
Low-temperature data remanence
attacks against intrinsic SRAM PUFs

N.A. Anagnostopoulos
Security Engineering Group

TU Darmstadt / CASED
Mornewegstraße 32, 64293

Darmstadt, Hessen, Germany
anagnostopoulos@

seceng.informatik.tu-
darmstadt.de

Stefan Katzenbeisser
Security Engineering Group

TU Darmstadt / CASED
Mornewegstraße 32, 64293

Darmstadt, Hessen, Germany
katzenbeisser@

seceng.informatik.tu-
darmstadt.de

Markus Rosenstihl
Institut für Festkörperphysik

TU Darmstadt
Hochschulstraße 6, 64289

Darmstadt, Hessen, Germany
markus.rosenstihl@

physik.tu-darmstadt.de

André Schaller
Security Engineering Group

TU Darmstadt / CASED
Mornewegstraße 32, 64293

Darmstadt, Hessen, Germany
schaller@

seceng.informatik.tu-
darmstadt.de

Sebastian Gabmeyer
Security Engineering Group

TU Darmstadt / CASED
Mornewegstraße 32, 64293

Darmstadt, Hessen, Germany
gabmeyer@

seceng.informatik.tu-
darmstadt.de

Tolga Arul
Integrated Circuits and

Systems Lab
TU Darmstadt / CASED

Mornewegstraße 32, 64293
Darmstadt, Hessen, Germany

tolga.arul@cased.de

ABSTRACT
In this paper, we present the first systematic investigation
of data remanence effects on an intrinsic Static Random Ac-
cess Memory Physical Unclonable Function (SRAM PUF)
implemented on a commercial off-the-shelf (COTS) device in
a temperature range between -110◦ C and -40◦ C. Although
previous studies investigated data remanence in SRAMs
only at temperatures above -50◦ C, our experimental re-
sults clearly indicate that the extended temperature region
we examine has dramatic effects on the security of intrin-
sic SRAM PUFs. We propose a number of different attacks
and experimentally verify that data remanence effects can
be exploited successfully to attack intrinsic SRAM PUFs on
a COTS device, where the (micro)processor and the SRAM
reside on the same die. Our experimental attack writes a
bit-string to memory and freezes the device. Due to data
remanence effects the attacker-known bit-string remains in
memory and is subsequently read out by the bootloader to
generate the PUF response. In this way, the attacker is able
to construct a forged secret key by manipulating the PUF
response. Finally, we also discuss and assess potential coun-
termeasures against the attacks we examine.

Keywords
Data remanence, static random access memory (SRAM),
physical unclonable function (PUF), low temperature, at-
tack

1. INTRODUCTION AND MOTIVATION
The use of cryptography usually requires, among others,

the identifaction of parties, the secure storage of a secret
on a device, and a source of randomness. Physically Un-
clonable Functions (PUFs) have been shown to provide ad-
equate security mechanisms for cost-efficient identification,
key storage, and random number generators on commodity
devices [26] and have been implemented in industrial appli-
cations already [23, 49]. The security of a PUF is based
on the existence of at least one (random but stable) output
that is unique per device for some given input. In this case,
the input is referred to as a challenge and the correspond-
ing output as a response, thus together forming a challenge-
response pair (CRP). The uniqueness of such an output is
strongly based on the existence of small, naturally occur-
ring variations and inherent disorders between two identi-
cally manufactured devices, which result in different outputs
when provided with the same input [39]. In this way, each
PUF instance acts as a physical implementation of a one-
way function, with its output being a unique inherent secret
per device [35]. Based on the number of challenge-response
pairs PUFs are classified into weak and strong PUFs.

In this paper we focus on a specific class of weak PUFs,
namely SRAM PUFs, whose response is built by concate-
nating the start-up state of cells of a Static Random Access
Memory (SRAM) device [18]. This raw PUF response is
highly unique for an SRAM device, being both random and
robust in the sense that only a few cells’ start-up values are
not stable over time [26]. Of particular interest are intrinsic
SRAM PUFs, i.e., PUFs that do not require the addition
of specialised security hardware but are inherently charac-
terised by the hardware itself. Consequently, they have been
proposed as a security anchor in low-cost commodity and
legacy devices, providing identification and key generation
solutions [12, 16, 17, 19, 20, 29, 30, 31, 33, 36, 37, 47, 50],
or a source of randomness [16, 17, 19, 20, 36, 47, 48].



Given their wide range of application we investigate the
security provided by intrinsic SRAM PUFs, which—in con-
trast to the class of strong PUFs—have not been analyzed
thoroughly before. For this purpose we study the data rema-
nence effects of SRAM cells at very low temperatures with
the intention to attack their identification, key storage, and
random number generation abilities. For our study we have
used a commercial off-the-shelf (COTS) device with a mod-
ern design layout, where the SRAM is placed on the same die
as the (micro)processor. Contrastingly, all previous studies
examined either standalone SRAM modules [4, 5, 24, 43, 52],
FPGA implementations [2, 46], or ASICs [3, 34, 54]. More-
over, our paper is—to the best of our knowledge—the first
systematic investigation of low-temperature data remanence
effects of SRAM cells in the temperature region between
−110◦ Celsius and −40◦ Celsius while previous studies have
investigated data remanence in SRAMs only at tempera-
tures above −50◦ Celsius [3, 5, 24, 34, 43, 46, 52, 54]. This
extended temperature region, as our study clearly indicates,
has dramatic effects on the security of intrinsic SRAM PUFs,
which may be exploited by a number of simple attacks that
can be easily implemented even without prior expertise.

These attacks utilise the fact that, for intrinsic SRAM
PUFs, the memory area used for the construction of the
PUF is typically shared with the operating system and the
user space programs. Thus, the SRAM can be written to
while the system operates. In particular, we show that an
attacker, who has compromised a user-space application on
the device, can write data to the memory and preserve it
through data remanence effects. Essentially, the attack al-
ters the start-up values of the SRAM PUF to a bit-string
known to the attacker. We implemented two such attacks
and, in addition, provide possible countermeasures to pre-
vent low-temperature data remanence attacks.

Summarizing our contribution, we present in this paper:

(a) the first thorough (attack-focused) study on data re-
manence of SRAM cells in the temperature range from
−100◦ C to −40◦ C,

(b) a discussion of attacks on intrinsic SRAM PUFs that
exploit the observed data remanence effects,

(c) an experimentally verified implementation of such an
attack, which successfully recovered the PUF response,
and

(d) a proposal for countermeasures that go beyond the cur-
rent state-of-the-art.

Outline
The remainder of this paper is structured as follows:
Section 2 describes the setup and the results of the low-
temperature data remanence study of SRAM cells. In
Section 3 we explain in detail the proposed attack scenarios,
discuss our experimental evaluation of such an attack, and
present possible countermeasures. Section 4 discusses the
related work on data remanence effects and previously
proposed attacks against SRAM PUFs. Finally, Section 5
contains some final remarks on the attacks and their
significance regarding the security of intrinsic SRAM PUFs,
as well as a few directions of potential future research on
related topics.

Figure 1: The Stellaris board, above, as it normally
appears and, at the bottom, with the PT1000 resis-
tance temperature detector sensor glued to its mi-
croprocessor module.

2. LOW-TEMPERATURE DATA REMA-
NENCE STUDY

In this section, we explore the data remanence effects in
an intrinsic SRAM PUF, implemented on a commercial off-
the-shelf (COTS) device, in the temperature range between
−110◦C and −40◦C. We have also conducted additional ex-
periments at lower and higher temperatures to consolidate
our results regarding the attacks proposed in Section 3.

