A′ ∼ A;

(2) P(Ã /∈ EA) ≤ δ.

We will prove the conditions (1) and (2) with the subsets
EA described as follows:

EA = ∩1≤k≤KEA,k

in which

EA,k = { Y = (Yij)ij ∈ Rn×n |
λk(∆`2

k )2 + (2λk∆`1
k × max

(i,j)∈Sk
|Aij − Yij |) ≤ εk}.

First, we prove that condition (1) is satisfied with our
choice of subsets EA, A ∈ Rn×n. Indeed, we can write each
distribution of the ratio gA(Y )

gA′ (Y ) as follows:

gÃ(Y ) =
∏

(i,j)∈S

gÃij (Yij)

=

K∏
k=1

∏
(i,j)∈Sk

e−λk|Aij−Yij |
2

= e
∑K
k=1

∑
(i,j)∈Sk

−λk|Aij−Yij |2

Afterwards, condition (1) follows from the assumption∑K
k=1 εk = ε, and the following inequalities that hold for

all A ∼ A′, 1 ≤ k ≤ K:∑
(i,j)∈Sk

λk × |(Aij − Yij)2 − (A′ij − Yij)2|

≤
∑

(i,j)∈Sk

λk × (|Aij −A′ij |2 +

2× |Aij −A′ij | × |Aij − Yij |)
≤ λk(∆`2

k )2 + (2λk∆`1
k × max

(i,j)∈S
|Aij − Yij |)

Afterwards, we prove that condition (2) is satisfied. First
remark that we have P(Ã ∈ EA,k) ≥ 1 − δk for all
1 ≤ k ≤ K, by Theorem A.1 p261 in [7] (in which dimension
d of the range space is nk for our proof) and our choice
of σk. Moreover, by our assumption on (δk)k the following
inequalities hold:

P(Ã /∈ EA) = 1− P(Ã ∈ EA)

= 1−
K∏
k=1

P(Ã ∈ EA,k)

≤ 1−
K∏
k=1

(1− δk)

≤ δ.

Thus condition (2) holds as well, which finishes the proof of
the privacy statement of Theorem 12.

The proof of the second statement of Theorem 12
goes exactly as the similar proof of optimization under
constraint used for Theorem 5, using that E(|Z|) = 1√

π×
√
λ

for a Gaussian random variable of standard deviation σ = 1√
λ

.

A possible admissible choice of parameters is δk = δ1 for
all 1 ≤ k ≤ K. Notice that we have δk ∼ δ

K , for small values
of the parameter δ and K small enough (K ≤ 3 is used in our
experiments). Hence for a sufficiently small parameter δ > 0,
the choice δk = 2×δ

K is an admissible choice of (δk)k ito
achieve (ε, δ)-differential privacy.



Remark that in general, we have ∆`2
S < ∆`1

S for a subset
S ⊂ S, whereas we always have ∆`2

ij = ∆`1
ij . In particular,

our algorithm Search K-Blocks Partition is relevant for both
algorithms Block Laplacian mechanism and Block Gaussian
mechanism. As a consequence, a good choice for a partition
(Sk)1≤k≤K of sensitive coefficients relative to Block Gaussian
mechanism can still be obtained using Algorithm Search K-
Blocks Partition. In our experiments, we made the choice of
using the target function F that minimizes the `1-mean error
on coefficients, since it enables us to compare experimentally
Block Laplacian mechanism and Block Gaussian mechanism.
In this situation, a formula for F is given by (see the second
statement in Theorem 12),

F (n1, n2, ...∆1,∆2, ...) =
1√
π × ε

× (

K∑
k=1

√
µk)2.

The Block Gaussian Algorithm is summarized in a pseudo-
code form hereafter. Note that we can also apply some hybrid
mechanisms. For instance, one could a Laplacian perturbation
on coefficients in a subset S2, and a Gaussian perturbation on
coefficients in a subset S1.

D. Pseudo-code of the algorithms

The following algorithm implements a version of Block
Laplacian mechanism that aims to minimize the `1-mean
error on coefficients. Recall that S is the set of sensitive
coefficients, and nk denotes the cardinality of the subset
Sk ⊂ S.

BlockLaplacian
Input: Matrix A, privacy parameter ε,
partition (Sk)1≤k≤K of the set S
Output: Matrix Ã ε-differentially private
1. Compute ∆`1

k = maxB∼B′
∑

(i,j)∈Sk |Bij −B
′
ij |

2. Set λk = ε

∆
`1
k

× 1∑K
j=1

√√√√ nj∆
`1
j

nk∆
`1
k

3. Sample Zk, a 0-mean Laplacian random variable
of standard deviation σk =

√
2

λk

4. Set Ãij = Aij for all (i, j) /∈ S
5. Set Ãij = Aij + Zk for all (i, j) ∈ Sk
6. Output Ã

The following pseudo-code corresponds to the mechanism
explained in Theorem 12 minimizing the `1-mean error on
coefficients. Moreover, for simplicity, we state the algorithm
for values of δk all equal to 2×δ

K .

