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Abstract. Many practical lattice-based schemes are built upon the Ring-SIS or Ring-LWE problems,
which are problems that are based on the presumed difficulty of finding low-weight solutions to linear
equations over polynomial rings Zq[x]/〈f〉. Our belief in the asymptotic computational hardness of
these problems rests in part on the fact that there are reduction showing that solving them is as hard
as finding short vectors in all lattices that correspond to ideals of the polynomial ring Z[x]/〈f〉. These
reductions, however, do not give us an indication as to the effect that the polynomial f , which defines
the ring, has on the average-case or worst-case problems.

As of today, there haven’t been any weaknesses found in Ring-SIS or Ring-LWE problems when one uses
an f which leads to a meaningful worst-case to average-case reduction, but there have been some recent
algorithms for related problems that heavily use the algebraic structures of the underlying rings. It is
thus conceivable that some rings could give rise to more difficult instances of Ring-SIS and Ring-LWE
than other rings. A more ideal scenario would therefore be if there would be an average-case problem,
allowing for efficient cryptographic constructions, that is based on the hardness of finding short vectors
in ideals of Z[x]/〈f〉 for every f .

In this work, we show that the above may actually be possible. We construct a digital signature scheme
based (in the random oracle model) on a simple adaptation of the Ring-SIS problem which is as hard
to break as worst-case problems in every f whose degree is bounded by the parameters of the scheme.
Up to constant factors, our scheme is as efficient as the highly practical schemes that work over the
ring Z[x]/〈xn + 1〉.

1 Introduction

One of the attractive features of lattice cryptography is that one can construct cryptographic
primitives whose security is based on the hardness of worst-case lattice problems [Ajt96]. More
concretely, average-case problems such as SIS and LWE are defined in such a way that an adversary
who is able to solve these problems could then be used to find short vectors in any lattice. While
the worst-case to average-case reductions do not help us figure out the exact parameter settings
that make SIS and LWE hard, they definitely deserve the credit for leading researchers to the right
definitions of these problems.

Recent years have seen numerous cryptographic protocols constructed based on SIS and LWE.
These schemes, however, are not particularly efficient because SIS and LWE inherently give rise to
key sizes and/or outputs which are Õ(λ2) in the security parameter λ. For this reason, almost all
of the practical lattice-based constructions are built upon the average-case problems Ring-SIS and
Ring-LWE. The algebraic structure underlying Ring-SIS and Ring-LWE problems are polynomial
rings of the form Zq[x]/〈f〉, and it was shown in [PR06,LM06,SSTX09,LPR13] that solving Ring-
SIS and Ring-LWE over this ring implies finding short vectors in all ideals of Z[x]/〈f〉. Notice that
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these are somewhat weaker statements than the proof for SIS and LWE because one needs to first
pick the ring Z[x]/〈f〉 where the worst-case problems are believed to be hard.

As of today, there have not been any attacks on worst-case problems in any ring, nor on the
Ring-SIS or Ring-LWE problems in rings for which there exist non-vacuous (i.e. the reduction is not
from a problem that is easy) worst-case to average-case reductions. For this reason, most proposals

choose to work with cyclotomic rings, such as Z[x]/〈x2k +1〉, due to their particularly nice algebraic
structure for implementation purposes. Cyclotomics also have the feature that the decision version
of the Ring-LWE problem in these rings is hard [LPR13], which makes them even more useful for
cryptographic applications.

While the Ring-SIS and Ring-LWE problems remain hard, there have been some recent works
that were able to solve other problems in certain rings by taking advantage of the algebraic structure.
The work of Cramer et al. [CDPR16], which built on the approach of Campbell et al. [CGS14],
showed that the log-unit lattice of cyclotomic rings is efficiently decodable. When combined with a
polynomial-time quantum algorithm of Biasse and Song [BS16] (building upon [EHKS14,CGS14])
for finding generators of principal ideals, one obtains a quantum polynomial-time algorithm for
finding a 2Õ(

√
n)-approximate shortest vector problem in principal ideals of cyclotomic rings.

The simultaneous works of Albrecht et al. [ABD16] and Cheon et al. [CJL16] exploited the
sub-field structure of number fields to give sub-exponential algorithms for the NTRU problem in
which the secret polynomials are very small. This is an approach that is very similar to an early
idea mentioned in [GS02, Section 6]. While it is interesting to note that none of these attacks say
anything about worst-case problems or average-case Ring-SIS and Ring-LWE, they do point out
that the choice ring can affect the hardness of problems. For this reason, there have been proposals
for using alternative rings (e.g. Bernstein et al. [BCLvV16] suggested using rings Z[x]/〈xp−x−1〉)
which do not have the algebraic structure exploited by the aforementioned algorithms. But in the
absence of attacks on any of the current constructions, it is of course not clear whether one is more
secure than the other.

1.1 Our Result

A more ideal situation would be if one could build efficient cryptographic schemes that are simulta-
neously based on the hardness of average-case (and therefore worst-case) problems in every ring. In
this work we show that this indeed may be possible. We construct a digital signature scheme which
is up to constant factors, in terms of running time and key/signature sizes, as efficient as the most
practical signature schemes [Lyu12,GLP12,DDLL13] (i.e. the key sizes, running time, and output
sizes are all Õ(λ)), and is based on the hardness of the Ring-SIS problem in every ring Z[x]/〈f〉,
with the obvious restriction that the degree of f is bounded by the parameters of the scheme.