We chose to investigate the data remenance effects of
a Stellaris LM4F120 LaunchPad Evaluation Board (EK-
LM4F120XL) produced by Texas Instruments. Stellaris in-
corporates the SRAM module on the actual die of its mi-
croprocessor and its SRAM cells have been shown to exhibit
good PUF characteristics [27]. In this regard, our setup is
novel as previous studies examined either standalone SRAM
modules [4, 5, 24, 43, 52], FPGA implementations [2, 46], or
ASICs [3, 34, 54], while our study uses a commercial off-the-
shelf (COTS) device with a modern design layout, where the
SRAM is placed on the same die as the (micro)processor.

2.1 Study setup
The Stellaris board utilises the ARM Cortex-M4F

LM4F120H5QR microcontroller. On the die of the mi-
crocontroller resides also a 32 KB single-cycle on-chip
SRAM [45], which we used as an inherent on-board SRAM
PUF. Although the Stellaris board provides an internal tem-
perature sensor, we also used an external sensor to valudate
the temperature readings. The two sensors reported a tem-
perature difference of 1-2◦C, which appears plausible as one
sensor is inside the module’s package and the other was glued
on top of it as shown in Fig. 1.

The external temperature sensor consisted of an Agilent
34401 multimeter connected to a PT1000 resistance tem-
perature detector (RTD) in 4-wire setup to eliminate the in-
fluence of the contact (lead) resistance on the measurement.
The PT1000 temperature sensor was glued on top of the mi-
croprocessor’s package housing with the thermally conduct-
ing epoxy glue “WLK 30” produced by Fischer Elektronik.



Figure 2: An overview of the experimental setup,
showing the cryogenic storage dewar containers
filled with liquid nitrogen on the left and the Sty-
ropor (polystyrene) box in the middle, with an air
tube connecting the heat exchanger on top of the
blue dewar container to it. Next to the Styropor
isolation box, on its right, is the Agilent 34401 mul-
timeter which is connected to the PT1000 RTD sen-
sor with copper cables. Further to the right is the
custom board which controls the device’s power sup-
ply on-off time and which is connected to the Stel-
laris board through USB (Universal Serial Bus) ca-
bles, and on the rightmost position sits the computer
with which we control the custom board and with
which we cause the Stellaris SRAM PUF to generate
CRPs.

In order to thermally isolate the PUF device, we placed it
inside a Styropor (polystyrene) box with feed-throughs for
the wires and cooling air. Additionally, in order to overcome
the obstacle of very short-term data remanence due to the
device being functional and fully grounded [43, 46], we built
a custom board which can control the device’s power supply
on-off time in the region of milliseconds. The experimental
setup is shown in Fig. 2.

We also noted that the board remains operational and
responsive until the environmental temperature falls be-
low −120◦C, a temperature well below the usual industrial
limit of good operation at around −40◦C (see the micro-
controller’s data sheet [45]). Therefore, we chose to cool
the board to temperatures around −110◦C and above using
pressurized air flowing through a heat exchanger placed in-
side a dewar of liquid nitrogen. Additionally, we used liquid
nitrogen itself to cool the board below −110◦C in order to
investigate how such temperatures can affect its operation
and whether they ensure total data remanence.

Furthermore, we must also note the role of burn-in ef-
fects on data remanence attacks, i.e., the tendency of values
stored for a long time on an SRAM cell to burn in and per-
sist on that cell [14, 41]. This means that the longer a value
is allowed to burn in, the longer it is expected to persist on
that cell due to data remanence. In our experiments, we
tried to reduce such effects as much as possible to make sure
that an attack can be successful even if the attacker does
not have an extended amount of time in order to burn in a
convenient pattern on the SRAM cells. In this way, we tried

-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

Temperature (in degrees Celsius)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
nt

ag
e 

of
 S

R
A

M
 c

el
ls

 w
ith

 th
e 

lo
gi

ca
l v

al
ue

 '1
'

data remanence from '1' at given temperature for 10 ms power-off time
data remanence from '0' at given temperature for 10 ms power-off time
data remanence from '1' for 10 ms power-off time
data remanence from '0' for 10 ms power-off time
average raw PUF response level
±10% error levels from raw PUF response level

Figure 3: Results reflecting the level of data rema-
nence after writing all the SRAM cells with either
logical ‘1’ or logical ‘0’ at different temperatures for
10ms power-off time.

to avoid providing the attacker with an advantage that may
not always be possible to gain in reality.

Finally, in order to read the memory values right after
start up, we are using a modified bootloader, based on the
Texas Instruments Real-Time Operating System (RTOS) for
the Stellaris board and its inherent bootloader. Our boot-
loader reads the initial SRAM values, transmits them to our
computer through the UART (Universal Asynchronous Re-
ceiver Transmitter) interface carried out through the USB
connection and then overwrites all the SRAM cells with
a given pattern. Additionally, we also implemented non-
privileged code in order to access the internal temperature
sensor of the board and be able to compare its readings to
those of the external one.

2.2 Results
In order to measure the data remanence of the Stellaris

SRAM PUF, we wrote a known pattern to its SRAM, pow-
ered off the device for some very short time interval (10 and
20 milliseconds), and subsequently measured how many of
the bits corresponded to the previously written pattern. We
conducted our experiments by writing both an all-zero and
an all-ones pattern to the SRAM cells to determine whether
the logical values being written can somehow influence the
data remanence effects we observed.

We measured the data remanence of the Stellaris SRAM
PUF between −110◦ and −40◦C for 10 and 20ms power-off
times, as shown in Figs. 3 and 4. As shown in Fig. 3, for
a power-off time of 10ms, our results indicate an extremely
high level of data remanence at temperatures lower than
−100◦C, even though the board is functioning and thus the
SRAM is grounded. Additionally, we note that the data
remanence decreases as the temperature increases. At 0◦C
and above, there is essentially no data remanence, as the
results indicate that the cells have returned to their usual
initial values after the device was rebooted. We also ob-
served, however, that (a) on average more than 75% of the
SRAM cells’ contents were preserved even for temperatures



-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30

Temperature (in degrees Celsius)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

er
ce

nt
ag

e 
of

 S
R

A
M

 c
el

ls
 w

ith
 th

e 
lo

gi
ca

l v
al

ue
 '1

'

data remanence from '1' at given temperature for 20 ms power-off time
data remanence from '0' at given temperature for 20 ms power-off time
data remanence from '1' for 10 ms power-off time
data remanence from '0' for 10 ms power-off time
data remanence from '1' for 20 ms power-off time
data remanence from '0' for 20 ms power-off time
average raw PUF response level
±10% error levels from raw PUF response level

Figure 4: Results comparing the level of data re-
manence after writing all the SRAM cells with ei-
ther logical ‘1’ or logical ‘0’ at different temperatures
for 20ms power-off time to that observed for 10ms
power-off time.

as low as −40◦C and (b) the variance of the data remanence
results increases as the temperature increases.

As shown in Fig. 4, the data remanence levels for the 20ms
power-off time were (for all temperature levels) at least 20%
lower than those for the 10ms, while the SRAM cells have
almost completely returned to their initial values as the tem-
perature approaches −50◦C and higher. This degradation is
more noticeable in Figs. 5 and 6, where the results for 10ms
and 20ms power-off times at different temperatures are com-
pared, first for the SRAM cells having been overwritten with
‘1’ (Fig. 5) and then for the cells having been overwritten
with ‘0’ (Fig. 6).

