
Blind Web Search: How far are we from a privacy preserving
search engine?

Gizem S. Çetin1, Wei Dai1, Yarkın Doröz1, William J. Martin1, and Berk Sunar1

Worcester Polytechnic Institute
{gscetin,wdai,ydoroz, martin,sunar}@wpi.edu

Abstract.
Recent rapid progress in fully homomorphic encryption (FHE) and somewhat homomorphic encryption
(SHE) has catalyzed renewed efforts to develop efficient privacy preserving protocols. Several works
have already appeared in the literature that provide solutions to these problems by employing FHE
or SHE techniques. In this work, we focus on a natural application where privacy is a major concern:
web search. An estimated 5 billion web queries are processed by the world’s leading search engines
each day. It is no surprise, then, that privacy-preserving web search was proposed as the paragon FHE
application in Gentry’s seminal FHE paper. Indeed, numerous proposals have emerged in the intervening
years that attack various privatized search problems over encrypted user data, e.g. private information
retrieval (PIR). Yet, there is no known work that focuses on implementing a completely blind web
search engine using an FHE/SHE construction. In this work, we focus first on single keyword queries
with exact matches, aiming toward real-world viability. We then discuss multiple-keyword searches and
tackle a number of issues currently hindering practical implementation, such as communication and
computational efficiency.

Keywords: fully homomorphic encryption, privacy preserving applications, encrypted web search

1 Introduction

The Electronic Frontier Foundation writes “Anonymous communications have an important place
in our political and social discourse. The [US] Supreme Court has ruled repeatedly that the right
to anonymous free speech is protected by the [US] First Amendment”1. The contents of our web
searches give a glimpse into our personal lives and the information that can be harvested from
a log of such activity has, in several well-publicized instances, led to clear violations of privacy.
It is not only the keywords themselves that leak information. When a user chooses from among
query responses and chooses to be directed to a particular URL on the list, the contents of the
query are often shared with that website. Browsing history can be tracked and shared, and with
data mining techniques, the user can end up revealing much more than keywords, such as their
Personally Identifiable Information or Sensitive Personal Information. Search engines are also able
to infer one’s geographic location through one’s IP address. When search and other such data is
stored, a user profile can be created and this can be shared with third parties such as governments,
marketers, and even cyber-criminals. One can easily imagine, for instance, how knowledge of recent
queries regarding financial instruments could assist a hacker in composing a more credible phishing
email that purports to originate at a bank at which the user is a customer.

To protect users from such malicious players, search engines have introduced encrypted search
traffic (keywords and results) over the past few years, employing secure connections and creating

1 https://www.eff.org/issues/anonymity

an encrypted channel between the user device and the search engine server. This option prevents
third parties from spoofing responses, but also ended the practice of passing keyword history to
the chosen URL (except when that URL was selected through Adwords). Solutions of this sort put
the privacy barrier between the search engine and the websites who are their customers, but make
no guarantees of private queries. The search engines can still form user profiles and can still share
them with third parties for a price. Moreover, such keyword histories can be released by the search
engine unintentionally, for example by court order or data breach. Standard search services such as
Google require the cleartext query to be handled on the server side revealing to the search company
a wealth of information to mine. When mined along with other sources of private information, e.g.
e-mail or cloud storage, the search provider can distill a wealth of sensitive information to an
unprecedented level of detail. To counter this trend, privacy friendly search services has emerged in
a last few years, e.g. DuckDuckGo and StartPage by ixquick. DuckDuckGo, for instance, has even
gained customers reaching 10M searches per day. The standard approach taken by these companies
is to promise to respect the privacy of their customers. While there has been no incident to suspect
these products, here too privacy hangs by a thread, i.e. a fragile trust mechanism.

The rapid emergence of a new rich set of homomorphic encryption tools in the past few years
provides a new opportunity to revisit the privacy challenges of online search. Our solution, in
contrast, leaves the server/search engine completely oblivious not only to the actual keywords
but also the corresponding search results. Fully homomorphic encryption (FHE) allows one to
perform arbitrary computation on encrypted data without the need of a secret key [1]. If made
practical, FHE has tremendous potential to protect user’s privacy. For instance, FHE allows for
fully blinded cloud computing and retrieval services for applications such as healthcare databases.
Indeed Gentry motivated his dissertation using online search: “Fully homomorphic encryption has
numerous applications. For example, it enables private queries to a search engine — the user
submits an encrypted query and the search engine computes a succinct encrypted answer without
ever looking at the query in the clear.” [1]. We are inspired to investigate FHE solutions for a
privacy-preserving web search engine. Even though there are several works that focus on search
over encrypted databases using FHE, the present paper is the first in which both keywords and
responses are encrypted in an end-to-end fashion, with only ciphertexts accessible to any observer
on the Web. Considering the computational and bandwidth requirements of early FHE schemes,
along with the fact that web search is a real-time application, the lack of practical proposals prior
to this one is not surprising. However we have witnessed an amazing barrage of improvements
in FHE and SHE schemes over the past few years [2–7]. In [8] Gentry, Halevi and Smart (GHS)
proposed the first homomorphic evaluation of a complex circuit: a full AES block. In 2012 Halevi
(and later Shoup) published the HElib [9], a C++ library for HE that is based on Brakerski-Gentry-
Vaikuntanathan (BGV) cryptosystem [7]. In [10] a leveled NTRU-based [11, 12] FHE scheme was
introduced by López-Alt, Tromer and Vaikuntanathan (LTV), featuring much slower growth of
noise during homomorphic computation. Doröz, Hu and Sunar (DHS) [13, 14] used an LTV SHE
variant to evaluate AES using windowing in just 12 seconds. In early 2015, Gentry, Smart, Halevi
(GHS) [15] published significantly improved AES runtime results with 2 seconds amortized per-
block runtime. More recently, Ducas and Micciancio [16] presented the FHEW scheme that achieves
bootstrapping in half a second for HElib on a common PC. Recently, a new leveled FHE scheme
called F-NTRU was proposed in [17] that makes use of the flattening technique from [18] over a
variant of NTRU [19]. F-NTRU does not use relinearization — no evaluation keys are needed —

2

and, due to its small parameter sizes, the scheme achieves fast homomorphic multiplication, for
instance a depth 30 multiplication circuit can be executed in ≈ 17 msec.

