
Constant-Round Maliciously Secure
Two-Party Computation in the RAM Model ∗

Carmit Hazay Avishay Yanai

Abstract

The random-access memory (RAM) model of computation allows program constant-time memory
lookup and is more applicable in practice today, covering many important algorithms. This is in contrast
to the classic setting of secure 2-party computation (2PC) that mostly follows the approach for which the
desired functionality must be represented as a boolean circuit. In this work we design the first constant
round maliciously secure two-party protocol in the RAM model. Our starting point is the garbled RAM
construction of Gentry et al. [GHL+14] that readily induces a constant round semi-honest two-party
protocol for any RAM program assuming identity-based encryption schemes. We show how to enhance
the security of their construction into the malicious setting while facing several challenges that stem due
to handling the data memory. Next, we show how to apply our techniques to a more recent garbled RAM
construction by Garg et al. [GLOS15] that is based on one-way functions.

∗Supported by the European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS) and by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Ministers Office. First author’s research partially supported by a grant from the Israel Ministry of Science and Technology (grant
No. 3-10883).

1

Contents

1 Introduction 3
1.1 Our Results . 4

2 Preliminaries 7
2.1 The RAM Model of Computation . 7

2.1.1 Predictably Time Writes . 8
2.2 Oblivious RAM (ORAM) . 8

2.2.1 Realization of the Modified Definition . 9
2.3 Secure Computation in the RAM Model . 10

2.3.1 Full Security . 10
2.3.2 The UMA Model . 11
2.3.3 A Transforation From UMA to Full Security . 12
2.3.4 On the Capabilities of Semi-Honest in a Garbled RAM and ORAM Schemes 14

2.4 Timed IBE [GHL+14] . 14
2.5 Garbled RAM Based on IBE [GHL+14] . 15
2.6 Garbled Circuits . 16

3 Building Blocks 19
3.1 Enhanced CPU-Step Function . 20
3.2 Initialization Circuit . 20
3.3 Batch Single-Choice Cut-And-Choose OT . 20

4 The Complete Protocol 20
4.1 2PC in the UMA Model . 23

5 Proof of Theorem 4.1 26
5.1 The Case S is Corrupted . 27
5.2 The Case R is Corrupted . 28

6 Removing the IBE Assumption 32
6.1 GRAM Based on OWF [GLOS15] . 32

6.1.1 Garbling Data . 33
6.1.2 Garbling Program . 33
6.1.3 Program Execution Demonstration . 35

6.2 2PC in the Presence of Malicious Adversaries Relying on OWF 37

A Building Blocks 40
A.1 Garbled Circuits . 40
A.2 The Hybrid Model . 40
A.3 Batch Single-Choice Cut-and-Choose OT . 41
A.4 Commitment Schemes . 43

B Realizing the Garbled Circuit Definition 2.6 43

2

1 Introduction

Background on secure computation. Secure multi-party computation enables a set of parties to mutually
run a protocol that computes some function f on their private inputs, while preserving a number of security
properties. Two of the most important properties are privacy and correctness. The former implies data confi-
dentiality, namely, nothing leaks by the protocol execution but the computed output. The latter requirement
implies that the protocol enforces the integrity of the computations made by the parties, namely, honest par-
ties learn the correct output. More generally, a rigorous security definition requires that distrusting parties
with secret inputs will be able to compute a function of their inputs as if the computation is executed in an
ideal setting, where the parties send their inputs to a incorruptible trusted party that performs the computa-
tion and returns its result (also known by the ideal/real paradigm). The feasibility of secure computation has
been established by a sequence of works [Yao86, GMW87, Bea91, MR91, Can00], proving security under
this rigorous definition with respect to two adversarial models: the semi-honest model (where the adversary
follows the instructions of the protocol but tries to learn more than it should from the protocol transcript),
and the malicious model (where the adversary follows an arbitrary polynomial-time strategy).

Following these works much effort was put in order to improve the efficiency of computation with the
aim of minimizing the workload of the parties [JS07, LP07, IPS08] [IPS09, PSSW09, NO09, LP11, IKO+11,
Lin13]. These general-purpose protocols are restricted to functions represented by Boolean/arithmetic cir-
cuits. Namely, the function is first translated into a (typically Boolean) circuit and then the protocol securely
evaluates it gate-by-gate on the parties’ private inputs. This approach, however, falls short when the com-
putation involves access to a large memory since in the circuits-based approach, dynamic memory accesses,
which depend on the secret inputs, are translated into a linear scan of the memory. This translation is
required for every memory access and causes a huge blowup in the description of the circuit.

The RAM model of computation. We further note that the majority of applications encountered in prac-
tice today are more efficiently captured using random-access memory (RAM) programs that allow constant-
time memory lookup. This covers graph algorithms, such as the known Dijkstra’s shortest path algorithm,
binary search on sorted data, finding the kth-ranked element, the Gale-Shapely stable matching algorithm
and many more. This is in contrast to the sequential memory access that is supported by the architecture of
Turing machines. Generic transformations from RAM programs that run in time T generate circuits of size
(T 3 log T) which are non-scalable even for cases where the memory size is relatively small [CR72, PF79].

To address these limitations, researchers have recently started to design secure protocols directly in the
RAM model [DMN11, GKK+12, AHMR15]. The main underlying idea is to rely on Oblivious RAM
(ORAM) [Gol87, Ost90, GO96], a fundamental tool that supports dynamic memory access with poly-
logarithmic cost while preventing any leakage from the memory. To be concrete, ORAM is a technique
for hiding all the information about the memory of a RAM program. This includes both the content of the
memory as well as the access pattern to it.

In more details, a RAM program P is defined by a function that is executed in the presence of memory
D via a sequence of read and write operations, where the memory is viewed as an array of n entries (or
blocks) that are initially set to zero. More formally, a RAM program is defined by a “next instruction”
function that is executed on an input x, a current state state and data element bread (that will always be equal
to the last read element from memory D) and outputs the next instruction and an updated state. We use the
notation PD(x) to denote the execution of such a program. To avoid trivial solutions, such as fetching the
entire memory, it is required that the space used by the evaluator grows linearly with log n, |x| and the block
length. The space complexity of a RAM program on inputs x,D is the maximum number of entries used

3

by P during the course of the execution. The time complexity of a RAM program on the same inputs is the
number of instructions issued in the execution as described above.