We also note that, as shown in Figs. 3 and 4, at very low
temperatures, there are no significant differences between
the data remanence of logical value ‘1’ and of logical value ‘0’
in the SRAM cells, neither in the case of 10ms power-off time
nor in the case of 20ms power-off time. Yet, in the course
of our experiments, we noticed that the SRAM is slightly
biased towards logical ‘0’, with its normal start-up values
being 57% zeros and only 43% ones. This is also indicated
by the average raw PUF response level in the different figures
concerning the results of our measurements. Therefore, the
data remanence of the logical value ‘1’ can be considered to
be decreasing slightly faster as the temperature increases in
comparison to the data remanence of the logical value ‘0’, as
in both cases the curve indicating the relation between data
remanence and temperature tends to converge to the normal
start-up values, the PUF response. Thus, one observes a
quite higher data remanence rate of the logical value ‘0’ at
temperatures below −80◦C compared to the data remanence
rate of the logical value ‘1’ at the same temperature levels.

Our measurements were performed using two different
Stellaris boards in order to validate our experimental re-
sults. We must also note that given the very short power-off

-1
10

/1
0m

s

-1
10

/2
0m

s

-9
0/

10
m

s

-9
0/

20
m

s

-7
0/

10
m

s

-7
0/

20
m

s

-5
0/

10
m

s

-5
0/

20
m

s

0/
10

m
s

0/
20

m
s

25
/1

0m
s

25
/2

0m
s

Sets of measurements regarding the data remanence of logical '1'

40%

50%

60%

70%

80%

90%

100%

P
er

ce
nt

ag
e 

of
 S

R
A

M
 c

el
ls

 w
ith

 th
e 

lo
gi

ca
l v

al
ue

 '1
' average raw PUF response level

±10% error levels from raw PUF response level

Figure 5: A comparison of measurements for 10ms
and 20ms power-off times at different temperatures
with data remanence of logical ‘1’. In the identifier
of each set, the first number denotes the tempera-
ture at which the measurement took place, and the
second the relevant power-off time in milliseconds.

-1
10

/1
0m

s

-1
10

/2
0m

s

-9
0/

10
m

s

-9
0/

20
m

s

-7
0/

10
m

s

-7
0/

20
m

s

-5
0/

10
m

s

-5
0/

20
m

s

0/
10

m
s

0/
20

m
s

25
/1

0m
s

25
/2

0m
s

Sets of measurements regarding the data remanence of logical '0'

0%

10%

20%

30%

40%

50%

P
er

ce
nt

ag
e 

of
 S

R
A

M
 c

el
ls

 w
ith

 th
e 

lo
gi

ca
l v

al
ue

 '1
'

average raw PUF response level
±10% error levels from raw PUF response level

Figure 6: A comparison of measurements for 10ms
and 20ms power-off times at different temperatures
with data remanence of logical ‘0’. In the identifier
of each set, the first number denotes the tempera-
ture at which the measurement took place, and the
second the relevant power-off time in milliseconds.

reset time and the very low temperatures at which the Stel-
laris board had to operate, our code sometimes failed to
fully overwrite or read the SRAM. We also note that we
achieved better results when the board was pre-frozen close
to the temperature at which we wanted to measure, so that
the temperature could be subsequently lowered to the actual
measurement temperature and remain stable for the whole
duration of our measurements.

Additionally, we must stress that all our measurements
were contacted at temperatures which may vary ±5◦C from
the reported temperature, as the temperature was slowly
rising. For this reason, we tried to start our measurements
at a temperature that was ∼5◦C lower than the noted mea-



surement temperature and make sure that at no point dur-
ing the measurements the temperature deviated more than
5◦C from its reported value. Furthermore, as the SRAM
was functional and thus grounded, we observed almost no
data remanence when the power-off time exceeded 20ms at
−50◦C or 50ms at −110◦C.

Finally, we have to mention that we also froze the board
to temperatures around −120◦C, noting even higher data
remanence levels. However, at this temperature, the board
becomes unstable and either halts temporarily for some time
interval, continuing its execution off where it was left when
it becomes operational again, or becomes completely unre-
sponsive for some time, having lost power internally, and
subsequently reboots, once its internal power is regained.
Therefore, attacks which require a responsive SRAM PUF
cannot be performed at this temperature and below. Nev-
ertheless, we have noted a data remanence level ranging be-
tween 80% and 98% even after a very extended power-off
time at temperatures below −120◦C.

3. DATA REMANENCE ATTACKS ON IN-
TRINSIC SRAM PUFS

In this section, we propose a number of low-temperature
data remanence attacks against the use of an intrinsic SRAM
PUF as an identification mechanism, a secure key storage
device or, a random number generator. All attacks proposed
make use of the data remanence effects noted above. Our
basic scenario regarding the operation of the SRAM PUF is
based on the following SRAM PUF use case:

1. When the device reboots, some code segment of the
bootloader queries the SRAM for its start-up values,
which form the raw SRAM PUF response.

2. Then, at some point, helper data for error correction
are acquired from either the device itself or from an-
other device, along with any other information needed.

3. The raw PUF response and the helper data are com-
bined according the implemented protocol to, e.g., gen-
erate a secret key.

4. Subsequently, the same bootloader code segment over-
writes the SRAM with a specific pattern (could be all
logical ‘0’ or ‘1’ or some different pattern), which es-
sentially erases the raw SRAM PUF response from the
SRAM cells.

In the rest of this section we sketch some attacks against
this setup. All attacks utilise data remanence effects of
SRAM cells and can be performed by attackers with little
expertise and budget. Additionally, we distinguish between
attacks that could only take place before the SRAM has
been overwritten (step 4 above), to which we refer as pre-
erasure data remanence attacks, and ones that can still be
performed after this process takes place, to which we refer
as post-erasure data remanence attacks.

3.1 Pre-erasure data remanence attacks
The attacks described in this section target the boot phase

in an attempt to prevent the memory from being overwrit-
ten by the bootloader. Subsequently, low-temperature data
remanence is utilised to preserve and read out the raw PUF
response stored in the SRAM cells.

Assuming that the relevant helper data are public, as is
often the case, or can somehow be acquired, the attacker
can combine them with the values stored in the SRAM to
construct the same key as the one now produced by the
device.

We can distinguish two different cases of attacks, depend-
ing on the actual type and level of access the attacker has
to the SRAM PUF device.

In the first case, the attacker has access only to non-
privileged code which can read the SRAM contents, while in
a second case, the attacker has physical access to the SRAM
PUF device and can also query it and receive meaningful
responses. As the first case essentially tries to gain access,
after a reboot, to the data of a previous session (the PUF re-
sponse) preserved through low-temperature data remanence,
it can be seen as a cold boot attack.

In the case where an attacker cannot immediately mod-
ify the bootloader of the SRAM PUF device into revealing
its raw PUF responses, an attacker would need to find a
way to jump, before the memory is overwritten, to some
non-privileged attacker code which would allow the PUF
response to be captured. However, this solution may re-
quire access to at least the binary source code of the boot-
loader and having it reverse engineered, unless the attacker
finds a way to skip the memory overwriting instructions and
continue execution of the bootloader until unprivileged user
space code can be executed.