Our Contribution. In this work,

– We present the first end-to-end study of blinded search using homomophic encryption where
the client submits encrypted keywords and the server performs a blinded lookup and returns
the results again in encrypted form. We separate our problem into two parts; Comparison and
Aggregation.

– We cast Comparison into a private information retrieval (PIR) problem and compare various
PIR algorithms, i.e. variants of Kushilevitz-Ostrovsky PIR, for suitability in our setting.

– We analyze the depth and bandwidth complexities as well as number of multiplications for each
approach.

– We present our Aggregation step first in the single keyword scenario and then extend our con-
struction to consider the queries with multiple keywords. To this end, we perform a homomorphic
intersection by encoding URLs as zeros of polynomials. We compare our approach against other
with regard to the problem of returning false positives.

– With all the pieces in place, we provide a noise analysis of the proposed methods with respect to
F-NTRU parameters and finally give the implementation results of the proposed schemes using
a GPU implementation of the scheme. The results show that the bandwidth overhead is in the
MBytes while the query requires micro to milliseconds for processing per row to support single
and multiple keyword lookups with intersection, i.e. AND operations on keywords.

This paper is organized as follows: In Section 2, we give a brief description of the underlying
leveled FHE scheme that is used in our construction. Within the same section, we describe an
encoding technique to represent large messages which helps with the noise growth when used
alongside a special plaintext modulus. In the next section 3, we give our definition of an encrypted
search engine by providing an example and real world numbers. In Section 4, we start building our
encrypted search engine by using homomorphic properties and investigating different algorithms
and their asymptotic performances with respect to the FHE scheme in use and finally we give
the implementation details of the proposed methods and provide a comparison of their run time
performances as well as their bandwidth requirements in the last section.

2 Background

In this section, we will first define the leveled FHE scheme [17] that we employ in our application.
Then, we will define an encoding technique that was previously used in [20] which we will use later
in our construction to represent large integers.

2.1 FHE Scheme: F-NTRU

A new FHE scheme [17] F-NTRU adopts the flattening technique proposed in GSW to derive an
NTRU based scheme that (akin to GSW) does not require evaluation keys or key switching. This
scheme eliminates the decision small polynomial ratio (DSPR) assumption but relies only on the
standard R-LWE assumption. The scheme uses wide key distributions, and hence is immune to the
subfield lattice attack.

The F-NTRU scheme makes use of the following operations in the ring Zq/ (xn + 1) for key
setup, encryption/decryption and the homomorphic evaluations:

3

– KeyGen: The same parameters and the keys from NTRU scheme are used in this scheme. For a
plaintext modulus p, and a security parameter λ, we choose a ring modulus q and a ring degree
n which is a power of 2. We also fix the Gaussian distributions χerr = χerr(λ) and χkey = χkey(λ)
using the same security parameter. We compute the public key h = 2gf−1 and the secret key
f = 2f ′ + 1, where g, f ′ are sampled from χkey.

– Encrypt: The encryption function from NTRU, Enc(m) = hs + pe + m where m ∈ [0, p − 1],
is used with a difference in the ciphertext structure. We must first define an operation called
BitDecomp that splits a ciphertext polynomial c(x), into ` binary polynomials and we show it
as follows:

BitDecomp(c(x)) = 〈c̃`−1(x), · · · , c̃1(x), c̃0(x)〉
= c̃,

and given ` c̃i(x)s, computing c(x) is called the inverse bit decomposition, BitDecomp−1.

BitDecomp−1(c̃) =

`−1∑
i=0

2i · c̃i(x)

= c(x).

In this scheme we have a vector of NTRU encryptions, as our ciphertext of a single encrypted
message µ. The length of the ciphertext vector is ` = log q and we start by placing an encryption
of zero in every element of this vector.

c = 〈Enc`−1(0),Enc`−2(0), . . . ,Enc0(0)〉
= 〈c`−1, c`−2, . . . , c0〉 ,

where ci = Enci(0) = hsi + pei. By taking the transpose of c, we first place each encryption of
zero in a single row and then using bit decomposition over each row, we build an `× ` matrix
c = BitDecomp(c>).

Finally, using this matrix, we encrypt the message µ by computing,

C = Flatten(I` · µ+ c)

where I` is the identity matrix of order `, Flatten is the special technique from [18] which is an
inverse bit decomposition, followed by a bit decomposition operation:

Flatten(c̃) = BitDecomp(BitDecomp−1)(c̃).

– Decrypt: To decrypt a ciphertext, we take the first row of the matrix, which is the vector c̃0,
and apply BitDecomp−1 to form an NTRU ciphertext BitDecomp−1(c̃0) = c0. Once we compute
the NTRU ciphertext, we apply the decryption method from the NTRU scheme as bc0fe mod p
and retrieve the message µ.

