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Abstract—Hierarchical identity-based broadcast encryption (HIBBE) organizes the users in a tree-like structure in which they can delegate the
decryption ability to their subordinates. In addition, the trusted third party (TTP) can reduce its burden because the users’ secret keys can be
generated in a distributed mechanism by users’ supervisors. HIBBE enables encrypting a message for any arbitrary set of receivers, and only the
chosen users and their supervisors are able to decrypt. To preserving the anonymity of the intended receivers, in this paper, for the first time,
we propose an anonymous HIBBE scheme. The proposed scheme is constructed based on composite order bilinear maps. We formally define
the anonymity against chosen identity vector set and chosen plaintext a�ack (Anon-CIVS-CPA), and prove that the proposed scheme provides
this property. Performance evaluation shows the practical and deployable aspects of our proposed scheme. With the advantage of HIBBE, we
enable hierarchical identity-based signature (HIBS) schemes to sign a message for a set of designated verifiers. This resulted in proposing a
generic construction for the novel notion of hierarchical identity-based multi-designated verifiable signature (HIB-MDVS). We formally define
HIB-MDVS’s security against existential forgery under chosen message a�ack (EF-CMA), prove that the resulting HIB-MDVS is unforgeable, and
finally show that it provides the anonymity of the intended verifiers.
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1 Introduction

N
owadays, we are cognizant of the inevitable role of

network-centric world, its applications and services which

has given rise to several security concerns related to managing

access control and policies. Access control management ensures

that only the intended or authorized users are allowed to have

access to certain resources and services. Broadcast encryption

(BE) is such scheme which e�ciently establishes an access

control policy on the encrypted data. BE is known as a strong

tool for encrypting a message for an arbitrary set of users, and

only the intended users can decrypt the broadcasted ciphertext.

�e concept of BE was introduced by Fiat and Naor, in 1993 [1],

and it was pursued by many other researchers to enhance its

security and improve its e�ciency. For example, Sakai et al. [2]

realize BE in the identity-based se�ing and proposed a scheme

which is secure in the random oracle model. As the applications

of BE, we can imply to its functionality in access control in

encrypted �le systems, satellite TV subscription services, and

DVD content protection [3] and [4].

Identity-based BE (IBBE) is a public key cryptographic primi-

tive in which the users are associated to a unique identity and the

sender uses the identities of the intended receivers as their public

key to encrypt the message. �en, each designated receiver uses

its secret key to decrypt the broadcasted ciphertext. A trusted

third party (TTP) is employed in the system as a private key

generator (PKG) to generate and distribute the secret keys of the

users associated with their own identities by means of a master

secret key.
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Typically, the users are organized in the networks with hier-

archical structures and a hierarchy is speci�ed by the fact that the

users of higher level of hierarchy may have more access rights

than their subordinates. With the bene�t of hierarchical structure

of networks, PKG can reduce its burden of generating the users’

secret keys in a distributed mechanism and by delegating the

key generation rights to the users whit higher level of hierarchy.

Recently some schemes have been proposed to address the key

management problem in hierarchical structures ( [5], [6], [7], [8],

[9] and [10]).

Hierarchical identity-based BE (HIBBE) generalizes IBBE by

distributing the secret key generation process between the users

which are organized in a network with hierarchical structure.

�e users receives their secret keys from their ancestors who are

supported by a secret key delegation mechanism. In 2014, Liu et

al. [11] de�ned the security model of HIBBE in a formal way and

they proposed a concrete construction for HIBBE with constant

size ciphertext. A�er that, in 2015, Liu et al. [12] proposed a

practical HIBBE scheme which is semantically secure against

chosen ciphertext a�ack (CCA).

Anonymity (or privacy-preserving) in the BE scheme is

a ma�er of concern and urgently desired to be considered

in the cryptographic protocols. For example, if the using BE

scheme in satellite TV subscription services does not provide

the anonymity of the receivers, then both the authorized and

unauthorized users can know who has paid subscription to a

certain channel which means that the privacy of the receives’ has

been violated. Anonymity in HIBBE means that the ciphertext

leaks no information of the intended receivers’ identities. �e

�rst fully anonymous identity-based BE (IBBE) proposed by Ren

et al. [13], and they prove that their scheme is secure in the

standard model without random oracle. Fully anonymity means
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that even the insider users can not obtain the identity of other

receivers [13]. To the best of our knowledge, there have not

been proposed any anonymous HIBBE scheme. Motivated by this

scenario, it is desirable to propose an anonymous HIBBE scheme

to preserve the users’ privacy. In this paper, we for the �rst time

propose an anonymous HIBBE scheme which is designed based

on composite order bilinear maps. We de�ne the anonymity of

HIBBE against chosen identity vector sets and chosen plaintext

a�ack (Anon-CIVS-CPA) in a formal way and show that the

proposed scheme is secure against Anon-CIVS-CPA.

Recently, it has been shown a great interest in delegating

the veri�cation rights of the generated signatures to the set

of designated veri�ers and just the intended ones can verify

the validity of the signature [14]. �is primitives are known

as the multi-designated veri�ers signatures [15]. In this paper,

we introduce the novel notion of hierarchical identity-based

multi-designated veri�er signature (HIB-MDVS) and de�ne its

unforgeability in a formal way. As one of the application of our

proposed anonymous HIBBE, we present a generic construction

of HIB-MDVS using HIBBE as the one of the employed building

blocks. With the advantage of anonymous HIBBE, the resulting

HIB-MDVS preserve the anonymity of the designated veri�ers.

1.1 Our contributions

�e contribution of the paper is �ve-fold and is summarized as

follows:

(1)We introduce the novel notion of anonymous HIBBE and

formally de�ne anonymity of the HIBBE against chosen identity

vector sets and chosen plaintext a�ack (Anon-CIVS-CPA) and

proposed an anonymous construction based on composite order

bilinear map.

(2) We formally prove that the security of our proposed

scheme of anonymous HIBBE is reduced to the 4 assumptions

which are introduced in [16]. For this aim, we �rst de�ne a

sequence of games and by means of the hybrid argument we

prove that our scheme provides Anon-CIVS-CPA.

(3) We present the performance analysis of the proposed

scheme of anonymous HIBBE. �e numerical results show that

the resulting construction is practical and consumes reasonable

time for the required computations.

(4) In this paper, we have found that by using HIBBE

scheme we can enable hierarchical identity-based signature

(HIBS) schemes [17] to sign a message for a set of designated

veri�ers. �is culminated by introducing the novel notion of HIB-

MDVS. We also formally de�ne HIB-MDVS’s security against

existential forgery under chosen message a�ack (EF-CMA).

(5)Finally, we propose a generic construction of HIB-MDVS

in a modular structure based on HIBBE and hierarchical identity-

based signature (HIBS) as the building blocks. We will prove

that the unforgeability of the proposed scheme is reduced to the

unforgeability of the using HIBS. We will also show that by em-

ploying the anonymous HIBBE scheme the designated veri�ers’

anonymity will be provided. �e performance evaluation shows

the practical aspects of the resulting HIB-MDVS.

1.2 Organization

�e rest of this paper is organized as follows. Section II reviews

the using notations and cryptographic primitives and complexity

assumptions. Section III is dedicated to formally de�ne the

anonymity of HIBBE and present a concrete construction for

Fig. 1. Hierarchical model of the network. IDTTP expresses the identity
of TTP and IDij denotes the identity of jth user in the ith level of hi-
erarchy. The ith level contains li users, therefore we have 1 ≤ j ≤ li.
IDij = (IDPar(IDij)

, IDij) denotes the identity vector of the user whose
identity is IDij .

anonymous HIBBE. Section IV evaluate the performance of the

proposed scheme and presents the experimental results. Section

V analyses the security of the proposed HIBBE. Section VI

introduces the concept of HIB-MDVS and de�nes its security

in a formal way. Section VII propose the generic construction of

HIB-MDVS and Section VIII proves its security. �e performance

evaluation of the resulting concrete construction of HIB-MDVS

extracted from the generic structure is presented in Section IX.

Finally, we conclude the paper in Section X.

2 Preliminaries

2.1 Notations

In a network with a hierarchical structure like a tree, each

user is associated with an identity and an identity vector.

