
Auditable Data Structures

Michael T. Goodrich
Dept. of Comp. Sci., Univ. of California, Irvine

goodrich@acm.org

Michael Mitzenmacher
School of Eng. and Applied Sci., Harvard University

michaelm@eecs.harvard.edu

Evgenios M. Kornaropoulos
Dept. of Computer Science, Brown University

evgenios@cs.brown.edu

Roberto Tamassia
Dept. of Computer Science, Brown University

rt@cs.brown.edu

Abstract—The classic notion of history-independence guarantees
that if a data structure is ever observed, only its current
contents are revealed, not the history of operations that built it.
This powerful concept has applications, for example, to e-voting
and data retention compliance, where data structure histories
should be private. The concept of weak history-independence
(WHI) assumes only a single observation will ever occur,
while strong history-independence (SHI) allows for multiple
observations at arbitrary times. WHI constructions tend to
be fast, but provide no repeatability, while SHI constructions
provide unlimited repeatability, but tend to be slow.

We introduce auditable data structures, where an auditor
can observe data structures at arbitrary times (as in SHI),
but we relax the unrealistic restriction that data structures
cannot react to observations, since in most applications of
history-independence, data owners know when observations
have occurred. We consider two audit scenarios—secure topol-
ogy, where an auditor can observe the contents and pointers
of a data structure, and secure implementation, where an
auditor can observe the memory layout of a data structure.
We present a generic template for auditable data structures
and, as a foundation for any auditable data structure, an
Auditable Memory Manager (AMM), which is an efficient
memory manager that translates any auditable data structure
with a secure topology into one with a secure implementation.
We give a prototype implementation that provides empirical
evidence that the worst-case time running times of our AMM
are 45× to 8,300× faster than those of a well-known SHI
memory manager. Thus, auditable data structures provide a
practical way of achieving time efficiency, as in WHI, while
allowing for multiple audits, as in SHI.

1. Introduction

An important privacy goal for e-voting is that it should
be impossible for an adversary, Eve, to link voters to their
ballots, even if she can inspect the voting machine used in an
election. Unfortunately, several works [22], [32] have pointed
out flaws in the Direct Recording Electronic (DRE) voting
machines deployed for national elections where the votes

were stored in the same order as they were cast. As a result,
in March 2015, the U.S. Election Assistance Committee
approved the next generation of Voluntary Voting System
Guidelines [3], which require ballot images to be recorded
in randomized order by DRE machines. This requirement is
fine for a single observation at the end of an election, but
in an era of electronic voting for elections that can last for
days, this restriction does not go far enough.

For example, an analysis of the Estonian Internet voting
system [29] shows that data center employees may perform
necessary maintenance and periodic back-ups of the servers
where a voting system is deployed. Thus, e-voting systems
should protect the history of how votes have been cast across
multiple observations of the contents of voting machines.

The sensitive nature of update histories also arises in
data retention compliance. For instance, leaving traces of
removed data violates retention policies such as the EU Data
Protection Directive [1] and HIPAA [2]. Compliance with
such retention regulations requires the elimination of any
evidence establishing the past existence of removed data.
Cloud providers and data centers may face liability issues
if one can infer the history of previous operations. Such
systems must also support periodic, scheduled data backups.

The challenge with such applications is that the internal
organization of a data structure may inadvertently reveal
information about its history. For example, an adversary that
observes a data structure might be able to infer information
about the order of the operations or whether data was inserted
and later removed. Depending on the context, this leakage
can be catastrophic for the privacy of the system.

This challenge has motivated the now classic notion
of history-independence (e.g., see [4], [26]), where a data
structure is designed so that if it is ever observed, only
its current contents are revealed, not the sequence of op-
erations that resulted in its current state. Researchers have
considered two types of history-independence. In strong
history-independence (SHI) the adversary gets to observe the
representations of a data structure, D, as many times as she
wants. An additional assumption of SHI is that D doesn’t
know when adversarial observations occur. Based on this
restriction, Harline et al. [19] show that any SHI data struc-

ture must be canonical, meaning that each possible content
set must have a unique representation, which unfortunately
implies that SHI constructions tend to be slow [10], [16].

In weak history-independence (WHI), the privacy goal is
the same as in SHI but the adversary is allowed to view the
representation for D only once. This restriction means that
WHI data structures need not be canonical, which typically
allows for faster performance, but it also means that a WHI
data structure loses all of its history-independence after that
one observation. Thus, WHI data structures are not suitable
for scenarios involving periodic observations. Therefore,
SHI data structures tend to be slow, but allow for repeated
observations, while WHI data structures tend to be fast, but
can only be observed once.

In this paper, we introduce the notion of auditable data
structures, where an auditor gets to observe a data structure
at multiple, arbitrary times, as in the SHI framework, but we
relax the SHI restriction that data structures are not allowed
to react to having been observed. Formally, we assume that
a data structure is notified immediately after it is observed
by the auditor and it is allowed to react to this notification.
Under this framework, WHI can be seen as a special case of
auditable data structures, which we call “one-time auditable.”
The significance of our formulation, however, is that it allows
for more efficient constructions of data structures than their
SHI counterparts while providing stronger privacy guarantees
than their WHI versions, since we allow for multiple audits.
We demonstrate the efficiency of our framework by providing
a generic template for auditable data structures and by
designing and implementing an auditable memory manager
(AMM) that outperforms a well-known SHI memory manager
by several orders of magnitude.

Related Work. Work on history-independence (HI) can
be traced back to Micciancio [23], who introduced an
obliviousness property that requires that the data and link
structure of a search tree yield no information regarding
the sequence of operations that produced the tree. (By the
way, this “obliviousness” property is completely different
than the similarly-named oblivious RAM [12], [17], [18],
[30] and oblivious data structures [31], which are orthogonal
to the concepts of history-independence and auditable data
structures.1) Naor and Teague [26] show that, in addition
to a data structure’s data and link structure, the memory
allocation of a data structure can also leak information
about its history. They introduced the concept of history-
independence, including both the weak and strong variants,
WHI and SHI. Subsequent to these pioneering papers, work
has been done on efficient SHI results, including lower
bounds for SHI queues by Buchbinder and Petrank [10],
a result on SHI Cuckoo Tables by Naor et al. [25], and work

1. In these other “oblivious” models [12], [17], [18], [30], [31], one is
trying to hide the complete state of an out-sourced memory (e.g., through
encryption and obfuscation) while fixing its size and its number of operations,
whereas in HI and auditable data structures, we don’t fix the memory size
nor the number of operations and we are trying to hide the order of
operations and the existence of operations that cancel each other (like an
insert immediately followed by a delete), while still allowing the memory
state to be revealed to an auditor.

by Blelloch and Golovin [9] on a SHI hash table with linear-
probing. With respect to WHI results, Goodrich et al. [16]
present a WHI hash table with linear probing that is faster
in practice than its SHI analogue. Bender et al. [7] propose
a WHI external-memory skip-list as well as a WHI cache-
oblivious B-tree. Hartline et al. [19] show that satisfying the
SHI definition requires a data structure to have a canonical
memory representation, which implies practical inefficiencies.
Such inefficiencies, therefore, are a necessary by-product of
SHI data structures, such as those of Golovin [14], [15], who
constructs complex SHI data structures, such as B-SkipLists
and B-Treaps, by using a SHI memory manager.

History-independence can also play a role in the design of
privacy-preserving systems. For instance, Bajaj and Sion give
a history-independent file system, HIFS [6], that provides HI
across file system and disk layers, and Ficklebase [5], which
is a database that uses SHI data structures for the underlying
database storage engine (to avoid forensic recovery of deleted
information). Chen and Sion propose HI schemes tailored
for flash-based devices [11]. Bethencourt et al. [8] propose
a vote storage system that uses History Hiding Append-Only
Signatures, a concept inspired by HI. Other systems [27],
[28] use HI building blocks to strengthen the overall privacy
of their construction.

Our Contributions.
• We introduce the notion of auditable data structures,

where a passive auditor performs audits unexpectedly
and at arbitrary times. The privacy goals are the same
as in history-independence but the data structure is
allowed to react after an audit has occurred. We also
present a generic template for building auditable data
structures and we introduce the concept of one-time
auditable data structures, which is privacy-equivalent
to weak history-independence.

• We present AMM, a memory manager that translates
any auditable data structure with a secure topology
into an auditable data structure with a secure im-
plementation. The design of AMM is such that the
time complexity is decoupled from the number of
elements, n, stored in the data structure. Specifically,
the time complexity is a function of the number of
operations, S, that were executed since the latest
audit.

• To build AMM, we propose a series of new one-time
auditable building blocks which are of independent in-
terest. In particular, we introduce a resizable memory
management technique for one-time auditable data
structures, called ROTA, that has update time O(1)
in the worst case, whereas the best proposed WHI
memory management technique, presented in [26],
has Ω(n) worst-case time due to resizing. We apply
the core idea behind ROTA to develop a new one-
time auditable dynamic hash table via chaining with
complete binary trees.