– Eval: The homomorphic XOR and AND operations are matrix addition and multiplication
operations, followed by a Flatten operation as below.

C ′ = Flatten(C + C̃) , C ′ = Flatten(C · C̃).

4

2.2 Encoding Large Integers

Similar to the approach used in [20], we will use a small polynomial for our plaintext modulus.
For this method, we set the plaintext parameter p = (x− 2). Whenever we want to encrypt a
k-bit (integer) message α, we write α =

∑k−1
i=0 αi2

i and place its bit decomposition in a plaintext

polynomial µ(x) =
∑k−1

i=0 αix
i which is then encrypted. Upon decryption, α can be retrieved by

simply evaluating2 µ(x) at x = 2. Note that, provided the ring modulus exceeds M , this provides for
carry-free addition of M ciphertexts; i.e., if αh =

∑k−1
i=0 αh,i2

i is encoded as µh(x) =
∑k−1

i=0 αh,ix
i,

then the polynomial ν(x) =
∑M

h=1 µh(x) satisfies ν(2) =
∑

h αh.

3 Encrypted Web Search

In this section, we will define a privacy-preserving web search engine that evaluates encrypted
search queries.

To fully execute a typical web search, a server carries out four fundamental tasks: web crawling,
indexing, ranking and retrieval. For an encrypted web search engine, the first three tasks are
unchanged as these do not involve encryption; it is only the task of retrieval in response to an
encrypted query from the user that we need to address here. Modern search engines have become
quite sophisticated, accounting for spelling errors, synonyms or word meanings, sometimes applying
ranking after retrieval. But this is beyond the scope of the present work: we deal only with exact
matches here. Thus we assume that pre-processing on the server side provides us with a rank-ordered
output list of URLs attached to each keyword.

In our construction, we have two parties: a user U who submits the (encrypted) search query and
a server S who is the owner of the database and the entity that performs the retrieval look up. Server
S has a table consisting of the dictionary words and their corresponding rank-ordered search results.
In a regular search engine, S has to know the user keyword κ in order to perform the look up. In
order to be able to process encrypted keywords, we convert this standard comparison/aggregation
model into a homomorphic circuit so that it can be evaluated using encrypted input(s) and it can
output encrypted results.

In a simple scenario, when U submits a query, the input keyword κ is first encrypted on the
client side under client’s own encryption key, then the ciphertext(s) are sent to the server and the
server performs the retrieval step obliviously using homomorphic circuits over the encrypted user
input and the server’s own database which is in cleartext form. For instance, in order to search
for the keyword “otomycosis”, U encrypts κ = “otomycosis” using his own encryption key and
sends the encrypted data3 JotomycosisK to the server. S then evaluates the homomorphic circuit
using only the encrypted input(s) and the index table it owns. During the homomorphic evaluation,
all intermediate results will still be encrypted under the client’s encryption key. After the circuit
evaluation, S returns the corresponding output ciphertext(s) to U . Finally, U decrypts the resulting
ciphertext(s) using its own decryption key and gets the matched query results (if any). Note that
user-specific filtering, ranking and formatting of results can then be performed on the client side
working with plaintexts obviating the need to share certain user preferences with an untrusted
server.

2 Note that this is same as computing µ mod p and in case of a multiplication, as long as the resulting polynomial
has a degree less than n = n(λ), there will be no overflow.

3 Throughout this paper, we will use JxK to denote an encrpytion of x.

5

In reality, there are around 60 trillion web pages on the web4 and the number of pages indexed
by Google is around 47 billion5. However, this number can be much smaller for a custom search
engine that is designed for a specific target group of clients, for example a medical search engine
would only index the health care related pages. Another example can be an internal search engine
for a company that only crawls the subnet of that company. Hence, in practice the indexed pages
may contain a small subset of the overall web, especially for a proof-of-concept design. We denote
the set of all indexed URLs under consideration by L and denote the size of L by T . We will use a
short URL representation where each element u ∈ L is a dlog T e bit integer. In case of a universal
search engine such as Google, this number can be as high as 36 bits. This forces us to make a
sacrifice by placing an upper limit t on the number of “hits” for any given keyword; that is, we
assume that our Search Engine Results Page (SERP) contains only the t top-ranked URLs for each
simple query. This is obviously quite a bit simpler than modern search engines. However, since our
outputs will be encrypted under an FHE scheme, our plaintext space -total number of bits that we
can decrypt at the end of homomorphic computations- is limited due to chosen FHE parameters.
Therefore the number of output URLs t depends on several factors like plaintext space, bit-size of
a single URL and the number of search keywords and the details of this relation will be given in
Section 4.3.

The other component of the database is the keyword list. The Oxford English Dictionary in-
cludes over a half million English words whereas a target-oriented vocabulary can have fewer number
of items, for example Stedman’s medical dictionary has around a hundred thousand medical terms.
Thus, the size of the keyword list changes according to the search engine functionality. To accommo-
date a realistic scenario where the database can be fairly large, we choose N as one million, which
is our bound on the number of entries in the lookup table. We will make use of a local dictionary to
encode each keyword κ as a 20-bit integer (logN) using their row index in the table and reserving
index 0 for the keywords not found in the dictionary. These parameters determining the number of
possible input/output values to be transferred between the server and the client have an effect on
both the circuit size and the bandwidth, thus they have significant bearing on the runtime of the
application. We will design our circuits for generic values of these parameters and return to specific
values only later, in Section 5.3, where we observe their effect on bandwidth and execution time.