Secure computation for RAM programs. An important application of ORAM is in gaining more effi-
cient protocols for secure computation [GKK+12, GGH+13, LO13, GHJR14] [GHL+14, KS14, LHS+14,
WHC+14, WCS15, AHMR15, GLOS15, HMR15, GLO15]. This approach is used to securely evaluate
RAM programs where the overall input sizes of the parties are large (for instance, when one of the inputs
is a database). Amongst these works, only [AHMR15] addresses general secure computation for arbitrary
RAM programs with security in the presence of malicious adversaries. The advantage of using secure pro-
tocols directly for RAM programs is that such protocols imply (amortized) complexity that can be sublinear
in the total size of the input. In particular, the overhead of these protocols grows linearly with the time-
complexity of the underlying computation on the RAM program (which may be sublinear in the input size).
This is in contrast to the overhead induced by evaluating the corresponding Boolean/arithmetic circuit of the
underlying computation (for which its size is linear in the input size).

One significant challenge in handling dynamic memory accesses is to hide the actual memory locations
being read/written from all parties. The general approach in most of these protocols is of designing protocols
that work via a sequence of ORAM instructions using traditional circuit-based secure computation phases.
More precisely, these protocols are defined using two phases: (1) initialize and setup the ORAM, a one-time
computation with cost depending on the memory size, (2) evaluate the next-instruction circuit which outputs
shares of the RAM program’s internal state, the next memory operations (read/write), the location to access,
and the data value in case of a write. This approach leads to protocols with semi-honest security whom
their round complexity depends on the ORAM running time. In [GKK+12] Gordon et al. designed the first
rigorous semi-honest secure protocols based on this approach, that achieves sublinear amortized overhead
that is asymptotically close to the running time of the underlying RAM program in an insecure environment.

As observed later by Afshar et al. [AHMR15], adapting this approach in the malicious setting is quite
challenging. Specifically, the protocol must ensure that the parties use state and memory shares that are
consistent with prior iterations, while ensuring that the running time only depends on the ORAM running
time rather than on the entire memory. They therefore consider a different approach of garbling the memory
first and then propagate the output labels of these garbling within the CPU-step circuits.

The main question left open by their work is the feasibility of constant round malicious secure compu-
tation in the RAM model. In this work we address this question in the two-party setting.

1.1 Our Results

We design the first constant round maliciously secure protocol for arbitrary RAM programs. Our starting
point is the garbled RAM construction of Gentry et al. [GHL+14], which is the analogue object of garbled
circuits [Yao82, BHR12] with respect to RAM programs. Namely, a user can garble an arbitrary RAM
program directly without converting it into a circuit first. A garbled RAM scheme can be used to garble the
data, the program and the input in a way that reveals only the evaluation outcome and nothing else. In their
work, Gentry et al. proposed two ways to fix a subtle point emerged in an earlier construction by Lu and
Ostrovsky [LO13] that requires a complex “circular” use of Yao garbled circuits and PRFs. For simplicity,
we chose to focus on their garbled RAM based on identity based encryption (IBE) schemes. We show how
to transform their IBE based protocol into a maliciously secure 2PC protocol at the cost of involving the
cut-and-choose technique. Following that, we show how to achieve the same result using the more involved

4

garbled RAM construction of Garg et al. [GLOS15] assuming only the existence of one-way-functions. We
state our main theorem below,

Theorem 1.1 (Informal). Under the standard assumptions for achieving static malicious 2PC security,
there exists a constant round protocol securely realizes any RAM program in the presence of malicious
adversaries, making only black-box use of an Oblivious RAM construction, where the size of the garbled
database is |D| ·poly(κ)1, the size of the garbled input is |x| ·O(κ) +T ·poly(κ) and the size of the garbled
program and its evaluation time is |CP

CPU| × T × poly(κ)× polylog(|D|)× s.

Where CP
CPU is a circuit that computes a CPU-step that involves reading/writing to the memory, T is

the running time of program P on input x, κ is the security parameter and s is a statistical cut-and-choose
parameter.

Challenges faced in the malicious setting and RAM programs.

1. MEMORY MANAGEMENT. Intuitively speaking, garbled RAM readily induces a two-party protocol
with semi-honest security by exchanging the garbled input using oblivious transfer (OT). The natural
approach for enhancing the security of a garbled RAM scheme into a maliciously 2PC protocol is
by using the cut-and-choose approach [LP07] where the basic underlying semi-honest protocol is
repeated s times (for some statistical parameter s), such that a subset of these instances are “opened” in
order to demonstrate correct behaviour whereas the rest of “unopened” instances are used to obtaining
the final outcome (typically by taking the majority of results). The main challenge in boosting the
security of a semi-honest secure protocol into the malicious setting, using this technique in the RAM
model, is with handling multiple instances of memory data. That is, since each semi-honest protocol
instance is executed independently, the RAM program implemented within this instance is associated
with its own instance of memory. Recalling that the size of the memory might be huge compared
to the other components in the RAM system, it is undesirable to store multiple copies of the data in
the local memory of the parties. Therefore, the first challenge we had to handle is how to work with
multiple copies of the same protocol while having access to a single memory data.

2. HANDLING CHECK/EVALUATION CIRCUITS. The second challenge concerns the cut-and-choose
proof technique as well. The original approach to garble the memory is by using encryptions com-
puted based on PRF keys that are embedded inside the garbled circuits. These keys are used to
generate a translation mapping which allows the receiver to translate between the secret keys and the
labels of the read bit in the next circuit. When employing the cut-and-choose technique, all the secret
information embedded within the circuits is exposed during the check process of that procedure which
might violate the privacy of the sender. The same difficulty arises when hardwiring the randomness
used for the encryption algorithm. A naive solution would be to let the sender choose s sets of keys,
such that each set is used within the appropriate copy of the circuit. While this solution works, it
prevents the evaluator from determining the majority of the (intermediate) results of all copies.