• Based on our experiments, our prototype for AMM
has worst-case running times that are 45× to 8,300×
faster than the SHI memory manager used in other
works.

2

2. Preliminaries

Let us begin by introducing some general terminology,
as done in previous work on history independence (e.g.,
see [9], [19], [26]). An Abstract Data Type (ADT) is a
model of a data structure describing the type of data stored,
the operations that can be performed, and the parameters
for each operation. A data structure is associated with a
set of its currently stored elements, which defines the state
of an instance of an ADT. Following the footsteps of the
original work on history-independence [9] we formalize our
framework on dictionaries where the state is a set of elements.
Dynamic data structures typically have ADTs that include
an insertion operation for adding elements and a deletion
operation for removing elements.

Following the approach of Golovin [13], we assume a
semantics for ADT operations that allows one to compute
the state of an ADT instance from the outputs of ADT
operations. That is, we assume a semantics such that each
ADT operation maps an input state and an input (which may
be null) to a next state and an output (which may be null).

In the following, we provide formal definitions of basic
concepts such as pointer structure and memory representation
of a data structure. A record of a data structure is a tuple
consisting of (1) an element and (2) auxiliary data stored
by the data structure for internal use, such as pointers, flags,
sizes, and weights. For example, in a singly linked list, the
auxiliary data of a record is the next pointer.

Definition 1. The pointer structure of a data structure is the
directed graph such that the vertices are associated with the
records and there is an edge from a record r′ to a record
r′′ when the auxiliary data of r′ includes a pointer to r′′.

In case the data structure is not pointer-based (e.g., a
linear-probing hash table), then the pointer structure is an
graph without edges. The pointer structure captures a high-
level abstraction that is indifferent to the memory addresses.
Thus, the pointers at this layer of abstraction carry no
additional information beyond the pairs of records linked, as
illustrated in Figure 1. Using this layered approach, one can
prove the security of the topology of the pointer structure
before proceeding to the more challenging case where the
memory addresses are visible.

Definition 2. A memory representation of an ADT, or simply
representation, is a mapping of the state to the memory used
by an ADT instance and is described as a collection of pairs,

(address, record). (1)

We call memory segment a range of memory addresses
consisting of consecutively stored records.

In a memory representation, a pointer consists of the
memory address of the record it is pointing to, see the bottom
part of Figure 1. From a memory representation, we can
reconstruct both the state and pointer structure of a data
structure. In general, there can be multiple pointer structures
for a given state and multiple memory representations for a
given pointer structure, as illustrated in Figure 1.

Figure 1. Top: two different pointer structures for a linked list with state
{Alice, Bob, Carol}. Bottom: two different memory representations for the
same state and pointer structure of a linked list.

An implementation of a data structure is a function,
F : R × O → R, where R is the set of all possible
memory representations and O is the set of all possible
ADT operations. A sequence of operations S is an ordered
list of ADT operations of the data structure as defined by
the corresponding ADT.

Following terminology of Hartline et al. [19], let a
and b denote memory representations of states A and B,
respectively. Let S be a sequence of operations. The notation
A

S−→ B indicates that S takes the data structure from state
A to state B. Let Pr[a

S−→ b] denote the probability that
starting from representation a of state A, the sequence of
operations S run by the corresponding implementation yields
representation b of state B. The memory representation of
an initialized but empty data structure is denoted by �.

Definition 3. [19] Let A be a state of the data structure. A
data structure implementation is weakly history-independent
if, for any two sequences of operations S1 and S2 that take
the data structure from the initialization to state A, the
distribution over the memory representations after sequence
S1 is performed is identical to the distribution after sequence
S2 is performed. That is:

(� S1−→ A) ∧ (� S2−→ A)⇒ ∀a ∈ A,Pr[� S1−→ a] = Pr[� S2−→ a].

Definition 4. [19] Let A,B be two distinct states of the data
structure. A data structure implementation is strongly history-
independent if for any two (possibly empty) sequences of
operations S1 and S2 that take the data structure from state A
to state B, the distribution over the memory representations
of B after S1 is performed on the memory representation a
is identical to the distribution after S2 is performed on the
memory representation a. That is:

(A
S1−→B) ∧ (A

S2−→B)⇒ ∀a ∈ A,∀b ∈ B,Pr[a
S1−→b] = Pr[a

S2−→b].

Hartline et al. [19] show that strong history-independence
requires that there be a unique memory representation
for each state, called the canonical representation of the
state. Thus, after every operation, a SHI data structure
implementation has to switch to the canonical representation
for the resulting state.

3. Auditable Data Structures

In this section, we introduce the model of auditable data
structures where the data structure is subject to observations

3

by an honest-but-curious auditor. The data structure is obliged
to pass to the auditor the requested information but it should
not reveal more than it must. The auditor acquires snapshots
of the data structure and based on these observations he
is attempting to infer the sequence of operations that were
executed between two consecutive audits. In our model we
make no assumptions about the frequency of the audits which
also happen unexpectedly. As a consequence the auditee has
time to react only after an audit took place. This setup is
closer to how audits take place in the real world where the
auditee shouldn’t have time to discard any critical information
before the audit.

Application Scenario. Our adversarial model is inspired
by scenarios where an observer is allowed to take snapshots
of the memory, but these snapshots are known to occur. The
adversary that we consider is not an intruder that secretly
obtained illegal access of the memory. Thus we do not
rely on intrusion detection mechanisms to discover reads of
memory. As described before, our framework can be applied
to scenarios where an entity (e.g., a system administrator,
auditor, another client in a collaboration) can inspect the
memory of the server that runs the privacy-preserving service.
A natural motivating example is an electronic voting system
that must be audited.

The Model. In the auditable data structure model, the
data structure executes a sequence of ADT operations in
private until the auditor requests to perform an observation
at an arbitrary time. Specifically, we consider two main
scenarios: (1) the auditor can only observe the pointer
structure; and (2) the auditor can observe both the pointer
structure and the memory representation. The auditor in the
second scenario is more powerful since the pointer structure
can be inferred from the representation of the data structure
in memory. After the observation, the data structure executes
method Postaudit() and resumes executing ADT operations
in private until the next audit.

Definition 5. An auditable data structure is a data structure
whose ADT is augmented with operation Postaudit(), which
is executed after every observation by the auditor.

We emphasize that when the audit is requested, no
action can be taken by the data structure other than handing
the relevant information (either the pointer structure or
the memory representation) to the auditor. Therefore, the
auditable data structure model can be viewed as a form
of reactive history-independence since the data structure is
allowed to react to the observation via operation Postaudit().

The desired privacy property for an auditable data struc-
ture (formally defined in this section) is that the pointer
structure or the memory representation at the time of the
audit should not reveal any information about the sequence
of operations executed since the last audit.

The underlying system. There are works on history-
independent data structures that assume for the sake of
simplicity that the memory is a one-dimensional array that
can always be extended at one end (Section 4 in [26]). Even
though this assumption helps to seamlessly and efficiently
resize the memory of the data structure it is unfortunately not

a realistic one. We want to bring our auditable data structure
model closer to how a real system operates.

We assume that there is a memory allocator that is
handled by the underlying operating system and we differ-
entiate between a memory allocator and a memory manager.
The memory allocator (see, e.g., [20] for some standard
approaches) assigns/releases a segment of contiguous mem-
ory to all applications. Notice though that distinct memory
requests to the memory allocator do not necessarily return
contiguous memory segments, as opposed to the previous HI
model assumption. We further assume that no inferences can
be made by the relative order of the address of the segments
that the memory allocator returns; to prevent potential leakage
from this source one has to re-design memory allocators
without sacrificing their highly optimized time efficiency as
their performance is crucial for modern systems.

The memory manager that we consider, indicated as M,
is an intermediate layer between the data structure and the
memory allocator. The memory manager can only handle
memory segments acquired via the memory allocator and
it ensures that the allocation of the data structure in those
segments does not leak the history.

To store the data structure M maintains the image of
M, denoted by IM , which is defined as (1) the memory
representation and (2) the auxiliary space that is used
for internal structures of M. The construction presented
in Section 5 utilizes the auxiliary space by storing the
component DictionaryObserved that is discussed later.
For the sake of abstraction, we assume that the memory
allocator implements the following two functions, which
are invoked by the memory manager M of our model: (1)
getMem(k) returns the starting address addr of a segment
of k consecutive zeroed cells made available to M; (2)
freeMem(addr,k) releases k memory cells starting at address
addr and makes them no longer available to M. For the
asymptotic analysis of the memory manager, we assume
that these low-level system memory operations getMem
and freeMem take constant time. A desirable property of a
memory manager is to efficiently resize its image IM , that
is, the size of the image should be proportional to the space
used by the data structure.

Entities. The security definition of an auditable data
structure involves the following entities:

• Data Structure D: accesses memory by calling
memory operations (read/write, store/free) supported
by the memory manager, M. D may have to issue
multiple memory operations in order to execute a
single ADT operation. The type of data structure (e.g.,
list, tree) is described by a public parameter, P .

