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Abstract. Recently, Alkim, Ducas, Pöppelmann, and Schwabe proposed
a Ring-LWE-based key exchange protocol called “NewHope” [2] and il-
lustrated that this protocol is very efficient on large Intel processors.
Their paper also claims that the parameter choice enables efficient im-
plementation on small embedded processors. In this paper we show that
these claims are actually correct and present NewHope software for the
ARM Cortex-M family of 32-bit microcontrollers. More specifically, our
software targets the low-end Cortex-M0 and the high-end Cortex-M4
processor from this family. Our software starts from the C reference im-
plementation by the designers of NewHope and then carefully optimizes
subroutines in assembly. In particular, compared to best results known
so far, our NTT implementation achieves a speedup of almost a factor
of 2 on the Cortex-M4. Our Cortex-M0 NTT software slightly outper-
forms previously best results on the Cortex-M4, a much more powerful
processor. In total, the server side of the key exchange executes in only
1 467 101 cycles on the M0 and only 834524 cycles on the M4; the client
side executes in 1 760 837 cycles on the M0 and 982 384 cycles on the
M4.
Keywords. Post-quantum key exchange, Ring-LWE, embedded micro-
controller, NTT.

1 Introduction

Almost all asymmetric cryptography in use today relies on the hardness of factor-
ing large integers or computing (elliptic-curve) discrete logarithms. It is known
that cryptography based on these problems will be broken in polynomial time
by Shor’s algorithm [25] once a large quantum computer is built. It is, however,
unknown when this will be achieved. Researchers from IBM estimate the arrival
of such quantum computers within the next 2 decades [27]. This does not only
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imply that we need to switch to so-called post-quantum cryptography in 15 or 20
years. For content that we want protected over a period of 15 years or longer it
is a necessary to switch already today. This has been recognized, for example,
by the NSA [1], by NIST [19], or by the Tor project [16].

In the majority of contexts the most critical asymmetric primitive to upgrade
to post-quantum security is ephemeral key exchange. In 2015, Bos, Costello,
Naehrig, and Stebila proposed a post-quantum key exchange based on the Ring-
learning-with-errors (RLWE) problem for TLS [7]. Later in 2015 (with updates in
2016), Alkim, Ducas, Pöppelmann, and Schwabe significantly improved on this
proposal (in terms of speed, message size, and security) with a protocol that they
call NewHope. This protocol is now used in a post-quantum-crypto experiment
by Google [8] and is considered as one option to upgrade Tor’s handshake to
post-quantum cryptography. See [16, Slide 16] and [14]. In Section 2.3 of the
2015-12-07 version of [2], the authors of NewHope state that

“it [. . . ] can be implemented in constant time using only integer arith-
metic - which is important on constrained devices without a floating
point unit.”

In this paper we present such an implementation of NewHope on “constrained
devices”; specifically on the ARM Cortex-M0 and the ARM Cortex-M4 micro-
controllers. Our software starts from the C reference implementation by Alkim,
Ducas, Pöppelmann, and Schwabe and then carefully optimizes all performance-
critical routines in ARM assembly.

Contributions. Our software is to our knowledge the first to achieve 128 bits
of post-quantum security (with a comfortable margin) for key exchange on an
embedded microcontroller. In terms of speed, the software is not only competi-
tive, but actually considerably faster than today’s elliptic-curve-based solutions.
For example, our software outperforms the Curve25519 [4] implementation for
the Cortex-M0 presented in [11] by more than a factor of two.

This speed is possible in part because of the design of NewHope, and in part
through a careful optimization of the software on the assembly level. In particular
for the number-theoretic transform (NTT) we show significant speedups that will
also be useful in implementations of other lattice-based schemes. Specifically, our
dimension-1024 NTT takes 86 769 cycles on the Cortex-M4. The previous speed
record on this architecture was 71 090 cycles for a dimension-512 NTT from [9].
An NTT is essentially a sequence of “butterfly” operations where the number
of butterflies is n · log(n) for a dimension-n NTT. One would thus expect the
number from [9] to scale up to 10/9 · 2 · 71 090 = 157 977 cycles, almost a factor
of two slower than our result. On the much more restricted Cortex-M0 our NTT
needs only 148 517 cycles and thus still outperforms the (scaled) result from [9].
Other components that we optimized on the assembly level include the error
reconciliation [2, Section 5] and the ChaCha20 stream cipher [5] that is used for
efficient generation of uniform noise.

Availability of the software. We place all of the software described in this
paper into the public domain to maximize reusability of our results. It is available
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at https://github.com/newhopearm/newhopearm.git and https://github.
com/erdemalkim/newhopearm.

Acknowledgments. We are thankful to Ko Stoffelen for his suggestions about
Cortex-M4 implementation.

Organization of this paper. Section 2 describes the NewHope post-quantum
key exchange scheme. Section 3 gives a brief overview of the Cortex-M processor
family and zooms into the specifications of and differences between the Cortex-
M0 and the Cortex-M4. Section 4 provides detailed information of design de-
cisions and constraints for both target devices. Finally, Section 5 presents and
discusses our results and compares them to previous work.

