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Abstract

Most cryptographic schemes are designed in a model where perfect secrecy of the secret key
is assumed. In most physical implementations, however, some form of information leakage is
inherent and unavoidable. To deal with this, a flurry of works showed how to construct basic
cryptographic primitives that are resilient to various forms of leakage.

Dodis et al. (FOCS ’10) formalized and constructed leakage resilient one-way functions.
These are one-way functions f such that given a random image f(x) and leakage g(x) it is still
hard to invert f(x). Based on any one-way function, Dodis et al. constructed such a one-way
function that is leakage resilient assuming that an attacker can leak any lossy function g of the
input.

In this work we consider the problem of constructing leakage resilient one-way functions that
are secure with respect to arbitrary computationally hiding leakage (a.k.a auxiliary-input). We
consider both types of leakage — selective and adaptive — and prove various possibility and
impossibility results.

On the negative side, we show that if the leakage is an adaptively-chosen arbitrary one-way
function, then it is impossible to construct leakage resilient one-way functions. The latter is
proved both in the random oracle model (without any further assumptions) and in the standard
model based on a strong vector-variant of DDH. On the positive side, we observe that when the
leakage is chosen ahead of time, there are leakage resilient one-way functions based on a variety
of assumption.
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1 Introduction

The holy grail of cryptography is designing systems that remain secure in the presence of adversarial
behavior. For this, one has to specify (1) a cryptographic primitive of interest (e.g. an encryption
scheme or a signature scheme), and (2) a model that captures the power of a potential adversary
and what it means for it to break the system.

One of the most common assumptions is that secret keys are perfectly secret and are completely
unknown to an adversary. However, in many physical implementations some information does leak
due to various side-channel attacks, reuse of randomness, and more.

This deficiency raised the necessity to build a theory of security against classes of side-channel
attacks. Starting with the works of [CDH+00, ISW03, MR04], a flurry of works in which different
classes of side channel attacks have been defined and different cryptographic primitives have been
designed to provably withstand these attacks (see, for example, [CDH+00, ISW03, DSS01, MR04,
DP08, Pie09, DKL09, AGV09, ADW09a, DGK+10, FKPR10, DP10, BG10, BKKV10, DDV10,
BGJK12, NS12, BSW13, FRR+14]).

We consider the problem of constructing the most basic cryptographic primitive, a one-way
function, in a setting where an adversary obtains side-channel information (this notion was first
formalized by [ADW09b, DHLW10]). A one-way function f is an efficiently computable function
such that given f(x) for a random input x, any efficient adversary cannot find an x′ such that
f(x) = f(x′). A leakage resilient one-way function f is a one-way function such that given f(x) as
above and g(x), where g is adversarially chosen, it is still hard to invert f and recover such an x′.

To obtain some sort of security, one clearly has to restrict the adversary to choose g from some
collection of functions that do not trivially reveal x by themselves. Indeed, if g is the identity
function, no leakage resilient function f exists. Thus, several assumptions on the power of the
adversary have been considered. Already in the work of Canetti et al. [CDH+00], the authors
showed how to obtain a leakage-resilient one-way function assuming that the attacker can leak
an arbitrary but sufficiently small subset of the bits of the input. However, this may be overly
restrictive as it provides no guarantees if the attacker can learn the XOR of all the input bits. This
issue was addressed in several works (see, for example, [ADW09b, DHLW10, DDV10]) showing
that there exists a leakage-resilient one-way function assuming that the attacker can leak any lossy
function of the input, namely, any function whose image size is significantly smaller than the domain
size. The leakage-resilience in both settings is proven based on the existence of any one-way function
which is the weakest assumption possible. For completeness, we provide a proof of the following
theorem in Appendix A.

Theorem 1.1 ([ADW09b, DHLW10], Informal). Assuming that one-way functions exist, there
exists a one-way function f , such that for any adversarially-chosen lossy function g, given f(x)
and g(x) for a random x, it is computationally hard to invert f .

Motivated by the positive results for a wide class of leakage functions, we study the question
of designing leakage-resilient one-way functions that are secure with respect to arbitrary computa-
tionally hiding leakage function. We model this by allowing the leakage to be an arbitrary one-way
function, even such that fully determine the input.1 We consider both an adaptive notion of secu-
rity in which the leakage function is adversarially chosen (from a restricted pre-defined collection)
after f is fixed, and a selective notion in which the leakage is chosen ahead of time, before f is.

1This setting is sometimes referred to as the auxiliary-input setting (see, for example, [GK05, DKL09, DGK+10]).
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1.1 Our contributions

Adaptively-chosen leakage. We show that if the leakage can be an arbitrary one-way function,
then there cannot be a leakage resilient one-way function f . More precisely, we show that for every
one-way function f , there exists a one-way function g (that depends on f) such that when one gets
both f(x) and g(x), it is easy to invert f .

We prove this result in two ways: in the random oracle model and in the standard model based
on a strong vector-variant of DDH. Specifically, we first show that if the leakage function has access
to a random oracle O, then we can construct an oracle-aided function gO which is one-way and
gO(x) together with f(x) allow to recover x. For the result in the standard model, we rely on
multi-bit point obfuscators that exist based on a strong vector-variant of the DDH assumption
[CD08, BC14]; see Section 2.3 and Assumption 2.10.

Theorem 1.2 (Informal). Let O be a random oracle. For every one-way function f , there is a
one-way function gO such that for every x given f(x) and g(x) it is easy to recover x.