• Memory ManagerM: executes memory operations
issued by D by making available to D a collection of
memory segments. Besides reads and writes, D can
askM to allocate a new memory segment (Store) or
to release an existing memory segment or portion of it
(Free). M uses in turn low-level memory allocation
primitives getMem and freeMem.

• Auditor A: performs an audit at arbitrary times,

4

during which he observes either the pointer structure
of D or the memory managed by M. A is a passive
adversary that tries to infer information about the
sequence of ADT operations issued by the user on D.

The ADT of an auditable data structure uses operation
Postaudit to react to the audit, which handles, as we see later,
the security of the pointer structure. To maintain the security
of the memory representation of D we equip the memory
manager M with an analogous Postaudit functionality.

In a memory manager without our privacy goals, the
Store and Free operations could directly call the standard
malloc() and free() methods of stdlib. The above standard
allocation technique fails to meet our privacy goals since if a
record is observed, then deleted, and then reinserted it would
most likely appear in a different memory location during
the next audit which leaks that the record was removed at
some point. Thus, our memory managerM must apply more
robust audit-aware strategies for handling the memory of D.

Algorithms of M. The memory of the system is treated
as a global array for which the atomic unit of storage is
a memory cell identified by a unique address. As addr
we denote the starting address of a record and as record
we denote a record of the data structure (to be) stored in
a memory segment starting at addr. We indicate with λ
the security parameter and with r an ephemeral source
of randomness available to the memory manager, such
as the hardware random number generators in modern
microprocessors. The interface of the memory manager M
consists of the following algorithms that may modify the
image IM of M.

1) Initialize(1λ): initializes the memory manager. Per-
formed only once throughout the lifetime of M.

2) Read
(
addr, r

)
: returns the record at addr.

3) Write
(
addr, record, r

)
: stores record at address

addr.
4) Store

(
record, r

)
: assigns a memory segment from

IM to record, stores it, and returns its starting
address addr.

5) Free
(
addr, r

)
: removes the record at addr from

its assigned memory segment.
6) Postaudit

()
: executes maintenance operations to

react to an audit.

Note that there is no explicit Audit operation in the above
interface, which gets implicitly notified of an audit by the
invocation of Postaudit(). Executing algorithm Postaudit(·)
gives the memory manager the opportunity to react to the
audit. This might involve performing maintenance operations
(e.g., cleaning temporary space and auxiliary data structures)
but most importantly adapting the memory allocation strategy
to take into account what was observed by the auditor. For
efficiency reasons, algorithm Postaudit should run in O(nε)
for ε < 1, where n is the current size of the state of the
data structure. An important feature of our model is that the
memory manager M can not store any information outside
IM . Thus there is no private space from which M can hide
information from an audit.

Categorization of Records. From the auditor’s perspec-
tive, the records that are allocated in memory during the
i-th audit can be categorized as either “observed records” or
“new records” based on the (i− 1)-th audit. Let I(i)M be the
image that the auditor acquires during the current audit i and
let I(i−1)M be the image acquired in the previous audit i− 1.
A new record with respect to I(i)M is a record that is part of
the state of D at I(i)M , but was not part of the state at I(i−1)M .
An observed record with respect to I(i)M is a record that is
part of the state of D both at I(i)M and I(i−1)M . We emphasize
here that only the records that were part of the state at I(i−1)M

are considered observed at I(i)M . The records categorization
is a new characteristic of the auditable data structure model
that allows efficient constructions as we show in Section 5.

3.1. Security Definitions

We call session the timeframe between two consecutive
audits. To simplify the notation, we refer to the algorithms
Read, Write, Store, Free as memory operations and denote
them as (OpM, arg) where OpM∈ {Read, Write, Store,
Free} and arg is the sequence of the corresponding argu-
ments. With the term n we refer to the size of the state of
D.

Formally, we define as session S of length l for a
data structure D the ordered list of ADT operations of
D, S =

(
(OpM0, arg0), . . . , (OpMl−1, argl−1)

)
. The pair

of sessions (S0, S1) is used in our game-based definitions.
The operations of D translate a session Sb of ADT operations
into a sequence of memory operations that we denote
as Sb. We denote with |Sb| the length of the sequence
of memory operations Sb. For example, an InsertAfter
operation from the ADT of a simple linked list translates into
a sequence of Read, Write, Store memory operations. For
the memory operation (OpMu, argu) of Sb holds that OpMu

∈ {Store, Free, Read, Write}, for all u ∈ [|Sb|]. Given a
state A of a data structure we call the pair of sessions (S0,
S1) proper if the state of the data structure resulting from
applying session S0 to D initialized to state A, is the same
as the state of the data structure resulting from applying
session S1 to D initialized to state A.

We use a game-based definitions to describe the adaptive
security of our setup, which is similar in spirit to a security
against a “Chosen Plaintext Attack” in cryptography. The
terms auditor and adversary are used interchangeably in
the rest of the work. Essentially, the auditor shouldn’t be
able to distinguish which session among a proper pair (S0,
S1) has been executed. In Figures 2 and 3, we show the
two indistinguishability games played by the adversary A
against D and (M,D), respectively. In game PRV-CSA-
PS, the adversary observes the pointer structure whereas
in game PRV-CSA-M, the adversary observes the memory
representation (and hence also the pointer structure). If
the game outputs True, the adversary A wins. In the two
games,“CSA” stands for “Chosen Session Attack” referring
to the adaptively chosen sessions of the adversary A.

5

PRV-CSA-PSAD, P (λ, k)

1. D is initialized according to 1λ

2. D picks b $←− {0, 1}
3. For i = 1, . . . , k
4. (S0, S1)← A(P)
5. if (S0, S1) is not proper return False
6. D executes the ADT operations of Sb
7. A is given the current pointer structure
8. D.Postaudit()
9. end
10. A outputs a bit b′
11. Return (b′ = b)

Figure 2. In game PRV-CSA-PS, the auditor observes the pointer structure.

For the first game we denote as advantage of A the
quantity, 2·Pr[PRV-CSA-PSAD,P (λ, k) = 1]−1. Similarly, for
the second game we denote as advantage of A the quantity,
2 · Pr[PRV-CSA-MAD,M,P (λ, k) = 1] − 1. In the following
security definition, the PPT adversary A is allowed to request
a polynomial number k of sessions and there is no assumption
about the length of the chosen sessions.

Definition 6. Let λ be the security parameter and let D
be an auditable data structure whose type is indicated by
parameter P . We say that the topology of D is secure if for
all k = poly(λ) and for all PPT adversaries A, the advan-
tage of adversary (auditor) A in PRV-CSA-PSAD, P (λ, k) is
negligible.

PRV-CSA-MAD,M, P (λ, k)

1a. D is initialized according to 1λ

1.b
(
IM

)
← M.Initialize(1λ)

2. M picks b $←− {0, 1}
3. For i = 1, . . . , k
4. (S0, S1)← A(P)
5. if (S0, S1) is not proper return False
6. D executes the ADT operations of Sb and translates

them into to a sequence of memory operations, Sb,
executed by M

7. A is given the current image, IM , from which
it further derives the current pointer structure

8a. D.Postaudit()
8b. M.Postaudit()
9. end
10. A outputs a bit b′
11. Return (b′ = b)

Figure 3. In game PRV-CSA-M, the auditor observes the memory represen-
tation.

Definition 7. Let λ be the security parameter and let D
be an auditable data structure whose type is indicated
by parameter P . We say that the implementation of D is
secure if for all k = poly(λ) and for all PPT adversaries
A, the advantage of adversary (auditor) A in PRV-CSA-
MAD,M, P (λ, k) is negligible.

Lemma 1. If the implementation of an auditable data
structure is secure then its topology is also secure.

The above lemma states what we noted previously: secure
implementation implies secure topology. Secure topology
does not imply secure implementation; given a secure
topology one needs to construct a memory manager M that
extends the security to the level of the memory representation.
We propose such a memory manager in Section 5.

A weaker notion of security comes from allowing only
one audit, e.g. k = 1. In this case, we have the following
notion of one-time secure auditable data structure which can
be shown to be equivalent to the notion of weak history-
independence. We give the definition for one-time secure
implementation, the definition for one-time secure topology
can be formed similarly by using PRV-CSA-PS.

Definition 8. Let λ be the security parameter and let D
be an auditable data structure whose type is indicated by
parameter P . We say that the implementation of D is one-
time secure if for all PPT adversaries A, the advantage
of adversary (auditor) A in PRV-CSA-MAD,M, P (λ, 1) is
negligible.

3.2. A Template for Auditable Data Structures

In this subsection, we provide a generic template for
constructing auditable data structures with secure topology,
i.e., with auditable pointer-structure. As with any non-trivial
auditable data structure, the template we describe here
depends on the existence of an auditable memory manager,
such as the one we propose in Section 5, which translates
an auditable data structure with secure topology to a data
structure with secure implementation. Our generic template
is a general proof-of-concept theorem showing that we can
convert any one-time secure data structure into an auditable
data structure. This should not be viewed as necessarily
being the best way to implement an auditable version for
any given ADT, however, which is an interesting line of
work we leave for the future.