2 The NewHope RLWE-based Key Exchange

The NewHope key exchange protocol is an instantiation of Peikert’s RLWE-
based passively secure KEM presented in [22]. This section recalls the specifica-
tion of the key exchange and in particular explains the computations involved
in the subroutines that our software optimizes on the ARM Cortex-M0 and the
Cortex-M4. For a detailed motivation of the design choices in NewHope and a
security analysis see [2].

The high-level overview of NewHope, as also listed in [2, Protocol 4], is
given in Protocol 1. In this overview, all elements printed in bold-face, except
for r, are elements of the ring Rq = Zq[X]/(Xn + 1), where q = 12289 and
n = 1024. The element r is in {0, 1, 2, 3}n. The operation ◦ denotes pointwise
multiplication. All other operations are explained in more detail in the following
paragraphs.

Parse(SHAKE-128). NewHope generates a new (public) parameter a for each
key exchange. This eliminates concerns about backdoors in this parameter and
all-for-the-price-of-one attacks (see [2, Section 3]). Server-side applications are
free to cache this parameter for several key exchanges to improve performance,
but our software, like the reference implementation, does not include caching.
The parameter a is generated from a random 32-byte seed by extending this seed
through the SHAKE-128 extendable-output function (XOF) from the FIPS-202
standard [21]. The output of SHAKE-128 is considered as an array of 16-bit
little-endian unsigned integers. Each of these integers is used as a coefficient of
a if it is smaller than 5q = 61445. Note that the amount of SHAKE-128 output
required to “fill” all coefficients of a may differ for different seeds (because a
different amount of 16-bit integers may be discarded). This is not a problem,
because a XOF is designed to produce outputs of variable length. It is also not
a problem from a side-channel perspective, because a is public.

Sampling noise polynomials from ψ16. The distribution ψk is a centered
binomial, which is used as LWE secret and error. NewHope uses the parameter
k = 16. The distribution ψ16 has a mean of 0 and a variance of 8, which leads
to the standard deviation of σ =

√
8. Generating a noise polynomial requires
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Parameters: q = 12289 < 214, n = 1024
Error distribution: ψn

16

Alice (server) Bob (client)
seed

$← {0, . . . , 255}32
â←Parse(SHAKE-128(seed))
s, e

$← ψn
16 s′, e′, e′′

$← ψn
16

ŝ←NTT(s)

b̂←â ◦ ŝ+ NTT(e)
ma=encodeA(seed,b̂)−−−−−−−−−−−−−→

1824 Bytes
(b̂, seed)←decodeA(ma)

â←Parse(SHAKE-128(seed))
t̂←NTT(s′)
û←â ◦ t̂+ NTT(e′)
v←NTT−1(b̂ ◦ t̂) + e′′

(û, r)←decodeB(mb)
mb=encodeB(û,r)←−−−−−−−−−−−

2048 Bytes
r

$← HelpRec(v)

v′←NTT−1(û ◦ ŝ) ν←Rec(v, r)
ν←Rec(v′, r) µ←SHA3-256(ν)
µ←SHA3-256(ν)

Protocol 1: The NewHope protocol including NTT and NTT−1 computations and
sizes of exchanged messages; ◦ denotes pointwise multiplication; x $← χ denotes the
sampling of x ∈ R according to χ if χ is a probability distribution over R; a $← Rq

denotes the uniform choice of coefficients from Zq; y
$← A denotes that the output of

A is assigned to y where A is a probabilistic algorithm running with randomly chosen
coins.

secure random-number generation. For this purpose we use the ChaCha20 stream
cipher [5] to expand a 32-byte seed (or, optionally on the Cortex-M4, the built-in
hardware RNG).

NTT and NTT−1. The core computational effort of NewHope lies in the
number-theoretic transforms (NTTs), which are to a large extent inherently em-
bedded into the protocol, because the exchanged messages contain polynomi-
als in the NTT domain. The NTT transform has three sub-routines: pointwise
multiplication, bit reversal of the coefficients of the polynomials, and the NTT
calculation itself. All input polynomials have randomly chosen coefficients, there-
fore, we can assume that the coefficients are already in bit-reversed order. This
leads to the situation, where our forward transform consists only of the NTT
and multiplication by square roots of twiddle factors. The NTT−1 consists of the
transform, the multiplication by the square roots of the twiddle factors and a
bit-reversal.

Encoding of messages. The key-exchange requires two message exchanges by
the corresponding two parties, as can be seen in Protocol 1. The main part
of each message is a 1024-coefficient polynomial with 14-bit coefficients. Those
polynomials are encoded into a compressed little-endian array, which takes a
total of 1792 bytes. The message ma contains an additional 32-byte seed and
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thus reaches a total size of 1824 bytes; mb contains additional 256 bytes of
reconciliation information and thus reaches a total size of 2048 bytes.