Theorem 1.3 (Informal). Assuming multi-bit point obfuscators, for every one-way function f ,
there is a one-way function g such that for every x given f(x) and g(x) it is easy to recover x.

Moreover, such multi-bit point obfuscators can be constructed from a strong vector-variant of
the DDH assumption.

Selectively-chosen leakage. We show that if the leakage function g is fixed ahead of time, then
there exists a leakage resilient one-way function f for g from various assumptions. To this end, we
observe that one-wayness with respect to selectively-chosen leakage is tightly related to extracting
polynomially-many hard-core bits.

Theorem 1.4 (Informal). For every leakage one-way function g, a hardcore function for g that
outputs polynomially-many hard-core bits is a leakage-resilient one-way function for g.

If g is a sub-exponentially hard one-way function, then extracting polynomially-many hard-core
bits is possible due to Goldreich and Levin [GL89] (and any pseudorandom generator). Bellare,
Stepanovs, and Tessaro [BST14] (see also the follow-up work of Brzuska and Mittelbach [BM14b])
were the first to show how to extract any polynomial number of hard-core bits from any one-way
function. Their construction is based on obfuscation. More recently, Zhandry [Zha16] obtained the
same result based on exponentially-hard DDH.

Thus, instantiating Theorem 1.4 with the variety of known methods for extracting polynomially-
many hard-core bits from g, we obtain a leakage-resilient one-way function for g, whose security is
based either on one-way functions, on obfuscation, on exponential hardness of DDH, and more.

1.2 Overview of our techniques

In Theorem 1.2 the underlying idea is very simple. We assume a random oracle O and assume that
there exists a leakage resilient one-way function f , where the leakage is any one-way function. We
define a leakage function g(x) = O(f(x)) ⊕ x. Recovering x given f(x) and g(x) is easy by first
applying O to f(x) and then XORing the result with g(x). The non-trivial part is showing that
this function g is also one-way.

Roughly speaking, our analysis uses the fact that any adversary trying to invert g(x) will have
to query the oracle at the point f(x). Otherwise, all it sees are uniform strings from which it cannot
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infer anything about a possible pre-image. It is left to show that f(x) is sufficiently random so that
it cannot be guessed by any polynomial-time adversary with non-negligible probability. Indeed,
since f by itself is a one-way function, its image distribution has super-logarithmic min-entropy
which satisfied our requirement.

For Theorem 1.3, our construction is based on multi-bit point obfuscators MBPO and can be seen
as an instantiation of the above idea in the standard model. The leakage function, on input x, will
output a multi-bit point obfuscation of the multi-bit point function that maps f(x) to x, denoted
by g(x) = MBPO(If(x)→x). One obstacle is that an obfuscator is a probabilistic procedure, and
thus cannot be used directly in our setting. Hence, we use public-coin multi-bit point obfuscators,
which are obfuscators that output their internal random coins. This allows us to define a leakage
function which has hard-wired random coins for the use of the point obfuscator. Specifically, we
hardwire into g random coins r and define gr(x) = MBPO(If(x)→x; r). We show that gr, with very
high probability, is a one-way function using the security of the obfuscator.2

We observe that such a multi-bit point obfuscator exists based on the strong vector-variant of
DDH of Bitansky and Canetti [BC14] given in Section 2.3.3

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For an
integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by x ← X
the process of sampling a value x from the distribution X. Similarly, for a set X we denote by
x← X the process of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling a value y from the
distribution f(x). A function neg : N → R is negligible if for every constant c > 0 there exists an
integer Nc such that neg(λ) < λ−c for all λ > Nc. For two strings x ∈ {0, 1}n and y ∈ {0, 1}m we
denote by x||y the string concatenation of x and y.

Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indis-
tinguishable if for any probabilistic polynomial-time algorithm A there exists a negligible function
neg(·) such that

∣∣Pr[A(1λ, Xλ) = 1]−Pr[A(1λ, Yλ) = 1]
∣∣ ≤ neg(λ) for all sufficiently large λ ∈ N.

2.1 Min-entropy

The min-entropy of a distribution X over {0, 1}n is defined by

H∞(X) = − min
x∈{0,1}n

log2 Pr[X = x].

2.2 One-way functions

Definition 2.1 (One-way functions). A function f : {0, 1}∗ → {0, 1}∗ is said to be one-way if the
following two conditions hold:

1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every x ∈ {0, 1}∗.
2Theorem 1.2 can also be proved by first showing how to use a random oracle to construct a multi-bit point

obfuscator. We thank a reviewer for pointing this out.
3We emphasize we do not require security with respect to auxiliary-input, which was shown to be a problematic

assumption [BM14a].
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2. For every probabilistic polynomial-time algorithm B there exists a negligible function neg(·)
such that

ADVOWF
f,B = Pr[B(1n, f(x)) ∈ f−1(f(x))] ≤ neg(n),

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the internal ran-
domness of B.

The following claim will be useful.

Claim 2.2. Let f : {0, 1}n → {0, 1}m be a one-way function where m = m(n) is a polynomial. It
holds that H∞(f(X)) ≥ ω(log n).

Proof. Since f is a one-way function, it must be that on a random x ∈ {0, 1}n, it is hard to a
preimage for f(x). Assume, towards contradiction, that H∞(f(X)) = O(log n). That is,

min
y∈{0,1}m

log2
1

Prx∈{0,1}n [f(x) = y]
= O(log n).