We suggest that this can be achieved by freezing the device
before the memory overwriting instructions are executed, in
such a way that execution continues and the device remains
responsive but the overwriting instructions have essentially
no effect. However, we were unable to experimentally verify
this. Such an attack can be feasible either if the SRAM mod-
ule is not bundled in the same packaging as the processor,
and thus can be independently frozen while the processor
continues execution normally, or if well-targeted cryomicro-
probing is feasible, i.e., the targeted freezing of specific el-
ements of the device, such as registers and/or other logical
circuitry.

The second case is based on freezing the device before
its SRAM is overwritten and probing into it to extract the
preserved raw PUF response. This approach was also men-
tioned by Samyde et al [40], albeit without referring to a
specific way of probing into the SRAM. This can potentially
be achieved either by cryomicroprobing or by the techniques
proposed by Nedospasov et al. [32] regarding invasive PUF
analysis that employs electrical stimulation by heat or laser.
We believe that, if practiced correctly, either technique could
have minimal effects on the state of nearby frozen SRAM
cells, while successfuly unfreezing specific cells and reading
them out, until the whole SRAM PUF response has been
acquired.

In order for any of the aforementioned attacks to be
successful, the attacker needs to time the bootloader and,
through trial and error, estimate when the bootloader over-
writes the SRAM.

3.2 Post-erasure data remanence attacks
A different category of attacks can take place even if the

SRAM has already been overwritten. In contrast to the at-
tacks outlined in Section 3.1 that target the read out of the
actual PUF response, these attacks rather aim to “program”
the PUF response. Therefore, these attacks are less compli-



cated to carry out.
As a first scenario, we consider an attacker who can store

a chosen set of values in the SRAM, e.g., by exploiting a
software vulnerability that allows the injection of code which
overwrites it with a specific pattern during runtime, and who
then can freeze the device. Due to data remanence effects,
when the system recovers from being frozen and reboots,
the initial values of the SRAM cells will not be a random
raw PUF response, but rather a somewhat noisy version of
the chosen set of values that the attacker had stored on the
SRAM. As in the previous category of attacks, we again as-
sume that the attacker has access to the helper data and
can combine them with a captured raw PUF response in or-
der to reproduce legitimate keys. Alternatively, an attacker
could also replace the helper data stored in the device with
data that fit the forged response in order to facilitate the
generation of a legitimate key.

In another similar scenario, the attacker can induce errors
on the SRAM in a similar fashion as described by Oren et
al. [34] and Zeitouni et al. [54], using temperature in con-
junction with the power-off (reset) time to produce a range
of responses partially matching the legitimate one. Then, by
applying differential fault analysis, the attacker can recreate
the legitimate PUF response. The main advantage of our ap-
proach is that by controlling the temperature one can quite
precisely control the amount of faults induced in the SRAM
cells and thus easily get responses on which the differential
fault analysis attack can be applied successfuly.

In these two ways, the attacker can successfuly either alter
the SRAM PUF response in order to produce forged keys,
which can subsequently authenticate some malware as legit-
imate code, or recreate the legitimate response of the PUF
in order to authenticate to third parties, provided that the
related helper data are public or at least accessible to the
attacker. Finally, if one takes into account that such helper
data may correct errors accounting for up to 5-10% of the
overall SRAM PUF response size, which is the natural varia-
tion in raw PUF responses [26, 19, 12], we expect that these
attacks are already successful if data remanence effects allow
the attacker to keep at least 90-95% of the written memory
content. We also note that these attacks do not require any
changes to the bootloader.

3.3 Experimental results and discussion of the
success potential of the proposed attacks

In order to test whether the data remanence effects de-
scribed in Section 2 enable the attacks mentioned in Sec-
tion 3, we ran several experiments using the experimental
setup described in Section 2.1 and additional code we imple-
mented. In particular, we produced non-privileged attacker
code which reads the SRAM values and then copies them to
a different memory segment or transmits them to our com-
puter through the UART interface. In this way, we want to
test whether there is a way to bypass the memory overwrit-
ing instructions of the bootloader and jump into this user
space attacker code by freezing the board, and thus imple-
ment one of the attacks discussed in Section 3.1. In our case,
the execution of this code is triggered when a specific button
of the board is pushed.

Finally, we have also implemented non-privileged attacker
code which can be used to write on the SRAM, in order
to implement data remanence attacks requiring new data
being written before the device is frozen, as proposed in

Section 3.2. Moreover, as we set the pattern with which the
bootloader overwrites the SRAM on our own, we were able
to easily recognise whether the SRAM had been overwritten
or not, in order to properly time our experiments.

3.3.1 Examining the potential for pre-erasure at-
tacks

Concerning the attacks happening before the SRAM is
overwritten, described in Section 3.1, we were unfortunately
not able to freeze the board into disregarding the overwriting
of the SRAM instructions run by the bootloader and then
continuing normal execution of the operating system and our
non-privileged attacker code. We therefore leave it on future
research to investigate ways to make this attack practical.
The only missing piece seems to be finding a way to freeze
only the SRAM, without disrupting the microprocessor and
its execution sequence.

Nevertheless, an attacker can freeze the board below
−120◦C, causing it to lose power and stop operating be-
fore the SRAM has been overwritten, and then probe into
it with one of the techniques we have already mentioned
in Section 3.1 while it is kept frozen and out of operation,
as we have noted a data remanence level ranging between
80% and 98% even after a very extended power-off time at
temperatures below −120◦C. As the data remanence levels
observed are high, we expect such an attack to be successful.
Nevertheless, the actual implementation of such an invasive
attack remains the subject of future research. In this case,
helper data can again be used to correct a significant amount
of errors and lead to a successful attack, if the amount of
errors is kept low by reducing the power-off time.

3.3.2 Testing out a post-erasure attack
Regarding the data remanence attacks described in Sec-

tion 3.2, we tested the rate of their success by conducting
the following experiment. We first constructed helper data
which would match a selected secret key that the attacker
wants to produce and the response that the attacker wants
to enforce the SRAM PUF to produce, by having overwrit-
ten the SRAM with it (either all ‘0’ or all ‘1’ in our ex-
periments).To this end, we combined the PUF response an
attacker would like to obtain (either all ‘0’ or all ‘1’ in our ex-
periments) with a secret key, which is a pre-selected bitstring
of a particular size, through a fuzzy extractor scheme [7, 8,
9, 15] in order to construct the relevant helper data.

Then, we combined these helper data with the raw re-
sponses produced by the SRAM PUF after the device has
been reset at a particular temperature through the selected
fuzzy extractor scheme, in order to test if the selected se-
cret key could be successfully reconstructed by each recov-
ered response at a given temperature. By using these key
enrolment and key reconstruction phases, we were able to
determine the rate of successful key reconstruction from the
recovered raw PUF responses after a particular reset time
at a given temperature.