3. INTEGRITY AND CONSISTENCY OF MEMORY OPERATIONS. During the evaluation of program P ,
the receiver reads and writes back to the memory. In the malicious setting these operations must be
backed up with a mechanism that enforces correctness. Moreover, a corrupted evaluator should not be
able to roll back the stored memory to an earlier version. This task is very challenging in a scenario

1The size mentioned is correct when relying on the IBE assumption, while relying on the OWF assumption would incur database
size of |D| · log |D| · poly(κ).

5

where the evaluator locally stores the memory and fully controls its accesses without the sender being
able to verify whether the receiver has indeed carried out the required instructions (as that would
imply that the round complexity grows linearly with the running time of the RAM program).

Constant round 2PC in the RAM model. Towards achieving malicious security, we demonstrate how to
adapt the garbled RAM construction from [GHL+14] into the two-party setting while achieving malicious
security. Our protocol is combined of two main components. First, an initialization circuit is evaluated in
order to create all the IBE keys (or the PRF keys) that are incorporated in the latter RAM computation, based
on the joint randomness of the parties (this phase is not computed locally since we cannot rely on the sender
properly creating these keys). Next, the program P is computed via a sequence of small CPU-steps that are
implemented using a circuit that takes as input the current CPU state and a bit that was read from the last
read memory location, and outputs an updated state, the next location to read, a location to write to and a bit
to write into that location. In order to cope with the challenges regarding the cut-and-choose approach, we
must ensure that none of the secret keys nor randomness are incorporated into the circuits, but instead given
as inputs. Moreover, to avoid memory duplication, all the circuits are given the same sequence of random
strings. This ensures that the same set of secret keys/ciphertexts are created within all CPU circuits.

We note that our protocol is applicable to any garbled scheme that supports wire labels and can be
optimized using all prior optimizations. Moreover, in a variant of our construction the initialization phase
can be treated as a preprocessing phase that does not depend on the input. We further note that our abstraction
of garbled circuits takes into account authenticity [BHR12]. Meaning that, a malicious evaluator should not
be able to conclude the encoding of a string that is different than the actual output. This requirement is
crucial for the security of garbled circuits with reusable labels (namely, where the output labels are used as
input labels in another circuit), and must be addressed even in the semi-honest setting (and specifically for
garbled RAM protocols). This is because authenticity is not handled by the standard privacy requirement.
Yet, all prior garbled RAM constructions do not consider it. We stress that we do not claim that prior proofs
are incorrect, rather that the underlying garbled circuits must adhere this security requirement in addition to
privacy.

As final remark, we note that our construction employs the underlying ORAM in a black-box manner
as the parties invoke it locally. This is in contrast to alternative approaches that compute the ORAM using a
two (or multi)-party secure protocol such as in [GKK+12].

Complexity. The overhead of our protocol is dominated by the complexity induced by the garbled RAM
construction of [GHL+14] times s, where s is the cut-and-choose statistical parameter. The [GHL+14]
construction guarantees that the size/evaluation time of the garbled program is |CP

CPU| × T × poly(κ) ×
polylog(n). Therefore the multiplicative overhead of our protocol is poly(κ)× polylog(n)× s.

Reusable/persistent data. Reusable/persistent data means that the garbled memory data can be reused
across multiple program executions. That is, all memory updates are persist for future program executions
and cannot be rolled back by the malicious evaluator. This feature is very important as it allows to execute a
sequence of programs without requiring to initialize the data for every execution, implying that the running
time is only proportional to the program running time (in a non-secured environment). The [GHL+14]
garbled RAM allows to garble any sequence of programs (nevertheless, this set must be given to the garbler
in advance and cannot be adaptively chosen). We show that our scheme preserves this property in the
presence of malicious attacks as well.

6

Concurrent work. In a concurrent and independent work by Garg, Gupta, Miao and Pandey [GGMP16],
the authors demonstrate constant-round multi-party computation with the advantage of achieving a construc-
tion that is black-box in the one-way function. Their work is based on the black-box GRAM construction
of [GLO15] and the constant-round MPC construction of [BMR90]. Their semi-honest secure protocol
achieves persistent data, whereas their maliciously secure protocol achieves the weaker notion of selectively
choosing the inputs in advance, as we do. The core technique of pulling secrets out of the programs and into
the inputs is common to both our and their work. Whereas our construction achieves two features which
[GLO15] does not. First, we use the ORAM in a black-box way since the parties can locally compute it.
Second, only one party locally stores the memory, rather than both parties string shares of the memory. In
another paper [Mia], Miao demonstrates how to achieve persistent data in the two-party setting assuming a
random oracle and using techniques from [NO09] and [BHR12], where the underlying one-way function is
used in a black-box manner.

2 Preliminaries

Basic Notations. We denote the security parameter by κ. We say that a function µ : N→ N is negligible
if for every positive polynomial p(·) and all sufficiently large κ it holds that µ(κ) < 1

p(κ) . We use the abbre-
viation PPT to denote probabilistic polynomial-time. We further denote by a← A the random sampling of
a from a distribution A, by [d] the set of elements (1, . . . , d) and by [0, d] the set of elements (0, . . . , d).

We now specify the definition of (κ, s)-computational indistinguishability (denoted
κ,s
≈), while the usual

(computational indistinguishability) definition (denoted
c
≈) can be inferred.

Definition 2.1. LetX = {X(a, κ, s)}a∈{0,1}∗,κ,s∈N and Y = {Y (a, κ, s)}a∈{0,1}∗,κ,s∈N be two distribution

ensembles. We say that X and Y are (κ, s)-computationally indistinguishable, denoted X
κ,s
≈ Y , if there

exist a constant 0 < c ≤ 1 such that for every PPT machine D, every s ∈ N every positive polynomial p(·)
and all sufficiently large κ it holds that for every a ∈ {0, 1}∗ :∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]

∣∣ < 1

p(κ)
+

1

2c·s
.