�e existing identities are indexed with a number according

to the tree-like hierarchical structure of the network. �e

identity vector of each user contains two parts: the �rst part is

identity vector of its parents and the second part is the user’s

identity. Consider a network with d level of hierarchies where

in the d′th level, ld′ users exist. �e identity of the jd′ th user

in the level d′, is denoted as IDd′jd′ and its corresponding

identity vector is IDd′jd′ = (IDPar(IDd′j
d′

), IDd′jd′ ) =

(ID1j1 , . . . , ID(d′−1)jd′−1
, IDd′jd′ ). �e notation

Par(IDd′jd′ ) = {(ID1j1 , . . . , IDd′′jd′′ ) : d′′ ≤ d′} denotes

the parent of IDd′jd′ .
We denote ||ID|| = d′ as the depth of hierarchy of ID and

SID as the identity set associating with ID. Figure 1 shows a

network with a hierarchical structure and the users’ identity

vectors. Denote d as the maximum value of d′ which expresses

the number of level of hierarchy in the network. V is de�ned as a

set of identity vectors. �e notation Par(V) =
⋃

ID∈V Par(ID)
denotes the parent set of V and similarly SV is the identity set

associating to V. We also denote ||V || = max{d′i : IDi ∈ V} as
the maximum depth in V . Table 1 is a list of notations which are

commonly used in this paper.

For example, according to Figure 2, if V =
{ID22, ID31, ID33} such that ID33 = (ID23, ID9)=
(ID2, ID5, ID9), ID31 = (ID1, ID3, , ID7), and
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Fig. 2. The example of a network with 12 users who are organized in 3 levels
of hierarchy.

TABLE 1
Frequently Used Notations

Symbols Description
V Identity vectors set, denotes as V =

{ID1, . . . , ID|V |}
Par(ID) �e parents of identity vector ID
||ID|| �e depth of identity vector ID
||v|| the depth of identity vector set V
SID Identity set associating to ID
SV Identity set associating to V

a ∈R S Randomly selection of a from set S
|S| Denotes the cardinality of set S

Out← Alg(In) Denotes that algorithm Alg outputs Out on
input In

A := B Allocating the value of B to A

ID22 = (ID1, ID4), then SID33
= {ID2, ID5, ID9},

SV = {ID1, ID2, ID3, ID4, ID5, ID7, ID9}, and ||V || = 3.
�e main goal of using hierarchical structures is to divide the

burden of TTP in generating the users’ secret key among the

users. �erefore, the users with the higher level of hierarchy can

generate the secret keys of their children. In addition, the users

can delegate their decryption rights to their subordinates.

2.2 Composite order bilinear map

Composite order bilinear map for the �rst time was used in

the cryptographic construction proposed in [18]. We de�ne the

group generator G as the algorithm which is run to output the

description of the composite order bilinear map. �erefor, G(1λ)
takes as input the security parameter λ and outputs the tuple∑

= (N = p1p2p3p4, G,GT , e) where N = p1p2p3p4 is the

order of cyclic groups G and GT where pi, i = 1, . . . , 4 are four

distinct prime numbers and e : G × G → GT is a composite

order bilinear map with the following properties:

1) Bilinearity: ∀g, h ∈ G and for all a, b ∈
Z∗N , e(ga, hb) = e(g, h)ab

2) Non-degeneracy: ∃g ∈ G such that the order of e(g, g)
is N in GT

Let Gpi where i ∈ {1, 2, 3, 4} is a subgroup of G with order

of pi. If f ∈ GPi and h ∈ Gpj are two elements of di�erent

subgroups (i.e., i 6= j), then e(f, h) = 1 and it is called the

orthogonality property [16]. We note that this important feature

is used in the proposed construction of anonymous HIBBE. In

the following, we prove that the orthogonally property is always

holding [19]. Let g be the generator of G and f ∈ Gp1 and

h ∈ Gp2 . �erefor, gp2p3p4 and gp1p3p4 are the generators of

Gp1 and Gp2 respectively and we have Gp1 =< gp2p3p4 > and

Gp2 =< gp1p3p4 >. Hence, for some a1, a2, f = (gp2p3p4)a1

and h = (gp1p3p4)a2 . �en:

e(f, h) = e((gp2p3p4)a1 , (gp1p3p4)a2) = e(ga1p3p4 , ga2)p1p2p3p4 = 1
(1)

In what follows, we review some complexity assumptions

which are used to prove the security of the proposed scheme.

In the assumptions below, Gabc denotes a subgroup of order

abc in G where a, b, c ∈ {1, p1, p2, p3, p4}.

2.2.1 Assumption 1

Let G(1λ) be the group generator which is run to compute∑
= (N = p1p2p3p4, G,GT , e) ← G(1λ). Suppose that the

distribution D is set as follows:

g1, A1 ← Gp1 , A2, B2 ← Gp2 , g3 ← Gp3 , g4, B4 ← Gp4

D := (
∑

, g1, g3, g4, A1A2, B2B4)

Suppose that the PPT algorithm A is given D and tries to

distinguish between T1 ← Gp1p2p4 and T2 ← Gp1p4 . In this

case, the advantage of A is de�ned as follows:

AdvAA1 = |Pr[A(D,T1 ← Gp1p2p4) = 1]

− Pr[A(D,T2 ← Gp1p4) = 1]| (2)

De�nition 1. Assumption 1 holds if for all PPT algorithms A,
AdvAA1 is a negligible function in security parameter λ [16].

2.2.2 Assumption 2

Let G(1λ) be the group generator which is run to compute∑
= (N = p1p2p3p4, G,GT , e) ← G(1λ). Suppose that the

distribution D is set as follows:

g1, A1 ← Gp1 , A2, B2 ← Gp2 , g3, B3 ← Gp3 , g4 ← Gp4

D := (
∑

, g1, g3, g4, A1A2, B2B3)

Suppose that the PPT algorithm A is given D and tries to

distinguish between T1 ← Gp1p2p3 and T2 ← Gp1p3 . In this

case, the advantage of A is de�ned as follows:

AdvAA2 = |Pr[A(D,T1 ← Gp1p2p3) = 1]

− Pr[A(D,T2 ← Gp1p3) = 1]| (3)

De�nition 2. Assumption 2 holds if for all PPT algorithms A,
AdvAA2 is a negligible function in security parameter λ.

2.2.3 Assumption 3

Let G(1λ) be the group generator which is run to compute∑
= (N = p1p2p3p4, G,GT , e) ← G(1λ). Suppose that the

distribution D is set as follows:

α, s, r ← ZN , g1 ← Gp1 , g2, A2, B2 ← Gp2 , g3 ← Gp3 ,

g4 ← Gp4 ;D := (
∑

, g1, g2, g3, g4, g
α
1A2, g

s
1B2, g

r
2, A

r
2)
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Suppose that the PPT algorithm A is given D and tries to

distinguish between T1 = e(g1, g1)αs and T2 ← GT . In this

case, the advantage of A is de�ned as follows:

AdvAA3 = |Pr[A(D,T1 = e(g1, g1)αs) = 1]

− Pr[A(D,T2 ← GT ) = 1]| (4)

De�nition 3. Assumption 3 holds if for all PPT algorithms A,
AdvAA3 is a negligible function in security parameter λ [16].

2.2.4 Assumption 4

Let G(1λ) be the group generator which is run to compute∑
= (N = p1p2p3p4, G,GT , e) ← G(1λ). Suppose that the

distribution D is set as follows:

r̂, s← ZN , g1, U,A1 ← Gp1 , g2, A2, B2, D2, F2 ← Gp2 ,

g3 ← Gp3 , g4, A4, B4, D4 ← Gp4 , A24, B24, D24 ← Gp2p4
D :=

(
∑

, g1, g2, g3, g4, U, U
sA24, U

r̂, A1A4, A
r̂
1A2, g

r̂
1B2, g

s
1B24)

Suppose that the PPT algorithm A is given D and tries to

distinguish between T1 = As1D24 and T2 ← Gp1p2p4 . In this

case, the advantage of A is de�ned as follows:

AdvAA4 = |Pr[A(D,T1 = As1D24) = 1]

− Pr[A(D,T2 ← Gp1p2p4) = 1]| (5)

De�nition 4. Assumption 4 holds if for all PPT algorithms A,
AdvAA4 is a negligible function in security parameter λ [16].

3 Hierarchical Identity Based Broadcast En-

cryption (HIBBE)

Typically, each HIBBE scheme contains four polynomial time al-

gorithms: Setup,Extract,BroadEnc, and BroadDec. �ese four

algorithms are presented in the following.

• (PP,MSK) ← Setup(λ): �is algorithm takes λ as

input and generatesMSK and PP .

• SKID ← Extract(SKPar(ID), ID, PP ): �e inputs of

this algorithm are SKPar(ID) as the parent’s secret key

of ID, the identity vector ID, and PP . It outputs the

secret key SKID. Note that in the hierarchical model,

TTP is in the top level of hierarchy with identity vector

ID0 = IDTTA. So, its secret key is denoted as SK0 =
MSK .