The error correction of our fuzzy extractor scheme is based
on a simple repetition code and the Golay (23, 12, 7)2 error
correction code (perfect binary Golay code), a proven error
correction scheme for SRAM PUFs [15, 42], which can cor-
rect errors accounting for up to ∼10% of a recovered raw re-
sponse of our SRAM PUF, if they are uniformly distributed.
Unfortunately, this proved not to be the case with our re-
covered responses, and although the error correction code



Table 1: Rates of successfully reconstructing the selected key from recovered raw SRAM PUF responses
after a 10ms reset time and after a 20ms reset time.

pattern 10ms power-off time
written −110◦C −100◦C −90◦C −80◦C −70◦C −60◦C −50◦C −40◦C 0◦C 25◦C
all ‘1’ 90% ∼88% 60% ∼32% <20% <20% ∼11% ∼8% ≡0% ≡0%
all ‘0’ ∼93% ∼92% ∼64% ∼63% ∼51% <50% ∼38% ∼28% ≡0% ≡0%

pattern 20ms power-off time
written −110◦C −90◦C −70◦C −50◦C
all ‘1’ <10% <10% ≡0% ≡0%
all ‘0’ <10% <10% ≡0% ≡0%

used always corrects at every temperature errors accounting
for up to at least 5%, the exact correction threshold per raw
response depends both on the amount of errors contained in
it and on their actual distribution. Nevertheless, we have
successfully tested our scheme using both 128-bit and 512-
bit keys. Our results for reset times of 10ms and 20ms for
the temperature region between −110◦C and −40◦C are pre-
sented in Table 1.

Based on the results for a reset time of 10ms, we can
note that an attacker can enforce the generation of an own
key based on the data remanence of the values having been
stored on the SRAM, in 90% of all cases for temperatures
below −100◦C and in more than 60% for temperatures below
−90◦C. Additionally, we note a discrepancy in success rates
of logical ‘0’ and ‘1’, which can be attributed to the initial
SRAM cell values being slightly biased towards logical ‘0’.
We therefore note that an attacker is more successful when
storing the logical value towards which the SRAM PUF is
more biased. We must note that in case a pattern of all ‘0’
has been stored, successful key reconstruction rates are close
to 50% even for temperatures close to −50◦C and below.
We therefore can note the importance of data remanence in
SRAM PUFs at temperatures below −50◦C.

Based on the same results, we can also conclude that an
attack based on differential fault analysis in a similar fash-
ion as described by Oren et al. [34] and Zeitouni et al. [54],
using temperature in conjunction with the power-off (reset)
time to produce a range of responses partially matching the
legitimate one, seems plausible, especially for temperatures
below −100◦C, where the amount of faults induced appears
to be quite small and controllable. By controlling the tem-
perature more precisely, one can quite precisely also control
the amount of faults induced in the SRAM cells and thus
easily get responses on which the differential fault analysis
attack can be applied successfuly. Nevertheless, the actual
realisation of such an attack is the subject of future research.

Finally, we also note that for a reset time of 20ms, the
successful key reconstruction rate falls below 10% even for
a temperature around −110◦C and is definitively equivalent
to 0% for temperatures around −70◦C and above.

3.4 A discussion of potential countermeasures
A variety of countermeasures against data remanence have

been proposed in the relevant literature. However, solutions
which alter the memory design architecture by adding extra
circuits and components [14, 25, 51], cannot be considered
as efficient, or even feasible, as they also cause extra manu-
facturing costs which can usually be high enough to not al-
low such solutions to enter mass production. Furthermore,

solutions which are based on a different kind of memory,
other than an SRAM, such as the ones proposed by Zhang
et al. [55], not only suffer from high manufacturing costs,
but also obviously exclude the existence of an SRAM PUF,
which is the target of the data remanence attacks which we
examine.

Furthermore, some more conventional countermeasures
include the addition of wire meshes and other physical de-
fences, the obfuscation or encryption of the memory, the
restriction of access to privileged components, such as the
bootloader, and the overwriting or erasure of the memory [6,
11, 14, 28]. However, these countermeasures can only make
data remanence attacks harder to perform, but not com-
pletely prevent them, as there are ways to bypass them. For
example, we have proven that some attacks can be successful
even if the SRAM is overwritten. Moreover, such counter-
measures would also require additional resources and costs.

Huffmire et al. [22] have even proposed physically destruc-
ting the device as a means of preventing data remanence
attacks. Destructing the device or significantly altering it
cannot serve as an efficient way of protection, especially in
the case of SRAM PUFs, where the SRAM has to remain
fully functional in order to serve as a PUF, and degaussing
it would probably significantly alter its PUF characteristics
and, thus, its response. Therefore, such countermeasures
can only serve as a last resort in order to prevent other par-
ties gaining access to the device and its secret at all costs.

Defining a specific minimum power-off time for the de-
vice [5, 10], can also be a potential countermeasure. How-
ever, in order to implement such a countermeasure, the de-
vice would have to never lose power completely, as the sys-
tem would need some way of constantly determining the
time and its on-off state. In such a case, an attacker could
bypass such an extra system by also powering it off or dis-
rupting its operation and/or registers, or even, cool down
the device to an even lower temperature where the dura-
tion of the data remanence effect exceeds the set minimum
power-off time.

Another interesting countermeasure against data rema-
nence attacks is ensuring that the SRAM used as a PUF
cannot be accessed by non-privileged software. For example,
if instead of an intrinsic PUF, a dedicated SRAM is used as
a PUF, an attacker may not use a software vulnerability in
order to overwrite or, even read, its contents. Nevertheless,
even in this case, efficient attacks based on low-temperature
data remanence may still exist, such as freezing the SRAM
PUF and probing it in order to extract its response. Such
attacks, however, are left to future research.

Additionally, the use of temperature sensors to detect



abrupt changes in the temperature and take adequate ac-
tion in order to protect the device can potentially work [11],
if the device remains operational. Nevertheless, an attacker
could bypass such sensors by powering off the system or dis-
rupting them, especially if they were not mounted on the
SRAM itself. In either case, however, the effectiveness of
this countermeasure in the case of low-temperature data re-
manence attacks against SRAM PUFs is a potential subject
of future research.

Its effectiveness is highly dependent on what happens
when a deep surge in the temperature is detected; in case
only the memory is overwritten, our attacks would still suc-
ceed. In case the system is powered off, some of our attacks
can still be successful, if we can power it back on quickly
enough. Finally, in case the SRAM is somehow disabled
permanently, that would destroy the SRAM PUF device,
thus effectively achieving at least an availability attack. We
must also note that not all devices have an internal temper-
ature sensor and it addition will also inevitably increase the
manufacturing costs of the device.

4. RELATED WORK
Unlike Dynamic Random Access Memories (DRAMs),

which tend to be external modules on a system, SRAMs
are usually incorporated in the same module as the system’s
(micro)processor. Thus, DRAMs tend to be more vulnerable
to physical and side-channel attacks, while SRAM modules
are far less easily accessible, providing much fewer opportu-
nities for successful exploitation.

As far as cold data remanence attacks are considered, a
well-known attack targeting DRAM modules is based on
successfuly freezing the module and removing it from the
targeted system, in order to gain access to its contents [14,
11]. Such an attack, however, may not be feasible against an
SRAM, which physically resides in the same module as the
system’s (micro)processor. Thus, removing such a module
and gaining access to it are a much harder tasks to achieve.
Especially, since the SRAM is being used as a PUF, it can-
not be replaced without notice by a structurally identical
module.

4.1 Data remanence effects in SRAMs
A number of different publications consider the effects of

data remanence in SRAM cells. Most notably, Skoroboga-
tov [43] discusses the effects of low temperature on data re-
tention on a number of different SRAM models produced
between 1987 and 2000. However, unlike our study, Sko-
robogatov only examines SRAM in its conventional role as
a memory module, and not as a PUF, and only provides
data for measurements at temperatures above -50◦ Celsius.