In the Ring-SIS problem over the ring Zq[x]/〈f〉, called f -SIS, one is given k uniformly random
polynomials a1, . . . ,ak and is asked to find elements z1, . . . , zk with small coefficients such that∑

aizi = 0 in the ring Zq[x]/〈f〉. A simple, yet very important, observation is that the input to this
problem only very loosely depends on the polynomial f . In particular, for all f of the same degree,
this input has the exact same distribution.

If we then defined a problem over the ring Zq[x] that required finding a combination of the ai
such that

∑
aizi = 0, then these zi would also be a solution to

∑
aizi = 0 mod f for any f . If the

degree of f is larger than the degree of zi, then as long as one of the zi is non-zero in Zq[x], it is
also non-zero in Zq[x]/〈f〉.
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The intuition for building a digital signature scheme is to let the public key be random poly-
nomials a1, . . . ,ak in Zq[x] of bounded degree n − 1, and t =

∑
aisi where all operations are

performed over Zq[x]. We would like to choose the si such that their degree d is somewhat less
than n, and also such that the function f defined as f(s1, . . . , sk) =

∑
aisi is compressing. One

can then adapt the “Fiat-Shamir with Aborts” technique for Σ-protocols from [Lyu09,Lyu12] to
create a signature (z1, . . . , zk) that is independent of si and satisfies some linear relation relating
ai, t and the “commit” and “challenge” steps of the Σ-protocol.

It can be then shown that an adversary who can break the unforgeability security property
of the digital scheme can be used to extract polynomials with small norms z1, . . . , zk and c that
satisfy the equation

∑
aizi = tc over Zq[x]. We then show that a solution to this equation that

satisfies certain conditions on the coefficient sizes and degrees of polynomials zi, c, as well as the
polynomials si that were used to construct t, implies a solution to the f -SIS problem for any f
whose degree is between d + deg(c) and n.1 When combined with the worst-case to average-case
reduction from finding short vectors in ideals of Z[x]/〈f〉 to the f -SIS problem from [LM06], this
gives a reduction from worst-case lattice problems in ideals of any ring Z[x]/〈f〉 to the hardness of
breaking the signature scheme.

A Note on the Definition of Length. It should be pointed out that the quality of the worst-
case to f -SIS reduction in [LM06] depends on f . If we define the norms of elements in Zq[x]/〈f〉
by computing a standard norm on their coefficients (e.g. the `∞-norm), then it is possible that a
solution to f -SIS does not lead to finding short vectors in the lattice. [LM06] defined the “expansion
factor” of f which determined how much coefficients of polynomial products could grow when
multiplied modulo f . For some f , this growth could be exponential, and one would lose this factor
in the reductions, thus making them vacuous. In later works [PR07,LPR13], it was shown that
using coefficient sizes is not the most natural way to define the length of elements in Zq[x]/〈f〉. If
one instead uses the “canonical embedding” norm whose definition itself depends on f , then a lot
of the issues concerning the expansion factor disappear, and one can achieve meaningful reductions
for all polynomials f .

In this current work, though, we cannot use a definition of norm that depends on f because
there is no f in our average-case problem! We therefore need to use the most natural definition for
small elements that is independent of any ring. For this, we go back to the definition that simply
looks at the coefficients of the polynomials. The reason that we believe that this is most natural is
because for many rings, a small coefficient norm implies a small norm in the canonical embedding.
Unfortunately, there are rings for which this does not hold true (these are the ones with the large
expansion factor), but it seems impossible to define a norm that is independent of f in which
products of small elements remain small in Zq[x]/〈f〉 for all f . We do want to point out that all
polynomials that have been proposed for applications such as cyclotomics (of reasonable degree)
and others, such as xp − x− 1, have small expansion factors. In particular, any polynomial of the

form xn+
bn/2c∑
i=0

aix
i where ai are small, has a relatively small expansion factor [LM06]. Thus the

signature scheme in this paper is as hard to break as finding short vectors all such rings Zq[x]/〈f〉,
of which there are exponentially many.

1 The lower-bound d+deg(c) on the degree of f can be circumvented, but its presence makes the proofs simpler. We
also do not think that it’s particularly interesting to extend the proofs for f of very small (compared to n) degree,
because those problems will be generally easier than problems over larger rings.
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1.2 Discussion and Open Problems

While our scheme has keys and ciphertexts which are of size Õ(λ) in the security parameter, just like
in signature schemes based on the Ring-SIS and Ring-LWE problems, the concrete instantiations
are worse (see Figure 1) than those of the most practical schemes. Compared to BLISS [DDLL13],
the secret key is about 20 times larger, the public key 10 times, and the signature about 30 times.
We did not optimize our scheme using the tricks from [GLP12,DDLL13] such as compressing the
signature using Huffman codes and altering the random oracle to allow us to output one less
polynomial in the signature. A rough estimate shows that these improvements would decrease our
signature size by about 20%, which would still not make it competitive with the best constructions.
The biggest contributor to the superiority of the current state-of-the-art schemes is that they are
based on Ring-LWE rather than Ring-SIS.