• C ← BroadEnc(PP,M,V): �is algorithm takes PP ,

the message M ∈ M, and the identity vector set V as

inputs, encrypts M and outputs the resulting ciphertext

C .

• M := BroadDec(PP,C, SKID): �is algorithm takes as

input PP , C , and the secret key SKID. If ID ∈ Par(V),
then the output of this algorithm is the decryption of C ,

i.e.M .

3.1 Anonymous HIBBE

In the following, we de�ne anonymity of the HIBBE against the

chosen identity vector set and chosen plaintext a�acks (Anon-

CIVS-CPA). In an anonymous HIBBE scheme, the adversary can

not distinguish between the ciphertexts of a message which

are encrypted using di�erent identity vector sets of its choice.

Consequently, he/she does not infer any information about the

identities of designated receivers. As an application of anony-

mous HIBBE, it should be noted that this primitive is employed as

a building block in the proposed generic construction of VABKS

[20].

�e security game of Anon-CIVS-CPA consist of �ve steps:

Setup, Phase 1, Challenge, Phase 2 and Guess which are

de�ned as follows.

In this game, A tries to learn some information about the

identity of the receivers from the challenge ciphertext. he/she is

allowed to access the secret key extraction oracle adaptively to

obtain the users’ secret keys of its choice. Following we formally

de�ne Anon-CIVS-CPA security of HIBBE, through the game

which holds between the challenger, C, and A.
Setup: C runs the algorithm, (MSK,PP )← Setup(λ), and

sends PP to A.
Phase 1: A is allowed to access to the extract oracle on the

identity vectors of its choice.

• SKi ← OExtract(IDi): First of all, before A starts to

query, C selects the identity vector list, LID, which is

initially empty. In this oracle, A adaptively issues IDi to
C. �en C generates the secret key SKi and sends it to

A. �en C adds the queried IDi to the list of identity

vectors, LID.

Challenge: A selects the two identity vector sets V0, V1,

where ||V0|| = ||V1|| and LID
⋂
{
⋃
i=0,1 Par(Vi)} = ∅. A also

selects the message,M ∈M, and sends (V0,V1,M) to C. �en,

C selects the random bit b ∈R {0, 1} and encrypts the message

M by Vb. �en C sends Cb ← BroadEnc(PP,M,Vb) to A.
Phase 2: A continues querying OExtract(ID) to receive the

secret key of the identity vector, ID, such that ID /∈ Par(V0) ∪
Par(V1). �is condition should be hold to prevent the adversary

from trivially guessing the value of b.
Guess: Finally, adversary A outputs b′ ∈ {0, 1} as a guess

for the value of b, and wins the game, if b = b′.
We de�ne the advantage of the PPT adversaryA in a�acking

the anonymity of HIBBE system with security parameter λ as

follows:

AdvAnon−CIV S−CPAA,HIBBE (λ) = |Pr[A(λ) = b′ : b′ = b]− 1

2
|
(6)

De�nition 5 (Anon-CIVS-CPA). A HIBBE is Anon-CIVS-CPA

secure against PPT adversary A if its advantage is a negligi-

ble function:

AdvAnon−CIV S−CPAA,HIBBE (λ) ≤ negl(λ) (7)

3.2 Concrete construction of anonymous HIBBE

With the inspiration of the proposed anonymous HIBBE in

[16], in this section, we propose a concrete scheme for anony-

mous HIBBE. Actually, we transfer the HIBE scheme of [16] to

anonymous HIBBE with the idea of broadcasting which is used
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in the anonymous identity-based broadcast encryption scheme

presented in [13].

Setup ((msk, pp)← Setup(λ)): Suppose that l = lλ denotes

the maximum depth of the hierarchy, and I = (N,G,GT , e)←
G(1λ) the composite order bilinear map. �is algorithm se-

lects the random elements Y1, X1, ui, . . . , ul ∈R Gp1 , Y3 ∈
Gp3 , X4, Y4 ∈R Gp4 and α ∈R ZN . It also selects the hash

function H14 : ID → ZN where ID is the universal set

of all identity vectors. We denote the public parameters by

the tuple pp := (N,Y1, Y3, Y4, t = X1X4, u1, . . . , ul, A =
e(Y1, Y1)α, H14) and the master secret key is the tuple msk :=
(X1, α).

Key generation (skIDi ← Extract(skIDi , IDi =
(IDi−1, IDi), pp)): We consider the key extraction algorithm

according to the two scenarios: 1) skIDi = msk and the TTP

itself generates the secret keys of the users, and 2) skIDi 6= msk
where we called the second scenario delegation phase and the

users in the higher level of hierarchy generates the secret keys

of their subordinates using their delegation rights.

First scenario: Given the identity vector IDi =
(ID1, . . . , IDi), TTP chooses random numbers r1, r2 ∈R ZN ,

and for t = 1, 2, Rt,1, Rt,2, Rt,i+1, . . . , Rt,l ∈R Gp3 . �e

secret key is tuple skIDi = (Kt,1,Kt,2,Et,i+1, . . . ,Et,l) which

is computed as follows:

K1,1 = Y r11 R1,1,K1,2 = Y α1

(
uID1

1 . . . uIDii X1

)r1
R1,2

E1,i+1 = ur1i+1R1,i+1, . . . , E1,l = ur1l R1,l

K2,1 = Y r21 R2,1,K2,1 =

(
uID1

1 . . . uIDii X1

)r2
R2,2

E2,i+1 = ur2i+1R2,i+1, . . . ,E2,l = ur2l R2,l

Delegation phase: Suppose that the parent’s secret key of IDi
is skIDi−1 = (K′t,1,K

′
t,2,E

′
t,i, . . . ,E

′
t,l = ur1l Rt,l) and IDi−1 =

(ID1, . . . , IDi−1). In this phase of algorithm, the secret key of

user with identity vector IDi will be generated as follows. First,

it choose the random numbers r̃1, r̃2 ∈R ZN and, for t ∈ {1, 2},
Rt,1, Rt,2, Rt,i+1, . . . , Rt,l ∈R Gp3 .

K1,1 = K′1,1(K′2,1)r̃1R1,1

K1,2 = K′1,2(K′2,2)r̃1(E′1,i)
IDi(E′2,i)

r̃1IDiR1,2

E1,i+1 = E′1,i+1(E′2,i+1)r̃1R1,i+1, . . . ,E1,l = E′1,l(E
′
2,l)

r̃1R1,l

K2,1 = (K′2,1)r̃2R2,1,K2,2 = (K′2,2)r̃2(E′2,i)
r̃2IDiR2,2

E2,i+1 = (E′2,i+1)r̃2R2,i+1, . . . ,E2,l = E′2,l(E
′
2,l)

r̃2R2,l

Note that, the private keys contain two parts, one

part is used for decryption of the ciphertext (i.e.,

(K1,1,K1,2,E1,i+1, . . . ,E1,l)) and the second part is used for the

delegation part (i.e., (K2,1,K2,2,E2,i+1, . . . ,E2,l)).

Encryption (cph ← BroadEnc(pp,M,V =
{ID1, . . . , IDL})): Suppose that for h from 1 to L,
IDh = (IDh,1, . . . , IDh,ih). �is algorithm selects random

numbers s ∈R ZN , Z, Z ′ ∈R Gp4 and computes the ciphertext

cph for the messageM ∈ GT as follows:

C0 = M.As

∀h = 1, . . . , L :

{
C ′1,h =

(
u
IDh,1
1 . . . u

IDt,ih
ih

t

)s
Z

xh = H14(IDh), fh(x) =
∏
j 6=h

x− xj
xh − xj

=
L−1∑
j=1

ahjx
j ,

so fh(xh) = 1 & fh(xj) = 0 : h 6= j

C1,h =
L∏
j=1

C
′ajh
1,j

}
C1 = (C1,1, . . . , C1,L), C2 = (Y1)sZ ′

cph := (C0, C1, C2) (8)

Decryption (M := BroadDec(pp, cph, skID)): If the iden-

tity vector ID ∈ V, then its associated user can decrypt the

ciphertext. So this algorithm �rst compute x∗ = H14(ID) and

acts as follows:

C∗ =
L∏
j=1

C
(x∗)j−1

1,j

= C
(x∗)0

11 × C(x∗)1

12 × · · · × C(x∗)L−1

1L

=
( L∏
j=1

C ′1j
aj1)× · · · × ( L∏

j=1

C ′1j
ajL)(x∗)L−1

=
(
C ′11

a11 × · · · × C ′11
a1L(x∗)L−1)

× . . .