Rec and HelpRec. The Error reconciliation of NewHope is based on finding
the closest vector in a 4-dimensional lattice with basis

B4 =

1 0 0 0.5
0 1 0 0.5
0 0 1 0.5
0 0 0 0.5

 .

With this basis, the lattice D̂4 gets defined. The HelpRec first splits the 1024
coefficients of the input polynomial v into 256 4-dimensional vectors xi =
(vi,vi+256,vi+512,vi+768)

t, for i = 0, . . . , 255. It then computes reconciliation
information ri from those xi as

ri = HelpRec(xi, b) = CVPD̂4

(
2r

q
(xi + bg)

)
mod 2r,

where b is a random bit and g = (0.5, 0.5, 0.5, 0.5)t. Algorithm 1 describes the
computation of the closest vector denoted as CVPD̂4

. Note that the output of
HelpRec as stated above is a 4-dimensional vector with entries in {0, 1, 2, 3} (i.e.,
2-bit entries). Application to the whole polynomial v means applying it 256 times
(for all xi). This produces a total of 2048 bits of reconciliation information.

Algorithm 1 CVPD̂4
(x ∈ R4)

Ensure: An integer vector z such that Bz is a closest vector to x
1: if (‖x− bxe‖1) < 1 then
2: return (bx0e, bx1e, bx2e, 0)t + bx3e · (−1,−1,−1, 2)t
3: else
4: return (bx0c, bx1c, bx2c, 1)t + bx3c · (−1,−1,−1, 2)t
5: end if

The Rec function also works on 4-dimensional vectors and is defined as
Rec(x, r) = LDDecode( 1qx −

1
2rBr), where LDDecode is given in Algorithm 2

(see [2, Algorithm 2]).

Algorithm 2 LDDecode(x ∈ R4/Z4)

Ensure: A bit k such that kg is a closest vector to x+ Z4: x− kg ∈ V + Z4

1: v = x− bxe
2: return 0 if ‖v‖1 ≤ 1 and 1 otherwise

The divisions by q and the presence of values like 1/2 might suggest that the
computation of the HelpRec and Rec requires floating-point arithmetic. How-
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ever, one can simply multiply all values by 2q to obtain integers; this is what
the authors of NewHope refer to as efficiently implementable in fixed-point
arithmetic.

Operation costs of NewHope. Table 1 summarizes the operations involved
on either side of the NewHope key exchange.

Table 1: Operation counts on the client and the server side of NewHope.
Operation Server Client
Generating the public parameter a; 1 1
Sampling noise polynomials; 2 3
Computing the NTT; 2 2
Computing the NTT−1 with bit reversal; 1 1
Computing the pointwise multiplication; 2 2
Computing the vector r for error reconciliation; 0 1
Computing the error reconciliation Rec; 1 1
Hashing the 32-byte value ν with
SHA3-256 to obtain the final key µ. 1 1

3 The Cortex-M Family of Microcontrollers

The ARM Cortex-M processors are advertised as “the most popular choice for
embedded applications, having been licensed to over 175 ARM partners” [15].
Their wide deployment in embedded applications makes them an attractive tar-
get for optimized cryptography. ARM offers a wide range with their Cortex-M
family. At the low end of pricing, power consumption, and also computational
capabilities is the Cortex-M0. At the high end are the Cortex-M4 and Cortex-
M7. Like other embedded processors, ARM Cortex-M chips are used in the
Internet of Things, consumer products, medical instrumentation, connectivity,
or industry-control systems.

All Cortex-M processors have in common that data is processed in 32-bit
words. Relevant differences for the software described in this paper are the in-
struction set, the size of RAM and ROM, and the availability of a random
source. The Cortex-M0 is based on the ARMv6-M architecture. This architec-
ture combines the 16-bit Thumb instruction set with a few 32-bit instructions.
The Cortex-M4 is based on the ARMv7-M architecture. This architecture makes
use of the 32-bit Thumb-2 instruction set. Both processors have 16 general-
purpose registers, out of which one is used as stack pointer (r13), one is used
as link register (r14), and one for the program counter (r15). However, only
32-bit instructions can make use of the 8 high general-purpose registers, which
limits the Cortex-M0 to essentially eight general purpose registers (except for
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register-to-register copies, which can also reach the high registers). Another dif-
ference concerns the size of immediate values that instructions can handle: The
M0 instruction set supports only 8-bit immediate values; the M4 instruction set
supports immediate values of up to 16 bits.

Both processors have a comparable timing with respect to cycle count of
atomic instructions. For example, the branch instruction needs 3 cycles if the
branch is taken and 1 cycle otherwise on both architectures. Both architectures
provide instructions to load or store multiple registers in 1 + n cycles, where n
is the number of registers. In the case of load and store instructions, however,
architectural differences occur. On the Cortex-M4, store instructions take only
one cycle, because address generation is performed in the initial cycle and the
actual storing of data is performed while the next instruction is executed. Load
instruction can be pipelined together with other independent load and store
instructions. The Cortex-M0 does not provide pipeline functionality for load
and store instructions; those instructions thus take 2 cycles.