It was shown in [Lyu12] that by creating the public key for the signature scheme based on
LWE (or an inhomogeneous version of SIS where there is a unique solution), one can reduce the
key/signature sizes by about an order of magnitude. There seems to be a major roadblock to getting
a reduction from such problems to those that work over the ring Zq[x], though. As we mentioned
in the previous section, one reason that we were able to give a reduction from f -SIS to Ring-
SIS over Zq[x] is because the input to f -SIS does not really depend on f . In an inhomogeneous
version of f -SIS, however, where one is given a1, . . . ,ak and t =

∑
aisi ∈ Zq[x]/〈f〉, where t is not

statistically-close to uniform in Zq[x]/〈f〉, the value of t very much depends on f . Thus it is not
clear to us how to transform this into an instance that is at the same time independent from f , yet
somehow retains pseudo-randomness.

In addition to being able to create more efficient signatures based on the hardness of worst-
case problems over all rings, getting such a reduction from f -LWE would then allow for efficient
constructions of encryption schemes and a myriad of other primitives with the same hardness
guarantees. We therefore believe that finding such a reduction would be truly an outstanding result.
A slightly weaker, yet also very interesting achievement, would be to construct schemes which are
simultaneously as hard as problems over a few different types of rings. The trivial solution would
be to simply combine two schemes over two different rings, so the question here is whether it is
possible to get something more efficient than the trivial construction.

Of a more theoretical nature is the direction of trying to understand the real hardness of our
new average case problems without relating them to Zq[x]/〈f〉. The average-case problems that we
define in this paper operate over the ring Zq[x], so perhaps showing that they are as hard as solving
lattice problems over ideals in Z[x]/〈f〉 is not the most “natural” reduction. It would therefore be
an interesting problem if one could give a reduction to our average-case problem from a different
worst-case problem, perhaps more directly related to the ring Zq[x].

1.3 Paper Organization

In Section 2 we introduce the notation and definitions that are used throughout the paper. Section
3 presents the new average-case problems defined over the ring Zq[x] and lemmas showing their
relation to lattice problems over all polynomial rings. In Section 4, we describe a signature scheme
and prove its security based on the hardness of our new average-case problems.

4



2 Preliminaries

2.1 Notation

Throughout the paper, R will denote the polynomial ring Zq[x]. We will also assume that all
polynomial operations occur in this ring (thus we will not write mod q, as it is implicit). Elements

of this ring can be represented by polynomials a =
∞∑
i=0

aix
i where ai ∈ {−b q2c, . . . , b

q−1
2 c}. For a

polynomial a ∈ R with a finite degree deg(a), we denote ‖a‖∞ to mean max
ai
|ai| and ‖a‖1 to be

deg(a)−1∑
i=0

|ai|.

We will write R<n to mean the set of all polynomials in R of degree less than n, and R<ni to
be polynomials a ∈ R<n with ‖a‖∞ ≤ i. For a polynomial a ∈ R and a monic polynomial f of
degree n, the expression a mod f denotes the unique polynomial a′ in R<n for which there exists
an r ∈ Zq[x] such that a′ + rf = a.

There is a natural mapping between polynomial in Z[x] of degree n− 1 and vectors in Zn that
simply maps each coefficient of the polynomial to a vector coordinate. We will make use of this
mapping implicitly throughout the paper – that is elements in Zn are simultaneously polynomials
in R<n. If a1, . . . ,ak are elements in Zn, then their concatenation (a1 | . . . | ak) is a vector in Zkn.

For a set S, we denote s
$← S to mean that s is chosen uniformly at random from S. For a

distribution D, we write s
$← D to mean that s is chosen according to the distribution D.

2.2 Lattice Problems

Definition 2.1 (Approximate shortest vector problem.). Let Λ be a lattice corresponding to
an ideal in the polynomial ring Z[x]/〈f〉 and γ ≥ 1 be some real. The f -SVPγ(Λ) problem asks to
find an element v ∈ Λ such that ‖v‖∞ ≤ γ · min

w∈Λ\{0}
(‖w‖∞).

Definition 2.2 (Ring-SIS). The homogeneous f -SIS problem is defined as follows. An instance

of the f -SISk,q,β problem consists of a1, . . . ,ak
$← Zq[x]/〈f〉. A solution to the problem is k elements

z1, . . . , zk such that ‖zi‖∞ ≤ β and

k∑
i=1

aizi = 0 mod f .

The main result of [LM06] was a connection between the hardness of the f -SVPγ problem
for all lattices in Z[x]/〈f〉 and the f -SISk,q,β problem. If the length of elements is defined by the
‖ · ‖∞ function that simply looks at the largest coefficient, then the quality of the reduction has
a dependency on a certain property of f that was called the “expansion factor”. This expansion
factor explains how much the coefficients of a polynomial in Z[x] grow when reduced modulo f .

For the purposes of the theorem, we define the value θf as

θf = max
g∈Z[x],deg(g)≤3(deg(f)−1)

‖g mod f‖∞
‖g‖∞

.
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It was shown in [LM06] that for polynomials such as xn + 1 and
p−1∑
i=0

xi, the value of θf is a

small constant (3 and 6 respectively). The paper also showed how to put bounds on the expansion
factor of other polynomials. We direct the interested reader to [LM06] for a further discussion of
this topic.

Theorem 2.3. [LM06] For any monic, irreducible (over the integers) f and q > 2θfβkn
1.5 log n,

if there is a polynomial-time algorithm that solves the f -SISk,q,β problem with some non-negligible
probability, then there is a polynomial-time algorithm that solves the f -SVPγ problem with γ =
8θfβkn log2 n for any lattice Λ that corresponds to an ideal in Z[x]/〈f〉.