Thus, there exists a y∗ ∈ {0, 1}m for which Prx∈{0,1}n [f(x) = y∗] ≥ 1/p(n) for some polynomial
p(·).

Define an adversary A that given a random image y = f(x) outputs a uniformly random x′.
This adversary wins if both f(x) = y∗ and f(x′) = y∗. Since x and x′ are chosen independently
and uniformly at random, we have that

Pr
x′∈{0,1}n

[A(f(x′)) ∈ f−1(y)] ≥ Pr
x,x′∈{0,1}n

[f(x) = y∗ and f(x′) = y∗]

= ( Pr
x∈{0,1}n

[f(x) = y∗])2 ≥ 1/(p(n))2.

That is, A will successfully invert y with non-negligible probability, contradiction the one-wayness
of f .

We extend the definition of a one-way function to oracle-aided one-way functions. Roughly
speaking, an oracle-aided function fO is an oracle-aided one-way function if there is an oracle-
aided efficient algorithm that computes fO on every point, and given an image of fO on a random
preimage, any efficient algorithm (that has oracle access to O) cannot find the preimage.

Definition 2.3 (Oracle aided one-way function). Let O be an oracle. A function fO that has
oracle access to O is said to be oracle aided one-way if the following two conditions hold:

1. There exists an oracle-aided polynomial-time algorithm AO such that AO(x) = fO(x) for
every x ∈ {0, 1}∗.

2. For every oracle-aided probabilistic polynomial-time algorithm BO and n ∈ N,

ADVOOWF
f,B = Pr[BO(1n, fO(x)) ∈ (fO)−1(fO(x))] < neg(n),

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the internal ran-
domness of B.
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2.3 Point obfuscations

A point function Ix : {0, 1}n → {0, 1} returns 1 on input x ∈ {0, 1}n and 0 on all other inputs. A
point obfuscator is an obfuscator that gets a point function Ix as input (in some canonical form in
which x is explicit) and outputs a circuit with the same functionality but where x is computationally
hidden.

Definition 2.4 (Point obfuscator). A point obfuscator PO(·) is a probabilistic polynomial-time
algorithm that gets as input a point function Ix, where x ∈ {0, 1}n, and outputs a circuit C such
that

1. For all x, the circuit C ← PO(Ix) is functionally equivalent to Ix.

2. For any probabilistic polynomial-time algorithm A, there is an probabilistic polynomial-time
simulator S and a negligible function neg(·), such that for all x ∈ {0, 1}n and n ∈ N,

ADVPO
A,D = | Pr

A,PO
[A(PO(Ix)) = 1]−Pr

S
[SIx(1n)) = 1]| ≤ neg(n).

Moreover, a point obfuscator is called public coin if it publishes all internal coin tosses as part of
its output.

In [Can97], Canetti provided a construction that satisfies Definition 2.4 assuming a strong
variant of the DDH assumption. The construction of Canetti is given next.

Construction 2.5 (Canetti’s point obfuscator [Can97]). Let G = {Gn}n∈N be a group ensemble
with uniform and efficient representation and operations, where each Gn is a group of prime order
pn ∈ (2n−1, 2n). The public coin point obfuscator PO for points in the domain Zpn is defined as
follows: PO(Ix) samples a random generator r ← G∗n of Gn and outputs r, rx. Evaluation of the
obfuscation at point z is done by checking whether rx = rz.

A multi-bit point function Ix→y : {0, 1}n → {0, 1}m is a function that returns y ∈ {0, 1}m on
input x ∈ {0, 1}n and ⊥ on all other inputs. A multi-bit point function obfuscator, given a multi-bit
point function in some canonical form in which x and y are explicit, outputs a circuit with the same
functionality but where x and y are computationally hidden.

Definition 2.6 (Multi-bit point obfuscator). A multi-bit point obfuscator MBPO is a probabilistic
polynomial-time algorithm that gets as input a multi-bit point function Ix→y, where x ∈ {0, 1}n
and y ∈ {0, 1}m, and outputs a circuit C such that

1. For all x ∈ {0, 1}n and y ∈ {0, 1}m, the circuit C ← MBPO(Ix→y) is functionally equivalent
to the function Ix→y.

2. For any probabilistic polynomial-time algorithm A, there is a probabilistic polynomial-time
simulator S and a negligible function neg(·),4 such that for all n ∈ N, x ∈ {0, 1}n, and
y ∈ {0, 1}m and

ADVMBPO
A,D = | Pr

A,MBPO
[A(MBPO(Ix→y)) = 1]−Pr

S
[SIx→y(1n+m) = 1]| ≤ neg(n).

4We note that for our application of the multi-bit point obfuscator, it is enough to consider the seemingly relaxed
notion of virtual grey-box (VGB) multi-bit point obfuscators, where the simulator has a polynomial bound on the
number of queries to its oracle, but is otherwise unlimited. We use the stronger definition which is implied by the
weaker one [BC14, Proposition 7.3].
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Moreover, a multi-bit point obfuscator is called public coin if it publishes all internal coin tosses as
part of its output.

One way to obtain a multi-bit point obfuscator was suggested by Canetti and Dakdouk [CD08].
Specifically, they showed that a composable point obfuscator gives rise to a multi-bit point obfus-
cator.