· · · ×
(
C ′1L

aL1 × · · · × C ′1L
aLL(x∗)L−1)

= C ′11

∑L
j=1 a1j(x

∗)j−1

× · · · × C ′1L
∑L
j=1 aLj(x

∗)j−1

= C ′11
f1(x∗) × · · · × C ′1L

fL(x∗)

�erefore, if the identity vector ID ∈ V, then there exists one

element in {1, . . . L} like j in such a way that x∗ = xj ,
fj(x

∗) = 1 and fh(x∗) = 0 for all 1 ≤ h ≤ L such that

h 6= j. Consequently C∗ = C ′1j and the receiver can compute

the original message as follows:

C0
e(K1,1, C

∗)

e(K1,2, C2)
= Me(Y1, Y1)αs

e(K1,1, C
∗)

e(K1,2, C2)

=
Me(Y1, Y1)αse(Y1, (u

IDj,1
1 . . . u

IDj,ij
ij

))r1s

e(Y1, Y1)αse(Y1, (u
IDj,1
1 . . . u

IDj,ij
ij

))r1s

= M (9)

4 Security analysis of the proposed construc-

tion of anonymous HIBBE

4.1 The proof overview

It is shown that the proposed scheme of HIBE in [16] is anony-

mous. �e authors to show that their scheme is anonymous they

de�ned two additional structures: semi-functional ciphertext and
semi-functional keys. Anonymity of our proposed scheme can be

proved in a similar way to the security proof presented to show

that the HIBE scheme of [16] is anonymous. To this aim we

should de�ne the semi-functional ciphertext as follows. Denote
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that the semi-functional key are de�ned exactly the same as [16]

without any change.

Semi-functional Ciphertext: Suppose that the tuple

(C ′0, {C ′1,1, . . . , C ′1,L}, C ′2) be the ciphertext of the normal en-

cryption algorithm. Let that g2 denote a generator of group Gp2 .
�e exponents x, z1, . . . , zL ∈R ZN are chosen uniformly at

random. �e semi-functional ciphertext is computed as follows:

C0 = C ′0, {C1,t = C ′1,tg
xzt
2 : ∀1 ≤ t ≤ L}, C2 = C ′2g

x
2 (10)

Semi-functional Secret Key: Let

(K′t,1,K
′
t,2,E

′
t,i+1, . . . ,E

′
t,l) be the normal secret key which

is generated in the extraction algorithm. �e exponents

z, γ, zk ∈ ZN and, for t ∈ {1, 2} the random exponent

zt,i+1, . . . , zt,l ∈ ZN are chosen uniformly at random. �e

semi-functional secret key is computed as follows:

K1,1 = K′1,1g
γ
2 ,K1,2 = K′1,2g

γzk
2 , {E1,t = E′1,tg

γz1,t
2 }lt=i+1

(11)

K2,1 = K′2,1g
zγ
2 ,K2,2 = K′2,2g

zγzk
2 , {E2,t = E′2,tg

zγz2,t
2 }lt=i+1

(12)

We note that by using the �rst and second sub-keys of

the semi-functional secret key associated to the authorized

user with identity vector ID, the decryption of the semi-

functional ciphertexts are respectively Me(g2, g2)xγ(fz(x∗)−zk)

andMe(g2, g2)xzγ(fz(x∗)−zk)
where fz(x) = z1 + z2x+ · · ·+

zLx
L−1

and x∗ = H14(ID). If fz(x
∗) = zk then the decryption

will still work.

We denote that the prove of anonymity of the proposed

HIBBE relays on Assumptions 1, 2, 3, and 4. Note that the PPT

adversary A is allowed to make q queries for the secret keys

and according to the hybrid argument, based on the following

sequence of q + 5 games between A and the challenger C, we
prove that the anonymity of our scheme is reduced to these three

assumptions.

GameReal: is exactly the same as the real game which de�nes

the anonymity of HIBBE.

GameReal′ : is the same as the real game except that all the

queries for the secret keys are responded by the �rst scenario of

the key generation algorithm (C will not be asked to respond the

queries by the Delegation phase of the key generation algorithm).

GameRestricted: is the same as GameReal′ except that A can

not query the secret keys associated to the identities which are

pre�x of one of the challenge identities module p2.

Gamek: for 0 ≤ k ≤ q, Gamek is similar to GameRestricted
except that the given challenge ciphertext toA is semi-functional

and the �rst k secret keys are generated in the semi functional

format and the rest q − k queried secret keys are normal.

GameFinal0 : is exactly similar to Gameq and the only di�erent
is that C0 of the challenge semi functional ciphertext is indepen-

dent from the messages selected by A. �erefor in this game C0

is chosen uniformly at random from GT .

GameFinal1 : is exactly similar to GameFinal0 and the only

di�erence is that in the semi-functional ciphertext, for t from 1 to

l, C1,t are chosen from Gp1p2p4 uniformly at random. �erefore,

the semi-functional ciphertext is independent from the challenge

identities which are chosen by A in the challenge phase and the

advantage of all the adversaries is 0.

4.2 Indistinguishability of Gamereal and Gamereal′

Lemma 1. For any adversary A, AdvAGamereal
is equal to

AdvAGamereal′
.

Proof. As in the both scenarios of the key generation algo-

rithm, i.e., �rst scenario and Delegation phase, the secret keys
are distributed identically; therefore, in the adversary’s view,

there is no di�erent between these security games.

4.3 Indistinguishability of Gamereal′ and GameRestricted

Lemma 2. Consider that there exists a PPT adversary A such

that AdvAGamereal′
− AdvAGameRestricted

= ε. �en there exists a

PPT adversary B whose advantage in breaking Assumption

1 is at least

ε

3
.

Proof. Suppose that there exists an adversary A who can

�nd the identity vector ID = (ID1, . . . , IDk) which is the pre-

�x of one of the elements of the challenge identity vectors sets,

like ID∗ = (ID∗1 , . . . , ID
∗
j ), module p2 with the probability of

ε. �erefore, there exists i such that IDi 6= ID∗i module N and

p2 divides IDi − ID∗i . As a result a = gcd(IDi − ID∗i , N) is

a non-trivial factor of N . Note that p2 divides a. We set b =
N

a
and the following three cases are all possible states and at least

one of them with probability at least

ε

3
occurs.

1. ord(Y1) | b.
2. ord(Y1) - b and ord(Y4) | b.
3. ord(Y1) - b and ord(Y4) - b and ord(Y3) | b.

Without loss of generality we consider case 1 which has the

probability at least

ε

3
. �en we construct the PPT adversary

B who breaks Assumption 1. B is given the tuple D :=
(
∑
, g1, g3, g4, A1A2, B2B4) and T . �en it runs Setup to

computes PP . In this case, B sets Y1 = g1, Y3 = g3, and

Y4 = g4. As B runs the setup algorithm, it know the master

secret key MSK related to PP . �erefor, by means of MSK ,

B answers all A’s queries. At the end of the game, B for all IDs
which are the identity vectors that have been queried by A, B
computes a = gcd(IDi − ID∗i ) for all ID∗s are included in the

two challenge identity vector sets. If e((A1A2)a, B2B4) is the

identity element of GT , then it tests whether e(T b, A1A2) is

an identity element of GT or not. If the response of the second

test is positive, then B promulgates that T ∈ Gp1p4 ; otherwise, it
promulgates that T ∈ Gp1p2p4 . As a result, B can is able to break

Assumption 1 with the probability at least

ε

3
. As we suppose

that all PPT adversaries breaks Assumption 1 with a negligible

advantage, we can conclude that

ε

3
is a negligible functions

and consequently ε is a negligible function. So Gamereal′ and
GameRestricted are indistinguishable.

4.4 Indistinguishability of GameRestricted and Game0

Lemma 3. If there exists a PPT adversary A such that

AdvAGameRestricted
− AdvAGame0

= ε, then there exists a PPT

adversary B whose advantage in breaking Assumption 1 is ε.

Proof.B is given D := (
∑
, g1, g3, g4, A1A2, B2B4) and T . B

simulates GameRestricted or Game0 according to the value of T .
So, if T ∈ Gp1p4 then it simulates GameRestricted and if T ∈
Gp1p2p4 it simulates Game0 for A.
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�en B runs the setup algorithm to generateMSK and PP
as follows. It �rst selects the exponents α, a1, . . . , al, b, c ∈R
ZN uniformly at random and then sets Y1 = g1, Y3 = g4,

Y4 = g3, X4 = Y c4 , X1 = Y b1 and for i from 1 to l, ui = Y ai1 .