Jiao et al. [24] studied the effects of data remanence on
SRAM modules produced between 1989 and 2004, showing
that data remanence significantly increases as the temper-
ature decreases. Their study proves that while the electric
current in the memory cells decreases as the temperature
decreases, the data retention rate of the different boards
is independent of this fact. Furthermore, the authors also
show that even on newer SRAM modules data remanence
exists for a significant amount of time as the temperature
decreases. Still, one must keep in mind that also this ar-
ticle refers to standalone SRAM modules and not to those
incorporated in the packaging of the processor. However,
the authors did not consider SRAMs as PUFs and only ex-

amined data retention for temperatures above -30◦ Celsius.
As already mentioned, SRAMs are no longer a separate

module, but rather incorporated in the same package as the
processor, and thus their removal or replacement on the sys-
tem is not a feasible attack strategy. A potential solution
to this problem is proposed by Samyde et al. [40], who at-
tempted a cryomicroprobing attack that freezes and subse-
quently probes individual cells of the SRAM.

Inspired by Skorobogatov, Tuan et al. [46] examined the
data remanence effects observed on different SRAM cells
contained on an FPGA for temperatures above -40◦ C, il-
lustrating once again a significant degree of data retention in
low temperatures. They also observed that modern SRAM
cells have a bias towards a specific value, an effect that forms
the basis for their ability to serve as a PUF, with a slightly
higher tendency towards logical ‘0’ than logical ‘1’.

Chen et al. [4] examined the effects of circuit degradation
on data remanence in an FPGA, while also identifying a po-
tential way to tackle this issue. Their article exposes the
potential effect of circuit degradation caused by aging on
the data remanence effects exhibited by SRAM cells. Ad-
ditionally, Saxena and Voris [41] explored the role of data
remanence in SRAM modules regarding the use of SRAMs
as random number generators on RFID tags.

Finally, Cakir et al. [3] compared the data remanence of
an SRAM to that of a DRAM for temperatures between -40◦

C and 85◦ C. They showed that the SRAM exhibits a much
higher degree of data remanence, while the data remanence
of both devices seems to be growing logarithmically as the
temperature decreases and quite linearly as the power-off
time increases.

4.2 Data remanence attacks on SRAM PUFs
Oren et al. [34] have proposed an attack against an ASIC

implementation of SRAM PUFs based on data remanence
decay. The attack utilises both data remanence and decay
in order to induce faults in a state where all the SRAM cells
have already been overwritten with a specific known value,
and thus the nominal start-up values are not known. The
device is powered off repeatedly, allowing each time a larger
amount of different cells to decay and thus revert to their
nominal start-up values when the system is again powered
on. Therefore, the faults induced each time correspond to
legitimate bits of the SRAM PUF response. Finally, a dif-
ferential fault analysis technique, first proposed by Biham
and Shamir [1], is applied on the collected SRAM responses,
in order to recover more and more legitimate bits, until the
full PUF response has been correctly recreated. Such an ap-
proach would, of course, require the attacker to be able to
query the SRAM PUF multiple times, each time getting a
meaningful response based on the faulty values of the SRAM
cells. Additionally, all tests were performed at room temper-
ature (∼25◦ C) and the authors acknowledge that powering
off the SRAM long enough would move the SRAM in a state
where all of its cells have turned to their nominal start-up
values, when the device is again powered on, thus essentially
preventing the differential fault analysis of the responses.

As it is therefore essential to be able to control the exact
data retention rate of the SRAM, Zeitouni et al. [54] built on
the initial publication by Oren et al. by suggesting a voltage
control system, which provides much better results than the
time control system proposed in the initial form of the pub-
lication regarding the control of the data retention rate of



the SRAM. As [54] is essentially an extension of the article
by Oren et al., one must note that while the tests using the
time control system are taken from the initial publication,
having been performed at room temperature (∼25◦ C), the
tests using the new voltage control system were performed
inside a refrigerator at temperatures between 2.7◦ C and
7.6◦ C. Therefore, and as the authors clearly acknowledge
the effects of low temperatures to data remanence, one could
question whether the two suggested control approaches can
be truly compared regarding their effectiveness. Note that
in Section 2 of this paper, we provide insights into this ques-
tion by proving the efficiency of time-based control of data
remanence in SRAM PUFs in conjunction to really low tem-
peratures.

Furthermore, Wild and Güneysu [52] examined the use of
SRAM-based block memories (BRAMs) in Xilinx FPGAs as
a basis for SRAM PUFs. In their article, the authors also ex-
amine the effect of data remanence on their suggested PUF,
albeit for relative high temperatures, around 50◦ C. As they
note, there seems to be little to no data remanence at such
temperatures. One could note that data remanence, the
tendency of an SRAM cell to keep its logical value, and bit
flipping, the tendency of an SRAM cell to change its value
to the opposite logical one, are inversely related. There-
fore, while low temperatures enhance data remanence, high
temperatures tend to support bit flips.

While potential countermeasures against data remanence
attacks are discussed in detail in Section 3.4, we must also
note here a few of the proposed ideas of preventing data re-
tention attacks against SRAM PUFs. For example, Zhang
et al. [55] suggested that using a different kind of memory,
namely Spin-Transfer Torque Magnetoresistive Random Ac-
cess Memory (STT MRAM), could successfuly prevent data
remanence attacks against memory-based PUFs, while Wen-
jing et al. [51] suggested securing the SRAM’s power supply
or adding circuitry to overwrite the SRAM in order to pre-
vent such attacks. Finally, Kai et al. [25] also proposed quite
exquisite changes in the design of SRAM cells as a coun-
termeasure against data remanence attacks. Nevertheless,
one has to also note that such solutions would come at an
increased manufacturing cost and thus may not be always
feasible and cost-efficient.

Additionally, Claes et al. [5] compare the data remanence
of SRAM and FF (Flip Flop) PUFs at temperatures between
-40◦ C and 20◦ C, in order to determine a suggested reset
time for the two different types of PUFs at the two differ-
ent temperatures such that data remanence effects affecting
the PUF operation are avoided. However, as the device is
powered off in order for the reset to take place, it is hard to
prevent attackers from reducing the power-off time, i.e. the
reset, to their own liking. Additionally, an attacker could
subject the PUFs to much lower temperatures in order to
ensure an extended data remanence time and overcome any
relevant delay penalty imposed on the reset time. Therefore,
the increase of the reset time may not constitute a truly ef-
fective countermeasure in order to prevent data remanence
attacks.

Moreover, Holcomb et al. [21] proposed the use of rela-
tive data remanence effects of different SRAM cells for the
construction of a PUF, while Xu et al. [53] improved the
technique suggested in the original article. However, this
idea would require data remanence effects to last an ade-
quate amount of time in order for them to be measurable by

the relevant circuitry, which may not always be the case. In-
terestingly, the original paper by Holcomb et al. also states
that the cells which exhibit a strong data retention effect
tend to be the ones with highly reliable power-up values, i.e.
the more stable bits of the SRAM PUF response. Addition-
ally, Tehranipoor et al. [44] suggested the use of the data
remanence in a DRAM, this time for the implementation of
a DRAM PUF.

Furthermore, Rahmati et al. [38] even proposed that data
remanence could be used for timekeeping purposes and both
articles regarding data retention decay attacks by Oren et
al. [34] and Zeitouni et al. [54] suggest that the original sys-
tem proposed by Rahmati could be further simplified, with
its complexity being reduced from linear to logarithmic time.

Finally, Gutmann [13] provides an overview of the data
remanence effects in a wide range of different semiconductor
devices, including SRAMs, while also discussing the actual
physical phenomena behind data remanence.