4 Our Construction

In this section, we will construct a homomorphic circuit to provide our solution to the encrypted
search problem. First we will have a look at well-known search algorithms and where they stand
when used in the encrypted domain. Then, we will separate our design into two steps and analyze
them in detail.

4.1 Associative Array and Search Algorithms

The dictionary we defined in Section 3 consists of a pair of objects — a key from the alphabetically
sorted keyword list; and a list of values, each from the URL list — in each row. The association
between the two objects will be referred to as binding. Whenever we want to find the value which
is bound to a given keyword, we will apply an operation called Aggregation. This Aggregation

4 https://www.google.com/insidesearch/howsearchworks/thestory/
5 http://www.worldwidewebsize.com/

6

operation requires a Comparison operation to find the keyword location in the array. To this end,
there are a number of search algorithms that we can use such as serial search, binary search and
search by hashing. From these three serial search and hash methods have a worst case complexity
of Θ(N) whereas binary search has Θ(log(N)). But logarithmic complexity for binary search is not
achievable in a blind search. Since homomorphic execution requires the method to explore all paths
regardless of outcome, even the binary search has linear complexity in this setting.

4.2 The Construction for Comparison

In encrypted search schemes, expensive computations and massive user-server bandwidth require-
ments remain as serious obstacles to achieving real-time FHE-based applications. In this section, we
present a homomorphic construction that can handle practical scenarios. We start with a primitive
scheme with low circuit depth and then provide optimizations and propose a lightweight algorithm,
to push our design closer to a real-life application. This improvement comes with a price: the more
we decrease bandwidth, the deeper the circuit required.

The first step of the blind search is encrypting the user input κ. Hence the first decision to
make is about the representation of the keywords. As the keywords are arbitrary length strings and
we will be working in an homomorphic setting, binary representation seems like a natural choice.
But binary representation of a string would leak information about its length. And particularly too
short or too long keywords can be easier to guess. The second option is to encrypt the string as
a word by setting a large plaintext domain. This requires a word-wise homomorphic comparison
method which is possible, but costly. Lastly, we can use the index w of the input keyword in the
dictionary. We consider the following four algorithms for encrypted keyword search. In the following
algorithms, all w are logN bits, where N is the dictionary size.

– Standard Comparison Algorithm. In this method, the bits of the index w are encrypted.
Using an equality check circuit

∏logN
j=1 (wj ⊕ ij ⊕ 1), we can compare the input to every single

possible index value i = 1, · · · , N with bits i1i2 · · · . The bandwidth of this approach is equal
to the number of bits of the index w, hence it is bounded by s = logN . The number of
multiplications will be s−1 for each i, thus in total there are N(s−1) ciphertext multiplications
in this method.

– Kushilevitz-Ostrovsky (KO) Algorithm. In this case the input index w is divided into
two parts, w = (w1, w2) where w = w1

√
N + w2 and both w1 and w2 are one-hot encoded

using the above approach. This reduces the bandwidth to 2log(N)/2+1 = 2
√
N , and the depth

becomes 1. This method can be applied recursively on the new index values w1, w2 and we can
have partitions into four subwords w = (w1, w2, w3, w4) which would reduce the bandwidth to
4N1/4 and increase the depth to 2. If we partition into k pieces, we end up with a bandwidth
of kN1/k.In the case of multiplications, we are not able to set up a regular multiplication tree
which is optimized for KO constructions because of the limitations of the F-NTRU scheme. In
order to compute the comparison, we perform k-dimensional multiplication in a serial manner.
First, we multiply along two axes, contributing N1/k · N1/k multiplications. Next, the results
are multiplied with values along a third axis which results in N1/k ·N2/k multiplications. After
k − 1 iterations, the total number of multiplications is N1/k

∑k−1
i=1 N

i/k.

– Hybrid Algorithm. We will divide the input index w into two parts w = (w1, w2) where
w = w1N/2

s+w2, i.e. w1 is the first s bits of the index. We will perform the standard comparison
on the first part w1 of length s and encode the second part w2 of length logN − s using the KO

7

Table 1: Comparison of bandwidth requirements and number of multiplications for different Com-
parison algorithms

Algorithms Bandwidth Multiplications

Standard Comparison logN N(logN − 1)

KO Construction kN1/k ∑k−1
i=1 N

i+1
k

Hybrid Method s+ k(N/2s)1/k 2s(s− 1) +
∑k−1

i=1 (N/2s)
i+1
k +N

algorithm. Then, the bandwidth of scheme is summarized as s+ k(N/2s)1/k, where s is coming
from the first part and the rest is coming from the KO algorithm. The number of multiplications

are 2s(s− 1) and
∑k−1

i=1 (N/2s)
i+1
k for the first and second parts, respectively. Since we need to

multiply the results of first and seconds parts with each other to form the decisions, the total

number of multiplications results in 2s(s− 1) +
∑k−1

i=1 (N/2s)
i+1
k +N .

The overall bandwidth and multiplicative complexity comparison is given in Table 1. We quickly
observe that the optimal choice of encoding depends heavily on the properties of the FHE scheme
in use.

4.3 Construction for Aggregation

After the Comparison step is completed for a user input, we have the intermediate values which
we call the decision vector and denote by d. This vector has N encrypted bit values; d[i] = J1K if
i = w and d[i] = J0K otherwise. After constructing our circuits, we will see that we do not need the
Comparison results all at once, but instead we can have one result at a time. This means that we
do not have to store N encrypted values, but we will compute the d[i] values in an iterative way.