The Cortex-M0 does not have a hardware random-number generator (RNG),
whereas the Cortex-M4 on our STM32F4xx-series development board offers a 32-
bit hardware RNG. This RNG unit passes all statistical tests for secure random
number generation provided by the NIST [26]. For the M4 we present two ver-
sions of our noise generation: one using ChaCha20 and one using this hardware
RNG (which has also been used for noise generation in [9]).

4 Implementation Details

This section first provides a detailed explanation of general optimization tech-
niques. We then provide two architecture-specific subsections in which we elabo-
rate on processor-specific optimization techniques. For the SHAKE-128 function
and the SHA3-256 function we use the optimized implementation by the Daemen,
Peeters, Van Assche and Van Keer [6].

The main focus of our optimization lies on the NTT and the NTT−1. In our
description we treat the NTT and the NTT−1 together, because they only differ
in the fact that the NTT−1 requires a bit reversal and in the constants being used:
powers of ω for the NTT and powers of ω−1 for the NTT−1. The choices for these
parameters made by the designers of NewHope are ω = 49 and ω−1 = 49−1

mod q = 1254. This implies that γ = 7 is the square root of ω, the n-th root
of unity. The existence of ω and γ is guaranteed by the parameter choice of
n = 1024 and q = 12289, which is the smallest prime for which q ≡ 1 mod 2n.
This together with n being a power of 2 allows an efficient implementation of
the NTT for elements of Rq = Zq[X]/(Xn + 1). As an obvious optimization we
make use of precomputed powers of ω and γ, and removed multiplications by
ω0 = 1 from last level of the NTT. These well known optimization techniques
for speeding up the NTT computation save us 1525 multiplications.

For precomputing the constants, there are essentially three different strate-
gies to trade-off time and memory. One approach is to precompute none of the
powers of ω and γ the other extreme is obviously to precompute all of the powers
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of ω and γ; a middle ground is to precompute a subset of them. Not precomput-
ing any powers implies that only one coefficient needs to be stored and the rest
is generated ‘on the fly’, which costs one additional multiplication per power.
The cost intensive aspect, however, is that the product needs to be reduced af-
terwards, which rules out this option for us as we chose to focus on efficiency.
Precomputing all powers was the logical approach to begin with due to consis-
tency with the reference implementation provided by [2]. This requires to store
3072 14-bit coefficients: the 512 powers of ω, the 512 bit reversed powers of ω, the
1024 powers of γ, and the 1024 inverted powers of γ. These constants, however,
have a partial overlap, which points into the direction of the third approach,
namely to balance the memory usage and the computational costs. We found
in our experiments that the most balanced approach is to store the 512 powers
of ω and use them to compute the powers of γ. The first 512 elements of the
powers of γ are identical to the powers of ω, because the powers of γ are bit
reversed. The second 512 elements can be computed by a simple multiplication
with γ = 7. Since 7 needs only 3 bits and both the precomputed powers of ω
and the coefficients are 14-bits in size no reduction is required, because we op-
erate on a 32-bit architecture and after a multiplication the maximum bit size
is 3 + 14 + 14 = 31-bits. With this approach we were able to reduce the size of
precomputed tables needed by a factor of 1

3 for a price of ≈ 750 cycles. It is the
most efficient setup for the NTT transform with regards to both memory and
computational costs, as it only requires to keep 512 14-bit coefficients at a low
cycle count overhead.

The approach for NTT−1 it is not as straight forward, because the powers
of ω−1 are not as easily related to the powers of γ (γ2n ≡ 1 mod q). The only
balancing technique we could apply would be to use same powers of ω used for the
NTT. This would imply that the resulting polynomial would be in reversed order.
We would then need to reorder the polynomial to the natural form. This could
be integrated into the required multiplication with the precomputed powers of
γ. We implemented it during our experiments and decided against it in the
final implementation as it saves only 1

6 of the table sizes, (namely 512 inverted
powers of ω) but introduces an overhead of > 3 000 cycles. Therefore, we decided
to keep the reversed powers of ω. In our speed-optimized implementation we
decided against this tradeoff, but it might well be worth considering if memory
constraints are an issue.

Listing 1 Reduction routines used in the butterfly operation.
(a) Montgomery reduction (R = 218).
montgomery_reduce,rm:
MUL rt, rm, #12287
AND rt, rt, #262143
MUL rt, rt, #12289
ADD rm, rm, rt
SHR rm, rm, #18

(b) Short Barrett reduction.
barrett_reduce, rb:
MUL rt, rb, #5
SHR rt, rt, #16
MUL rt, rt, #12289
SUB rb, rb, rt

8



Listing 2 Gentlemen-Sande butterfly operation - all variables are uint16_t.