2.1 The RAM Model of Computation

We follow the notation from [GHL+14] verbatim. We consider a program P that has random-access to a
memory of size n, which is initially empty. In addition, the program gets a “short” input x, which we can
alternatively think of as the initial state of the program. We use the notation PD(x) to denote the execution
of such program. The program can read/write to various locations in memory throughout the execution.
[GHL+14] also considered the case where several different programs are executed sequentially and the
memory persists between executions. Our protocol follows this extension as well. Specifically, this process
is denoted as (y1, . . . , yc) = (P1(x1), . . . , P`(xc))

D to indicate that first PD1 (x1) is executed, resulting in
some memory contents D1 and output y1, then PD1

2 (x2) is executed resulting in some memory contents D2

and output y2 etc.

CPU-step circuit. We view a RAM program as a sequence of at most T small CPU-steps, such that step
1 ≤ t ≤ T is represented by a circuit that computes the following functionality:

CP
CPU(statet, b

read
t) = (statet+1, i

read
t , iwritet , bwritet).

7

Namely, this circuit takes as input the CPU state statet and a bit breadt that was read from the last read
memory location, and outputs an updated state statet+1, the next location to read ireadt ∈ [n], a location to
write to iwritet ∈ [n] ∩ ⊥ (where ⊥ means “write nothing”) and a bit bwritet to write into that location. The
computation PD(x) starts in the initial state state1 = (x1, x2), corresponding to the parties “short input”
and by convention we will set the initial read bit to bread1 := 0. In each step t, the computation proceeds
by running CP

CPU(statet, b
read
t) = (statet+1, i

read
t , iwritet , bwritet). We first read the requested location ireadt by

stetting breadt+1 := D[ireadt] and, if iwritet 6= ⊥ we write to the location by setting D[iwritet] := bwritet . The value
y = stateT+1 output by the last CPU-step serves as the output of the computation.
A program P has a read-only memory access, if it never overwrites any values in memory. In particular,
using the above notation, the outputs of CP

CPU always set iwritet = ⊥.

2.1.1 Predictably Time Writes

Predictably Time Writes (ptWrites) means that whenever we want to read some location i in memory, it is
easy to figure out the time (i.e., CPU step) t′ in which that location was last written to, given only the current
state of the computation and without reading any other values in memory. In [GHL+14] the authors describe
how to upgrade a solution for ptWrites to one that allows arbitrary writes. More formally,

Definition 2.2 (Predictably timed writes [GHL+14]). A program execution PD(x1, x2) has predictably
timed writes if there , denoted WriteTime, such that the following holds for every CPU step t = 1, . . . , T .
Let the inputs/outputs of the t-th CPU step be cpu-step(statet, b

read
t) = (statet+1, i

read
t , iwritet , bwritet), then

t′ = WriteTime(t, statet, i
read
t) is the largest value of t′ < t such that the CPU step t′ wrote to memory

location ireadt ; i.e. iwritet′ = ireadt .

As in [GHL+14], we also describe a solution for RAM programs that support ptWrites and then show
how to extend it to the general case.

2.2 Oblivious RAM (ORAM)

ORAM, initially proposed by Goldreich and Ostrovsky [Gol87, Ost90, GO96], is an approach for making
a read/write memory access pattern of a RAM program input-oblivious. More precisely, it allows a client
to store private data on an untrusted server and maintain obliviousness while accessing that data, by only
storing a short local state. A secure ORAM scheme not only hides the content of the memory from the
server, but also the access pattern of which locations in the memory the client is reading or writing in each
protocol execution.2 The work of the client and server in each such access should be small and bounded by
a poly-logarithmic factor in the memory size, where the goal is to access the data without downloading it
from the server in its entirely. In stronger attack scenarios, the ORAM is also authenticated which means
that the server cannot modify the content of the memory. In particular, the server cannot even “roll-back”
to an older version of the data. The efficiency of ORAM constructions is evaluated by their bandwidth
blowup, client storage and server storage. Bandwidth blowup is the number of data blocks that are needed
to be sent between the parties per request. Client storage is the amount of trusted local memory required
for the client to manage the ORAM and server storage is the amount of storage needed at the server to
store all data blocks. Since the seminal sequence of works by Goldreich and Ostrovsky, ORAM has been
extensively studied [SCSL11, GMOT12, KLO12, WS12, SvDS+13, RFK+15], optimizing different metrics
and parameters.

2This can always be done by encrypting the memory.

8

Before giving the formal definition let us put down the settings and notations: A Random Access Ma-
chine (RAM) with memory size n consists of a CPU with a small number of registers (e.g. poly(κ), where
κ is the security parameter), that each can store a string of length κ (called a ”word”) and external mem-
ory of size n. A word is either ⊥ or a κ bit string. Given n and x, the CPU executes the program P by
sequentially evaluating the CPU-step function CP

CPU(n, statet, b
read
t) = (statet+1, i

read
t , iwritet , bwritet) where

t = 0, 1, 2, . . . , T − 1 such that T is the upper bound on the program run time and state0 = x. The
sequence of memory cells and data written in the course of the execution of the program is defined by
MemAccess(P, n, x) = {(ireadt , iwritet , bwritet)}t∈[T] and the number of memory accesses that were performed
during a program execution is denoted by T (P, n, x) (that is, the running time of the program P with mem-
ory of size n on input x).

In this work we follow a slightly modified version of the standard definition (of [Gol87, Ost90, GO96]),
in which the compiled program P ∗ is not hardcoded with any secret values, namely, neither secret keys
for encryption/authentication algorithms nor the randomness that specifies future memory locations to be
accessed by the program, rather, the compiled program obtains these secret values as input. More concretely,
P ∗ is given two inputs: (1) a secret value k that is used to derive the keys for encrypting and authenticating
the data, (2) a uniformly random string r which corresponds to the random indices that are accessed during
the computation. The formal definition follows:3

Definition 2.3. A polynomial time algorithm C is an Oblivious RAM (ORAM) compiler with computa-
tional overhead c(·) and memory overhead m(·), if C, when given n ∈ N and a deterministic RAM pro-
gram P with memory size n, outputs a program P ∗ with memory size m(n) · n, such that for any input
x ∈ {0, 1}∗, uniformly random key k ∈ {0, 1}κ and uniformly random string r ∈ {0, 1}κ, it follows
that T (P ∗(n, x, k, r)) = c(n) · T (P, n, x) and there exists a negligible function µ such that the following
properties hold:

• Correctness. For any n ∈ N, any input x ∈ {0, 1}∗, any key and uniformly random string k, r ∈
{0, 1}κ, with probability at least 1− µ(κ), P ∗(n, x, k, r) = P (n, x).