The second step of our application is the actual Aggregation step, where we will compute our
final output(s). Note that for a more practical engine, we consider the multi keyword search (e.g., a
conjunction of m terms). This means that whenever there are two or more input keywords, we will
perform the Comparison multiple times. As a result, we will have one decision vector corresponding
to each input keyword. For an m-keyword search, we will have decision vectors: d1,d2, . . . ,dm

corresponding to the inputs w1, w2, . . . , wm.

The size of each URL list Li that is bound to the ith keyword in the database is |Li| = ti, for
i ∈ [1, N]. Since the server is oblivious to the input value(s) w, it is also oblivious to the list size
tw. This means that the output size |Lout| will be determined by the longest list in the database,
given by t = max {ti|i ∈ [1, N]}. In the next part of this section, we will describe the algorithm
for a single keyword query (i.e., m = 1). In the following part, we will give the details for our
multi-keyword aggregation problem (m > 1).

Single Keyword First let us assume that we have a single input keyword with dictionary index
w. We have the URL list6 Li = [ui,1, ui,2, . . . , ui,t] for each keyword index i. After computing the

6 In order to maintain uniformity, we define ui,j = 0 for ti < j ≤ t.

8

decision vector d, we can find the final outputs by simply computing

L =
N∑
i=1

d[i]Li

=

[
N∑
i=1

d[i]ui,1,
N∑
i=1

d[i]ui,2, . . . ,
N∑
i=1

d[i]ui,t

]
= [Juw,1K, Juw,2K, . . . , Juw,tK] .

If each URL index ui,j is dlog T e bits in length as we defined in Section 3, at the end the server
will have tdlog T e bits to return to the client. By using the large integer encoding technique from
Section 2.2, we can decode a single ciphertext and retrieve n bits where n is the FHE ring degree.
This means that we can have dtdlog T e/ne output ciphertexts or alternatively, if we limit the t value
such that the inequality tdlog T e ≤ n holds, then all outputs can be encoded into a single n degree
polynomial. It means that the server will send back only a single ciphertext.

A further economy can be found by noting that we do not need to compute all d[i] values in
advance. Instead, in the first iteration we can compute d[1] and after initializing L to d[1]L1, we
can then compute d[2] and update L = L + d[2]L2. Iterating in this way, we only need to store
t+ 1 encrypted polynomial coefficients at a time.

For reasons that will become clear shortly, we propose an alternative way to encode the list
Li = [ui,1, ui,2, . . . , ui,t] as a polynomial

`i(x) =

t∏
j=1

(ui,j − x).

After computing the decision vector d, we can find the final outputs by simply computing

`(x) =
N∑
i=1

d[i]`i(x).

If each URL index ui,j is again dlog T e bits in length, hence the coefficient of xh in `i(x) is about
dlog T e(t− h) bits. Total number of bits to be returned to the user will be dlog T e

∑t
h=0(t− h) =

(t2+t)
2 dlog T e which is more compared to the first approach where we only have tdlog T e bits. Hence,

we will use this polynomial representation of the URL lists for multiple keyword construction in
the next section.

Multiple Keywords We discuss here only conjunctive queries; while the product of two poly-
nomials gives a natural solution to the disjunction of keywords (union of URL lists), this changes
polynomial degrees and, since disjunctive queries are uncommon, we choose not to address this
added level of complexity here. In Aggregation, if a user wants to find all URL values that are
bound to multiple keys, we are faced with a set intersection problem [21]. Suppose, for simplicity
the query takes the form w∧w′ and the above procedures generate corresponding polynomials `w(x)
and `w′(x), respectively. The roots of `w(x) (resp., `w′(x)) encode the top-ranked URLs for keyword
w (resp., w′) so the conjunction would naturally correspond to the gcd of the two polynomials. But

9

this is difficult to compute homomorphically. So, as previously noted by [21], we can instead take
a random polynomial in the ideal generated by `w(x) and `w′(x). Clearly, if d = gcd(`w, `w′) and

f(x) = g(x)`w(x) + g′(x)`w′(x),

then d(x) divides f(x) and the probability that f(x) has any additional “spurious” roots is negligible
assuming reasonable parameters. In practice, it may even suffice to take f(x) = `w(x)+ `w′(x). But
we prefer to take a more careful approach.

We can, in fact, reduce this probability of spurious roots to zero with careful choice of coefficients.
All valid URLs are known to lie in the range [1, T]. If r and r′ are primes just a bit larger than T ,
then it is impossible for

f(x) = r`w(x)− r′`w′(x)

to have any root in range [1, T] which is not a common root of `w and `w′ . Indeed, if f(u) = 0, then

r`w(u) = r′`w′(u).

But `w(x) =
∏

(uj − x) for some roots uj all lying in [1, T]. So `w(u) =
∏

(uj − u) has no prime
factor exceeding T . Therefore f(u) = 0 for u ∈ [1, T] forces both `w(u) = 0 and `w′(u) = 0. This
naturally generalizes to a conjunction of m keywords, as we outline below. But we point out here
that, with m = 2 being the most common conjunction, we see some economy by choosing r and r′

close together — twin primes, for example, with r = r′ + 2 — and noting

f(x) = r`w(x)− r′`w′(x)

= r′ [`w(x)− `w′(x)] + 2`w(x)

sometimes allows us to control growth of coefficients.

Lemma 1. Let w1, . . . , wm be m distinct keywords with corresponding polynomials `1(x), . . . , `m(x)
where the roots of `i(x) encode the top-ranked URLs bound to keyword wi. Let s1, . . . , sm be m
distinct primes with si > T for all i and, for 1 ≤ i ≤ m, define ri = 1

si

∏m
h=1 sh. Then, for

f(x) =
∑m

i=1 ri`i(x), gcd
(
f(x),

∏T
u=1(x− u)

)
= gcd (`1(x), . . . , `m(x)).