BlockGaussian
Input: Matrix A, privacy parameters ε and δ,
partition (Sk)1≤k≤K of the set S
Output: Matrix Ã (ε, δ)-differentially private

1. Set ∆`2
k = maxB∼B′

√∑
(i,j)∈Sk |Bij −B

′
ij |2

2. Set µk = nk ×∆`2
k ×

√
2 ln(K×1.25

2×δ ),

εk =
ε×√µk∑K
j=1

√
µj

,

and 1
σk

= 1

∆
`2
k

× εk√
2 ln(K×1.25

2×δ )

3. Sample Zk, a 0-mean Gaussian random variable
of standard deviation σk

4. Set Ãij = Aij for all (i, j) /∈ S
5. Set Ãij = Aij + Gauss(σk) for all (i, j) ∈ Sk
6. Output Ã

Recall that rank k-approximation goes as follows. Let
A = UDV be a Singular Value Decomposition of some
matrix A, in which U and V are unitary matrices and D is
the diagonal of singular values λ1 ≥ λ2 ≥ ... ≥ λn. The
k-rank approximation Ak of A is defined as Ak = UDkV , in
which the diagonal Dk is obtained from the singular values
diagonal D by replacing the n − k lowest singular values
λk+1, ...λn with 0. Simply applying rank k-approximation
to the result of Block Laplacian mechanism could perturb a
little bit the coefficients in the set of non-sensitive coefficients
Sc, which would destroy some useful information. This can
be easily avoided by remembering the coefficients relative
to Sc, and by forcing the result to be unchanged on these
coefficients after the k-rank approximation.

BlockLaplacianThenSVD
(resp. BlockGaussianThenSVD)
Input: Matrix A, privacy parameter ε (respectively
parameters (ε, δ)), approximation rank k
Output: Private matrix Ã of rank k
1. Store the values Aij , for (i, j) /∈ S
2. Apply BlockLaplacian(ε) (resp. BlockGaussian(ε, δ))
to matrix A, and denote by C = A+B the result
3. Compute the SVD C = UDV of matrix C
4. Compute D = Ck k-rank approximation Ck = UDkV .
5. Set Ãij = Aij for (i, j) /∈ S,

and Ãij = Dij for (i, j) ∈ S
6. Output Ã

E. More experimental results

Finally, we provide additional results for our experiments,
in particular for algorithm Search for partition and for Block
Gaussian mechanism.

In the sequel, SP refers to the algorithm Search for (K-
blocks) partition introduced in Section III-B. Given a number
of partitions K and a target function F , this algorithm aims
at computing an approximation of the best τ (or (τi)i if K >
2). Our experiments on SP consider the target function F
minimizing the `1-mean error for Block Laplacian mechanism



as explained in Section II. For algorithm SP , we illustrate the
choice of τ by drawing the dependence of the theoretical error
of various mechanisms on the threshold τ .

For our dataset, and a choice of K = 2 partitions, optimal
values for τ range between 10 and 20 for Block Laplacian
mechanism and τ ∼ 35 for Block Gaussian mechanism. This
result has two important consequences: the design of BL and
BLSVD for K = 2, and the design of SP when we choose a
larger K > 2 number of partitions. For instance when K = 3,
we can chose τ1 = 10 and look at the variations of the error
depending on the other threshold τ2. However, the resulting
curve is slightly more complex than for K = 2. Indeed, case
K = 3 has more dependencies than case K = 2. In details, it
depends on the cardinalities n1, n2 and n3 of the elements of
the partition S1, S2 and S3, and their sensitivities ∆`1

1 , ∆`1
2

and ∆`1
3 .
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We now refer to Block Gaussian mechanism (resp. Block-
GaussianThenSVD) by BG (respectively BGSV D). To com-
pare Gaussian type algorithms to their Laplacian analogs, we
use the `1-norm to measure all errors as defined in Section V.
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Unlike BL and BG, the dependence in ε for algorithms
BLSV D and BGSV D is not linear. We illustrate this fact
on our data in the following figures, and show more precisely
the closeness between BGSV D and unperturbed SV D (for
a same rank k).
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The curves above show that a significant spectral informa-
tion (rank value k = 5) can be preserved using algorithm
BlockGaussianThenSVD, while providing a high level of
privacy (privacy parameters ε ∼ 3, δ ∼ 0.001).