• Obliviousness. For any two programs P1, P2, any n ∈ N, any two inputs, uniformly random keys and
uniformly random strings: x1, x2 ∈ {0, 1}∗, k1, k2, r1, r2 ∈ {0, 1}κ respectively, if T (P1(n, x1)) =
T (P2(n, x2)) and P ∗1 ← C(n, P1, ρ1), P ∗2 ← C(n, P2, ρ2) then MemAccess(P ∗1 (n, x1, k1, r1))
and MemAccess(P ∗2 (n, x2, k2, r2)) are computationally indistinguishable, where the random tapes
ρ1, ρ2 that were used by the compiler to generate the compiled programs are given to the distinguisher.
4

Note that the above definition (just as the definition of [GO96]) only requires an oblivious compilation
of deterministic programs P . This is without loss of generality: We can always view a randomized program
as a deterministic one that receives random coins as part of its input.

2.2.1 Realization of the Modified Definition

We present here a sketch of an ORAM compiler that meets the above requirements, which is a slightly
modified construction of the Simple ORAM that was presented in [CP13]. The modified compiler is a
deterministic algorithm C, that is, its random tape ρ is an empty string ε. When given a program P , the

3The following definition is derived from the definition given in[CP13].
4The use of ρ1, ρ2 does not reveal any information about the access pattern nor about the encryption key of the data, these are

determined only by the keys k1, k2 and the random strings r1, r2.

9

compiler outputs a program P ∗ that takes the inputs x, k, r where x is the input to the original program P , k
is a uniformly random string from which the encryption/authentication keys are derived and r is a uniformly
random strings of the following form: r = {Pos, r1, r2, . . . , rT } such that Pos is the initial position map
of the oblivious program and r1, . . . , rT are the additional random locations that are used for each iteration
during the execution of the program P ∗. The program P ∗ that C outputs is specified exactly as the the
oblivious program presented in [CP13], except that the position map Pos and random paths r1, . . . , rT are
not hardcoded within the program, rather, they are given as inputs to the program.

2.3 Secure Computation in the RAM Model

We adapt the standard definition for secure two-party computation of [Gol04, Chapter 7] for the RAM
model of computation. In this model of computation, the initial input is split between two parties and
the parties run a protocol that securely realizes a program P on a pair of “short” inputs x1, x2, which are
viewed as the initial state of the program. In addition, the program P has random-access to a memory of
size n which is initially empty. Using the notations from Section 2.1, we refer to this (potentially random)
process by PD(x1, x2). In this work we prove the security of our protocols in the presence of malicious
computationally bounded adversaries.

We next formalize the ideal and real executions, considering D as a common resource.5 Our formaliza-
tion induces two flavours of security definitions. In the first (and stronger) definition, the memory accesses
to D are hidden, that is, the ideal adversary that corrupts the receiver only obtains (from the trusted party)
the running time T of the program P and the output of computation y. Given only these inputs, the simulator
must be able to produce an indistinguishable memory access pattern. In the weaker, unprotected memory
access model described below, the simulator is further given the content of the memory, as well as the mem-
ory access pattern produced by the trusted party throughout the computation of PD. We present here both
definitions, starting with the definition of full security.

2.3.1 Full Security

Execution in the ideal model. In an ideal execution, the parties submit their inputs to a trusted party that
computes the output; see Figure 1 for the description of the functionality computed by the trusted party in
the ideal execution. Let P be a two-party program, let A be a non-uniform PPT machine and let i ∈ {S,R}
be the corrupted party. Then, denote the ideal execution of P on inputs (x1, x2), auxiliary input z to A and
security parameters s, κ, by the random variable IDEALFRAM

A(z),i (s, κ, x1, x2), as the output pair of the honest
party and the adversary A in the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversary A sends all messages in place of the corrupted party, and may follow an arbitrary
PPT strategy. The honest party follows the instructions of the specified protocol π. Let PD be as above and
let π be a two-party protocol for computing PD. Furthermore, let A be a non-uniform PPT machine and
let i ∈ {S,R} be the corrupted party. Then, the real execution of π on inputs (x1, x2), auxiliary input z to
A and security parameters s, κ, denoted by the random variable REALπA(z),i(s, κ, x1, x2), is defined as the
output pair of the honest party and the adversary A from the real execution of π.

5Nevertheless, we note that the memory data D will be kept in the receiver’s local memory.

10

Functionality FRAM

The functionality FRAM interacts with a sender S and a receiver R. The program P is known and agreed
by both parties.

Input: Upon receiving input value (INPUTS, x1) from S and input value (INPUTR, x2) from R store
x1, x2 and initialize the memory data D with 0n.

Output: If both inputs are recorded execute y ← PD(x1, x2) and send (OUTPUTR, T, y) to R.

Figure 1: A 2PC secure evaluation functionality in the RAM model for program P .

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure party protocol
(in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying
that adversaries in the ideal model are able to simulate executions of the real-model protocol.

Definition 2.4 (Secure computation). Let FRAM and π be as above. Protocol π is said to securely compute
PD with abort in the presence of malicious adversary if for every non-uniform PPT adversaryA for the real
model, there exists a non-uniform PPT adversary S for the ideal model, such that for every i ∈ {S,R},{

IDEALFRAM

S(z),i (s, κ, x1, x2)
}
s,κ∈N,x1,x2,z∈{0,1}∗

c
≈
{

REALπA(z),i(s, κ, x1, x2)
}
s,κ∈N,x1,x2,z∈{0,1}∗

where s and κ are the security parameters.

We next turn to a weaker definition of secure computation in the unprotected memory access model, and
then discuss a general transformation from a protocol that is secure in the UMA model to a protocol that is
fully secure.