Proof. If u ∈ [1, T] and f(u) = 0, then reduction modulo si gives `i(u) = 0 (mod si). But `i(u)
has no large prime factors, so `i(u) = 0 and, since this holds for all i, u is a common root. �

The second problem we must deal with is the representation of the polynomials. Assuming
the polynomials `i have degree t, we have ‖`i‖∞ = t log T . Therefore the large integer encoding
technique from Section 2.2 turns these (t log T)-bit numbers into polynomials of degree t log T with
0/1 coefficients. The computations we must perform on the `i are polynomial additions and constant
multiplications; so we can perform the same operations over each coefficient separately, send the
results to the user without further processing, and the user can reconstruct the polynomial encoding
the conjunction of m keywords. If we write

`i(x) =

t∑
k=0

αikx
k,

then constant multiplication by integer b is computed

b`i(x) =

t∑
j=0

bαikx
k

10

and similarly, the sum of m polynomials is computed coefficient by coefficient:

m∑
i=1

`i(x) =
t∑

j=0

(
m∑
i=1

αik

)
xk.

We have (t log T)-bit coefficients and the constant multiplication with the integers ri in the above
lemma will add (m − 1) (log T + 1) bits to the end result, so we will have approximately (m +
t) log T bit values to be encoded/decoded. If we have an FHE ring of degree n, we can afford
t < bn/ log T c −m.

We have `i(x) =
∑t

k=0 αikx
k and it will be convenient to likewise write `wj (x) =

∑t
k=0 α(wj)kx

k.
These are stored as lists of coefficients and when the server processes a decision vector dj encrypting

the one-hot encoding of the jth keyword of the query, it may compute
∑N

i=1 dj [i]`i(x) one coefficient

at a time. But we can do better. The user needs access to the polynomial `(x) =
∑M

j=1 rj`wj (x)

and, if we write `(x) =
∑t

k=0 βkx
k, we have

J`(x)K =
m∑
j=1

rjJ`wj (x)K

=

m∑
j=1

rj

N∑
i=1

dj [i]J`i(x)K

so that,

JβkK =

m∑
j=1

rj

N∑
i=1

dj [i]JαikK .

This list {JβkK}tk=0 is passed to the user who, upon decryption, recovers all βk, reconstructs
`(x) and applies standard root-finding techniques to obtain the desired list of URLs arising from
the conjunctive query. Note that the constant term of `(x) has no large prime factors, so its roots
lying within [1, T] can be recovered rather efficiently by standard techniques.

4.4 Noise Analysis

We take same approach as authors did in [17], since we are using the F-NTRU scheme with a small
modification. Our scheme changes only the message space from 2 to x− 2. Using ||g||∞ = ||f ′||∞ =
Bkey, ||s||∞ = ||e||∞ = Berr, a fresh ciphertext has the following noise bound:

||y(0)f ||∞ ≤ 4nBkeyBerr + 4nBerr(4Bkey + 1)

≤ 4nBerr(5Bkey + 1).

At each multiplication, using the single sided multiplication approach as in [17], the noise bound
is equal to

11

Table 2: The values of index i in noise bound Bi to compute decisions for each entry in Comparison
algorithms.

Algorithms # Multiplications (i)

Standard Comparison s− 1
KO Construction k − 1
Hybrid Method s+ k − 1

Bi = ||fyi||∞ ≤ [4n2BkeyBerr(2
w − 1)`

+ 4n2Berr(4Bkey + 1)(2w − 1)`]

+ [4nBerrBkey + 4nBerr(4Bkey + 1)]

+ [Bi−1] + [(4Bkey + 1)]

The number of multiplications for the decision depends on the Comparison algorithm. Thus,
it changes the required bitsize for each algorithm. In Table 2 we give the maximum length of
multiplicative chain to compute a decision for an entry, i.e. it is the index i used in noise bound Bi.

In addition to the base noise which is occurring from the decisions, we have additional noise
occurring from the latter operations. We can list the additional noise occurrences as follows

– multiplication of decision with the message (encoded as binary polynomial): log log n
– summation of all the entries: logN
– multiplication with prime number to eliminate spurious roots (encoded as binary polynomial):

log log r
– number of search results which we add together (number of keywords): logm

These additional noise should be added to the base noise bound so that the modulus is large enough
to support the operations.

5 Implementation and Performance

Either single-keyword or multi-keyword search requires a tremendous amount of computation power.
Taking advantage of previous research in [22–24], we believe an implementation on CUDA-enabled
GPUs offers high efficiency. We compared our proposed hybrid algorithm to a recursive KO algo-
rithm in terms of bandwidth requirements and computation time. All the timing results in this
paper are measured on the machine described in Table 3.

5.1 Polynomial Multiplications

During the evaluation steps, the performance of ciphertext multiplications dominates the total ex-
ecution time. Our implementation focuses on optimizing a ciphertext multiplication (recall Section
2.1) which is the product of a vector of polynomials and a matrix of polynomials: R1×l

2w ×R
l×l
2w . Note

that we perform ciphertext multiplications in a chain and keep only the last row of the left-hand
multiplier all the time, which explains why one of the multiplier is in vector form.