�en, B sets the public parameter PP := (N,Y1, Y3, Y4, t =
X1X4, u1, . . . , ul,Ω = e(Y1, Y1)α) and sends it to A. B also

sets the MSK = (X1, α) as the master secret key which is

related to PP and as it knows the master secret key, it can

answer all of A’s queries for the secret keys of the intended

identity vectors.

As it mentioned in the challenge phase of Anon-CIV-CPA, A
outputs the message M and two challenge identity vector sets

Vt = {ID∗1t, . . . , ID∗Lt}, t ∈ {0, 1}. �en, B �ips a random coin

β ∈R {0, 1} and encryptsM using Vβ as follows:

Suppose that for h from 1 to L, ID∗hβ =
(IDβh,1, . . . , IDβh,ih). �is algorithm selects random numbers

s ∈R ZN , Z, Z ′ ∈R Gp4 and computes the ciphertext cph for

the messageM ∈ GT as follows:

C0 = M.e(T, Y1)α

∀h = 1, . . . , L :

{
C ′1,h = T a1IDβh,1+···+aihIDβh,ih+b

xh = H14(IDht), fh(x) =
∏
j 6=h

x− xj
xh − xj

=
L−1∑
j=1

ahjx
j ,

so fh(xh) = 1 & fh(xj) = 0 : h 6= j

C1,h =
L∏
j=1

C
′ajh
1,j

}
C1 = (C1,1, . . . , C1,L), C2 = T

cph := (C0, C1, C2) (13)

�e proof will become completed with the following two cases.

If T ∈ Gp1p3 , then we can show T = Y s11 Y s34 . It can be

seen that in this case, (C0, C1, C2) is a normal ciphertext with

randomness s = s1, Zh = Y
s3(a1IDβh,1+···+aihIDβh,ih+b)

4

and Z ′ = Y s34 . If T ∈ Gp1p2p3 , then we can show T =
Y s11 gs22 Y

s3
4 . It can be seen that in this case, (C0, C1, C2) is

a semi-functional ciphertext with randomness s = s1, Zh =

Y
s3(a1IDβh,1+···+aihIDβh,ih+b)

4 , x = s2 and this ciphertext

implicitly sets z1, . . . , zL to random values.

4.5 Indistinguishability of Gamek−1 and Gamek

Lemma 4. If there exists a PPT adversary A such that

AdvAGamek−1
− AdvAGamek

= ε, then there exists a PPT

adversary B whose advantage in breaking Assumption 2 is

ε.

Proof. B is given D := (
∑
, g1, g3, g4, A1A2, B2B3) and T .

According to the value of T , B simulates Gamek−1 or Gamek .
We will show that, if T ∈ Gp1p3 then it simulates Gamek−1 and

if T ∈ Gp1p2p3 it simulates Gamek for A.
�en B runs the setup algorithm to generateMSK and PP

as follows. It �rst selects the exponents α, a1, . . . , al, b, c ∈R
ZN uniformly at random and then sets Y1 = g1, Y3 = g3,

Y4 = g4, X4 = Y c4 , X1 = Y b1 and for i from 1 to l, ui = Y ai1 .

�en, B sets PP := (N,Y1, Y3, Y4, t = X1X4, u1, . . . , ul,Ω =
e(Y1, Y1)α) as the public parameter and sends it to A. B also

sets MSK = (X1, α) as the master secret key which is related

to PP . B answers the i-th secret key query for identity vector

(IDi = (IDi,1, . . . , IDi,j)). B generates semi-functional secret

keys in the �rst k− 1 queries by choosing the r1, r2, f, z, ω ∈R
ZN and, for t ∈ {1, 2}, ωt,2, ωt,j+1, . . . , ωt,l ∈R ZN uniformly

at random. �en B acts as follows:

K1,1 = Y r11 (B2B3)f

K1,2 = Y α1 (B2B3)ω
(
u
IDi,1
1 . . . u

IDi,j
j X1

)r1
Y
ω1,2

3

E1,j+1 = ur1j+1(B2B3)ω1,j+1 , . . . , E1,l = ur1l (B2B3)ω1,l

K2,1 = Y r21 (B2B3)zf

K2,2 = (B2B3)ω
(
u
IDi,1
1 . . . u

IDi,j
j X1

)r2
Y
ω2,2

3

E2,j+1 = ur2j+1(B2B3)ω2,j+1 , . . . ,E2,l = ur2l (B2B3)ω2,l

We can show that B2 = gΓ
2 , it can be easily seen that the

generated secret key is semi-functional because γ = Γf and

γzk = Γω.
For i from k + 1 to q, B runs the key generation algorithm

to generate normal secret keys by usingMSK = (X1, α).
Suppose that for the k-th query the identity vector is

IDk = (IDk,1, . . . , IDk,j). To answer this query, B sets

zk = a1IDk,1 + · · · + ajIDk,j + b, choses r′2 ∈R ZN and,

for t ∈ {1, 2}, ωi,2, ωi,j+1, . . . , ωi,l ∈R N uniformly at random.

�en it sets the k-th secret key as follows:

K1,1 = T,K1,2 = Y α1 T
zkY

ω1,2

3 ,
{
E1,m = T amY

ω1,m

3

}l
m=j+1

K2,1 = T r
′
2 ,K2,2 = T r

′
2zkT zkY

ω2,2

3{
E2,m = T r

′
2amY

ω2,m

3

}l
m=j+1

If T ∈ Gp1p3 , then we can write it as Y
r′1
1 Y r33 and the

constructed secret key is normal with r1 = r′1, r2 = r′1r
′
2.

If T ∈ Gp1p2p3 , then we can write it as Y
r′1
1 gs22 Y

r3
3 and the

resulting secret key is semi-functional with r1 = r′1, r2 = r′1r
′
2,

γ = s2 and z = r′2.
In the challenge phase, A outputs the two challenge mes-

sages and identity vector sets (M,Vt = {ID∗1t, . . . , ID∗Lt}),
t ∈ {0, 1}. �en, B �ips a random coin β ∈R {0, 1} and selects

z, z′ ∈R ZN and encryptsM using Vβ as follows:

C0 = M.e(A1A2, Y1)α

∀h = 1, . . . , L :

{
C ′1,h = (A1A2)a1IDβh,1+···+aihIDβh,ih+bY z4

xh = H14(IDht), fh(x) =
∏
j 6=h

x− xj
xh − xj

=
L−1∑
j=1

ahjx
j ,

so fh(xh) = 1 & fh(xj) = 0 : h 6= j

C1,h =
L∏
j=1

C
′ajh
1,j

}
C1 = (C1,1, . . . , C1,L), C2 = A1A2Y

z′

4

cph := (C0, C1, C2) (14)

It can be seen that, B sets Y s1 = A1 and z1, . . . , zL are implicitly

set at random. Since it is supposed that IDk is not congruent to

ID∗hβ modulo p2, for all h from 1 to L, then we conclude that zk
and z1, . . . , zL are independent and they have been distributed
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in randomly. �erefor, it can be seen that if T ∈ Gp1p2p3 , then
B simulates Gamek−1 and if T ∈ Gp1p2p3 , then B simulates

Gamek properly.

4.6 Indistinguishability of Gameq and GameFinal0

Lemma 5. If there exists a PPT adversary A such that

AdvAGameq
− AdvAGameFinal0

= ε, then there exists a PPT

adversary B whose advantage in breaking Assumption 3 is

ε.

Proof. B is givenD := (
∑
, g1, g2, g3, g4, g

α
1A2, g

s
1B2, g

r
2, A

r
2)

and T . According to the value of T , B simulates Gameq or

GameFinal0 . We will show that, if T = e(g1, g1)αs then it

simulates Gameq and if T ∈R GT it simulates GameFinal0 for

A.
�en B runs the setup algorithm to generateMSK and PP

as follows. It �rst selects the exponents α, a1, . . . , al, b, c ∈R
ZN uniformly at random and then sets Y1 = g1, Y3 = g3,

Y4 = g4, X4 = Y c4 , X1 = Y b1 and for i from 1 to l, ui = Y ai1 .