2.3.2 The UMA Model

In [GHL+14], Gentry et al. considered a weaker notion of security, denoted by Unprotected Memory Access
(UMA), in which the receiver may additionally learn the content of the memory D, as well as the memory
access pattern throughout the computation including the locations being read/written and their contents.6

In the context of two-party computation, when considering the ideal execution, the trusted party further
forwards the adversary the values MemAccess = {(ireadt , iwritet , bwritet)}t∈[T] where ireadt is the address to
read from, iwritet is the address to write to and bwritet is the bit value to be written to location iwritet in time
step t. We denote this functionality, described in Figure 2, by FUMA. We define security in the UMA model
and then discuss our general transformation from UMA to full security.

Definition 2.5 (Secure computation in the UMA model). Let FUMA be as above. Protocol π is said to
securely compute PD with UMA and abort in the presence of malicious adversaries if for every non-uniform

6Gentry et al. further demonstrated that this weaker notion of security is useful by providing a transformation from this setting
into the stronger setting for which the simulator does not receive this extra information. Their proof holds against semi-honest
adversaries. A simple observation shows that their proof can be extended for the malicious 2PC setting by considering secure
protocols that run the oblivious RAM and the garbling computations; see below our transformation.

11

PPT adversary A for the real model, there exists a non-uniform PPT adversary S for the ideal model, such
that for every i ∈ {S,R}, for every s ∈ N, x1, x2, z ∈ {0, 1}∗ and for large enough κ{

IDEALFUMA

S(z),i (s, κ, x1, x2)
}
s,κ,x1,x2,z

κ,s
≈
{

REALπA(z),i(s, κ, x1, x2)
}
s,κ,x1,x2,z

where s and κ are the security parameters.

Functionality FUMA

The functionality FUMA interacts with a sender S and a receiver R. The program P is known and agreed
by both parties.

Input: Upon receiving input value (INPUTS, x1) from S and input value (INPUTR, x2) from R, store
x1, x2 and initialize the memory data D with 0n.

Output: If both inputs are recorded, execute y ← PD(x1, x2) and send (OUTPUTR, T, y,MemAccess)

to R, where T is the number of memory accesses that were performed during the execution, and
MemAccess is the access pattern of the execution.

Figure 2: A 2PC secure evaluation functionality in the UMA model for program P .

2.3.3 A Transforation From UMA to Full Security

Below, we present a transformation Θ, that is given (1) a protocol π with UMA security for RAM programs
that support ptWrites and (2) a secure ORAM compiler C that satisfies ptWrites,7 and outputs a two-party
protocol for arbitrary RAM programs with full security; see Figure 3 for the description of Θ. The formal
theorem follows:

Theorem 2.6. Let π be a secure two-party protocol that provides UMA security for RAM programs that
support ptWrites in the presence of malicious adversaries and C an ORAM compiler that satisfies ptWrites,
then Θ is a two-party protocol that provides full security for arbitrary RAM programs in the presence of
malicious adversaries.

Note that the transformation uses the ORAM compiler C and the UMA-secure protocol π in a black-
box manner. In addition, the transformation preserves all the properties that are related to the memory
management, i.e., the party who handles the memory in π is the same one who handles the memory in
π′ ← Θ(P, π). Note that the efficiency of the resulted protocol π′ ← Θ(P, π) is dominated by the efficiency
of the UMA-secure protocol π and the ORAM compiler C. Specifically, the recent ORAM constructions
set an additional polylog overhead with respect to all relevant parameters.

Security. We next present a proof sketch to the transformation presented in Figure 3. We consider first a
corrupted receiver, which is the more complicated case, and then a corrupted sender.

7As for RAM programs, ORAM schemes can also support this property. Moreover, the [GHL+14] transformation discussed in
Section 2.1.1 can be applied to ORAM schemes as well.

12

Transformation Θ from UMA to Fully Secure Protocol

Inputs: The programP that the parties wish to compute. The protocol π to compute a two-party protocol
with a UMA security. A secure ORAM compiler C. The sender S has x1 and the receiver R has x2.

Protocol:

1. The parties generate the randomness ρ using a coin-tossing protocol.

2. The parties agree on the oblivious program P ∗ ← C(P, n, ρ) where ρ is C’s random tape.

3. The parties run π(P ∗) where R’s inputs are x1, k1, r1, S’s inputs are x2, k2, r2 and the program
P ∗ is given n (the memory size), the parties’ input x = x1‖x2, the key and the random tape of the
compiled program, i.e. k1⊕k2 and r1⊕r2, respectively. That is, the parties run π(P ∗(n, x1‖x2, k1⊕
k2, r1 ⊕ r2)).

Figure 3: A transformation from UMA to full security.

R is corrupted. Let SUMA be the simulator for protocol π in the UMA model. The simulator for the
general model, SRAM, works as follows:

1. Let T be the run time of the program P , and let P̃ be the program of the form:
For i=0 To T:

Read(k);
for some constant k ∈ [n] (i.e. k is in the range of D’s size). Let P̃ ∗ ← C(n, P̃) and its memory
access pattern MemAccess(P̃ ∗, n, ε) resulted by its execution (where ε is an empty string, since P̃
gets no input).

2. Given the output of the program y = P (x, y), the simulator SRAM outputs the view that is the result
of SUMA(y,MemAccess(P̃ ∗, n, ε)).

We claim that the view that SRAM outputs is indistinguishable from the real view of the receiver in the real ex-
ecution of the protocol. Assume, by contradiction, that there exist inputs x1, x2 for which there exists a dis-
tinguisherD who can distinguish between the two views with more than negligible probability. Consider the
following hybrid view Hyb which is constructed as follows: Given P, x1, x2, n, compute P ∗ ← C(n, P),
choose random strings k and r and run P ∗(n, x1‖x2, k, r). Let MemAccess(P ∗, n, (x1‖x2, k, r)) be the ac-
cess pattern induced by this execution, then, outputs Hyb = SUMA(y,MemAccess(P ∗, n, (x1‖x2, k, r))).
The indistinguishability between SRAM(y) and Hyb(P, x1, x2, n) is reduced to the obliviousness of the
ORAM compiler and the indistinguishability between Hyb(P, x1, x2, n) and the real view is reduced to the
indistinguishability of the simulation of SUMA and the real view of the execution of protocol π.