12

Table 3: Testing Environment
Item Specification

CPU Intel Core i7-3770K
CPU Freq. 3.50 GHz
System Memory 32 GB DDR3
GPU NVIDIA GeForce Titan X
GPU Core Freq. 1.20 GHz
GPU Memory 12 GB
of CUDA Cores 3072

Starting with polynomial multiplications, we compare the efficiency of Karatsuba algorithm
and the Number-theoretic transform (NTT) based algorithm proposed in [22]. We ignore overhead
caused by additions or binary operations such as shifting/or/and/xor to draw a simpler yet fair
comparison. Assume polynomials have degree slightly smaller than 2048. We need to perform 4096-
sample NTT conversions.

In [22] a special finite field FP where P = 0xffffffff00000001 is chosen. Also the NTT
or inverse-NTT (INTT) conversions of 4096 samples can be factorized into smaller size (e.x. 64
sample) following the CooleyTukey FFT algorithm [25]. Conversions of no larger than 64 samples
are implemented with shifting, addition and fast modular reduction over P , which takes advantage of
properties of P . The NTT-based algorithm only requires 4096 integer multiplications per conversion
when multiplying twiddle factors. One polynomial multiplication requires two NTT conversion, a
coefficient-wise multiplication of two NTT domain vectors (4096 integer multiplications) and one
INTT conversion, which add up to a total of 16384 integer multiplications. However, the Karatsuba
algorithm that requires 3log 2048 = 177147 multiplications would be much slower.

Plus, the NTT-based algorithm is highly parallelizable hence more suitable for a GPU imple-
mentation. In conclusion, the NTT-based algorithm outcomes the Karatsuba algorithm on a GPU.
Following the ideas in [22], we developed 4096-point NTT/INTT conversions for a GPU. Each
NTT conversion takes 0.75 µs and each INTT conversion takes 1.45 µs. Every ciphertext multi-
plication contains l2 + l NTT converions and l INTT conversions. The overhead of multiplications
and additions in NTT domain is negligible.

5.2 Select Ring for Flatten

Ciphertext multiplications, although taking 16-bit norm polynomials as input, produce polynomials
with ln times larger norm (less than 64-bit) as output. A Flatten operation is expected to reformat
the ciphertext coefficients back to 16-bit. The Flatten includes (e.x. 64-bit) integer additions with
shifting and reductions modulo q. We decide to choose q as a power of 2 and polynomial degree
n as a prime, which is used in the classic NTRU cryptosystem. The benefit is obvious: modulo
reduction over a power of 2 is lightning fast.

A ciphertext multiplication takes l+1 polynomials in Rq as input. The BitDecomp takes no time.
Then the multiplication algorithm produces l polynomials with 64-bit coefficients. BitDecomp−1()
or Flatten() = BitDecomp(BitDecomp−1()) is achieved with a sequence of 16-bit additions with
carries, which adds 2.66 µs.

13

(a) Bandwidth (base 2 logorithm) (b) Latency (number of multiplications)

Fig. 1: A comparison of hybrid and KO algorithms in bandwidth and latency with respect to
parameter choices. The database has N = 220 entries. Standard comparison is applied on the first
s bits of input index. A KO algorithm with k iterations is applied on the rest. KO algorithm is
adopted when s = 0.

5.3 A Comparison of Algorithms in Performance

In our experiments, we first fix the dictionary size N = 220 and the FHE parameters according to
the noise analysis given in Section 4.4 and the security parameter of F− NTRU scheme. We use the
ring Zq/ (xn + 1) where the coefficient modulus is q = 2192 and the degree is n = 2039. Following
the security analysis from [17], the Hermite factor for the chosen values is 1.00525 which provides
128-bit security.

Based on previous analysis of bandwidth requirements and computation time, Fig. 1 illustrates
a comparison of several algorithms with selected yet typical parameters. The hybrid algorithm
becomes a KO construction when s = 0. And when k = 2, it is a basic (non-recursive) KO con-
struction. With the help of those figures, we may find optimal parameters that has low bandwidth
and latency.

As shown in Table 1, a standard comparison algorithm has minimum bandwidth requirement.
The same fact is reveal in Fig. 1a: a hybrid algorithm, when applying standard comparison on more
bits, i.e. when choosing a larger s, has a lower bandwidth requirement. Then as we apply more
iterations of KO, i.e. as k increases from 2, bandwidth requirement drops significantly. The value
k, although affects latency of KO, has insignificant influence on hybrid schemes. Hence, a optimal
hybrid scheme with a certain s would choose k with minimal bandwidth.

The number of multiplications in a hybrid method is expressed as a formula in Table 1. The
fact that one part of the formula involves s while another part involves k makes Fig. 1b more

14

Table 4: A comparison of hybrid and KO algorithms with different parameters. Database has
N = 220 entries.The bandwidth is calculated for 576 KB input ciphertexts and 48 KB output
ciphertext. The first column gives the number of input keywords in each scenario. Time includes
the latencies of Comparison and Aggregation, and is normalized per database entry.

Algorithm s k
Bandwidth

Time (µs)
Input Output

1 KO 0 2 1,152 MB 48 KB 304
1 KO 0 9 24 MB 48 KB 341
1 Hybrid 8 8 17 MB 48 KB 168
1 Hybrid 12 5 15 MB 48 KB 173

2 KO 0 9 48 MB 2.40 MB 3,544
2 Hybrid 8 8 34 MB 2.40 MB 3,198
2 Hybrid 12 5 30 MB 2.40 MB 3,207

3 Hybrid 8 8 51 MB 2.35 MB 4,722

complicated (rather than increasing/decreasing along with s). We can see that when s = 8, the
latency is lower than all other cases. And choosing s = 4, 8, 12 does not gives a critical difference
in latency. However, when comparing s = 4, 8, 12 in Fig. 1a, one may easily notice the remarkable
difference in bandwidth.