2.3 The Discrete Normal (Gaussian) Distribution over Zm

Definition 2.4. The continuous Normal distribution over Rm centered at v with standard deviation

σ is defined by the function ρmv,σ(x) =
(

1√
2πσ2

)m
e
−‖x−v‖2

2σ2

When v = 0, we will just write ρmσ (x). The discrete Normal distribution over Zm is defined as
follows:

Definition 2.5. The discrete Normal distribution over Zm centered at some v ∈ Zm with standard
deviation σ is defined as Dm

v,σ(x) = ρmv,σ(x)/ρmσ (Zm).

The below is a basic fact about the length of the discrete Gaussian distribution over Z.

Lemma 2.6. For any r > 0

Pr
z←D1

σ

[|z| > rσ] ≤ 2e−r
2/2.

Lemma 2.7 (Adapted from [Lyu12]). Let V be a subset of Zm in which all elements have
norms less than T , σ be defined as 11 · T , and h : V → R be a probability distribution. Then the
probability that the following algorithm
A:

1: v
$← h

2: z
$← Dm

v,σ

3: output (z,v) with probability min
(

Dmσ (z)
3·Dmv,σ(z)

, 1
)

4: if nothing was output, goto Step 1

terminates within 200 iterations is greater than 1−2−90 (the expected number of iterations is 3), and
conditioned on its termination, its distribution is within statistical distance 2−95 of the distribution
of the following algorithm
F :

1: v
$← h

2: z
$← Dm

σ

3: output (z,v)
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2.4 Digital Signatures

Definition 2.8. A signature scheme consists of a triplet of polynomial-time (possibly probabilistic)
algorithms (G,S, V ) such that for every pair of outputs (s, v) of G(1n) and any n-bit message m,

Pr[V (v,m, S(s,m)) = 1] = 1

where the probability is taken over the randomness of algorithms S and V .

In the above definition, G is called the key-generation algorithm, S is the signing algorithm, V is
the verification algorithm, and s and v are, respectively, the signing and verification keys.

Definition 2.9. A signature scheme (G,S, V ) is said to be secure if for every polynomial-time
(possibly randomized) forger F , the probability that after seeing the public key and
{(µ1, S(s, µ1)), . . . , (µq, S(s, µq))} for any q messages µi of its choosing (where q is polynomial in
n), F can produce (µ 6= µi, σ) such that V (v, µ, σ) = 1, is negligibly small. The probability is taken
over the randomness of G, S, V , and F .

A stronger notion of security, called strong unforgeability requires that in addition to the above,
a forger shouldn’t even be able to come up with a different signature for a message whose signature
he has already seen. The scheme in this paper satisfies this stronger notion.

2.5 Auxiliary Lemmas

Lemma 2.10. Let a be any monic polynomial in Z[x] of degree n. If b is a polynomial in Z[x]
of degree m each of whose coefficients is chosen at random modulo q, then the coefficients of c =
a · b mod q corresponding to the terms xn, . . . ,xm+n are jointly uniformly random modulo q.

Proof. If we write c = c0 + c1x + . . .+ cm+nx
m+n, then the coefficient cn+m−j for 0 ≤ j ≤ m is

cm+n−j =

j∑
i=0

an−i · bm−j+i = bm−j +

j∑
i=1

an−i · bm−j+i,

with the second equality being true because a is a monic polynomial.
From the above equality, is not hard to see that once we generate the coefficients bm−j through

bm, we will have completely determined the coefficients cm+n−j through cm+n of the product. We
can now prove the claim of the lemma by induction. The coefficient cm+n = bm, and is therefore
uniformly random modulo q. Now assume that we have already selected the coefficients bm−k
through bm, and therefore completely determined the coefficients of cm+n−j through cm+n, and
they are jointly uniformly random modulo q. Once we select the coefficient bm−j−1, we will have

cm+n−j−1 = bm−j−1 +
j+1∑
i=1

an−i · bm−j−1+i. Because the term bm−j−1 was not used to determine cm

through cm+n−j , we have

Pr [cm+n−j−1 = γ | cm, . . . , cm+n−j ]

= Pr

[
bm−j−1 = γ −

j+1∑
i=1

an−i · bm−j−1+i | cm, . . . , cm+n−j

]

= Pr

[
bm−j−1 = γ −

j+1∑
i=1

an−i · bm−j−1+i

]
= 1/q

ut
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Lemma 2.11. Let h : X → Y be a deterministic function where X and Y are finite sets and
|X| ≥ 2λ|Y |. If x is chosen uniformly at random from X, then with probability at least 1 − 2−λ,
there exists another x′ ∈ X such that h(x) = h(x′).

Proof. There are at most |Y | − 1 elements x in X for which there is no x′ such that h(x) = h(x′).
Therefore the probability that a randomly chosen x has a corresponding x′ for which h(x) = h(x′)
is at least (|X| − |Y |+ 1)/|X| = 1− |Y |/|X|+ 1/|X| > 1− 2−λ. ut

3 Ring-SIS over Zq[x]

We will now present several average-case problems that are defined over the ring Zq[x] rather than
Zq[x]/〈f〉. The first such problem simply asks for a linear combination of the inputs that sum to
0 in Zq[x]. This is quite similar to the f -SIS problem from Definition 2.2, except that there is no
reduction modulo f and we also limit the degrees of the solution polynomials.