Definition 2.7 (Composable point obfuscator). A point obfuscator PO(·) is said to be t-composable
if for any probabilistic polynomial-time algorithm A, there is a probabilistic polynomial-time sim-
ulator S and a negligible function neg(·) such that for any x1, . . . , xt it holds that

ADVt-POA,D = | Pr
A,PO

[A(PO(Ix1), . . . ,PO(Ixt)) = 1]−Pr
S

[SIx1 ,...,Ixt (1t·n)) = 1]| ≤ neg(n).

Canetti and Dakdouk [CD08] showed how to use an m-composable point function obfuscator PO
to obtain a multi-bit point function that supports outputs (i.e. y values) of length m. Specifically,
they suggested the following construction.

Construction 2.8 (Canetti and Dakdouk’s multi-bit point obfuscator [CD08]). Let PO be a point
obfuscator for the domain {0, 1}n. Given a point x ∈ {0, 1}n and value y = y1 . . . ym ∈ {0, 1}m,
sample s← {0, 1}n uniformly at random and let

ai =

{
x if i = 0 or yi = 1,

s otherwise.

Now, the obfuscation of Ix,y is

MBPO(Ix→y) = PO(Ia0), . . . ,PO(Iam), (2.1)

and in order to evaluate MBPO(Ix→y) on input z one first checks if z = a0 = x (by evaluating the
first obfuscated circuit). If not (namely, z 6= a0), then it outputs ⊥. Otherwise (namely, if z = a0),
it evaluated all other point obfuscations to find all coordinates in which z = ai = x and outputs
y1 . . . ym, where yi = 1 if a1 = z = x (and 0 otherwise). Notice that if PO is public coin then so is
MBPO.

Bitansky and Canetti [BC14] showed that under the (m + 1)-strong vector DDH assumption
(defined next), the point obfuscator of Canetti from Construction 2.5 is (m + 1)-composable and
thus can be used to get a multi-bit point function. We further observe that since Canetti’s point
obfuscator is public coin (see Construction 2.5), it follows that Canetti and Dakdouk’s multi-bit
point obfuscator is public coin. We begin with the assumption and then state the theorem.

Definition 2.9 (Well spread distribution). A distribution Xn over {0, 1}n is well-spread if it is
efficiently and uniformly samplable, and it has super-logarithmic min-entropy. Namely, H∞(Xn) ≥
ω(log n).

Let m = m(n) be a polynomial. An ensemble of distributions X (1)
n , . . . ,X (m)

n (each over {0, 1}n)

is coordinate-wise well-spread if for each i ∈ [m], X (i)
n is well-spread.

Assumption 2.10 (m-strong vector DDH [BC14]). Let m = poly(n). There exists a group en-
semble G = {Gn}n∈N, , where each Gn is a group of prime order pn with uniform and efficient
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representation and operations, such that for any coordinate-wise well-spread distribution ensemble

X = {Xn = (X (1)
n , . . . ,X (m)

n )}n∈N over vectors in Zmpn the following two ensembles are computation-
ally indistinguishable:5

((g1, g
a1
1 ), . . . , (gm, g

am
m )), where g1, . . . , gm ← G∗n and (a1, . . . , am)← Xn

and

((g1, g
a1
1 ), . . . , (gm, g

am
m )), where g1, . . . , gm ← G∗n and (a1, . . . , am)← Zmpn .

Now we are ready to state the resulting theorem of [BC14] from Construction 2.8 with the
underlying Assumption 2.10.6

Theorem 2.11. Assume the (m+ 1)-strong vector DDH assumption. Then, the construction from
Equation (2.1) is a public coin multi-bit point obfuscator for multi-bit point functions that output
m bits.

3 Definition of Leakage Resilient One-Way Functions

Here we define leakage resilient one-way functions. Intuitively, a one-way function f is leakage re-
silient for leakage function g if given f(x) and g(x) it is hard to recover an x′ such that f(x′) = f(x),
where x is chosen uniformly at random. Our actual definition is a relaxation and a generalization
of the above informal description: (1) we allow f to be sampled from a collection of functions, and
(2) we let g come from an a-priori fixed collection of leakage functions.

More precisely, a leakage resilient one-way function collection F = {f : {0, 1}n → {0, 1}∗} is
defined with respect to a collection of leakage functions L = {g : {0, 1}n → {0, 1}∗}. F is said to
be leakage resilient one-way if given f ← F it is hard to invert f(x) on a random image even given
f and g(x) for any adaptively chosen g ∈ L (namely, the choice of g can depend on f).

Definition 3.1 (Leakage resilient one-way function). Let F = {f : {0, 1}n → {0, 1}∗} be a collec-
tion of functions associated with an efficient probabilistic sampler GenF (1n) that outputs a function
f ∈ F together with an efficient (deterministic) algorithm for evaluating f .

The function collection F is a leakage resilient one-way function collection for a collection of
functions L = {g : {0, 1}n → {0, 1}∗} if for every probabilistic polynomial-time algorithms A =
(A0,A1), there exists a negligible function neg(·) such that for every n ∈ N it holds that

ADVlrOWF
A,F ,L = Pr[EXPA,F ,L(n) = 1] ≤ neg(n),

where the random variable EXPA,F ,L(n) is defined via the following experiment:

1. f ← GenF (1n).

2. (g, state)← A0(1
n, f), where g ∈ L.

5There is a variant for this definition which bears more similarities to DDH, generalizes the assumption of Canetti
[Can97], and it is equivalent to the definition we presented as long as m ≥ 2. See [BC14] for more information.