The hybrid methods outcome the (recursive) KO construction on bandwidth requirements and
computation time. Within the hybrid methods, if the priority is to reduce bandwidth requirement,
select s = 12 and k = 5; if the priority is efficiency, select s = 8 and k = 8. These two parameter
sets are adopted in Table 4. For single-keyword search, the hybrid scheme with s = k = 8 requires
37.7% less bandwidth and costs half the time, comparing to those of the KO construction with
k = 9 iterations. However, for multi-keyword scenarios, the Aggregation weights most of the latency.
Therefore the advantage of hybrid methods is clear.

Finally, the size of the output ciphertexts depends on the number of URLs that we return t
in the multikeyword scenario with respect to the inequality from Section 4.3, t < bn/ log T c −m
where n is 2039. We set dlog T e = 40 so that the indexed URL set L can have up to a billion
URLs. Therefore for 2 keywords, we afford sending back at most t = 49 URLs and for 3 keywords,
t = 48 at most. In each case the server sends back t + 1 encrypted coefficients of the resulting
t-degree URL polynomial and each coefficient is represented in a separate ciphertext. In order to
increase t, we have to choose a larger degree for the FHE setup, which would end up increasing
both the bandwidth and the computation time. In the single keyword scenario, we choose to limit
the number of URL outputs t = 50, so that the result fits into a single ciphertext following the
relation tdlog T e ≤ n from Section 4.3. Note that in this case, if we want to increase the number
of output URLs t, we can do so by increasing the bandwidth and sending back ñ ciphertexts each
carrying n bits, as long as t ≤ ñn

dlog T e holds.

15

References

1. C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford University, 2009.
2. ——, “Fully homomorphic encryption using ideal lattices,” in STOC, 2009, pp. 169–178.
3. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the integers,” in

EUROCRYPT, ser. Lecture Notes in Computer Science, H. Gilbert, Ed., vol. 6110. Springer, 2010, pp. 24–43.
4. Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from ring-lwe and security for key depen-

dent messages,” in Advances in Cryptology–CRYPTO 2011. Springer, 2011, pp. 505–524.
5. ——, “Efficient fully homomorphic encryption from (standard) lwe,” SIAM Journal on Computing, vol. 43, no. 2,

pp. 831–871, 2014.
6. C. Gentry and S. Halevi, “Fully homomorphic encryption without squashing using depth-3 arithmetic circuits,”

IACR Cryptology ePrint Archive, vol. 2011, p. 279, 2011.
7. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic encryption without bootstrapping,” Elec-

tronic Colloquium on Computational Complexity (ECCC), vol. 18, p. 111, 2011.
8. C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES circuit,” IACR Cryptology ePrint

Archive, vol. 2012, 2012.
9. S. Halevi and V. Shoup, “HElib, homomorphic encryption library,” Internet Source, 2012.

10. A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption,” in STOC, 2012.

11. J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key cryptosystem,” in Algorithmic
number theory. Springer, 1998, pp. 267–288.

12. D. Stehlé and R. Steinfeld, “Making NTRU as secure as worst-case problems over ideal lattices,” in Advances in
Cryptology–EUROCRYPT 2011. Springer, 2011, pp. 27–47.

13. Y. Doröz, Y. Hu, and B. Sunar, “Homomorphic AES evaluation using NTRU,” IACR Cryptology ePrint Archive,
Report 2014/039, vol. 2014, p. 39, 2014.

14. Y. Doröz, Y. Hu, and B. Sunar, “Homomorphic AES evaluation using the modified LTV scheme,” Designs,
codes and cryptography, Springer Verlag, 2015. [Online]. Available: https://eprint.iacr.org/2014/039.pdf

15. C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES circuit (updated implementation),”
2015.

16. L. Ducas and D. Micciancio, “Fhew: Bootstrapping homomorphic encryption in less than a second,” in Advances
in Cryptology–EUROCRYPT 2015. Springer, 2015, pp. 617–640.

17. Y. Doröz and B. Sunar, “Flattening ntru for evaluation key free homomorphic encryption,” Cryptology ePrint
Archive, Report 2016/315, 2016, http://eprint.iacr.org/2016/315.

18. C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based,” in CRYPTO. Springer, 2013, pp. 75–92.

19. D. Stehlé and R. Steinfeld, “Faster fully homomorphic encryption,” Cryptology ePrint Archive 2010/299, 2010.
20. K. Lauter, A. Lopez-Alt, and M. Naehrig, “Private computation on encrypted genomic data,” Tech. Rep. MSR-

TR-2014-93, June 2014. [Online]. Available: http://research.microsoft.com/apps/pubs/default.aspx?id=219979
21. Privacy-Preserving Set Operations, 2005. [Online]. Available: http://dx.doi.org/10.1007/11535218 15
22. W. Dai, Y. Doröz, and B. Sunar, “Accelerating NTRU based homomorphic encryption using GPUs,” 2014 IEEE

High Performance Extreme Computing Conference (HPEC’14), 2014.
23. ——, “Accelerating SWHE based PIRs using GPUs,” in Workshop on Applied Homomorphic Computing – WAHC

2015, 2015.
24. W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator library,” 2015.
25. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex fourier series,” Math.

Comput, vol. 19, no. 90, pp. 297–301, 1965.

Acknowledgment

Funding for this research was in part provided by the US National Science Foundation CNS Award
#1319130.

16