�en, B sets PP := (N,Y1, Y3, Y4, t = X1X4, u1, . . . , ul,Ω =
e(gα1A2, Y1) = e(Y1, Y1)α) as the public parameter and sends

it to A. B also sets MSK = (X1, α) as the master se-

cret key which is related to PP . B answers the i-th secret

key query for identity vector (IDi = (IDi,1, . . . , IDi,j)).
B generates semi-functional secret keys to answer all queries

by choosing the r1, r2, z, z
′, ω ∈R ZN and, for t ∈ {1, 2},

zt,j+1, . . . , zt,l, ωt,1, ωt,2, ωt,j+1, . . . , ωt,l ∈R ZN uniformly at

random. �en B acts as follows:

K1,1 = Y r11 gz2Y
ω1,1

3

K1,2 = (gα1A2)gz
′

2

(
u
IDi,1
1 . . . u

IDi,j
j X1

)r1
Y
ω1,2

3

E1,j+1 = ur1j+1g
z1,j+1

2 Y
ω1,j+1

3 , . . . , E1,l = ur1l g
z1,l
2 Y

ω1,l

3

K2,1 = Y r21 (gr2)zY
ω2,1

3

K2,2 = Ar2(gr2)z
′

(
u
IDi,1
1 . . . u

IDi,j
j X1

)r2
Y
ω2,2

3

E2,j+1 = ur2j+1g
z2,j+1

2 Y
ω2,j+1

3 , . . . ,E2,l = ur2l g
z2,l
2 Y

ω2,l

3

In the challenge phase, A outputs the two challenge mes-

sages and identity vector sets (M,Vt = {ID∗1t, . . . , ID∗Lt}),
t ∈ {0, 1}. �en, B �ips a random coin β ∈R {0, 1} and selects

z, z′ ∈R ZN and encryptsMβ using Vβ as follows:

C0 = Mβ .T

∀h = 1, . . . , L :

{
C ′1,h = (gs1B2)a1IDβh,1+···+aihIDβh,ih+bY z4

xh = H14(IDht), fh(x) =
∏
j 6=h

x− xj
xh − xj

=
L−1∑
j=1

ahjx
j ,

so fh(xh) = 1 & fh(xj) = 0 : h 6= j

C1,h =
L∏
j=1

C
′ajh
1,j

}
C1 = (C1,1, . . . , C1,L), C2 = gs1B2Y

z′

4

cph := (C0, C1, C2) (15)

Since a1, . . . , al are chosen randomly, therefore, their values

modulo p1 and p2 are random and independent. �erefore

the resulting ciphertext implicitly sets z1, . . . , zL uniformly at

random and the resulting ciphertext is semi-functional. Finally,

the proof is �nished by observing that, if T = e(g1, g1)αs,
then the resulting semi-functional ciphertext is the encryption

of M , and if T be a random element of GT , then the resulting

semi-functional ciphertext is the encryption of a randommessage

which is independent to the challenge message selected by A.
In the end of the game, A outputs β′. B checks weather

β = β′ or not. If this equality holds, then B realizes that

T = e(g1, g1)αs; otherwise, B realizes that T is a random

element in GT . �erefore, the advantage of B to break As-

sumption 3 is equal to the di�erence of A’s advantage in

Gameq and GameFinal0 . So we conclude that these two games

are indistinguishable.

4.7 Indistinguishability of GameFinal0 and GameFinal1
Lemma 6. If there exists a PPT adversary A such that

AdvAGameFinal0
− AdvAGameFinal1

= ε, then there exists a PPT

adversary B whose advantage in breaking Assumption 4 is ε.

Proof. First of all, we notice that if there exists an adversary

A′ who distinguishes between the encryption of a message using

two challenge identity vector sets V0 and V1 of its choice, then

we can constructA who distinguishes between the encryption of

a message with the identity vector set of its choice and a random

identity vector set. In the rest of proof, we suppose that games

are been simulating for A.
B is given (

∑
, g1, g2, g3, g4, U, U

sA24, U
r̂, A1A4, A

r̂
1A2,

gr̂1B2, g
s
1B24) and T . According to the value of T , B simulates

GameFinal1 or GameFinal0 . We will show that, if T = As1D24

then it simulates GameFinal0 and if T ∈R Gp1p2p4 it simulates

GameFinal1 for A.
�en B runs the setup algorithm to generateMSK and PP

as follows. It �rst selects the exponents α, a1, . . . , al, b, c ∈R
ZN uniformly at random and then sets Y1 = g1, Y3 = g3,

Y4 = g4, t = A1A4, and for i from 1 to l, ui = Uai . �en,

B sets PP := (N,Y1, Y3, Y4, t, u1, . . . , ul,Ω = e(Y1, Y1)α)
as the public parameter and sends it to A. B answers the i-th
secret key query for identity vector (IDi = (IDi,1, . . . , IDi,j)).
B generates semi-functional secret keys to answer all queries

by choosing the r′1, r
′
2 ∈R ZN and, for t ∈ {1, 2},

zt,j+1, . . . , zt,l, ωt,1, ωt,2, ωt,j+1, . . . , ωt,l ∈R ZN uniformly at

random. �en B acts as follows:

K1,1 = (gr̂1B2)r
′
1Y

ω1,1

3

K1,2 = Y α1

((
U r̂
)a1IDi,1+···+ajIDi,j

(Ar̂1A2)

)r′1
Y
ω1,2

3

E1,j+1 = (U r̂)r
′
1aj+1Y

z1,j+1

2 Y
ω1,j+1

3

. . . , E1,l = (U r̂)r
′
1alY

z1,l
2 Y

ω1,l

3

K2,1 = (gr̂1B2)r
′
2Y

ω2,1

3

K2,2 =

((
U r̂
)a1IDi,1+···+ajIDi,j

(Ar̂1A2)

)r′2
Y
ω2,2

3

E2,j+1 = (U r̂)r
′
2aj+1Y

z2,j+1

2 Y
ω2,j+1

3

. . . , E2,l = (U r̂)r
′
2alY

z2,l
2 Y

ω2,l

3
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It can be shown that in the resulting secret keys r1 = r̂r′1
and r2 = r̂r′2. In the challenge phase, A outputs the challenge

message and identity vector sets (M,Vt = {ID∗1t, . . . , ID∗Lt}),
t ∈ {0, 1}. �en, B selects C0 ∈ GT and computes the challenge

ciphertext as follows:

C0

∀h = 1, . . . , L :

{
C ′1,h = T (UsA24)a1IDβh,1+···+aihIDβh,ih

xh = H14(IDht), fh(x) =
∏
j 6=h

x− xj
xh − xj

=
L−1∑
j=1

ahjx
j ,

so fh(xh) = 1 & fh(xj) = 0 : h 6= j

C1,h =
L∏
j=1

C
′ajh
1,j

}
C1 = (C1,1, . . . , C1,L), C2 = gs1B24

cph := (C0, C1, C2) (16)

If T = As1D24, then the adversary generates a semi-functional

ciphertext of a random message using the identity vector set

Vβ . If T is a random element of the group, Gp1p2p4 , therefore
C1 and C2 are random elements of Gp1p2p4 and the result

ciphertext is semi-functional of a random message using an

implicitly randomly chosen identity vector set. Hence, B is able

to distinguish between the two possible states of T by means of

A. As we suppose that Assumption 4 holds, we conclude that the

games GameFinal0 and GameFinal1 are indistinguishable.

4.8 The advantage in GameFinal1
Theorem 1. If Assumptions 1, 2, 3, and 4, simultaneously hold,

then the proposed HIBBE scheme is secure.

Proof. According to the previous lemmata, we have proved that

if the mentioned assumptions hold, then the real security game

is indistinguishable from GameFinal1 . �e advantage of adversary

in GameFinal1 is zero because the value of β is information-

theoretically hidden from a�acker. �erefor, we conclude that

the advantage of a�acker in breaking the Anonymous HIBBE is

a negligible function.

5 Performance evaluation of the proposed

anonymous HIBBE

In this section, we will present the performance analysis over the

proposed anonymous HIBBE and HIB-MDVS schemes. To this

end, the computation, communication and storage overheads are

computed. We denote the modular multiplication, exponentiation

over GN and GT , and pairing by MulN , expN , MulT , expT
and PairN respectively.

Without loss of generality, for simplicity to analyze the per-

formance of the proposed scheme, we assume that all identities

in the set V has the same depth.

As the �rst scenario of key generation algorithm can be

done in an o�-line procedure, we just compute the computation

overhead of delegation phase. A�er that, we compute the compu-

tation overheads of the encryption and decryption algorithms in

terms of hierarchy depth of V, i.e. dm = ||V|| and the number of

intended receivers, i.e, L. �en , we compute the communication

and storage overheads.

5.1 The delegation phase

As mentioned before, the maximum levels of hierarchy is l.
Suppose that, the user in the i − 1-th level generates the secret

keys of its subordinates in the i-th level. According to the del-

egation phase of the key generation algorithm, the computation

overhead of the delegation phase in term of l and i is equal to
(7 + 2l − 2i)expN + (9 + 2l − 2i)MulN (Table 4).