5. CONCLUSION AND FUTURE WORK
We have examined and discussed the results of data re-

manence effects on an intrinsic SRAM PUF implementa-
tion on a commercial off-the-shelf (COTS) device for tem-
peratures ranging between -110◦ C and -40◦ C, while also
proposing a number of easily implementable attack scenar-
ios based on these effects. We have subsequently shown that
low-temperature data remanence attacks appear to be feasi-
ble and successful against intrinsic SRAM PUFs, which can,
for example, serve as secure key storage. Our results clearly
indicate that the success of the described attacks is highly
dependent upon the power-off time and the environmental
temperature settings that an attacker can achieve. We have
additionally noted that, because the SRAM is operational
and serves as a PUF, and thus is also grounded, it exhibits
only very short-term data remanence.

We have also discussed and compared a variety of dif-
ferent countermeasures and noted the potential existence
of efficient countermeasures against the described attacks,
suggesting that further research is required in this field. For
example, we need to investigate whether the use of temper-
ature sensors could actually constitute an effective counter-
measure. We can therefore conclude that additional further
research is required in order to better assess the exact de-
gree to which low-temperature data remanence attacks may
affect the role of SRAM PUFs as an adequate security mech-
anism.

Finally, it is also noteworthy that most of our attacks con-
sider intrinsic SRAM PUFs only, which re-use the memory
being used by the system and its applications as a PUF. It is
worth also mentioning that a dedicated SRAM PUF, where
the memory is only being used as a PUF and not as a regular
memory component, would be much less affected by the at-
tacks we propose, but nevertheless could still be frozen and
probed by an attacker in order to extract a legitimate PUF
response out of it. Such attacks against dedicated SRAM
PUF modules should also be the subject of future research.

Acknowledgments
This work has been co-funded by the DFG as part of project
P3 within the CRC 1119 CROSSING.

Additionally, the authors would like to thank Prof. Dr.
Michael Vogel and the “Molecular Dynamics and Condensed
Matter”group of the Institute for Condensed Matter Physics



of TU Darmstadt for their significant help and collaboration
that made our experiments possible.

We would also like to thank mrs. Huifang Jiao for pro-
viding us with her very interesting 2006 article [24], which
although is in Chinese, can now be easily translated by mod-
ern technology.

6. REFERENCES
[1] E. Biham and A. Shamir. Differential fault analysis of

secret key cryptosystems. In Advances in
Cryptology—CRYPTO’97, pages 513–525. Springer,
1997.

[2] A. Braeken, S. Kubera, F. Trouillez, A. Touhafi,
N. Mentens, and J. Vliegen. Secure FPGA
technologies and techniques. In Field Programmable
Logic and Applications, 2009. FPL 2009. International
Conference on, pages 560–563. IEEE, 2009.

[3] C. Cakir, M. Bhargava, and K. Mai. 6T SRAM and
3T DRAM data retention and remanence
characterization in 65nm bulk CMOS. In Custom
Integrated Circuits Conference (CICC), 2012 IEEE,
pages 1–4. IEEE, 2012.

[4] H.-W. Chen, S. Srinivasan, Y. Xie, and V. Narayanan.
Impact of Circuit Degradation on FPGA Design
Security. In VLSI (ISVLSI), 2011 IEEE Computer
Society Annual Symposium on, pages 230–235. IEEE,
2011.

[5] M. Claes, V. van der Leest, and A. Braeken.
Comparison of SRAM and FF PUF in 65nm
technology. In Information Security Technology for
Applications, pages 47–64. Springer, 2011.

[6] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara,
H. Raj, S. Saroiu, and A. Wolman. Protecting data on
smartphones and tablets from memory attacks. In
Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 177–189. ACM, 2015.

[7] M. Cortez, G. Roelofs, S. Hamdioui, and
G. Di Natale. Testing PUF-based secure key storage
circuits. In Proceedings of the conference on Design,
Automation & Test in Europe, page 194. European
Design and Automation Association, 2014.

[8] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith.
Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. SIAM journal on
computing, 38(1):97–139, 2008.

[9] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and
other noisy data. In Advances in cryptology-Eurocrypt
2004, pages 523–540. Springer, 2004.

[10] S. Eiroa, J. Castro, M. C. Martinez-Rodriguez,
E. Tena, P. Brox, and I. Baturone. Reducing bit
flipping problems in SRAM physical unclonable
functions for chip identification. In Electronics,
Circuits and Systems (ICECS), 2012 19th IEEE
International Conference on, pages 392–395. IEEE,
2012.

[11] M. Gruhn and T. Müller. On the practicability of cold
boot attacks. In Availability, Reliability and Security
(ARES), 2013 Eighth International Conference on,
pages 390–397. IEEE, 2013.

[12] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and

P. Tuyls. FPGA intrinsic PUFs and their use for IP
protection. Springer, 2007.

[13] P. Gutmann. Data remanence in semiconductor
devices. In Proceedings of the 10th conference on
USENIX Security Symposium-Volume 10, page 4.
USENIX Association, 2001.

[14] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we
remember: cold-boot attacks on encryption keys.
Communications of the ACM, 52(5):91–98, 2009.

[15] H. Handschuh. Hardware-Anchored Security Based on
SRAM PUFs, Part 1. IEEE Security & Privacy,
(3):80–83, 2012.

[16] H. Handschuh. Hardware-Anchored Security Based on
SRAM PUFs, Part 2. IEEE Security & Privacy,
(4):80–81, 2012.

[17] H. Handschuh, G.-J. Schrijen, and P. Tuyls. Hardware
intrinsic security from physically unclonable functions.
In Towards Hardware-Intrinsic Security, pages 39–53.
Springer, 2010.

[18] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas.
Physical unclonable functions and applications: A
tutorial. Proceedings of the IEEE, 102(8):1126–1141,
2014.

[19] D. E. Holcomb, W. P. Burleson, and K. Fu. Power-up
SRAM state as an identifying fingerprint and source of
true random numbers. Computers, IEEE Transactions
on, 58(9):1198–1210, 2009.

[20] D. E. Holcomb, W. P. Burleson, K. Fu, et al. Initial
SRAM state as a fingerprint and source of true
random numbers for RFID tags. In Proceedings of the
Conference on RFID Security, volume 7, 2007.

[21] D. E. Holcomb, A. Rahmati, M. Salajegheh, W. P.
Burleson, and K. Fu. DRV-Fingerprinting: using data
retention voltage of SRAM cells for chip identification.
In Radio Frequency Identification. Security and
Privacy Issues, pages 165–179. Springer, 2012.

[22] T. Huffmire, R. Kastner, et al. Threats and Challenges
in reconfigurable hardware security. International
Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA’08), 2008.

[23] Intrinsic ID. Physically unclonable functions (PUF).
https://www.intrinsic-id.com/
physical-unclonable-functions/
physical-unclonable-functions/. Accessed: 2016-02-29.

[24] H. Jiao, X. Zhang, X. Jia, et al. The characteristic
study of data remanence of SRAM (in Chinese).
Research & Progress of SSE, 26(4):536, 2006.

[25] Y. Kai, Z. Xuecheng, Y. Guoyi, and W. Weixu.
Security strategy of powered-off SRAM for resisting
physical attack to data remanence. Journal of
Semiconductors, 30(9):095010, 2009.