Theorem 1. Given a one-time secure data structure, D,
implementing a given ADT, one can construct an auditable
data structure with secure topology, D′, implementing the
same ADT as D.

Proof. One way to achieve this conversion is by “check-
pointing” the one-time secure version, D, after every audit.
If Di is the current version and it gets audited, then we stop
making changes to Di and we begin a new one-time secure
instance, Di+1. Once an instance, Di, is checkpointed, we
never update it again, and we store it forever. So D1 goes
up to the first audit, D2 goes up to the second audit, and so
on. Elements can be either live, if they are part of the state
of the current data structure, or dead if they are not.

To perform an operation delete(u), we first check if u
is “live” in the current version, Di. If it is, then we simply
delete u from Di. Otherwise, we confirm that u exists in
a checkpointed version and we perform a lazy deletion by
executing insert(u, dead) in the current version, Di, to mark

6

u as dead. To perform an insert(u) operation, we first check
if u is in the current version as a dead element, in which
case we delete the dead version from Di. If not, then we
insert u in the current version by performing insert(u, live).
To perform a find(u), we search the checkpointed versions
backwards starting from Di until we find u. If u is currently
dead, we return “not found”, otherwise we return u.

With the above generic template, we get an auditable data
structure with secure topology with search and update times
that are O(kT (n)), where T (n) is the running time of the
one-time secure version of D and k is the number of audits
since its construction. This is admittedly a general framework
that might not result in the most efficient auditable data
structure for every ADT. Thus, we leave as interesting future
work possible constructions for more sophisticated dynamic
checkpointing techniques, and we focus in the remainder of
this work on the foundation of all auditable data structures,
which is the memory manager.

3.3. Comparison with History-Independence

To the best of our knowledge, this work is the first
that provides a formal security model for an auditor who
can view a data structure multiple times while allowing the
data structure to react to observations. The security of the
implementation of an auditable data structure for k > 1 is
weaker than the strong history-independence property but
stronger than the weak history-independence property which
occurs in our model when k = 1.

Golovin [13], [14] builds SHI data structures by using
the SHI dictionary of Blelloch and Golovin [9] as a SHI
memory manager where the keys correspond to unique
memory locations. We refer to this memory manager as
SHIMM and we compare its performance to our construction
in Section 6. Note that a SHI memory manager like SHIMM
can be used as the memory manager M of an auditable
data structure, since it achieves a secure implementation
according to Definition 7. Note that in this case, operation
Postaudit() does not provide any functionality since a SHI
memory manager is not adapting to the fact that an audit was
performed. SHIMM must deploy resizing techniques that are
also history-independent, as the one proposed in [19]. The
downside is that in the worst-case the above SHI resizing
techniques take linear time to the size of the data structure a
problem that is more obvious in the performance of SHIMM
that we report in Section 6.

Lemma 2. Let D be an auditable data structure with secure
topology. Then a SHI memory manager M where Postaudit
takes no action yields a secure implementation of D.

On the flip side, if we deploy an auditable memory
manager M for a SHI data structure D (e.g. [14], [23],
[28]), then the result is an auditable data structure D with
secure implementation. In other words, the auditable memory
manager changes the security of D from SHI to auditable.
Thus, previous SHI data structures D with canonical pointer

structure can also benefit from efficient auditable memory
managers.

Lemma 3. Let D be a data structure with strongly history-
independent pointer structure [23]. Let M be a memory
manager that translates an auditable data structure with
secure topology to a data structure with secure implementa-
tion. Then the implementation of D is secure according to
Definition 7 if memory manager M is deployed.

The next lemma points out that an adversary can break
the security of Definition 7 in case we deploy the WHI
management technique of [26].

Lemma 4. Let D be an auditable data structure with secure
topology. Let M the memory manager for which Store and
Free follow the WHI technique (Section 4.1 in [26]) and
Postaudit takes no action. Then the implementation of D
that deploys memory manager M is not secure.

Proof. (Sketch) A successful attack can be achieved by
taking advantage of the fact that the memory manager
of Section 4.1 in [26] does not react to an audit. The
key observation is that the corresponding memory manager
handles new and observed records in the same way. The
attack succeeds after two audits, i.e. i = 2 in line 3 of
PRV-CSA-MAD,M, P . The adversary A creates session S that
brings the data structure to state A = {u1, . . . , un} and
outputs (S, S) in line 4 of the game. For the second pair of
sessions A picks a S0 that removes and re-inserts u1 from
the image of the memory IM , and an empty S1. Recall that
the adversary knows the address of u1 from the first image
she acquired, thus if b = 0 then with high probability over
the number of allocated records, record u1 will be seen at a
different address after executing S0, whereas if b = 1, then
u1 is going to be allocated at the same address.

One can extend the WHI memory manager [26] to
meet the security guarantees of Definition 7, albeit in an
inefficient way. We call this technique Naive Auditable
Memory Manager.

Naive Auditable Memory Manager (NAMM). This
memory manager executes the Store and Free algorithms as
the WHI construction in [26] and augments the construction
with a Postaudit that reshuffles the location of records using
standard linear time shuffling techniques such as Fisher-Yates
shuffling [21]. In case NAMM is full it migrates its content
to a different memory segment, which takes linear time. Even
though this naive construction meets the privacy goals it fails
to meet the efficiency goals since the time complexity of its
Postaudit is proportional to the size of the data structure, n.
Instead, the construction in Section 5 has time complexity
proportional to the number of operations since the last audit
denoted with S, which can be significantly less than n.

4. Building Blocks

In the rest of the paper we introduce and measure the
performance of a new memory manager for auditable data
structures, namely AMM, that is based on simpler one-time

7

Figure 4. The three phases of Store(f) of the Resizable One-Time Auditable (ROTA) memory manager. Each record has two copies, the active copy is
dark colored and stored in TCurr and the inactive copy is light colored and stored either in TPrev or in TNext.

secure auditable data structures. The basic building block
of our constructions is a new Resizable One-Time Auditable
memory manager, ROTA for brevity, that achieves constant
worst-case time complexity per operation. Recall that the
weakly history-independent memory management technique,
i.e. same privacy guarantees, proposed in [19], [26] has linear
update time in the worst-case. We use the core resizing idea
behind ROTA to propose a new dynamic one-time secure
hash table that achieves updates in O(1) in expectation.

In the following subsections we use the letter m with
different interpretations, e.g. number of records or elements,
depending on the context; we specify m accordingly in each
subsection.

4.1. Resizable One-Time Auditable
Memory Manager (ROTA)

Our ROTA construction is a dynamic memory manager
that translates an auditable data structure with one-time
secure topology into an audtiable data structure with one-
time secure implementation. ROTA construction efficiently
resizes the allocated space according to the memory requests
to keep storage space proportional to the total size of the
stored records, while maintaining constant worst-case time
complexity per operation.

Previous HI Resizing. In comparison all the proposed
strong and weak history-independent memory management
techniques [19], [26] need to double their memory and
migrate (resp. halve its memory and migrate) whenever
the total number of records is larger than (resp. smaller
than) a threshold-value. Thus, whenever the number of
records “crosses” one of the threshold-values, e.g. threshold-
values={2, 22, 23, 24, 25, . . .} the corresponding HI memory
manager migrates all the records to a new memory segment.
Notice that the threshold-value resizing approach takes linear
time in the worst case and is different from the standard
deamortization analysis where resizing takes place when the
data structure reaches a certain threshold-load-factor, i.e.
resize when |records| ≥ 0.7 × |segment size|. As noted
in [26] certain workloads, potentially adversarially chosen,
can slow down the above memory managers if they frequently
cross the threshold value, e.g. by alternating Free and Store
around a threshold-value, and force the data structure to have
linear time performance on every operation.

Intuition. ROTA handles three memory segments that
are labeled as TPrev, TCurr and TNext where |TCurr| =
2 · |TPrev| and |TNext| = 2 · |TCurr|. Every record that is
stored with ROTA has two distinct copies the active copy,
which is always stored in TCurr, and the inactive copy.
Ideally when TCurr is full (resp. half-full) we want to have
a new memory segment ready that is twice the size (resp.
half the size) of TCurr and contains the same information.
We achieve the above objectives by moving inactive records
between the two additional segments TPrev and TNext. The
challenge is to prepare the new segment in constant time
and maintain the privacy guarantees.

At a high level, whenever a new record is stored we
remove one inactive record from TPrev and add two inactive
records in TNext thus we act as we are expanding. Whenever
a record is freed we remove one inactive record from TNext
and add two inactive records in TPrev thus we act as we are
shrinking. The challenge is to perform the above tasks in a
manner that does not reveal the history. An invariant that we
utilize to securely perform the moves is that the relative order
of the active copies in TCurr is a random permutation to the
eyes of the one-time auditor. Thus, storing one subsequence
of this random permutation to TPrev and the remaining
subsequence(s) to TNext is equivalent to partitioning the
inactive copies to two random subsets. The relative fraction
of records in TPrev or TNext corresponds to how close TCurr
is to being full enough, so we need to get more memory, or
empty enough, so we need to release some memory.