LDR ($a_{j}$),r0
LDR ($a_{j + d}$),r1
MOV rt,rt,r0
ADD r0,r0,r1
ADD rt,rt,#36867
SUB rt,rt,r1
LDR ($omega_t$),r1
MUL rt,rt,r1
barret_reduce,r0
montgomery_reduce,rt
STR ($a_j$),r0
STR ($a_{j + d}$),rt

The NTT for n = 1024 consist of 10 levels, each performing 512 Gentlemen-
Sande butterfly operations [12]. Each butterfly operation consists of three loads,
one addition, one subtraction, one multiplication by a constant and two stores.
One more addition needs to be performed to keep all coefficients in unsigned
format.

Thus, except for the modular reductions, a butterfly operation requires at
least 2 registers for coefficients, one temporary register, and one 16-bit immedi-
ate value. Self-evidently we carry over the optimization techniques applied to the
computation of the NTT already in place in the reference implementation. These
consist of speeding up the modular-arithmetic. The first optimization is to use
Montgomery arithmetic [17]. This demands that all constants are stored in the
Montgomery representation with R = 218. Our assembly version of the Mont-
gomery reduction is given in Listing 1a. It shows that Montgomery reduction
requires two 14-bit, one 18-bit, and one 5-bit immediate value, and also one tem-
porary register. The second optimization is to use short Barrett reductions [3]
for modular reductions after addition. Our assembly version of this routine is
given in Listing 1b; it shows how we reduce a 16-bit unsigned integer to an inte-
ger congruent modulo q of at most 14-bits. It requires one 14-bit, one 5-bit and
one 3-bit immediate values, and one additional register. The ARM instruction
set does not allow immediate values as parameter in the multiply instruction on
both microcontrollers. Therefore, immediate values used in multiplications must
be loaded to a register first. With these conditions, each butterfly operation re-
quires at least 4 registers. The third optimization is called ‘lazy reduction’. It
describes that the short Barrett reduction is only applied every second level [2].
This works, since per level at most one carry bit occurs; the short Barrett can
handle up to 16-bits and the starting value is at most 14-bits in size. However,
because we are computing two additions before the reduction, we need to add
3q (36867) before the subtraction to keep all coefficients in the unsigned format.

A note on the Longa-Naehrig approach. As a follow-up work to [2], Longa
and Naehrig presented speedups to NewHope and in particular the NTT in [13].
They claim a speedup of the NTT by a factor 1.9 in the C implementation and by
a factor of 1.25 in the AVX2-optimized implementation. The central idea of that
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paper is a specialized modular reduction routine for primes of the shape k ·2m+`
for small values of k and `; in the case of NewHope those values are k = 3 and
` = 1. This reduction routine is combined with extensive use of lazy reduction.
The factor of 1.9 in the C implementation is largely explained by the fact that
the software makes heavy use of 64-bit integers, which the software described
in [2] explicitly avoids. Obviously, making use of 64-bit integers makes sense
on AMD64 processors, but is much less efficient on the 32-bit microcontrollers
targeted in this paper. The AVX2 implementation described in [13] has in the
meantime been outperformed by the latest version of the AVX2 software by the
NewHope authors, which uses double-precision floating-point arithmetic.

We experimented with the approach described by Longa and Naehrig on the
M0 and M4 and were not able to gain any speedups. This is partly explained
by the lack of 64-bit registers (and a 32× 32-bit multiplier on the M0). Another
reason was that we observed a slight increase in register usage, which significantly
increased the required number of loads and stores, in particular on the M0.
Furthermore, the lazy-reduction approach leaves intermediate values of > 16
bits, which need to be stored to RAM before processing the next level. Using
32-bit integers for those intermediate values increases the memory usage of the
NTT by 2 KB, which is prohibitive on the M0.

4.1 Cortex-M0 Specific Optimization

The first optimization necessary for the Cortex-M0 is to fit NewHope onto the
processor. The portable reference implementation provided by the authors of
NewHope and described in [2] exceeds the Cortex-M0’s 8KB of RAM. The C
reference implementation of NewHope closely follows the description in Proto-
col 1, and makes use of 4 polynomials during key generation and 8 polynomials
for the computations on the client side. Each of these polynomials is represented
by its 1024 unsigned 16-bit coefficients, and thus consumes 2KB of RAM. Even
with only minimal overhead for different variables or microcontroller internal
RAM usage, only up to 3 polynomials fit simultaneously into the RAM of the
Cortex-M0. By restructuring the code and adapting the data types used we
could fit both, the server side and the client side onto the Cortex-M0. We solved
a similar issue during noise extension. On the Cortex-M0 it is impossible to have
a buffer larger than 1024-byte. We therefore perform four ChaCha20 calls. This
required another bit of entropy. We simply used the loop counter used for the
four consecutive calls as input byte for the second element of the initialization
vector for the ChaCha20 function.