6It may seem odd that Definitions 2.4 and 2.6 are stated in a “worst-case” language, while Assumption 2.10 is
stated in an “average-case” language. However, notice that the former are definitions that are given in a simulation-
based language while the latter is an indistinguishability-based one. It is known that for (multi-bit) point functions
all of these variants are equivalent (see [BC14, Theorem 5.1 & Proposition 7.3] for a proof).
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3. x∗ ← {0, 1}n (chosen uniformly at random and independently of f and g).

4. x← A1(f, f(x∗), g(x∗), state).

5. If f(x) = f(x∗), then output 1, and otherwise output 0.

If L consists of one fixed leakage function g,7 then we say that f is a selective leakage resilient
one-way function for L. Otherwise, it is called an adaptive leakage resilient one-way function.

One vs. a collection of leakage resilient functions. One may also be interested in a single one-
way function f : {0, 1}n → {0, 1}∗ which is leakage resilient. In this case, Item 1 in the definition of
the experiment EXPA,F ,L(n) can be ignored. We chose to present and work with a definition which
allows f to be chosen from a family as it is more general and since some of our results actually
require having f be chosen from a collection.

Adaptive vs. selective security. Our definition captures both adaptive and selective (i.e. non-
adaptive) choice of the leakage. Indeed, if the collection L consists of a single function g, then we
can choose the leakage resilient collection F knowing the leakage g ahead of time (we think of this
as the selective setting). On the other hand, if the collection L contains more functions, we view the
security requirement as an adaptive one, since one has to design the collection F without knowing
in advance which g ∈ L will be chosen by an adversary. To exemplify an extreme case of the last
point, consider the case in which L is the set of all one-way functions. Then, when designing F ,
one has very little information about the leakage.

What kind of leakage makes sense? It does not make sense to allow g ∈ L to output x, as in
this case there is no leakage resilient one-way function family L. This means that every g ∈ L has to
introduce some hardness for inverting x from g(x) (when x is a uniform input). (This is a standard
and necessary assumption.) There are several interesting settings for the leakage collection L, for
example:

1. All one-way functions.

2. All sub-exponentially hard one-way functions.

3. All functions whose image size is significantly smaller than the domain size.

4. An arbitrary single one-way function.

The notion in Item 3 was studied earlier (see, for example, [ADW09b, DHLW10] and implicitly in
[ADW09a, KV09]) and was proven to be achievable from any one-way function. For completeness
we present the construction and proof in Appendix A. In the main body, we study all other notions.

4 Impossibility of Adaptive Leakage Resilient One-Way Functions

In this section we prove our negative results. We show that without non-trivial limitation on the
leakage collection L, there cannot be a leakage resilient one-way functions. Specifically, we show
that if the leakage collection L consists of all one-way functions, there cannot be a leakage resilient

7Recall that f and g receive the same input so defining g to be some sort of a universal circuit and thereby
obtaining a huge family of functions is useless.
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one-way function for L. In particular, the leakage can be chosen after the leakage resilient function
is chosen and depend on it.

In Section 4.1 we prove this in the random oracle model, where functions have access to a
random oracle (and without any further cryptographic assumptions). In Section 4.2 we provide a
construction in the standard model whose security relies on any public-coin multi-bit point obfus-
cator.

4.1 Impossibility in the Random Oracle Model

The following theorem shows that there cannot be a leakage resilient one-way function family F if
the leakage function can depend on the function f chosen from F and if it has oracle access to a
random oracle.

Theorem 4.1. Let O : {0, 1}∗ → {0, 1}n be a random oracle. Let LO = {g : {0, 1}n → {0, 1}∗} be
the collection of all oracle-aided one-way functions. There is no leakage-resilient one-way function
family F = {f : {0, 1}n → {0, 1}∗} for the collection LO.

Proof. Assume towards contradiction that such a function f : {0, 1}n → {0, 1}∗ exists, where
f ∈ F . We shall define an oracle-aided one-way function g ∈ LO for which

Pr
x←{0,1}n

[A(1n, f(x), g(x)) = x] = 1. (4.1)

This will contradict the assumption that f is leakage-resilient one-way.
Let g : {0, 1}n → {0, 1}∗ be the following function:

g(x) = O(f(x))⊕ x.

We show that Equation (4.1) holds and that g is indeed in LO. Given y = f(x) and y′ = g(x)
on a uniform x ∈ {0, 1}n, A can recover x as follows. Apply the random oracle O on y to get
O(y) = O(f(x)) and XOR the output with y′. By the definition of g, the output must be x.

We are left with showing that g is in LO, that is, it is one-way. Fix n ∈ N and let A be any
q(n)-query inverter. For y ∈ {0, 1}∗ and i ∈ [q(n)] let Qi(y) be the random variable corresponding
to the i-th query made by A to O when A is given as input the string y. Let us denote by Suci(y)
the event that the i-th query of A to the random oracle defines a preimage. Namely,

Suci(y) = 1 ⇐⇒ ∃x′ ∈ {0, 1}n : Qi(y) = f(x′) and O(f(x′))⊕ x′ = y

Therefore,

Pr[AO(y) ∈ f−1(y)] ≤Pr[Suc1(y) = 1]+

q(n)∑
i=1

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0],

where y = g(x) and the probabilities are taken over the choice of O and over the choice of x ∈ {0, 1}n.
To bound the probability of the event Suc1(y) = 1, notice that

Pr[Suc1(y) = 1] ≤ Pr[Q1(y) = f(x)] + Pr[Suc1(y) = 1 | Q1(y) 6= f(x)]

9



Claim 4.2. Pr[Q1(y) = f(x)] ≤ neg(n).