[26] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R.
Sadeghi, I. Verbauwhede, and C. Wachsmann. PUFs:
Myth, fact or busted? A security evaluation of
physically unclonable functions (PUFs) cast in silicon.
In Cryptographic Hardware and Embedded
Systems–CHES 2012, pages 283–301. Springer, 2012.

[27] F. Kohnhäuser, A. Schaller, and S. Katzenbeisser.
PUF-Based Software Protection for Low-End
Embedded Devices. In Trust and Trustworthy

https://www.intrinsic-id.com/physical-unclonable-functions/physical-unclonable-functions/
https://www.intrinsic-id.com/physical-unclonable-functions/physical-unclonable-functions/
https://www.intrinsic-id.com/physical-unclonable-functions/physical-unclonable-functions/


Computing, pages 3–21. Springer, 2015.

[28] O. Kömmerling and M. G. Kuhn. Design Principles
for Tamper-Resistant Smartcard Processors.
Smartcard, 99:9–20, 1999.

[29] P. A. Layman, S. Chaudhry, J. G. Norman, and J. R.
Thomson. Electronic fingerprinting of semiconductor
integrated circuits, May 2004. US Patent 6,738,294.

[30] R. Maes and I. Verbauwhede. Physically unclonable
functions: A study on the state of the art and future
research directions. In Towards Hardware-Intrinsic
Security, pages 3–37. Springer, 2010.

[31] J. G. Merchan, S. S. Kumar, P. T. Tuyls, and G. J.
Schrijen. Identification of devices using physically
unclonable functions, Aug. 2008. US Patent App.
12/674,367.

[32] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and
C. Boit. Invasive PUF analysis. In Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2013 Workshop
on, pages 30–38. IEEE, 2013.

[33] S. Okumura, S. Yoshimoto, H. Kawaguchi, and
M. Yoshimoto. A 128-bit chip identification generating
scheme exploiting SRAM bitcells with failure rate of
4.45× 10- 19. In ESSCIRC (ESSCIRC), 2011
Proceedings of the, pages 527–530. IEEE, 2011.

[34] Y. Oren, A.-R. Sadeghi, and C. Wachsmann. On the
effectiveness of the remanence decay side-channel to
clone memory-based PUFs. In Cryptographic
Hardware and Embedded Systems-CHES 2013, pages
107–125. Springer, 2013.

[35] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld.
Physical one-way functions. Science,
297(5589):2026–2030, 2002.

[36] J. Petit, C. Bosch, M. Feiri, and F. Kargl. On the
potential of PUF for pseudonym generation in
vehicular networks. In Vehicular Networking
Conference (VNC), 2012 IEEE, pages 94–100. IEEE,
2012.

[37] M. Platonov, J. Hlavác, and R. Lórencz. Using
Power-Up SRAM State of Atmel ATmega1284P
Microcontrollers as Physical Unclonable Function for
Key Generation and Chip Identification. Information
Security Journal: A Global Perspective,
22(5-6):244–250, 2013.

[38] A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber,
W. P. Burleson, and K. Fu. TARDIS: Time and
remanence decay in SRAM to implement secure
protocols on embedded devices without clocks. In
Proceedings of the 21st USENIX conference on
Security symposium, pages 36–36. USENIX
Association, 2012.

[39] U. Rührmair and D. E. Holcomb. PUFs at a glance. In
Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2014, pages 1–6. IEEE, 2014.

[40] D. Samyde, S. Skorobogatov, R. Anderson, and J.-J.
Quisquater. On a new way to read data from memory.
In Security in Storage Workshop, 2002. Proceedings.
First International IEEE, pages 65–69. IEEE, 2002.

[41] N. Saxena and J. Voris. Data remanence effects on
memory-based entropy collection for RFID systems.
International Journal of Information Security,

10(4):213–222, 2011.

[42] A. Schaller, T. Arul, V. van der Leest, and
S. Katzenbeisser. Lightweight anti-counterfeiting
solution for low-end commodity hardware using
inherent PUFs. In Trust and Trustworthy Computing,
pages 83–100. Springer, 2014.

[43] S. Skorobogatov. Low temperature data remanence in
static RAM. University of Cambridge Computer
Laborary Technical Report, 536:11, 2002.

[44] F. Tehranipoor, N. Karimina, K. Xiao, and J. Chandy.
DRAM-based intrinsic physical unclonable functions
for system level security. In Proceedings of the 25th
edition on Great Lakes Symposium on VLSI, pages
15–20. ACM, 2015.

[45] Texas Instruments. Stellaris R©LM4F120H5QR
Microcontroller data sheet, Feb. 2013.

[46] T. Tuan, T. Strader, and S. Trimberger. Analysis of
data remanence in a 90nm FPGA. In Custom
Integrated Circuits Conference, 2007. CICC’07. IEEE,
pages 93–96. IEEE, 2007.

[47] V. van der Leest and P. Tuyls. Anti-counterfeiting
with hardware intrinsic security. In Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2013, pages 1137–1142. IEEE, 2013.

[48] V. van der Leest, E. van der Sluis, G.-J. Schrijen,
P. Tuyls, and H. Handschuh. Efficient Implementation
of True Random Number Generator Based on SRAM
PUFs. In Cryptography and Security: From Theory to
Applications, pages 300–318. Springer, 2012.

[49] Verayo Inc. Technology. http://verayo.com/tech.php.
Accessed: 2016-02-29.

[50] I. Verbauwhede and R. Maes. Physically unclonable
functions: manufacturing variability as an unclonable
device identifier. In Proceedings of the 21st edition of
the great lakes symposium on Great lakes symposium
on VLSI, pages 455–460. ACM, 2011.

[51] K. Wenjing, Y. Kai, Y. Guoyi, and Z. Xuecheng.
Novel security strategies for SRAM in powered-off
state to resist physical attack. In Integrated Circuits,
ISIC’09. Proceedings of the 2009 12th International
Symposium on, pages 298–301. IEEE, 2009.

[52] A. Wild and T. Güneysu. Enabling SRAM-PUFs on
Xilinx FPGAs. In Field Programmable Logic and
Applications (FPL), 2014 24th International
Conference on, pages 1–4. IEEE, 2014.

[53] X. Xu, A. Rahmati, D. E. Holcomb, K. Fu, and
W. Burleson. Reliable Physical Unclonable Functions
Using Data Retention Voltage of SRAM Cells.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 34(6):903–914, 2015.

[54] S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and
A.-R. Sadeghi. Remanence Decay Side-Channel: The
PUF Case. IEEE Transactions on Information
Forensics and Security, 11(6):1106–1116, 2016.

[55] L. Zhang, X. Fong, C.-H. Chang, Z. H. Kong, and
K. Roy. Optimizating Emerging Nonvolatile Memories
for Dual-Mode Applications: Data Storage and Key
Generator. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on,
34(7):1176–1187, 2015.

http://verayo.com/tech.php

	1 Introduction and motivation
	2 Low-temperature data remanence study
	2.1 Study setup
	2.2 Results

	3 Data remanence attacks on intrinsic SRAM PUFs
	3.1 Pre-erasure data remanence attacks
	3.2 Post-erasure data remanence attacks
	3.3 Experimental results and discussion of the success potential of the proposed attacks
	3.3.1 Examining the potential for pre-erasure attacks
	3.3.2 Testing out a post-erasure attack

	3.4 A discussion of potential countermeasures

	4 Related work
	4.1 Data remanence effects in SRAMs
	4.2 Data remanence attacks on SRAM PUFs

	5 Conclusion and Future Work
	6 References