After fitting the key exchange protocol into the boundaries provided by the
Cortex-M0, we could start to look into optimization for speed. A general aspect
regarding optimization on Cortex-M processors is that data is processed in words
of 32-bits. This allows us to cut the amount of stores and loads in half for the
coefficients and constants represented as unsigned 16-bit values. For the shared
key and seeds, unsigned 8-bit values, the amount of load and stores is decreased
by four. For logical operations on the values loaded this way, no overhead is

10



generated. Arithmetic operations, however, produce overhead, because the 32-
bit values need to be split before computation and the 16-bit values need to
be merged afterwards. This costs 2 additional cycles for every load and 2 more
cycles before every store.

As can be seen in the operation counts summarized in Table 1 at the end of
Section 2, the NTT and the NTT−1 are the most frequently called operations.
Since it is also the most expensive function with regards to cycle counts, it was
the natural choice to begin with.

NTT and NTT−1. We began our optimization of the NTT (and NTT−1), by
unrolling the 10 levels and standardizing the inner loops, such that every level
loops 256 times and performs two Gentlemen-Sande butterfly operations per loop
iteration. Performing two Gentlemen-Sande butterfly operations per iteration is
beneficial, because it allows us to make the best use of the 32-bit word size of the
Cortex-M family. Listing 2 shows the code for one Gentlemen-Sande butterfly
operation. For the lazy reduction on every second level the Barrett reduction
is omitted. Since each coefficient is a 16-bit value, we are able to load two of
them per load operation. We continued our optimization by merging levels 0
and 1. Level 0 takes every element and performs the butterfly operations; level 1
takes every second element and performs the butterfly operations. If we combine
both levels for efficiency we need to load two 32-bit words, thus four 16-bit
coefficients. For each 2 loads we can now perform 4 combined Gentlemen-Sande
butterfly operations. We perform the two butterfly operations of level 0 (without
the Barrett reduction followed by the two butterfly operations of level 1 (with
the Barrett reduction). One loop iteration thus handles both levels.

These four merged butterfly operations take a total of 134 cycles. Unfortu-
nately this does not work for the other consecutive levels on the Cortex-M0.
With its limited instruction set and the resulting 8 general purpose registers,
the overhead gets out of proportion when merging higher levels. Therefore we
get a cycle count of 96 for every even and a cycle count of 86 for every odd
level. The last optimization we performed was to minimize register reordering.
We went through our NTT code and optimized it such that constants and loop-
counter are placed in high registers where possible to allow to make use of the
Cortex-M0’s full potential.

Before each call to the NTT a multiplication with the γ coefficients and after
each call to the NTT−1 a multiplication with the precomputed γ−1 coefficients
must be performed. We implemented the multiplication on the coefficients in
assembly to benefit from the Cortex-M0’s 32-bit word size. Additionally to the
architectural benefit we make use of the fact that the multiplication of the co-
efficients with the precomputed coefficients is a simple operation and does not
need too many registers. Therefore we are able to load 4 coefficients at once and
also store them. With this we decreased the amount of loads and stores needed
by another factor of two. We could reduce the cycle count for the multiplication
of coefficients by 55.04% compared to the reference implementation.

We also decided to rewrite the pointwise multiplication of polynomials such
that it makes optimal usage of the target architecture. We achieve a 56.08% de-
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creased cycle count, compared to the reference implementation, for the pointwise
multiplication by making use of the word size. We load and store two consec-
utive coefficients of the polynomial and apply the calculations needed on each
half word. By doing so, we only call half of the iterations of the main loop.

Before the NTT−1 is called a bit reversal needs to be performed. We did not
provide an assembly optimized version for this function. The problem is that
consecutive coefficients do not necessarily get changed, which implies that we
cannot benefit from the word size. We just adapted the bit reversal to not loop
over the last elements which are unaffected by it.

Sampling noise polynomials. The noise seeds which form the base of the
noise polynomials are not generated on the Cortex-M0. The development board
we used during the implementation does not provide an RNG. Since there is no
default option for random number generation on the Cortex-M0 we made the
choice to allow a context-specific implementation. The randomly generated seed
is crucial for the security of the key exchange, therefore, we provide an easy to
replace C function in our code. The random seed gets subsequently extended by
the ChaCha20 stream cipher. We based our architecture specific implementa-
tion on a ChaCha20 implementation specifically designed for the Cortex-M0 by
Neikes and Samwel [18]. The core functionality of this stream cipher is optimized
in assembly. Additions we made were merely in the initialization phase. Again
we benefit from the 32-bit word length of the architecture, which allowed us to
represent the internal variables efficiently. The reference implementation makes
use of two helper functions to store and load values in little-endian, however,
this aspect can be solved simply by the little-endian architecture. Therefore, we
could omit the helper functions, which gives us a 10.82% decreased cycle count
compared to the reference implementation.