Proof. Recall that Q1(y) is the first query that Amakes to O. Since x is random and O maps every
input to a random output, in the view of A, f(x) is distributed uniformly in the distribution of
images of f . Since H∞(f(X)) ≥ ω(log n) (see Claim 2.2), it holds that Pr[Q1(y) = f(x)] ≤ neg(n).

Claim 4.3. Pr[Suc1(y) = 1 | Q1(y) 6= f(x)] = 1/2n.

Proof. Note that

Pr[Suc1(y) = 1 | Q1(y) 6= f(x)] ≤
Pr[O(Q1(y)) = z ⊕ O(f(x))⊕ x and z ∈ f−1(Q1(y)) | Q1(y) 6= f(x)].

Since Q1(y) 6= f(x), then the value O(Q1(y)) is completely uniform over {0, 1}n and independent of
O(f(x)). Therefore, the probability that indeed O(Q1(y))⊕z = O(f(x))⊕x, where z ∈ f−1(Q1(y)),
is 1/2n.

We use a similar argument to bound the probability that Suci+1(y) = 1 conditioned on Suc1(y) . . . ,
Suci(y) = 0. Specifically, we bound the expression

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0] ≤
Pr[Qi+1(y) = f(x) | Suc1(y), . . . ,Suci(y) = 0]+

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 6= f(x)]

Notice that Suc1(y), . . . ,Suci(y) = 0 implies that Q1(y) . . . , Qi(y) 6= f(x). Thus, the view of
A is that f(x) is uniformly distributed in the distribution of images of f except the points
Q1(y) . . . , Qi(y) (some of which may not even be valid images). Namely, for A the value f(x)
is uniformly distribution w.r.t the distribution in which one samples a random x′ ← {0, 1}n, com-
putes f(x′) and outputs f(x′) conditioned on f(x′) /∈ {Q1(y) . . . , Qi(y)} (otherwise, we sample x′

again). This distribution has super-logarithmic min-entropy, namely,

H∞(f(X) | f(X) /∈ {Q1(y) . . . , Qi(y)}) ≥ H∞(f(X))− log i

≥ ω(log n),

where the last inequality follows from Claim 2.2 and since i ≤ q(n) is a polynomial in n. Therefore,
as in Claim 4.2, we get that

Pr[Qi+1(y) = f(x) | Suc1(y), . . . ,Suci(y) = 0] ≤ neg(n).

Given that Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 6= f(x), we have that Q1+1(y) is completely
uniform over {0, 1}n and independent of O(f(x)) and all previous queries O(Q1(y)), . . . ,O(Qi(y))
(we assume, without loss of generality, that all queries to O are distinct). Therefore, the probability
that O(Qi+1(y)) ⊕ z = O(f(x)) ⊕ x, where z ∈ f−1(Qi+1(y)), is 1/2n. Thus, as in Claim 4.3, we
have that

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0 and Qi+1(y) 6= f(x)] = 1/2n.
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In conclusion, since q(n) is a polynomial, we get that

Pr[AO(y) ∈ f−1(y)] ≤
q(n)∑
i=0

Pr[Suci+1(y) = 1 | Suc1(y), . . . ,Suci(y) = 0]

≤
q(n)∑
i=0

(neg(n) + 1/2n) ≤ neg(n).

4.2 Impossibility in the standard model

The following theorem shows that there cannot be a leakage resilient one-way function family F if
the leakage function can depend on the function f chosen from F .

Theorem 4.4. Let L = {g : {0, 1}n → {0, 1}∗} be the collection of all one-way functions. Assuming
a public-coin multi-bit point obfuscator, there is no leakage resilient one-way function collection
F = {f : {0, 1}n → {0, 1}m} for the collection L.

Proof. Assume towards contradiction that such a function f : {0, 1}n → {0, 1}m in F exists. We
shall construct a function g ∈ L (depending on f) and show that for any x ∈ {0, 1}n, f(x) together
with g(x) reveal x. Our building block is a public-coin multi-bit point obfuscator MBPO. Assume
that MBPO takes as input a pair of strings (x, y) ∈ {0, 1}m × {0, 1}n and randomness of length λ.
Let r ← {0, 1}λ be a uniformly random string. We define gr : {0, 1}n → {0, 1}m that outputs, on
input x, a multi-bit point obfuscation of the function If(x)→x. Namely,

gr(x) = MBPO(If(x)→x; r) (4.2)

For correctness, we argue that given f(x) and gr(x) together it is easy to recover x. Indeed, one
can just plug in f(x) into the output of gr(x), namely into MBPO(If(x)→x; r). By the correctness
of the multi-bit point obfuscator it follows that the output of this operation has to be x.

For security we have to prove that gr(x) is a one-way function. Namely, given gr and gr(x)
on a uniformly random x, one cannot recover any x′ such that gr(x

′) = gr(x). First, we observe
that by the (perfect) correctness of MBPO it holds that for every x′ 6= x, it cannot be that
MBPO(If(x)→x; r) = MBPO(If(x′)→x′ ; r). Thus, gr is injective. It is left to show that given gr(x)
any computationally bounded adversary cannot recover x with non-negligible probability.