The Store, Free algorithms can be described in three
phases: the vertical move, the randomized move and the
double placement. An example is depicted in Figure 4. We
note that the inactive copy is located either in TPrev or TNext
but at the same index as its active copy in TCurr. We denote
with leftmost the variable that holds the index of the leftmost
occupied cell of TPrev and with last the global variable that
holds the index of the rightmost occupied cell of TCurr. In
the rest of the paper we assume that pointers to the moved
records are adjusted appropriately without stating it explicitly.
In this subsection, we denote with m the number of records
stored by ROTA and we further assume that all records have
constant size. We describe the moves with respect to Store.

Vertical Move. When Store is called, we act as if TPrev
is gradually migrating to TNext. Therefore, the inactive copy
from TPrev[leftmost] is moved to the corresponding empty
location of TNext[leftmost] in order to prepare TNext for

8

Algorithm 1: ROTA.Store(record)
1 if TPrev is null then
2 Make TPrev point to TCurr, TCurr point to TNext

and TNext point to a new 2|TCurr| segment;
3 end
4 Move TPrev[leftmost] to TNext[leftmost];
5 Increase leftmost and last by one;
6 Choose an integer rnd at random from [0, last];
7 if rnd ∈ [leftmost, |TPrev|] then
8 Move TPrev[rnd] to TNext[last] and TCurr[rnd]

to TCurr[last];
9 Allocate record to TPrev[rnd] and TCurr[rnd];

10 else
11 Move TNext[rnd] to TNext[last] and TCurr[rnd]

to TCurr[last];
12 Allocate record to TNext[rnd] and TCurr[rnd];
13 end
14 if TCurr is full then
15 Free the memory of TPrev;
16 Set TPrev ← null and leftmost← 0;
17 end

when TCurr is full. Notice that due to the invariant of our
construction the inactive record that is moved is a random
inactive record from TPrev to the eyes of the one-time auditor.
The first column of Figure 4 illustrates the vertical move.

Randomized Move. In this phase we make space for the
active and inactive copy of the new record. In detail, we
increase last by one and we sample the index of an allocated
active record indicated as rnd from the range [0, last]. The
active copy in TCurr[rnd] is moved to TCurr[last]. In case the
inactive copy of TCurr[rnd] is in TPrev we move TPrev[rnd]
to TNext[last], illustrated as a blue transition in the second
column of Figure 4. In case the inactive copy of TCurr[rnd]
is in TNext we move TNext[rnd] to TNext[last], illustrated
as a red transition in the second column of Figure 4.

Double Placement. In this phase we allocate the new
record with respect to the result of the randomized move. In
case the inactive copy that was moved to TNext[last] was
originally in TNext, e.g. the red case in Figure 4, then we
allocate the inactive new record in TNext[rnd] and the active
new record in TCurr[rnd]. In case the inactive copy that was
moved to TNext[last] was originally in TPrev , e.g. the blue
case, then we allocate the inactive new record in TPrev[rnd]
and the active new record in TCurr[rnd]. The third column
of Figure 4 illustrates the above moves.

The intuition behind Free is similar. A vertical move is
performed from TNext to TPrev, then the locations of the
inactive and active copies of the removed record are emptied
and finally a double placement takes place in order to cover
the gap caused by the removals. A detailed description is
presented in Algorithm 2.

The construction of ROTA is such that for any given
number of records, m, we know which cells from each of
the three segment are occupied. If we are not careful enough,
the corner case where m = 2j can reveal whether the last
operation was a Store or a Free. To illustrate this point,
when we execute a Store which will result in m = 2j , we
move the last record of TPrev to TNext. Thus, we have an
empty TPrev, a full TCurr and a half-full TNext, see first

Algorithm 2: ROTA.Free(addr)
1 if TPrev is null then
2 Make TPrev point to a new |TCurr|/2 segment.

Set leftmost to |TPrev|;
3 end
4 Decrease leftmost and last by one;
5 Move TNext[leftmost] to TPrev[leftmost];
6 Move TCurr[last+ 1] to TCurr[addr];
7 if addr ∈ [leftmost, |TPrev|] then
8 Move TNext[last+ 1] to TPrev[addr];
9 else

10 Move TPrev[last+ 1] to TPrev[addr];
11 end
12 if TNext is empty then
13 Free the memory of TNext;
14 Label segment TPrev as TCurr and TCurr as

TNext.;
15 Set TPrev ← null and leftmost← 0;
16 end

Figure 5. Corner cases for resizing with ROTA.

line of Figure 5. Whereas when we execute a Free which
will result in m = 2j as well, we have a different layout
since TPrev is full, TCurr is half-full and TNext is empty,
see second line of Figure 5.

We deal with this corner case with the following course
of action that is explained in Algorithms 1 and 2: if in the
end of the Store/Free operation we have m = 2j , then we
label the full segment as TCurr, the half-full segment as
TNext and the set the label TPrev point to null. Thus we
have the same memory representation, regardless of whether
the last operation was Store or Free. The first and last if
statements of algorithms Store, Free handle this scenario.

Theorem 2. Let D be an auditable data structure with one-
time secure topology that deploys memory manager ROTA.
Then the implementation of D is one-time secure. The time
complexity of memory operations Store and Free of ROTA
is O(1) in the worst case and the space used is O(m), where
m is the number of allocated records.

Proof. (Sketch) First we prove that the allocation of TCurr
is one-time secure and then we extend the property to the
other two segments. For the case of Store operation since
the relative order of the records in TCurr is already a random
permutation (invariant condition), the swap that is performed
between TCurr[last] and TCurr[rnd] gives also a random
permutation. For the case of Free operation, if the relative
order of the records in TCurr is already a random permutation
then we maintain the randomness by covering the gap with
the last record which is is a random active record to the
eyes of the adversary. An adversary that can win the game
of Definition 8 with a non-negligible advantage implies that
he can differentiate between the random generator used for

9

Algorithm 3: DHT.Insert(u)
1 if HTPrev is null then
2 Make HTPrev point to HTCurr,

HTCurr point to HTNext and
HTNext point to a new
2|HTNext| size hash table;

3 end
4 Assign X a random value from the

range [1,#HTCurr];
5 if X ∈ [#HTPrev + 1,#HTCurr]

then
6 Move a random record from

HTPrev to HTNext;
7 Insert u to HTNext and HTCurr;
8 else if X ∈ [1,#HTPrev] then
9 Move two random records from

HTPrev to HTNext;
10 Insert u to HTPrev and HTCurr;
11 end
12 if HTCurr is full then
13 Free HTPrev and set HTPrev to

null;
14 end

Algorithm 4: DHT.Delete(u)
1 if HTPrev is null then
2 Make HTPrev point to a new

hash table of size |HTCurr|/2;
3 end
4 if secondary copy of u is stored in
HTNext then

5 Remove u from HTNext and
HTCurr;

6 Move a random record from
HTNext to HTPrev;

7 else
8 Remove u from HTPrev and

HTCurr;
9 Move two random records from

HTPrev to HTNext;
10 end
11 if HTNext is empty then
12 Free HTNext, make HTPrev point

to HTCurr, and HTCurr point to
HTNext, set HTPrev to null ;

13 end

Figure 6. Insert & Delete in a One Time Auditable
Complete Binary Tree.

Figure 7. Algorithms and an illustration of the Dynamic One-Time Auditable Hash Table (DHT). Primary copies are dark colored while secondary copies
are light colored.

rnd and true randomness. Thus, one can form an inductive
argument on the number of Store/Free operations of the
sequence in order to prove the security for TCurr. As a next
step we show that for any set of m records there is only
one possible set of occupied memory cells (ignoring the
content) in the image of ROTA, thus we can focus on the
content of the occupied cells. Recall that for every index
i that corresponds to an occupied cell of TCurr, one of
the following two statements hold: A) TPrev[i] = TCurr[i]
and TNext[i] =⊥, B) TNext[i] = TCurr[i] and TPrev[i] =⊥.
This implies that the relative order of the inactive records
follow the relative order of the active records which we
already proved to be a random permutation. We conclude the
proof by showing that the assignment of the inactive copies
to tables TPrev, TNext depends only on m, thus the partition
of a random sequence, i.e. TCurr, into subsequences of fixed
size distributes the records randomly between them.

4.2. One-Time Auditable Hash Table

We introduce a secure one-time auditable hash table via
chaining with complete binary trees that we call HT. We
store all the chains of the hash table using the same one-
time auditable memory manager ROTA. Our design choices
satisfy two desired properties, (1) fast sampling from the set
of nodes from a fixed chain and (2) constant time sampling
from the set of nodes from all the chains; we elaborate on the
latter in the next section. As for the first property, notice that
all the chains are packed in the same memory segment, i.e.
TCurr of ROTA, which implies that we can not sample from
a fixed chain in constant time due to the fact that nodes of
different chains are interleaved in this segment; thus the next
available choice is to sample via traversing the corresponding
chain. Our design choice of binary trees allows the insertion
process to sample in O(logm) time by traversing the tree

stored in ROTA, as opposed to O(m) time that would take
to sample from a linked list by traversing its pointers. For
the hash table HT we first present the analysis assuming a
constant load factor α = m/M and later propose an efficient
resizing dynamic hash table called DHT.