Definition 3.1. The homogeneous R<n-SISk,d,β problem is defined as follows. An instance of R<n-

SISk,d,β consists of a1, . . . ,ak
$← R<n and a solution to the problem is k elements z1, . . . , zk ∈ R<dβ

such that at least one zi 6= 0 and
k∑
i=1

aizi = 0.

Notice that if deg(f) is n, then instances of the f -SISk,q,β and the R<n-SISk,d,β have exactly the
same distributions. Furthermore, it should be clear that if z1, . . . , zk is a solution to the instance
a1, . . . ,ak of the R<n-SISk,d,β problem, then it is also a solution to the instance a1, . . . ,ak of the
f -SISk,q,β problem. The next simple lemma shows that one can also transform instance of the f -
SISk,q,β problem for d ≤ deg(f) ≤ n into instances of the R<n-SISk,d,β problem such that solutions
to the latter are still solutions to the former.

Lemma 3.2. If there is an algorithm that can solve the R<n-SISk,d,β problem in time t with prob-
ability ε, then there is an algorithm that can solve f -SISk,q,β problem in time t + poly(n) with
probability ε as long as d ≤ deg(f) ≤ n.

Proof. Given a1, . . . ,ak that form an instance of the f -SISk,q,β, we choose polynomials r1, . . . , rk ∈

R<n−deg(f) and create a′i ← ai + f · ri. If we write a′i =
n−1∑
j=0

ajx
j , then Lemma 2.10 states that

the coefficients adeg(f) through an−1 are jointly uniformly random modulo q (because they are

completely determined by f · ri). And since all the ai are uniformly random in R<deg(f), we have
that all of the a′i = ai + f · ri are uniformly random in R<n.

We feed the instance a′1, . . . ,a
′
k to the R<n-SISk,d,β oracle. If he returns a solution z1 . . . , zk ∈

R<dβ such that
k∑
i=1

a′izi = 0, then we claim that z1, . . . , zk is also a solution to the f -SISk,q,β problem.

First observe that

0 =
k∑
i=1

a′izi =
k∑
i=1

(ai + rif)zi =
k∑
i=1

aizi +
k∑
i=1

rifzi =
k∑
i=1

aizi mod f .

Furthermore, because deg(zi) < d ≤ deg(f), we have that zi = zi mod f . Thus if at least one of the
zi is non-zero, so is one of the zi mod f . ut
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We next define an approximate inhomogeneous version of the Ring-SIS problem over Zq[x]. The
exact reasoning for the particular definition is due to the particularities of the signature scheme
that we will be constructing in the next section. Intuitively, the inhomogeneous version of Ring-SIS
should ask to find a solution (z1, . . . , zk) that satisfies

∑
aizi = t. In our definition below, we

additionally specify the distribution that the input t should have, and also allow an approximate
solution to this equation – meaning that the sum

∑
aizi does not to equal exactly t, but could

equal to tc for some element c ∈ Zq[x] with a small `1 norm.

Definition 3.3. We define the approximate inhomogeneous Ring-SIS problem as follows. An in-

stance of the R<n-SISk,d1,d2,s,c,β problem consists of polynomials a1, . . . ,ak
$← R<n and a t =

k∑
i=1

aisi where si
$← R<d1s . A solution to the problem is k elements z1, . . . , zk ∈ R<d2β and a

c ∈ R<d2−d1+1 with 0 < ‖c‖1 ≤ c such that

k∑
i=1

aizi = tc.

The next lemma relates the hardness of solving the inhomogeneous Ring-SIS problem to the
homogeneous one. We show that under certain conditions, solving the particular version of the
inhomogeneous problem implies being able to solve the homogeneous one.

Lemma 3.4. Suppose that the following relationships are satisfied:

1. d1 < d2 ≤ n.

2. s > 2
λ
kd1
−1 · q

n+d1
kd1

3. sc < q/4

If there is an algorithm that solves the R<n-SISk,d1,d2,s,c,β problem in time t with probability ε, there
is an algorithm that solves the R<n-SISk,d2,β+sc problem with probability at least 1

2 · (ε − 2−λ) in
time poly(n) + t.

Proof. Given an instance a1, . . . ,ak of an R<n-SISk,d2,β+sc problem, we select s1, . . . , sk
$← R<d1s

and set t←
k∑
i=1

aisi. We give the instance a1, . . . ,ak, t to the oracle who can solveR<n-SISk,d1,d2,s,c,β.

Suppose the oracle solves the problem and returns k elements z1, . . . , zk ∈ R<d2β and a c ∈
R<d2−d1+1 with ‖c‖1 ≤ c such that

k∑
i=1

aizi = tc = c

k∑
i=1

aisi,

which implies that
k∑
i=1

ai(zi − sic) = 0.

Note that deg(zi − sic) < d2 and

‖zi − sic‖∞ ≤ ‖zi‖∞ + ‖sic‖∞ ≤ β + ‖si‖∞ · ‖c‖1 ≤ β + sc.
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Thus if for some i, zi−sic 6= 0, we have a solution for R<n-SISk,d,β+sc. If we consider the function

f : (R<d1s )k → R/<n+d1−1 defined as f(s1, · · · , sk) =
k∑
i=1

a′isi, the domain size of this function is

(2s + 1)kd1 , while the range is of size qn+d1−1. Because we set s > 2λ/(kd1)−1 · q(n+d1−1)/(kd1), the
size of the domain is greater than 2λ · qn+d1−1. By Lemma 2.11, there is probability at least 1−2−λ

that there exists another s′1, . . . , s
′
k ∈ R<d1s such that

t =
k∑
i=1

a′isi =
k∑
i=1

a′is
′
i.