We consider an even easier task for A of just outputting the first bit of x. By the security of
MBPO, we have that for every such adversary A, if there exists a polynomial p such that

Pr[A(MBPO(If(x)→x; r)) = x1] ≥ 1/2 + 1/p(n),

then there is an efficient simulator S such that

Pr[SIf(x)→x(1n) = x1] ≥ 1/2 + 1/p(n)− neg(n).

However, since If(x)→x outputs ⊥ on all inputs which are not f(x), and since the distribution f(x)
has super-logarithmic min entropy (see Claim 2.2), any efficient simulator will never query the
oracle on f(x) and thus will get no information about x. Hence, it is impossible for it to guess with
non-negligible advantage the first bit of x.
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5 Possibility of Selective Leakage Resilient One-Way Functions

In both impossibility results (Theorem 4.1 and Theorem 4.4) we used the fact that the leakage
functions can be chosen adaptively and depend on f . In contrast, the following theorem shows that
if we limit the choice of the leakage to be independent of f , a leakage resilient one-way function
exists based on various assumptions.

The high level idea is that if the leakage g is fixed ahead of time, we can still extract from the
input (for f and g) enough pseudorandom bits that will ensure one-wayness.

Theorem 5.1. Let g : {0, 1}n → {0, 1}m be a fixed leakage one-way function. Then, there is a
leakage-resilient one-way function f : {0, 1}n → {0, 1}∗ for L = {g} assuming that polynomially-
many hardcore bits can be extracted from g.

Instantiating the theorem with known results we obtain the following corollaries:

1. if g is sub-exponentially secure (with known hardness), then f can be based on any one-way
function.

2. if g is a one-way function (with known hardness), then f can be based on any exponentially-
secure one-way function.

3. if g is a injective one-way function, then f can be based on indistinguishability obfuscation
[BST14].

4. if g is a one-way function, then f can be based on indistinguishability obfuscation and
auxiliary-input point obfuscators [BM14b].

5. if g is a one-way function, then f can be based on exponential hardness of DDH [Zha16].

Proof of Theorem 5.1. Let g be the leakage function and let H = {h : {0, 1}n → {0, 1}2n} be
a family of hardcore function for any one-way function that output polynomially-many hard-core
bits. Note that letting the range be 2n is without loss of generality since from any polynomial
number of hardcore bits we can use a (standard) PRG and obtain the desired length. The leakage
resilient one-way function f is defined as follows. We sample a random hard-core function from H
and let

fH(x) = H(x)

We argue that fH(x) is a one-way function even given g(x), where g is a one-way function. For
this we use the definition of a hard-core function which says that the distribution

(H,H(x), g(x))

is computationally indistinguishable from

(H, r, g(x)),

where x ← {0, 1}n, H ← H, and r ← {0, 1}2n are chosen independently uniformly at random.
Now, since r is of length 2n, with all but exponentially small probability, it holds that there is no
preimage x′ for fH for which fH(x′) = r. Thus, since g is one-way as well, any polynomial-time
adversary cannot find a preimage.
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6 Future Directions

In this work we introduced and studied leakage resilient one-way functions with arbitrary computati-
onally-hiding leakage. We showed that the natural adaptive definition is impossible to achieve
in the random oracle model and in the standard model based on a (non-standard) computation
assumption. We further observed that the non-adaptive variant is very related to hardcore functions
and in some sense is dual to it.

It is interesting to base the impossibility result on other assumptions (any one-way function,
DDH or even based on indistinguishability obfuscation). Also, extracting polynomially-many hard-
core bits from any one-way function based on better assumptions is also an interesting problem,
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A One-Way Functions Resilient for Bounded Leakage

In both impossibility results (Theorem 4.1 and Theorem 4.4) we used the fact that the leakage
functions can output enough information to allow anyone to invert the original one-way function.
In contrast, the theorem below shows that if we limit the image size of the functions in the leakage
collection L, a leakage resilient one-way function exists assuming one-way functions exist.

We start with a definition of a lossy function (as defined by [PW11]). This will capture our
restriction on the amount of information the output of the leakage must “lose”.

Definition A.1 ((n, `)-lossy function). A function f : {0, 1}n → {0, 1}n is said to be (n, `)-lossy if
its image {f(x) | x ∈ {0, 1}n} has size at most 2n−` for every x ∈ {0, 1}n.

Roughly speaking, the parameter ` captures the number of information bits f loses about a
typical input x. We note that it is enough for us to relax the definition of a lossy function and
only require that it has bounded image size on all but a negligible fraction of the x’s. We use the
stronger requirement for simplicity.

The construction will rely on universal one-way hash functions (UOWHFs) that were introduced
by Naor and Yung [NY89]. The main feature of UOWHFs is that given an element x in the domain,
it is computationally hard to find a different domain element x′ 6= x which collides with x. Naor
and Yung showed how to use UOWHFs to construct digital signatures. Besides this application,
they showed how to construct them using any injective one-way function. Later, Rompel [Rom90]
showed how to construct UOWHFs from any one-way function (see also [KK05]).

In the following definition we define a weak variant of UOWHFs in which the initial domain
element is a uniform random input (rather than an adversarially chosen input).8 The goal of the
adversary is then to find a collision with that random input.