5.2 Encryption algorithm

As computing the coe�cients of fh(x) are independent of

computation of C ′1,h, for each identity vector, we can compute

the coe�cients of the functions corresponding to each identity

vector separately and store them. �erefore without computing

C ′1,h we can compute C1,h by using the stored coe�cients as

follows:

C ′1,h =
(
u1
IDh,1 . . . udm

IDh,dm t
)s
Z

C1,h =
L∏
j=1

C ′1,h
ajh

= C ′1,1
a1h × · · · × C ′1,L

aLh

=
((
u1
ID1,1 . . . udm

ID1,dm t
)s
Z
)a1h

× . . .

· · · ×
((
u1
IDL,1 . . . udm

IDL,dm t
)s
Z
)aLh

=
(
u1
s(

∑L
j=1 IDj,1ajh)

)
× . . .

· · · ×
(
udm

s(
∑L
j=1 IDj,dmajh)

)
× ts(

∑L
j=1 ajh) × Z

∑L
j=1 ajh

In this case, we can see that for computing each C1,h we

need dm + 2 exponentiations and dm + 1 multiplications. In

addition, to compute the whole ciphertext we need one pairing,

one multiplication, and one exponentiation. Consequently, the

total computation overhead of the encryption algorithms is

expT + (L(dm + 2) + 1)expN + (L(dm + 1) + 1)MulN

5.3 Decryption algorithm

For decrypting the message, L exponentiations and L− 1 multi-

plication is required to computeC∗. In addition, 2 paring compu-

tations and multiplications in GT is required to extract the mes-

sage from the ciphertext. �erefore, the computation overhead of

decryption part is 2PairN +LexpN + (L−1)MulN + 2MulT .

5.4 Communication overhead:

In our proposed scheme the communication overhead is equal

to the ciphertext size. To send the encrypted message, we need

log2(|N |), L(log2(|p1p4|)), and log2(|p1p4|) bits because ofC0,

C1, and C2 respectively. So, the total communication overhead

is (L+ 1) log2(|p1p4|) + log2(|N |).

5.5 Storage overhead:

�e storage overhead of each user is mainly related to the size

of the secret key. �e size of the secret key in the ith level of

hierarchy is (2(l− i) + 4) log2(|p1p3|) where l is the total level
of hierarchy in the network.
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TABLE 2
Basic information, The information of the using platform and type of the

composite order bilinear maps [22].

Ellipse curve type Type A1
Ellipse curve y2 = x3 + x
Symmetry or not Symmetry
Order N = p1p2p3p4
Security level log pi = 192
Platform Personal computer
CPU series Intel core i5-2400
RAM 4GB
Operate system Windows 8
JDK version JDK 1.6
jPBC version 2.0.0

TABLE 3
Benchmark. The time execution of the basic algorithms [22].

Operation Time (ms)
Pairing: PairN 90
Element exponentiation in GN : expN 105
Element exponentiation in GT : expT 9
Element multiplication in GN : MulN 0.1
Element multiplication in GT : MulT 0.01

5.6 Implementation

�e execution time of the algorithms PairN , expN , expT ,
MulN , and MulT is measured by calling the modules of jPBC

library [21] in Java. As the proposed anonymous HIBBE scheme

is designed based on composite order bilinear pairing, jPBC

library is used which introduces interfaces for implementing

composite order bilinear maps. In [22], the time executions of

the mentioned algorithms is computed and we illustrate these

results in Table 3. �e information related to the platform which

is used in [22] and their implementations are illustrated in Table

2. According to Table 3, the execution time of running encryption

and decryption algorithms of our proposed HIBBE scheme when

dm = 3 for L = {5, 10, 15, 20, 25} is illustrated in Table 5.

6 Hierarchical Identity-Based MDVS (HIB-

MDVS)

In this section, for the �rst time, we will introduce the concept

of HIB-MDVS where the generation of users’ secret keys is in a

hierarchical se�ing. �erefore, the users higher in the hierarchy

can generate a secret key for the children of their domain. We

introduce the notion of HIB-MDVS and de�ne its unforgeability

in a formal way.

A HIB-MDVS scheme consists of four polynomial-time al-

gorithms: Setup,Extract,MDVSig and MDVSVrfy. �ese four

algorithms are as follows:

• (PP,MSK) ← Setp(λ): �is algorithm takes λ as

input to generates PP andMSK .

• USKID ← Extract(USKPar(ID), ID): �is algorithm

takes ID and its parent secret key USKPar(ID) as inputs

to generate USKID. As mentioned before, MSK =
USK0 is the secret key of the TTP.

• σ ← MDVSig(PP,USKIDs ,M,V): In this algorithm,

the signer with the identity vector IDs, generates the

signature σ for M ∈ M and only the users whose

identity vectors are in V can verify it.

• {0, 1} := MDVSVrfy(PP, IDs, USKID, σ): �e user

with identity vector ID runs this deterministic algorithm.

�is algorithm takes PP , IDs, σ, and the user secret

key USKID as the inputs and tests whether σ is a

valid signature. If ID ∈ Par(V), then this user can

check the validity of σ. �is algorithm returns 1 if, (1)

ID ∈ Par(V) and (2) signature σ is a valid signature;

otherwise, returns 0.

6.1 Security model of HIB-MDVS

In the following, we will de�ne existential forgery against adap-

tively chosen message a�ack (EF-CMA) for HIB-MDVS according

to the following game which is held between C and A.
Setup: C runs the algorithm (MSK,PP ) ← Setup(λ)

to generate PP and MSK . C selects IDs of the signer and

generates the secret key SKIDs . �en it sends IDs, PP and λ to

A.
Phase 1: A is allowed to query adaptively to the following

oracles for polynomially many times. C keeps the messages list

LM which is initially empty.

• USKID ← OExtract(ID): �is oracle gets the identity

vector ID and generates the secret key USKID ←
Extract(USKPar(ID), ID) and sends it to A. Note that

if ID ∈ Par(IDs), this oracle stops to answer.

• σi ← OSign(Mi,Vi): �is oracle receives Mi

from A and computes the valid signature σi ←
MDVSig(PP,USKIDs ,Mi,Vi) and sends it to A. �is

oracle also addsMi to LM for each query.

Guess: A outputs the tuple (σF ,MF ,VF ) where MF was

never queried before (MF /∈ LM ). A wins the game if σF is a

valid HIB-MDVS signature. �e advantage ofA to win this game

is de�ned according to Equation (17).

AdvEF−CMA
HIB−MDV S,A = Pr[A(λ) = (MF , σF ) : MF /∈ LM

&∀ID ∈ VF : 1 := MDVSVrfy(PP, IDs, USKID, σF )]
(17)

De�nition 6 (Security of HIB-MDVS against EF-CMA ). �e

HIB-MDVS scheme is unforgeable if the advantage of any

PPT adversary A to win in the EF-CMA game is a negligible

function as follows:

AdvEF−CMA
HIB−MDV S,A ≤ negl(λ) (18)

7 Generic construction of HIB-MDVS

�is section presents a generic construction of HIB-MDVS based

on anonymous HIBBE and an unforgeable hierarchical identity-

based signature (HIBS) [17] as the building blocks.

�e basic idea of the proposed scheme is that the signer

encrypts a random key like k by the HIBBE for the legitimate

veri�ers. �en the signer signs the hashed value of the concate-

nation of message and the key k, i.e., H(k||m) and broadcast

the ciphertext of the key k, the resulting signature and the

message. For the veri�cation process, the legitimate user decrypt

the ciphertext part of the receiving signature and then runs the

veri�cation algorithm of the mentioned signature on the message

m′ = H(k||m).
We not that the most important advantage of using anony-

mous HIBBE to construct a HIB-MDVS signature is that we can
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TABLE 4
The complexity analysis of the proposed anonymous HIBBE

Criteria Our proposed scheme

Computation Overhead

Delegation Phase (7 + 2l − 2i)expN + (9 + 2l − 2i)MulN
BroadEnc expT + (L(dm + 2) + 1)expN + (L(dm + 1) + 1)MulN
BroadDec 2PairN + LexpN + (L− 1)MulN + 2MulT

Communication Overhead (L+ 1) log2(|p1p4|) + log2(|N |)
Storage Overhead (2(l − i) + 4) log2(|p1p3|)

TABLE 5
The performance of our proposed anonymous HIBBE, for dm = 3 and

di�erent values of the number of intended receiver, L.