Since it is perfectly indistinguishable whether s1, . . . , sk or s′1, . . . , s
′
k were used in creating t (because

both of them have the same posterior probability of having been chosen), the probability of the
oracle outputting z1, . . . , zk, c such that zi − sic mod f = 0 is exactly the same if t were generated
as in the reduction, but then after the adversary produced his output, the preimage of t was chosen
at random among all the valid choices. We will now show that zi − sic can only equal 0 for all i
for at most one of these choices.

If (s1, . . . , sk) 6= (s′1, . . . , s
′
k), then there should be at least one si 6= s′i. For this i, suppose that

zi − sic = 0 = zi − s′ic. This implies that (si − s′i)c = 0. Since Zq[x] is an integral domain, this
can only happen if either c = 0 or if si = s′i. This is a contradiction. Therefore with probability at
least 1/2, some zi − sic 6= 0.

ut

4 The Signature Scheme

We now formally describe our scheme via secret key generation, public key generation, signing, and
verification algorithms.

The fixed, public parameters in our scheme are stated below. The values n, k, q, s, d1, d2, c are
intuitively related to the parametrization of the R<n-SIS problem, with the standard deviation σ
being related to the parameter β. We furthermore define a cryptographic function H whose range
is the set C which consists of bounded-degree polynomials with small `1 norms.

Fixed parameters:
– Positive integers n, k, q, s, d1, d2, c, σ = 11sc ·

√
d2k

– Ring R = Zq[x]
– Set C = {c ∈ R<d2−d1+1

1 with ‖c‖1 ≤ c}
– Cryptographic hash function H : {0, 1}∗ → C

In Figure 1, we give some sample parameters with which our scheme can be instantiated. For
this, we use the reduction from breaking the signature scheme to the f -SIS problem that is given
in the next section. In that section we show that breaking the scheme implies solving the f -SISk,q,β
problem for β = 2sc+ 10σ. Even though there is a reduction from every f whose degree is between
d2 and n, we instantiate the security based on the hardness of the f -SIS problem for f whose degree
is close to n. Of course if one wants to be more conservative, one could set the parameters so that
the scheme is even secure in practice for polynomials whose degrees are closer to d2.

10



To set the concrete parameters, we use the standard notion of the Hermite factor defined in
[GN08] and the explanation for how to approximate it for the SIS problem given in [MR08].

n 1459

k 6

q ≈ 230

s 1535

d1 1111

d2 1285

c 36

σ ≈ 225.7

secret key size 8.8 KB

public key size 9.6 KB

signature size 27 KB

Hermite factor 1.005

Fig. 1. Sample parameters for the Signature Scheme

The key generation algorithm generates a1, . . . ,ak
$← R<n and s1, . . . , sk

$← R<d1s , and then

outputs (a1, . . . ,ak, t =
k∑
i=1

aisi) as the public key. This is, in fact, an instance of the inhomoge-

neous R<n-SIS problem from Definition 3.3.

Key Generation:

1. Generate a1, . . . ,ak
$← R<n

2. Generate s1, . . . , sk
$← R<d1s

3. Set t←
k∑
i=1

aisi

4. Public Key ← (a1, . . . ,ak, t), Secret Key ← (s1, . . . , sk)

To generate a signature of µ, the signer selects “masking” variables yi from a particular dis-
tribution, computes c = H(

∑
aiyi, µ), and then creates zi = sic + yi. By the way the parameters

were set, each zi is in R<d2 . Thus the concatenation of the k vectors z = (z1 | . . . |zk) can be
thought of as a vector in Zkd2 . If we similarly define the vector s = (s1c | . . . , skc) ∈ Zkd2 , then we
can see that the vector z is distributed according to the discrete Gaussian distribution Dkd2

s,σ . To
get rid of the dependence on s, we use the rejection sampling procedure from [Lyu12] by running
the RejectionSample algorithm. By the way the parameters are set, there is a 1/3 probability that
the signature will be output, and a 2/3 chance that the signing procedure will need to be restarted.
After some (z1, . . . , zk) eventually passes the rejection sampling procedure, its distribution will be
exactly Dkd2

σ .

Because the distribution is being sampled from Zkn, which is an orthogonal lattice, each co-
efficient of zi is distributed according to D1

σ. Thus, by Lemma 2.6, the probability that some
coefficient is larger than 5σ in absolute value is less than 2e−25/2 < 2−17. For simplicity, we would
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like to make sure that all zi are small, and so we check that each of their coefficients is less than
5σ. The probability that all kd2 positions are less than 5σ is at least 1− kd2 · 2−17. In our sample
instantiation, kd2 < 213, and thus the probability that this check is passed is greater than 15/16. So
with probabilty at most 1/16, the procedure gets restarted. The signing algorithm finally outputs
(z1, . . . , zk, c).