Error reconciliation and help-vector generation. We continued our opti-
mization with the Rec function by implementing it in assembly. This yields the
general benefits of the 32-bit word size. By additionally unrolling and restruc-
turing the loop we make even better use of the architecture. We calculate 8-bits
of the key and perform four consecutive calls to this function to get 32-bit of
the key before storing it. We store 32-bit of the key eight times to compute all
256 bits of the key. Contrary to the reference implementation, we apply helper
functions as soon as possible without storing intermediates. These changes give
us a 32.10% decreased cycle count compared to the reference implementation.

In the case of the HelpRec function, we first benefit from the fast ChaCha20
implementation. We continued by rewriting the main loop in assembly. The loop
iterates over the 256 random bits used as fair coin and encodes each bit into 4
coefficients of the input polynomial. We restructured the loop to load 8 times a
full word (32-bit). Afterwards, we perform the loop internal calculations per bit
and apply the results to the four positions of the polynomial. These optimization
measures grant us a 14.43% faster implementation compared to the reference
implementation.
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Polynomial addition. Additionally, we wrote assembly implementations for
the basic arithmetic calculations for polynomials. The addition works by taking
each coefficient of the first and each coefficient of the second polynomial at the
same position and adding them together before reducing the sum with a call
to the Barrett reduction. We implemented the Barrett reduction specific for
the context and the architecture, such that we manage to decrease the cycle
count to 5. Due to the fact that this simple function does not require meticulous
register usage we could load two 32-bit words at once, thus 4 coefficients. We
do so for the coefficients of the first polynomial and load 2 coefficients of the
second polynomial, compute the results, load the next 2 coefficients of the second
polynomial, compute the second two results and store the newly computed 4
coefficients with one instruction. We manage to reduce the cycle count required
for polynomial addition by 59.02% compared to the reference implementation.

4.2 Cortex-M4 Specific Optimization

Compared to the Cortex-M0, the Cortex-M4 is much more powerful. It has
192KB of RAM, the portable reference implementation can thus run without
adaptations on this microcontroller. Additionally, the Cortex-M4 on our devel-
opment board features a hardware random-number generator. This enables us
to calculate the seeds on the microcontroller directly. Additionally, we are not
required to make use of LDM and STM instructions to save cycles for mem-
ory operations, thanks to the architectural benefits described in Section 3. This
enables us to use 16-bit loads and stores directly without extracting the 16-bit
coefficients from 32-bit words. The most obvious implication of this is that the
C implementation performs as good as assembly when there are no arithmetic
and/or reordering optimizations.

NTT and NTT−1. Inside one butterfly operation, 2 temporary registers are
required to calculate the results. The Cortex-M4 has 14 available general-purpose
registers and we need to keep the addresses of the input polynomial and the array
of precomputed twiddle factors. Therefore, we have 10 registers available during
our computations. This implies that we can merge up to 3 levels to save on
loads and stores. Making use of these architectural constraints we split the NTT
on the Cortex-M4 in four chunks of layers. The first two chunks each perform
three layers of the NTT in one loop. These loops process 8 coefficients and run
128 times. In the third chunk we took the first 512 coefficients of the input-
polynomial and ran the next three layers of the NTT on them. Afterwards, we
took the second 512 coefficients of the input-polynomial and ran the same layers
on them. When the results are loaded into the registers we were able to ran
the last layer on them, which saved us 1024 loads and stores. The precomputed
twiddle factors are such that we do not need multiplication for the last layer. We
incorporate the additional register that kept the addresses of the twiddle factors
into the calculations performed at the last layer. This reduces the total amount
of loads and stores needed for the NTT to 3.5n instead of 10n (n = 1024).
By applying the concept of merged layers, we where able to reduce our NTT
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assembly code for the Cortex-M4 to 384 branches instead of 5120 needed in the
C reference implementation.

The Cortex-M4 has a ‘multiply and accumulate’ instruction for 32-bit inte-
gers. It can be seen that both in reductions in Listing 1 multiplication is followed
by addition or subtraction. Therefore, we could use this instruction in both, but-
terfly and pointwise multiplication. This saves more than 30000 cycles per NTT
transform. To be able to use this optimization we implemented the pointwise
multiplication of polynomials in assembly.

We also implemented the bit reversal operation in assembly. However, while
unrolling the bit reversal operation in assembly saves 6500 cycles, the code size
of the unrolled bit reversal is 7799 bytes more than the looped implementation.
Due to this trade off we decided against the use of it in our work, because we
only have two NTT−1’s. In another scenario, however, it could be beneficial and
proofs that there is still room for improvements.

Sampling noise polynomials. We implemented the sampling of noise poly-
nomials in two different ways on the Cortex-M4. First, we implemented the
sampling by calling ChaCha20 as the reference implementation does. Second,
we implemented the sampling by using the built-in RNG. It generates a 32-
bit random number every 40 cycles. Each coefficient of a polynomial requires
2k random bits, 2k + 1 additions, 2k shifts, 2k logical ‘and’ instructions and 1
subtraction. For every 32-bit number we generated one coefficient in 50 cycles.
These calculations take more time than required by the RNG, which implies
that the RNG does not have to wait on our calculations. Since we need 32-bit of
randomness for one coefficient, the RNG is called 1024 times during the process
of sampling one polynomial. As can be seen, the performance of the generation
of a noise polynomial is strongly dependent on the parameter ‘k’. Therefore, the
running time of the noise sampling can be predicted by the time required to
generate 2k random bits with the RNG.