S is corrupted. This case is simpler since, by the definitions of functionalities FUMA and FRAM the sender
receives no output from the computation, thus, the same simulator used in the UMA model works in the gen-
eral RAM model, that is SRAM = SUMA. Specifically, indistinguishability between the output of SRAM and
the sender’s view in the real execution in the RAM model is immediately reduced to the indistinguishability
between the output of SRAM and the view in the real execution in the UMA model.

13

Note that our ORAM compiler definition simplifies the transformation to full security as now the result
oblivious program P ∗ gets its randomness r as part of its input, rather than being hardcoded with it. Fur-
thermore, recalling that this randomness is used to determine the future locations in memory for which the
oblivious program is going to access, we note that r is not revealed as part of the “check circuits” when
using the cut-and-choose technique.

2.3.4 On the Capabilities of Semi-Honest in a Garbled RAM and ORAM Schemes

When considering ORAM schemes in the context of two-party computation, it must be ensured that a read
operation is carried out correctly. Namely, that the correct element from the memory is indeed fetched,
and that the adversary did not “roll back” to an earlier version of that memory cell. Importantly, this is not
just a concern in the presence of malicious adversaries, as a semi-honest adversary may try to execute its
(partial) view on inconsistent memory values. Therefore, the scheme must withhold such attacks. Handling
the first attack scenario is relatively simply using message authentications codes (MACs), so that a MAC tag
is stored in addition to the encrypted data. Handling roll backs is slightly more challenging and is typically
done using Merkle trees. In [GHL+14] roll backs are prevented by creating a new secret key for each time
period. This secret key is used to decrypt a corresponding ciphertext in order to extract the label for the next
garbled circuit. By replacing the secret key each time period, the adversary is not able decrypt a ciphertext
created in some time period with a secret key that was previously generated.

2.4 Timed IBE [GHL+14]

TIBE was introduced by Gentry et al. in [GHL+14] in order to handle memory data writings in their garbled
RAM construction. This primitive allows to create “time-period keys” TSKt for arbitrary time periods t ≥ 0
such that TSKt can be used to create identity-secret-keys SK(t,v) for identities of the form (t, v) for arbitrary
v but cannot break the security of any other identities with t′ 6= t. Gentry et al. demonstrated how to realize
this primitive based on IBE [BF03, BB11]. Informally speaking, the security of TIBE is as follows: Let t∗

be the “current” time period. Given a single secret key SK(t,v) for every identity (t, v) of the “past” periods
t < t∗ and a single period key TSKt for every “future” periods t∗ < t ≤ T , semantic security should hold
for any identity of the form id∗ = (t∗, v∗) (for which neither a period nor secret key were not given).The
formal definition of Timed IBE which is used across our protocol is as follows:8

Definition 2.7 (Timed IBE (TIBE)). A TIBE scheme Consists of 5 PPT algorithms MasterGen,TimeGen,
KeyGen,Enc,Dec with the syntax:

• (MPK,MSK)← MasterGen(1κ): generates master public/secret key pair MPK,MSK.

• TSKt ← TimeGen(MSK, t): Generates a time-period key for time-period t ∈ N.

• sk(t,v) ← KeyGen(TSKt, (t, v)): creates a secret key for the identity (t, v).

• ct← EncMPK((t, v),msg): creates an encryption of msg under the identity (t, v).

• msg = Decsk(t,v)(ct): decrypts a ciphertexts ct for the identity (t, v) using a secret key sk(t,v).

The scheme should satisfy the following properties:
8We omit from the following definition the multiple secret keys that the adversary receives for identities of the form (0, v) since

in our scheme, data initialization is done as part of the computation if required.

14

Correctness: For any id = (t, v), and any msg ∈ {0, 1}∗ it holds that:

Pr

[
Decsk(ct) = msg

∣∣∣∣ (MPK,MSK)← MasterGen(1κ),TSKt ← TimeGen(MSK, t),
sk← KeyGen(TSKt, (t, v)), ct← EncMPK((t, v),msg)

]
= 1.

Security: We consider the following game between an attacker A and a challenger.

• The attacker A(1κ) chooses some identity id∗ = (t∗, v∗) with t∗ ∈ N and some bound T ≥ t∗ (given
in unary). The attacker also chooses a set of identities I such that I contains exactly one identity (t, v)
for each period t ∈ 1, . . . t∗ − 1. Lastly, the adversary chooses messages msg0,msg1 ∈ {0, 1}∗ of
equal size |msg0| = |msg1|.

• The challenger chooses (MPK,MSK) ← MasterGen(1κ), and TSKt ← TimeGen(MSK, t) for t ∈
[T]. For each id = (t, v) ∈ I it chooses skid ← KeyGen(TSKt, id). Lastly, the challenger chooses a
challenge bit b← {0, 1} and sets ct← EncMPK(id∗,msgb). The challenger gives the attacker:

MSK, TSK = {TSKt}t∗<t≤T , sk = {(id, skid)}id∈S , ct.

• The attacker outputs a bit b̂ ∈ {0, 1}.

The scheme is secure if, for all PPT A, we have |Pr[b = b̂]− 1
2 | ≤ µ(κ) in the above game.

2.5 Garbled RAM Based on IBE [GHL+14]

Our starting point is the garbled RAM construction of [GHL+14]. Intuitively speaking, garbled RAM
[LO13] is an analogue object of garbled circuits [Yao82, BHR12] with respect to RAM programs. The main
difference when switching to RAM programs is the requirement of maintaining a memory data D. In this
scenario, the data is garbled once, while many different programs are executed sequentially on this data. As
pointed out in the modeling of [GHL+14], the programs can only be executed in the specified order, where
each program obtains a state that depends on prior executions. The [GHL+14] garbled RAM proposes a
fix to the aforementioned circularity issue raised in [LO13] by using an Identity Based Encryption (IBE)
scheme [BF03, BB11] instead of a symmetric-key encryption scheme.