Definition A.2 ((Weak) universal one-way hash functions). Let p(n) = n1/c be a polynomial
where c ∈ N is a constant. A collection of functions {Fh : {0, 1}n → {0, 1}p(n)} mapping strings of
length n to strings of length p(n) is a (collection of) universal one-way hash functions if it is described
by a pair of efficient algorithms UOWHF = (Gen, F ) with the following properties.

8This is sometimes called a second pre-image resistant function.
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1. Gen is a probabilistic algorithm that is given as input the unary value of n, and it outputs a
function index h.

2. For every function index h in the image of Gen, Fh is given as input x ∈ {0, 1}n and it outputs
a string of length p(n).

3. For every probabilistic polynomial-time adversary A, there exists a negligible function neg(·),
such that

Pr[x′ ← A(h, x, Fh(x)) : x 6= x′ and Fh(x′) = Fh(x)] ≤ neg(n),

where the probability is over the choice of x ← {0, 1}n, the choice of h ← Gen(1n), and the
internal randomness of A.

Theorem A.3 ([ADW09b, DHLW10]). Let k = n1/c for a constant c ∈ N and let κ = ω(log n). Let
F = {Fh : {0, 1}n → {0, 1}k−κ} be a family of universal one-way hash functions mapping strings
of length n to strings of length k − κ described by (Gen, F ). Let L = {g : {0, 1}n → {0, 1}n} be the
collection of all (n, k)-lossy functions. Then, F is a leakage resilient one-way function collection
for L .

The proof uses the notion of average min-entropy defined by Dodis et al. [DORS08] which
captures the remaining unpredictability of X conditioned on the value of Y . Roughly speaking,
the average min-entropy of X given Y is the logarithm of the average probability of the most likely
value of X given Y . That is,

H̃∞(X | Y ) = − log

(
E

y←Y
[2−H∞(X|Y=y)]

)
.

The following property of average min-entropy was shown by Dodis et al. [DORS08].

Lemma A.4 ([DORS08, Lemma 2.2]). Let X and Y be two random variables. Then,

1. For any δ > 0, it holds that

Pr
y←Y

[H∞(X | Y = y) ≥ H̃∞(X | Y )− log(1/δ)] ≥ 1− δ.

2. If Y has at most 2k possible values, then H̃∞(X | Y ) ≥ H∞(X)− k.

Proof of Theorem A.3. We assume towards contradiction that the statement is false. Namely,
there exists a function g : {0, 1}n → {0, 1}n−k for which there exists an adversary A such that for
x∗ ← {0, 1}n chosen uniformly at random given

h, Fh(x∗), g(x∗),

where h ← Gen(1n), A is able to recover any x such that Fh(x∗) = Fh(x) with non-negligible
probability 1/p(n). We use this adversary A and construct an adversary B that breaks the security
of the universal one-way hash function.

Let h, x∗, Fh(x∗) be a challenge for the universal one-way hash function, where h ← Gen(1n)
and x∗ ← {0, 1}n is chosen uniformly and independently. Our adversary B will first simulate the
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choice of g and compute g(x∗). Then, it runs the inverter A on input (h, Fh(x∗), g(x∗)) and obtains
a preimage x. Finally, B outputs x as its guess for the collision. We now argue that this adversary
indeed breaks the security of the UOWHF. First, it is clear by the correctness of the adversary A
that Fh(x) = Fh(x∗). We are left to argue that x 6= x∗ with non-negligible probability.

Roughly speaking, the idea is that since x∗ is chosen uniformly at random, given only Fh(x∗)
and g(x∗), whose image size altogether � 2n, there is not enough information regarding the real
x∗ that maps to Fh(x∗) and g(x∗). Namely, we will show that with high probability over the
choice of x∗, there could be many consistent x’s that map to the same output. The inverted cannot
distinguish between them and thus will output the real x∗ with very small probability. We formalize
this intuition next.

Fix the function index h← Gen(1n) and leakage function g (that might depend h). Since Fh(x∗)
and g(x∗) have together at most 2k−κ · 2n−k = 2n−κ possible outputs and x∗ ← {0, 1}n is uniform
and independent of h, by item 2 of Lemma A.4 we have that

H̃∞(x∗ | h, Fh(x∗), g(x∗)) ≥ H∞(x∗ | h)− (n− κ) = κ.

By item 1 of Lemma A.4, we get that for any δ > 0, it holds that

Pr
x∗←{0,1}n

[H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ H̃∞(x∗ | h, Fh(x∗), g(x∗))− log(1/δ)] ≥ 1− δ.

Therefore,

Pr
x∗←{0,1}n

[H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ κ− log(1/δ)] ≥ 1− δ. (A.1)

Let δ = 1/2κ/2. Then, with all but a negligible probability over the choice of x∗, it holds that

H∞(x∗ | h, Fh(x∗), g(x∗)) ≥ κ− κ/2 = κ/2.

Therefore, since κ = ω(log n), by the definition of min-entropy Pr[x∗ ← A(h, Fh(x∗), g(x∗))] ≤
neg(·). In conclusion, the adversary B is able to find a collision with non-negligible probability:

Pr[x← B(h, Fh(x∗), g(x∗)) : x 6= x∗ and Fh(x∗) = Fh(x), g(x∗) = g(x)] =

Pr[x← A(h, Fh(x∗), g(x∗)) : Fh(x∗) = Fh(x), g(x∗) = g(x)]−Pr[x∗ ← A(h, Fh(x∗), g(x∗))] ≥
1/p(n)− neg(n) ≥ 1/(2p(n)).
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