Sign(µ, (a1, . . . ,ak, t), (s1, . . . , sk)):

1. Generate y1, . . . ,yk ∈ R<d2 such that yi ∼ Dd2
σ

2. Set c = H

(
k∑
i=1

aiyi, µ

)
3. For i = 1 to k, set zi = sic + yi
4. b← RejectionSample(z1, . . . , zk, s1, . . . , sk, c, σ, d2)
5. If b = 0, then goto 1
6. If for some i, ‖zi‖∞ > 5σ, then goto 1
7. Output (z1, . . . , zk, c)

RejectionSample(z1, . . . , zk, s1, . . . , sk, c, σ, d2):

1. Let z← (z1 | . . . | zk) ∈ Zkd2
2. Let s← (s1c | . . . | skc) ∈ Zkd2
3. With probability Dkd2

σ (z)/(3 ·Dkd2
s,σ (z)), output 1. Else output 0.

The verification algorithm looks at the signature (z1, . . . , zk, c) and accepts if and only if all the

coefficients of the zi are less than 5σ and c = H

(
k∑
i=1

aizi − tc, µ

)
.

Verify((a1, . . . ,ak, t), (z1, . . . , zk, c)):
1. If for some i, deg(zi) ≥ d2 or ‖zi‖∞ > 5σ, then Reject

2. If c 6= H

(
k∑
i=1

aizi − tc, µ

)
, then Reject

3. Accept

4.1 Security

The main result of this section is a reduction from solving the R<n-SISk,d2,2sc+10σ problem to
forging the signature scheme. We first show how one can simulate the signing algorithm without
knowing the secret key s1, . . . , sk by programming the random oracle (Lemma 4.1).

We then show in Theorem 4.2 that an adversary who breaks the signature scheme that uses the
signing algorithm from Lemma 4.1 can be used to solve either the R<n-SIS problem from Definition
3.1 or the one from Definition 3.3. By Lemma 3.4, this implies that the adversary can be used to
solve the problem from Definition 3.1, and therefore any instance of the f -SIS problem for f of
degree between d2 and n. The latter then allows one to solve worst-case lattice problems in the ring
Z[x]/〈f〉.
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Lemma 4.1. Suppose that the random oracle H is already programmed on v values. Then the
statistical distance between the output of the signing procedure and the following Hybrid signing
algorithm, which does not take any secret keys si as inputs, is at most 2−95 + v(

√
2πσ − 1)−d2

HybridSign(µ, (a1, . . . ,ak, t))

1. c
$← C

2. Generate z1, . . . , zk ∈ R<d2 such that zi ∼ Dd2
σ

3. If for some i, ‖zi‖∞ > 5σ, then goto 1

4. Program c = H

(
k∑
i=1

aizi − tc, µ

)
5. Output (z1, . . . , zk, c)

Proof. We first define another intermediate signing hybrid algorithm named HybridSign′.

HybridSign′(µ, (a1, . . . ,ak, t), (s1, . . . , sk))

1. Generate y1, . . . ,yk ∈ R<d2 such that yi ∼ Dd2
σ

2. c
$← C

3. For i = 1 to k, set zi = sic + yi
4. b← RejectionSample(z1, . . . , zk, s1, . . . , sk, c, σ, d2),
5. if b = 0, then goto 1
6. If for some i, ‖zi‖∞ > 5σ, then goto 1

7. Program c = H

(
k∑
i=1

aizi − tc, µ

)
8. Output (z1, . . . , zk, c)

The difference between the real signing procedure and HybridSign′ is that the value of

c = H

(
k∑
i=1

aizi − tc, µ

)
= H

(
k∑
i=1

aiyi, µ

)

gets set uniformly at random in HybridSign′, whereas in the real signature scheme, H would first

check whether H was already evaluated on

(
k∑
i=1

aiyi, µ

)
and only assign it a random value if it

wasn’t. Therefore HybridSign′ will differ from the real scheme in the case that the value of
k∑
i=1

aiyi

collides with one of the already-queried values.
For any w,

Pr
yi

$←Dd2σ

[∑
i

aiyi = w

]
≤ Pr

z1
$←Dd2σ

az1 =

w −
∑
i 6=1

aiyi

 < (
√

2πσ − 1)−d2 ,

where the last inequality holds because there is at most one possible z1 that satisfies this
equation (because Zq[x] is an integral domain) and because the likeliest element in the discrete
Gaussian distribution is 0 which has probability less than (

√
2πσ−1)−n. Thus if there were already

v values of the random oracle that were set, there is less than a v · (
√

2πσ − 1)−d2 probability that
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there would be a collision. In our sample instantiation, for example, σ is approximately 225 and
d2 > 1200, and so this probability is extremely small.

We now compare HybridSign′ with Hybrid 2. Lemma 2.7 states that the distribution of the
eventual value of (z1, . . . , zk, c) after the first 5 steps of HybridSign′ is within statistical distance
2−95 of the distribution of (z1, . . . , zk, c) after two steps of HybridSign. Since the rest of the steps in
both hybrids is identical, their statistical distance is at most 2−95. Thus the statistical distance of
the distributions of the output of the real signing algorithm and HybridSign is 2−95+(

√
2πσ−1)−d2 .

ut

Theorem 4.2. Suppose there exists an adversary who makes a total of t queries to the Signing
hybrid in Lemma 4.1 and the random oracle H during his attack and succeeds in forging with
probability δ. Then there is an algorithm with the same time complexity that solves either the R<n-
SISk,d1,d2,s,2c,10σ problem or the R<n-SISk,d2,10σ problem with probability at least

1

2
·
(
δ − 1

|C|

)(
δ − 1/|C|

t
− 1

|C|

)
.