Algorithm L = 5(s) L = 10(s) L = 15(s) L = 20(s) L = 25(s)
BroadEnc 2.741 4.369 7.995 10.622 13.249
BroadDec 0.705 1.231 1.756 2.282 2.807

provide the veri�ers privacy by hiding the information related

to their identity. �erefore, it is computationally hard for an

adversary to infer some information about the identities of the

veri�ers. We will discuss about the anonymity of HIB-MDVS in

Remark 1.

7.1 The proposed generic construction

Suppose that the algorithm Π1 :
(Setup1,Extract1,BroadEnc,BroadDec) is a HIBBE scheme

and the algorithm Π2 : (Setup2,Extract1,Sign,Vrfy) ( [17])

is an unforgeable HIBS scheme. �e details of the scheme is

presented as follows:

Setup ((pp,msk) ← Setup(λ)): To compute the public

parameters pp and the master secret key msk this algorithms

runs (pp1,msk1) ← Setup1(λ) and (pp2,msk2) ← Setup2(λ)
and sets the pair of public parameter and master secret key as

(pp,msk) :=
(

(pp1, pp2), (msk1,msk2)
)
.

Key generation (skID ← Extract(skpar(ID), ID)): �e iden-

tity vector ID = (ID1, . . . , IDi) is given to the extrac-

tion algorithm and the secret key of the parent of the iden-

tity vector ID is skID = (sk1,par(ID), sk2,Par(ID)) where the

�rst part is related to the HIBBE and the second part is

related to the HIBS. �is algorithm runs the extraction al-

gorithms sk1,ID ← Extract1(sk1,Par(ID), ID) and sk2,ID ←
Extract2(sk2,par(ID), ID) and sets the secret key associated to

the identity vector ID equal to skID := (sk1,ID, sk2,ID).

Sign (σ ← MDVSig(pp, skIDs ,m,V)): �e identity vector

set V = {ID1, . . . , IDL} is given. �e signer �rst chooses the

random string k ∈R M and runs the encryption algorithm

Ck ← BroadEnc(pp1, k,V). �en it compute the hashed value

of message and the random string k, i.e., h = H(k||m) and

signs h by running the sign algorithm σ′ ← Sign(h, skIDs). �e

resulting signature is σ := (m,Ck, σ
′).

Verify ({0, 1} := MDVSVrfy(pp, IDs, skID, σ)): �e veri�er

with the identity vector ID decrypts the ciphertext Ck by

running the algorithm k′ := BroadDec(Ck, sk1,ID, pp1) where

the secret key is skID = (sk1,ID, sk2,ID). If ID ∈ V, then k′ = k.
A�er that, it computes h′ = H(k′||m) and runs the veri�cation

algorithm of HIBS, i.e., {0, 1} := Vrfy(σ′, h′, IDs, pp2).

8 Security of the proposed HIB-MDVS

In this section we review the security of HIBS against existential

forgery for selective ID, adaptive chosen-message-and-identity

a�ack (EF-sID-CMIA) [17], discuss about the anonymity of the

proposed HIB-MDVS scheme in Remark 1, and then prove

that the proposed generic construction of HIB-MDVS is secure

against the EF-CMA according to �eorem 2.

8.1 Security of HIBS against EF-sID-CMIA

�e formal de�nition of EF-sID-CMIA is presented as follows

[17]:

Init: A outputs the challenge identity vector ID∗ and sends

it to C.
Setup: C runs (pp2,msk2) ← Setup2(λ) and sends pp2 to

A.
Attack: A can query the following oracles:

• Extract: A chooses ID and sends it to C. If ID /∈
Par(ID∗) then C returns sk ← Extract2(msk2, ID) to

A.
• Sign: A sends (ID,m) to C and receives the valid

signature σ ← Sign(m, skID) form C.

Forgery: A outputs the tuple (σ∗,m∗). A wins the game if

1 := Vrfy(σ∗,m∗, ID∗, pp2).
If the probability Pr[A(λ) = (σ∗,m∗) : 1 :=

Vrfy(σ∗,m∗, ID∗, pp2)] is a negligible function in terms of λ,
then HIBS is secure against EF-sID-CMIA.

8.2 Security proof

Remark 1 (Anonymity of the proposed HIB-MDVS scheme).
As we use an anonymous HIBBE scheme, we can conclude

that all the information related to the veri�ers’ identities

are hidden. We have formally proved that the output ci-

phertext of encryption algorithm of HIBBE does not leakage

any information about the receivers’ identities. As a result,

the identities of the veri�ers of the proposed signature sty

anonymous. Note that, also the authorized receivers can not

infer any information about the other intended veri�ers. �is

guaranties the fully anonymity of the proposed HIB-MDVS

scheme.

Theorem 2 (unforgeability of HIB-MDVS). If the using HIBS

scheme in the proposed generic construction of HIB-MDVS

is secure against EF-sID-CMIA, then the resulting HIB-MDVS

scheme is secure against the EF-CMA.

We suppose that the HIB-MDVS scheme is not secure and

A can win in the EF-CMA game with non-negligible advantage

ε(λ). �en we design the adversary B who wins the EF-sID-

CMIA game with non- negligible probability.
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Setup: A selects IDs and sends it to B. B sets ID∗ = IDs
and sends ID∗ to C. �en C runs (pp2,msk2)← Setup2(λ) and
sends pp2 to B. B runs (pp1,msk1) ← Setup1(λ) and sends

pp := (pp1, pp2) to A.
Phase 1: B simulates Phase 1 for A by responding to its

queries.

• OExtract(ID): B receives ID and sends it to C. C returns B
the secret key sk2 ← Extract2(msk2, ID). �en B runs

sk1 ← Extract1(msk1, ID) and returns A the resulting

secret key, i.e., sk := (sk1, sk2).
• OSign(mi,Vi): B receives the tuple (mi,Vi) from

A. B selects ki ∈R M and computes Cki ←
BroadEnc(pp1, ki,Vi) and hi = H(ki||mi). �en it

sends (hi, ID∗) to C and receives σ′i ← Sign(hi, sk2,ID∗).
�en B sets σi := (mi, Cki , σ

′
i) and sends it to A.

Guess: A outputs the tuple (σF = (mF , CkF , σ
′
F ),mF ,VF )

and B receives it. �en B selects an arbitrary IDF ∈ VF
and computes the secret key sk1,IDF ← Extract1(msk1, IDF ).
�en it computes kF := BroadDec(CkF , sk1,IDF , pp1). �en

B computes hF = H(kF ||mF ) and then sends the tuple

(σ∗ := σ′F ,m
∗ = hF ) to C as a forgery for the HIBS scheme.

So the probability that B wins in the EF-sID-CMIA security

game is the same as the advantage of A to win in the EF-CMA

game, i.e., ε(λ). As is a non-negligible function, we conclude that
B wins with a non-negligible probability. �is contradicts with

the assumption that the using HIBS scheme is secure against EF-

sID-CMIA. So the proposed generic construction of HIB-MDVS

is secure against EF-CMA.

9 Complexity analysis of the proposed generic

construction of HIB-MDVS

In this section, we compute the asymptotic complexity of the

resulting HIB-MDVS which is constructed by replacing our

proposed HIBBE and the HIBS (presented in [17]) in our generic

construction of HIB-MDVS. Table 6 illustrates the asymptotic

complexity of the prosed concrete construction of HIB-MDVS.

Note that the proposed HIBS scheme in [17] is designed based on

prime order bilinear pairing. We denote e : G1×G1 → G2 as the

bilinear pairing with prime order p. �erefore, in Table 6,Mulp,
expp respectively denote the multiplication and exponentiation

over the cyclic group G1 of prime order p and Pairp denotes the
pairing operation over G2.

According to Table 6 of [23], the time execution of the

required operation in the prime order bilinear maps are much

lower than the composite order. �erefore, the execution time of

the HIB-MDVS’s algorithms can be computed regardless of the

prime order operations. So, to compute the execution time, we

can use the results of Table 3.

10 Conclusion

In this paper, a new cryptographic notion which is called HIB-

MDVS was introduced and its security de�nition was de�ned

based on EF-CMA security game and a generic construction of

HIB-MDVS was proposed based on HIBS and HIBBE schemes. In

addition, a formal de�nition of HIBBE, i.e., anonymity against

chosen identity vector set and chosen message a�ack, was

presented and a concrete construction of anonymous HIBBE

schemes was suggested. �e proposed construction is designed

based on composite order bilinear maps. We proved that the

anonymity of the proposed scheme is reduced to the three

assumptions which are assumed to be hard in the composite

order bilinear maps. Performance evaluation shows that our

proposed anonymous HIBBE scheme is practical.
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