4.2.1. One-Time Auditable Complete Binary Trees. We
introduce the one-time auditable complete binary tree and
show that its topology is one-time secure. As for the memory
representation of the data structure, it is required to deploy
a one-time auditable memory manager, for instance ROTA
from Section 4.1. A binary tree with height h is called
complete if we have the maximum number of nodes possible
in levels 0, 1, . . . , h− 1, while all the nodes in level h− 1
are as far left as possible. The letter m refers to the number
of elements that are stored in the tree. We emphasize that
this is not a binary search tree, but rather a plain binary tree;
the goal of the tree is to allow faster insertions, which due
to the privacy-properties require sampling a random node
using the pointer structure.

Intuition: Since the binary tree is complete the shape
of the data structure is fixed given its size, regardless of
the value of the elements. To sample a node uniformly at
random we start from the root and randomly decide whether
to terminate or proceed to the next level with probability
dependent on the size of the associated subtrees denoted as
size(·) in Algorithm 5. For a node u one can calculate the
size of the subtree under u using a u’s rank and the total
number of elements.

Therefore in order to make the Insert(u) method one-
time secure, we place the new node to the leftmost available
place in the last level (or start a new level if the tree is full
and complete), and sample a node uniformly at random from
the augmented tree which takes O(logm) time in the worst
case using Algorithm 5. Then we swap the inserted element

10

Algorithm 5: Binary Tree SampleNode(v)
1 Define a random variable R ∈ {Left,Right, End}

with probabilities Pr(R = End) = 1
size(v) ,

Pr(R = Left) = size(v.left)
size(v) ,

Pr(R = Right) = size(v.right)
size(v) ;

2 Generate a value for R according to its distribution;
3 switch R do
4 case R=End: return v ;
5 case R=Left: return SampleNode(v.left) ;
6 case R=Right: return SampleNode(v.right) ;
7 endsw

with the element stored in the sampled node. The overall
time complexity of Insert(u) is O(logm). An illustration
of the updates is provided in Figure 6. The Find(u) process
traverses the tree until it locates the element therefore the
time is linear in the worst case. The Delete(u) process calls
Find(u) to locate the node that stores the input element and
moves the element of the rightmost node of the last level
to cover the gap. We mention here that in the special case
where we know the address of the deleted element u (which
occurs later when we move sampled elements in DHT) there
is no need to call Find(u), so the Delete(u) method takes
O(logm) in the worst case.

Lemma 5. Let D be a complete binary tree for which the
algorithms Find, Insert, Delete follow the above description.
The topology of D is one-time secure. Operations Delete and
Find run in O(m) worst-case time, operation Insert runs
in O(logm) worst-case time, and the space used is O(m).

Proof. (Sketch) To prove that the topology is one-time secure
we treat the complete binary tree as a sequence Q′ that is
a acquired via a level-order traversal. It is enough to show
that Q′ is a random permutation. We focus first on a tree
resulted from insertions only; using the fact that Insert places
the element at a random node we can build an inductive
argument and show that the resulting sequence Q′ is a random
permutation. Then we form a security reduction over the
randomness used to sample a node and show that if there is an
adversary that can distinguish Q′ from a random permutation
then she can distinguish between the used PRNG and true
randomness. For the case of deletions we build a similar
inductive argument on the number of Delete operations. To
argue about the base case we use the fact that we cover
the “gap” in Q′ with the last element; since we only had
insertions in the base case the element in last is the a
randomly chosen element. Following with one more security
reduction on the used PRNG we show that even when there
are deletions the topology is one time secure.

Regarding the implementation of the binary tree we can
deploy a ROTA without any additional time overhead as it
is summarized in the next theorem.

Theorem 3. Let D be a complete binary tree with one-
time secure topology as described in Lemma 5 and assume
that D uses memory manager ROTA. We have that the
implementation of D is secure. Also, let m be the number of
elements stored in the tree. Operations Delete and Find run

in O(m) worst-case time, operation Insert runs in O(logm)
worst-case time, and the space used is O(m).

4.2.2. Analysis for the Hash Table (HT). To simplify the
performance analysis we assume that the hash function is
truly random, mapping each data item independently and
uniformly to the range. We emphasize here that the hash
function concerns the efficiency and does not affect the
security of our construction.

In this first construction of the hash table we assume that
the load factor α never exceeds some constant αmax. The
expected number of elements per cell is therefore constant,
and a simple application of Chernoff bounds and a union
bound [24] shows that, for any desired constant c, with
probability at least 1 − m−c no bin receives more than
Θ(logm

log logm) balls (See, e.g., Ch. 5.2 of [24]). Hence the
expected size of a complete binary tree stored in a hash table
bucket is O(1) and with high probability the maximum size
is Θ(logm

log logm).
Due to space limitations we do not present the algorithms

Insert, Delete, Find, but having the analysis and the
description of the chaining structure in place, the pseudocode
is rather straightforward. For the method Insert(u) of the hash
table, we use the hash function h to find the corresponding
cell of the table and insert the element in the complete binary
tree. Since the insertion in the one-time auditable complete
tree takes logarithmic time to the size of the tree, the Insert
method of the hash table takes O(log logm) time in the
worst case with high probability where m is the number
of elements in the hash table. For the method Delete(u)
we hash u to find the corresponding cell j and follow the
deletion algorithm of the complete binary tree to remove
the element from the chain. For the method Find, we hash
the input element and traverse the corresponding complete
binary tree.

Theorem 4. Let m be the number of elements stored in
a hash table of fixed size M . Let D be a hash table with
chaining with one-time secure auditable complete binary
trees as in Lemma 5 that are allocated with a ROTA memory
manager. Then, the implementation of D is one-time secure.
For a constant load factor, the insertion time of D is O(1) in
expectation and O(log logm) with high probability. Searches
and deletions take O(1) time in expectation and O(logm)
time with high probability.

4.2.3. Dynamic Hash Table (DHT). We propose an effi-
cient and secure resizing technique for one-time auditable
hash tables so as to construct a dynamic one-time auditable
hash table, or DHT for brevity. Our technique is inspired
by the ROTA construction of Section 4.1. Let HTX denote
the hash table via chaining with trees as it is described in
Section 4.2.2 and #HTX denote the number of elements
stored in the hash table.

Intuition: Similarly to ROTA, every element that is
stored in DHT has two distinct copies the primary and the
secondary. DHT handles three fixed-size hash tables namely
HTPrev , HTCurr and HTNext where |HTCurr| = 2|HTPrev|

11

Figure 8. The algorithms and the architecture of AMM. The solid arrows show the move of records during operations Store and Free. The dotted arrow
shows the move of records during a Postaudit call.

and |HTNext| = 2|HTCurr|. Each hash table has its
own memory manager, namely ROTAPrev , ROTACurr and
ROTANext. The primary copy of an element, depicted with
a dark color in Figure 7, is always stored in HTCurr whereas
the secondary copy, depicted with a light color in Figure 7,
can be either in HTPrev or HTNext. After an insertion
#HTCurr increases by 1, #HTNext increases by 2 and
#HTPrev decreases by 1, we call this the growing invari-
ant. After a deletion #HTCurr decreases by 1, #HTNext
decreases by 1 and #HTPrev increases by 2, we call this the
shrinking invariant. We maintain the HTCurr as if we were
not resizing but at the same time we move random items
between HTPrev and HTNext so as to prepare for future
growing/shrinking.

Fast sampling from an HT: We use as a running exam-
ple the Insert method. The primary copy of the new element
is always allocated in HTCurr while we randomly decide
whether the secondary copy is stored in HTPrev or HTNext.
Specifically, with probability #HTNext/#HTCurr (Lines 5-7
of Algorithm 3) we insert the secondary copy of the new
element in HTNext and with probability #HTPrev/#HTCurr
(Lines 8-10 of Algorithm 3) we insert it in HTPrev. In
order to satisfy the growing invariant we need to move
randomly chosen elements between HTPrev and HTNext.
Recall that in the ROTA algorithms we could conveniently
sample uniformly at random from TPrev by visiting the index
leftmost. To perform a similar step for the case of DHT we
need to sample uniformly at random from all the binary
tree nodes of HTPrev. Fast sampling from all the chains
is the reason we chose to have a single ROTA for HT. By
accessing the address where the last pointer of ROTAPrev
points, we sample uniformly at random a node among all
the chains of HTPrev. Notice that deleting a sampled node
from the chain of HTPrev takes logarithmic time to the size
of the chain, as we discussed earlier, due to the fact that
we know the address of the deleted node, i.e. dereference
of last. Similarly in Algorithm 4 we satisfy the shrinking
invariant by sampling and moving records from HTNext to
HTPrev.

Theorem 5. Let D be a dynamic hash table with chaining
provided by auditable complete binary trees with one-time
secure implementation as in Lemma 5. Then the implementa-
tion of D that deploys Algorithms 3 and 4 is one-time secure.