Proof. Let (a1, . . . ,ak, t) be an instance of the R<n-SISk,d1,d2,s,2c,10σ problem and (a′1, . . . ,a
′
k) be an

instance of the R<n-SISk,d2,10σ problem. If we choose s′1, . . . , s
′
k

$← R<nd1 and compute t′ =
∑

a′is
′
i,

then the distribution of (a1, . . . ,ak, t) is exactly the same as that of (a′1, . . . ,a
′
k, t
′). The simulator

then chooses one of those two sets at random and declares it as the public key of the signature
scheme. If the adversary produces a forgery on a new message, then we will show that he will solve
an instance of the R<n-SISk,d1,d2,s,2c,10σ problem. If he produces a signature of a message he has
already seen, then he will solve the R<n-SISk,d2,10σ problem. The simulator’s hope is therefore that
if he gives the adversary the instance (a1, . . . ,ak, t), the adversary will forge a signature on a new
message, whereas if the simulator gives (a′1, . . . ,a

′
k, t
′), the adversary will forge on a message he has

already seen. It’s easy to see that this lowers the success probability of the simulator by a factor of
2.

For simplicity, we will now refer to the public key as (a1, . . . ,ak, t). During the attack, the
adversary may interact with the Simulator in one of three ways. He may ask for a signature of a
message µ′ for which the Simulator will use Hybrid 2, or query the hash function H on any element
in {0, 1}∗, or produce a forgery µ. If the adversary asks for a signature of µ, the Simulator simply
returns the output of Hybrid 2. If the adversary queries H on some value, then the Simulator first
checks if that value was already assigned and returns it, or otherwise just chooses a random element
c ∈ C and programs it to be the output of H on the adversary’s input.

If the adversary comes up with a signature (z1, . . . , zk, c) for a message µ, then this signature

satisfies the equality c = H

(
k∑
i=1

aizi − tc, µ

)
. If the value for H

(
k∑
i=1

aizi − tc, µ

)
has never been

programmed during a signing query or a random oracle query, then the adversary has only a 1/|C|

chance of guessing the c that equals to H

(
k∑
i=1

aizi − tc, µ

)
. So we will assume that the value for

H

(
k∑
i=1

aizi − tc, µ

)
has already been set.

We will first handle the case where it has been set during a signing query. In this case, the
simulator already gave a signature (z′1, . . . , z

′
k, c) for the message µ. In order for (z1, . . . , zk, c) to

be a valid forgery for µ, some zi must be different from z′i. The adversary’s forgery therefore implies
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that
k∑
i=1

aizi − tc =

k∑
i=1

aiz
′
i − tc,

and therefore
k∑
i=1

ai(zi − z′i) = 0

and at least for one i, zi 6= z′i. Since all ‖zi−z′i‖∞ ≤ 10σ and deg(zi−z′i) ≤ d2, they form a solution
to the R<n-SISn,q,d2,10σ problem.

We now move to the case where the adversary constructs a signature for a message he has
not yet seen. If the adversary comes up with a valid forgery (z1, . . . , zk, c) for a new message µ,

then ‖zi‖∞ ≤ 5σ and c = H

(
k∑
i=1

aizi − tc, µ

)
. As before, if the adversary never queried H on(

k∑
i=1

aizi − tc, µ

)
, then he only has at most a 1/|C| chance of producing such a forgery. Thus let’s

assume that the adversary did make such a “winning” query. We then “rewind” the adversary by
rerunning him with the same random coins and responding to all the random oracle queries (both
his and the ones used in the signing) the same way as before until the “winning” query. Starting
from the “winning” query, however, we select uniformly random responses to all random oracle
queries. Let c′ be the new response to the “winning” query. By the General Forking Lemma of
Bellare and Neven [BN06, Lemma 1], the probability that c 6= c′ and the adversary again forges on
the “winning” query is at least (

δ − 1

|C|

)(
δ − 1/|C|

t
− 1

|C|

)
.

With the above probability, then, the Simulator obtains another equation c′ = H

(
k∑
i=1

aiz
′
i − tc′, µ

)
where

k∑
i=1

aiz
′
i − tc′ =

k∑
i=1

aizi − tc because the query was the same in both runs of the adversary.

Therefore
k∑
i=1

ai(z− z′i) = t(c− c′)

and so (z1 − z′1, . . . , zk − z′k, c − c′) is a solution to the instance (a1, . . . ,ak, t) of the R<n-
SISk,d1,d2,s,2c,10σ problem. ut

Putting Theorem 4.2, Lemma 4.1, and Lemma 3.4 together, we see that if the signature scheme
parameters satisfy the pre-conditions on the public parameters in Lemma 3.4, then an adversary who
breaks the signature scheme either solves the R<n-SISk,d2,10σ problem or the R<n-SISk,d2,2sc+10σ

problem (the latter is a strictly weaker problem). This implies that an adversary who breaks the
signature scheme can be used to break the f -SISk,q,2sc+10σ problem for any polynomial f of degree
between d2 and n. By Theorem 2.3, this in turn gives a connection between breaking the signature
scheme and finding short vectors for any lattice in any polynomial ring Z[x]/〈f〉 where the degree
of f is between d2 and n.
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