The Cortex-M4 memory operation can be pipelined, thus calling two 16-
bit load/store instructions takes the same amount of time as calling one 32-
bit load/store instruction and split it into two 16-bit integers. This allowed us
to use the C implementation for the other operations of NewHope without
experiencing any significant slowdown.

5 Results and Comparison

In this section, we present our results and compare them with results from
the literature. Cortex-M0 benchmarks are obtained on the STM32F0 Discovery
board, which is equipped with a STM32F051R8T6 microcontroller. Cortex-M4
benchmarks are obtained on the STM32F4 Discovery development board, which
is equipped with a STM32F407VGT6 microcontroller. Our software is compiled
with arm-none-eabi-gcc version 5.2.0 and -Ofast as compiler flag for both, the
Cortex-M0 and the Cortex-M4. Cycle counts and ROM size of our software is
summarized in Table 2.
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Table 2: Cycle counts of NewHope building blocks on target devices.
Operation Cortex-M0 Cortex-M4

Generation of a 328 789 263 089

NTT 148 517 86 769

NTT−1 167 405 a 97 340 a

Sampling of a noise polynomial 208 692 b 111 794 b

(53 281)c

HelpRec 68 170 43 112

Rec 46 945 31 892

Key generation (server) 1 170 892 781 518 b

(659 726)c

Key gen + shared key (client) 1 760 837 1 140 594 b

(982 384)c

Shared key (server) 298 877 174 798

ROM usage (bytes) 30 178 22 828 b

(18 544)c
a Includes bit reversal operation
b Noise generation done by ChaCha20
c Noise generation done by RNG

Comparison with previous results. The literature describes various imple-
mentations of lattice-based cryptography on embedded microcontrollers.

For example, in [24] the authors targeted the AVR architecture, and in [23]
the authors targeted FPGAs. A direct and fair comparison among those imple-
mentations underlies many, often unsolvable constraints. The architectures vary,
different schemes are implemented, and last but not least do all candidates for
comparison to our result target lower security levels. To gauge the progress of
implementation techniques, most comparisons between different schemes focus
on comparing the performance of subroutines; in the context of ideal-lattice-
based cryptography mainly on comparing noise sampling and the NTT, the two
most costly operations.

To the best of our knowledge, there are two papers that describe optimiza-
tions of ideal-lattice-based cryptography for the ARM Cortex-M family of mi-
crocontrollers. In [9], de Clercq, Roy, Vercauteren, and Verbauwhede optimize
RLWE-based encryption and in [20], Oder, Pöppelmann, and Güneysu optimize
the Bliss signature scheme by Ducas, Durmus, Lepoint, and Lyubashevsky [10].
Both papers target the Cortex-M4F microcontroller and implemented the NTT
on 512-coefficient polynomials with the same modulus q = 12289 that we used.
An additional challenge for comparison is that the NTT operations in [9] and [20]
use dimension 512, whereas we use dimension 1024. As explained in the intro-
duction, NTT computations are essentially a sequence of butterfly operations.

15



For comparison we thus scale the numbers from [9] and [20] to dimension 1024
by the number of butterflies, i.e., by a factor of 20/9.

Table 3: Performance comparison of NTT implementation and error sampling
NTT Noise samplinga

Cortex-M0 (ours) 148 517 204

Cortex-M4 (ours) 86 769 110b

(50)c

Cortex-M4F [9] 157 977d 28.5

Cortex-M4F [20] 272 486d 1 828
a Cycle counts for sampling one coefficient
b Noise generation done by ChaCha20
c Noise generation done by RNG
d Number scaled from dimension 512 to dimension 1024 by multiplying by 20/9

From Table 3 we can see that even if we use the built-in RNG of the M4, our
sampling algorithm is 1.75× slower than the Knuth-Yao algorithm used in [9].
Note however, that our sampling algorithm, unlike the Knuth-Yao sampler, runs
in constant time and is thus inherently protected against timing attacks. Also,
the slightly decreased performance on embedded microcontrollers is a price to
pay for compatibility with significantly increased timing-attack-protected sam-
pling performance on large processors with caches. For details, see [2, Section 4].
Comparison with noise sampling from [20] is problematic, because noise sampling
for signature schemes have very different requirements for the noise distribution.

With respect to the NTT the cycle counts we achieve on the Cortex-M4 are
45% faster than [9] and 68% faster than [20]. In the case of the Cortex-M0, the
cycle savings are 6% faster than the M4F counts from [9] and 45% faster than the
M4F counts from [20]. This demonstrates that the optimization measures applied
by us provide faster results on comparable hardware and enable inferior hardware
to outperform the best results on ARM Cortex-M processors for calculating an
NTT.
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