Also, let m be the number of elements stored in the hash
table. Then the space used is O(m), the insertion time is
O(1) in expectation and O(log logm) with high probability,
and searches and deletions take O(1) time in expectation
and O(logm) time with high probability.

Proof. (Sketch) We utilize the security properties for ROTA,
complete binary trees, and fixed size one-time auditable
hash table to prove the dynamic case. Thus we focus on the
distribution of elements between the three hash tables. The
collection of elements that are allocated in the dynamic hash
table consists of two copies of the same set of elements. The
first copy is entirely stored in HTCurr and the second copy
is partitioned in two sets where the first subset is in HTPrev
and the second subset in HTNext. Similarly to the security
proof of ROTA, the size of each subset depends only on the
value of m. Since in every move between the hash tables we
choose to move an element uniformly at random, the exact
content of each subset looks random to the one-time auditor.
The proof concludes by using the fact that each individual
hash table has secure implementation.

5. Resizable Memory Manager for
Auditable Data Structures (AMM)

We describe the construction of the resizable memory
manager for auditable data structures, AMM for brevity, that
translates any auditable data structure with secure topology
into an auditable data structure with secure implementation.
Even though the components of AMM have only one-time
secure implementations (e.g. k = 1 in Definition 8), the
resulting construction of AMM gives a secure implementation
of an auditable data structure (e.g. k > 1 in Definition 7).
This property holds since the one-time auditable components
have a lifetime of a single session and then are discarded.
Subsequently, after every audit, AMM’s Postaudit() creates
fresh one-time auditable data structures.

A key insight of our construction’s efficiency is that
we treat differently observed records from new records
(concepts introduced in Section 3) since in our model the
implementation knows what the auditor observed. Thus, we
decouple the time complexity of the memory operations from
the total number of records. In the following, we denote the

12

total number of records (both observed and new) currently
stored by the data structure with n and the length of the
current session with S.

Recall that SHIMM is the SHI memory manager that
consists of the linear probing hash table proposed in [9] with
the additional functionality of resizing whenever the number
of records “crosses” a predetermined threshold-value.

Algorithm 6: AMM.Free(addr)
1 Let record be the record allocated at addr;
// Freeing a New Record

2 Remove record from NewRecordAllocator;
3 if the removal returns null then

// Freeing an Observed Record
4 Insert (record,addr) to DictionaryObserved;
5 Clear but don’t free the memory at addr;
6 end

Algorithm 7: AMM.Store(record)
1 Remove record from DictionaryObserved;
2 if the removal returns null then

// Storing a New Record
3 Insert record to NewRecordAllocator;
4 else

// Storing an Observed Record
5 Place back record at addr returned from the

removal;
6 end

Components of AMM. Our construction has the follow-
ing three components, also illustrated in Figure 8:

NewRecordAllocator: The auditor has no prior knowl-
edge about records that were not observed in the latest audit.
Thus new records can be stored/freed using any resizable one-
time auditable data structure, we use DHT from Section 4.
In Figure 8 the new records {r1, r3, r4, r5, r6, r7, r12} were
stored during the running session.

CollectionObserved: After an audit the new records that
are stored via the NewRecordAllocator become observed
records since in the next audit the auditor expects to see them
in the same memory location. We mark this transition from
new to observed by considering their allocation as part of the
CollectionObserved which is a set of (possibly scattered)
observed records for which the canonicity of their address
is maintained. This is a “conceptual” component, i.e. not a
new data structure, since it contains the memory segments
of audited NewRecordAllocator, specifically the segment
TCurr of ROTACurr of a former NewRecordAllocator. The
four segments of CollectionObserved in Figure 8 contain
observed records that come from previous audits. Observed
records {r2, r8, r13, r15, r17} were removed since the last
audit but their corresponding addresses are not freed.

DictionaryObserved: The auditor expects that in the
next audit he will find an observed record at the address
that was seen in the latest audit. To satisfy this property we
maintain a one-time auditable dictionary where the “key”
is an observed record that is deleted in the running session
and its “value” is the observed address. We use a DHT from
Section 4 for this component. For instance in Figure 8 the
observed records {r2, r8, r13, r15, r17} were freed since the
beginning of the running session. Essentially the canonicity
of the observed records is maintained with this data structure

which is part of the auxiliary space of IM and has time
complexity that is a function of S instead of n as opposed
to SHIMM. When an audit occurs we don’t need to maintain
the canonicity of deleted observed records anymore, thus the
current DictionaryObserved is discarded.

Postaudit. The algorithm Postaudit performs mainte-
nance operations in O(S) so as to prepare for the next
audit. The data structure DictionaryObserved is not needed
after the audit since those removed observed records were
not part of the state when the latest audit took place. At
this point, we can free the memory cell of the deleted
observed records that was cleared but not freed (see Line 5 of
Algorithm 6). Since NewRecordAllocator is implemented
with a DHT, the primary copies are stored in its HTCurr.
The chains of HTCurr are stored using ROTACurr thus
the active copies of the chains are in TCurr of ROTACurr.
Therefore PostAudit passes the above TCurr segment to
component CollectionObserved. The rest of HTCurr, as
well as HTPrev and HTNext, is freed. The last step is the
creation of DictionaryObserved and NewRecordAllocator
for the next session.

Algorithm 8: AMM.Postaudit()
// Freeing unnecessary memory

1 Iterate through DictionaryObserved and release all
the memory cells where the “values” from key-value
pairs point to;

2 Release the memory of DictionaryObserved;
3 The memory segment were the primary copies of

NewRecordAllocator becomes part of
CollectionObserved;

4 The rest of NewRecordAllocator’s memory is
released;
// Create fresh copies for the next

session
5 Create a new and empty DictionaryObserved and a

new and empty NewRecordAllocator;

Security We sketch below the main arguments of the
proof that memory manager AMM yields a secure implemen-
tation. The one-time security of the implementation of DHT
is discussed in Section 4. Using an inductive argument on the
number of sessions one can show that the overall construction
yields a secure implementation. In the base case, we have
the first session were the collection of observed records is
empty and all inserted records are new. For the inductive
step it is enough to show that the k-th session preserves
the security of the construction. During a session, one can
process either observed records or new records. According to
Algorithms 5, 6 if an observed record is removed its observed
address is stored in DictionaryObserved and its memory
is cleared but not freed. Thus if it is re-inserted, it will be
placed at the same location that was observed during the last
audit. As for the new records, their memory management is
handled exclusively by the NewRecordAllocator. Finally
Postaudit frees the memory of DictionaryObserved, since
those records are not part of the observed set any more, while
“passes” the appropriate memory segment of NewRecordAl-
locator to the CollectionObserved.

Theorem 6. Let D be an auditable data structure with secure
topology that deploys memory manager AMM. We denote

13

0 1 2 3 4
Number of Updates #106

1

10

100

1,000

10,000

100,000

1,000,000
Worst-Case Time Performance of Store

SHIMM
AMM_New_NoAudit
AMM_New_10kAudit
AMM_Obs_NoAudit

0 1 2 3 4
Number of Updates #106

1

10

100

1,000

10,000

100,000

1,000,000
Worst-Case Time Performance of Free

SHIMM
AMM_New_NoAudit
AMM_Obs_NoAudit
AMM_Obs_10kAudit

Average Time in µs

SHIMM SHIMM AMM AMM AMM AMM AMM AMM
store free store New store New store Obs. free New free Obs. free Obs.

No Audit Audit 10K No Audit No Audit No Audit Audit 10K
0.53 0.71 4.75 3.07 4.44 2.23 4.44 2.94

Percentage of Resizes 0.000004 % -

Figure 9. Comparison worst-case time performance between AMM and SHIMM under various setups. The worst-case time running times of AMM are
45×-8, 300× faster than SHIMM.

with S the length of the current session and with n the total
size of the records of D. We have that the implementation of
D is secure. The space used by AMM is O(n+ S) during a
session and O(n) at the end of a session, after the execution
of Postaudit. Algorithms Initialize, Read, and Write take
each worst-case time O(1). Algorithms Store and Free
take O(1) in expectation and O(logS) with high probability.
Algorithm Postaudit takes worst-case time O(S).

6. Evaluation

We implemented both AMM and its strongly history-
independent counterpart, SHIMM [9], in C++ and tested their
performance with a double linked list as a pointer structure.
Since AMM is a full-fledged prototype, approximately 1200
lines of code, we update the pointers of the moving records
in DHTs and ROTAs. All experiments were conducted on
a host running Debian GNU/Linux v3.16, equipped with a
3.5GHz Intel Quad Core i5 CPU and 16GB of RAM.

Increasing Workloads & Worst-Case Time. A setup of
this experiment has three different variables: (1) the recorded
operation which is either Store or Free; (2) the type of
records which is either new or observed; (3) the frequency
of audits which in our experiment occur either after 10K
recorded data points or never, i.e. S = n. Notice that the case
where S = n is the least favorable scenario for AMM in terms
of efficiency. On each setup we recorded 4 · 106 data points
of the time performance of AMM under synthetic workloads
that increase the size of the corresponding component which
depending on the setup can be either NewRecordAllocator
or DictionaryObserved. As an example, to observe the
worst-case time performance of the setup {Store, Observed,
NoAudits} we have to stress the component DictionaryOb-
served of AMM, which grows when an observed record is
freed. Thus the sequence of operations consists of a series of

two Free calls for two observed records, therefore the size
of DictionaryObserved increases, and one recorded Store
call for an observed record. For this workload we present
the slowest individual data point among 5 runs and for the
average time the average of all 5 runs. The two “Worst-case
time Performance” plots of Figure 9 demonstrate the impact
of resizing on the performance of SHIMM. Our construction,
AMM, outperforms SHIMM by several orders of magnitude
due to the efficiency of our resizable building blocks. In case
we perform audits (dotted lines in Figure 9) the worst-case
time running times of AMM are up to 8, 300 times faster than
SHIMM due to the fact that the corresponding components
of AMM are “flushed” after every audit. Frequent audits
make AMM perform faster. We conducted further micro-
benchmarks in order to analyze the slowest worst-case time
performance of AMM, which occurs at the setups {Store,
new, NoAudit} and {Free, observed, NoAudit} and we
report that the large delays are due to the overhead of the
OS allocator for mapping new empty memory pages.

According to the table of Figure 9 the average time
performance of SHIMM is better in the increasing workload
experiment which is explained by the fact that Store and
Free take place in a half-empty hash table [9]. Furthermore,
only 0.000004% of the total 4 ·106 operations of the increas-
ing workload sequence resulted in a resize of SHIMM. Since
in a typical workload we have a combination of allocations
and deallocations we conducted a second experiment to better
understand the impact of resizing based on a threshold-value.

Oscillating Workloads & Average-Case Time. In this
experiment the sequence of operations oscillates around the
resize threshold-value in a controlled manner. Recall that
an operation in SHIMM takes linear time if the number of
records “crosses” a fixed resize threshold-value. We pick
thresholds θ1 = 214 and θ2 = 220 and we fix the length of
each sequence to be 103 and 105 respectively. For each fixed

14

0.1% 0.25% 0.5% 1% 2.5% 5% 10%
Percentage of Resize Operations

1

5
10

50
100

500
1000

(lo
g-

sc
al

e)
Impact of Resize around Threshold=16,384

SHIMM
AMM

0.002% 0.01% 0.1% 1% 2.5% 10%
Percentage of Resize Operations

1
10

100
1000

10,000
100,000

(lo
g-

sc
al

e)

Impact of Resize around Threshold=1,048,576
SHIMM
AMM

Figure 10. Comparison of average time performance between AMM and
SHIMM for oscillating workloads.

length sequence we pick a combination of Store and Free
so as a predetermined percentage of the operations, depicted
in X-axis of Figure 10, would result in a resize.

As it shown in the corresponding plot of Figure 10
with resize threshold θ1 = 214, memory manager AMM
has significantly better average case time performance than
SHIMM for any percentage higher than 0.125%. Thus, if
there is more than 1 resize for every 800 operations around
θ1, the performance of AMM is better than SHIMM for
the average case as well. The efficiency of our technique
is even more obvious as the number of resizes increases,
e.g. for a sequence of 10% resizes around θ1 the average
time of AMM is around two orders of magnitude smaller.
The impact of the resize operations penalize SHIMM even
more dramatically for the resize threshold θ2 = 214, where
AMM outperforms SHIMM for any percentage higher than
0.002%. Thus, if there are more than 1 resize for every 5000
operations around θ2, the average time performance of AMM
is better than the one of SHIMM. Also for a sequence of
10% resizes around θ2 the average time of AMM is close
to five orders of magnitude smaller. We mention here that
the OS allocator overhead of AMM that was reported in
the increasing workload experiment is almost unnoticeable
in the experiment with oscillating workloads since the OS
allocator is warmed up.

7. Conclusion and Future Work

In this paper, we introduced the notion of auditable data
structures, which matches the ability of strongly history-
independence to allow for multiple audits while achieving the
efficiencies of weakly history-independence. In addition, we
developed specific one-time secure auditable data structures
and a general memory management scheme for auditable
data structures. We leave for future work constructions of
more complex auditable data structures, such as dynamic

data structures for answering graph queries, range searching,
and/or nearest-neighbor queries.

Acknowledgments

This work was supported in part by the U.S. Na-
tional Science Foundation under grants CCF–1535795, CCF–
1320231, CNS–1228485, CNS–1228598, CNS–1228639,
and CNS–1526631, and by the Kanellakis Fellowship at
Brown University. This article reports on work supported
in part by the Defense Advanced Research Projects Agency
under agreement no. AFRL–FA8750–15–2–0092. The views
expressed are those of the authors and do not reflect the
official policy or position of the Department of Defense or
the U.S. Government.

References

[1] “European Union Directive L281, p. 31-50,” European Parliament &
Council, 1995.

[2] “The Health Insurance Portability and Accountability Act,” U.S. Dept.
of Health & Hum. Serv., 1996.

[3] “Voluntary Voting System Guidelines, Ver. 1.1, Vol. 1,” Unit. States
Election Assistance Commission, 2015.

[4] S. Bajaj, A. Chakraborti, and R. Sion, “Practical foundations of history
independence,” IEEE Trans. Inform. Forens. and Sec., vol. 11:2, pp.
303–312, 2016.

[5] S. Bajaj and R. Sion, “Ficklebase: Looking into the future to erase
the past,” in ICDE, 2013, pp. 86–97.

[6] ——, “HIFS: history independence for file systems,” in ACM CCS,
2013, pp. 1285–1296.

[7] M. A. Bender, J. W. Berry, R. Johnson, T. M. Kroeger, S. McCauley,
C. A. Phillips, B. Simon, S. Singh, and D. Zage, “Anti-persistence on
persistent storage: History-independent sparse tables and dictionaries,”
in Proc. of the 35th PODS, 2016, pp. 289–302.

[8] J. Bethencourt, D. Boneh, and B. Waters, “Cryptographic methods for
storing ballots on a voting machine,” in NDSS, 2007, pp. 209–222.

[9] G. E. Blelloch and D. Golovin, “Strongly history-independent hashing
with applications,” in FOCS, 2007, pp. 272–282.

[10] N. Buchbinder and E. Petrank, “Lower and upper bounds on obtaining
history independence,” in Advances in Cryptology (CRYPTO), 2003.

[11] B. Chen and R. Sion, “HiFlash: A history independent flash device,”
CoRR, vol. abs/1511.05180, 2015.

[12] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious RAMs,” in STOC, 1987, pp. 182–194.

[13] D. Golovin, “Uniquely represented data structures with applications
to privacy,” PhD Thesis, CMU, 2008.

[14] ——, “B-treaps: A uniquely represented alternative to B-trees,” in
ICALP, 2009, pp. 487–499.

[15] ——, “The B-skip-list: A simpler uniquely represented alternative to
B-trees,” Arxiv, vol. 1005.0662, 2010.

[16] M. T. Goodrich, E. M. Kornaropoulos, M. Mitzenmacher, and
R. Tamassia, “More practical and secure history-independent hash
tables,” IACR ePrint 2016/134, 2016.

[17] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of
outsourced data via oblivious RAM simulation,” in ICALP, 2011.

[18] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious RAM
simulation,” in SODA, 2012, pp. 157–167.

15

[19] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and E. Rocke,
“Characterizing history independent data structures,” Algorithmica,
vol. 42, pp. 57–74, 2005.

[20] P.-H. Kamp, “Malloc(3) revisited,” in USENIX, ser. ATC, 1998, pp.
36–36.

[21] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
1997.

[22] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach, “Analysis
of an electronic voting system,” in IEEE S&P, 2004, pp. 27–40.

[23] D. Micciancio, “Oblivious data structures: Applications to cryptogra-
phy,” in STOC, 1997, pp. 456–464.

[24] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[25] M. Naor, G. Segev, and U. Wieder, “History-independent cuckoo
hashing,” in ICALP, 2008, pp. 631–642.

[26] M. Naor and V. Teague, “Anti-presistence: history independent data
structures,” in STOC, 2001, pp. 492–501.

[27] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
database system,” IACR ePrint 2016/591, 2016.

[28] D. S. Roche, A. J. Aviv, and S. G. Choi, “A practical oblivious map
data structure with secure deletion and history independence,” in IEEE
S&P, 2016.

[29] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti,
M. MacAlpine, and J. A. Halderman, “Security analysis of the Estonian
internet voting system,” in ACM CCS, 2014, pp. 703–715.

[30] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: An extremely simple oblivious RAM
protocol,” in ACM CCS, 2013, pp. 299–310.

[31] X. S. Wang, K. Nayak, C. Liu, T. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in ACM CCS, 2014.

[32] S. Wolchok, E. Wustrow, J. A. Halderman, H. K. Prasad, A. Kankipati,
S. K. Sakhamuri, V. Yagati, and R. Gonggrijp, “Security analysis of
India’s electronic voting machines,” in ACM CCS, 2010, pp. 1–14.

16