In more details, the inputsD,P, x to the garbled RAM are garbled into D̃, P̃ , x̃ such that the evaluator re-
veals the output P̃ (D̃, x̃) = P (D,x) and nothing else. A RAM program P with running time T can be eval-
uated using T copies of a Boolean circuit CP

CPU where Ct
CPU computes the function CP

CPU(statet, b
read
t) =

(statet+1, i
read
t , iwritet , bwritet). Then secure evaluation of P is possible by having the sender S garble the cir-

cuits {Ct
CPU}t∈[T] (these are called the garbled program P̃), whereas the receiver R sequentially evaluates

these circuits. In order for the evaluation to be secure the state of the program should remain secret when
moving from one circuit to another. To this end, the garbling is done in a way that assigns the output wires of
one circuit with the same labels as the input wires of the next circuit. The main challenge here is to preserve
the ability to read and write from the memory while preventing the evaluator from learning anything beyond
the program’s output, including any intermediate value.

The original idea from [LO13] employed a clever usage of a PRF for which the secret key is embedded
inside all the CPU-steps circuits, where the PRF’s role is twofold. For reading from the memory it is used
to produce ciphertexts encrypting the labels of the input wire of the input bit of the next circuit, whereas for
writing it is used to generate secret keys for particular “identities”. As explained in [GHL+14], the proof
of [LO13] does not follow without assuming an extra circularity assumption. In order to avoid circularity,

15

Gentry et al. proposed to replace the PRF with a public-key primitive. As it is insufficient to use a standard
public-key cryptosystem (since the circuit must still produce secret keys for each memory location i, storing
the keys ski,0, ski,1), the alternative is to use IBE. Below, we briefly describe their scheme.

The read-only solution. The initialized garbled data D̃ contains a secret key ski,b in each memory location
i ∈ [n] where D[i] = b, such that i, b serves as an identity secret key for the “identity” (i, b). Moreover,
each garbled circuit GCt

CPU is hardwired with the master public key MPK of an IBE scheme.9 This way, the
garbled circuit can encrypt the input labels for the next circuit, that are associated with the bit that has just
been read from the memory. More specifically, the circuit generates two ciphertexts ct0, ct1 that are viewed
as a translation map. Namely, ctb = EncMPK(id = (i, b);msg = lblt+1

b) and the correct label is extracted
by decrypting the right ciphertext using ski,b, such that lblt+1

0 , lblt+1
1 are the input labels in the next garbled

circuit that are associated with the last input bit read from the memory.

The read-write solution. A complete solution that allows both reading and writing is slightly more in-
volved. We describe how to garble the data and the program next.

GARBLING THE DATA. The garbled data consists of secret keys sk(t,i,b) for identities of the form id =
(t, i, b) where i is the location in the memory D′, t is the last time step for which that location was written
to and b ∈ {0, 1} is the bit that was written to location i at time step t. The honest evaluator only needs to
keep the the most recent secret key for each location i.

GARBLING THE PROGRAM. Next, each CPU garbled circuit computes the last time step in which memory
location i was written to by computing t′ = WriteTime(t, statet, i

read
t). Namely, if at time step t the

garbled circuit GCt
CPU instructs to read from location ireadt , then the circuit further computes the last time

step, u, in which that ireadt was written to, it then computes the translation map translatet = (ct0, ct1) by
ctb = EncMPK(id = (u, ireadt , b);msg = lblt+1

b)), and outputs it in the clear.
In order to write at time step t to memory location i = iwritet the value b = bwritet , a naive solution would

hardwire MSK within each garbled circuit and then generate the key sk(t,i,b) = KeyGenMSK(id = (t, i, b));
but this idea re-introduces the circularity problem. Instead, Gentry et al. [GHL+14] solve this problem by
introducing a new primitive called Timed IBE (TIBE). Informally, this is a two-level IBE scheme in which
the first level includes the master public/secret keys (MPK,MSK) whereas the second level has T timed
secret keys TSK1, . . . ,TSKT . The keys MPK,MSK are generated by MasterGen(1κ) and the timed keys
are generated by TSKt = TimeGen(MSK, t).

Then in the garbling phase, the key TSKt is hardwired within the tth garbled circuit GCt
CPU and is used

to write the bit bwritet to memory location iwritet . To do that GCt
CPU computes the secret key for identity

(t, i, b) by sk(t,i,b) ← KeyGen(TSKt, (t, i, b)) which is then stored in memory location i by the evaluator.
Note that GCt

CPU outputs a secret key for only one identity in every time step (for (t, i, b) but not (t, i, 1−b)).
This solution bypasses the circularity problem since the timed secret keys TSKt are hardwired only within
the garbled circuit computing Ct

CPU, and cannot be determined from either sk(t,i,b) or the garbled circuit,
provided that the TIBE scheme and the garbling schemes are secure.

2.6 Garbled Circuits

The idea of garbled circuit is originated in [Yao82]. Here, a sender can encode a Boolean circuit that
computes some PPT function f , in a way that (computationally) hides from the receiver any information

9For ease of presentation, Gentry et al. abstract the security properties of the IBE scheme using a new primitive denoted by
Timed IBE (TIBE); see Section 2.4 for more details.

16

but the function’s output. In this work we consider a variant of the definition from [GHL+14] that abstracts
out the security properties of garbled circuits that are needed via the notion of a garbled circuit with wire
labels. The definition that we propose below stems from the cut-and-choose technique chosen to deal with
a malicious sender. Specifically, the sender uses the algorithm Garb to generate s garbled versions of the
circuit C, namely {C̃i}i∈[s] for some statistical parameter s. Then, in order to evaluate these circuits the
sender sends {C̃i}i∈[s] along with the garbled inputs {x̃i}i∈[s], such that x̃i is the garbled input for the
garbled circuit C̃i. The evaluator then chooses a subset Z ⊂ s and evaluates the garbled circuits indexed
by z ∈ Z using algorithm Eval. Note that in the notion of garbled circuits with wire labels the garbled
inputs x̃i are associated with a single label per input wire of the circuit C̃i; we denote these labels by
x̃i = (lbl1,i

in,x[1], . . . , lbl
vin,i
in,x[vin]) (where vin is the number of input wires in C and x = x[1], . . . , x[vin] is

the input to the circuit). The evaluator learns s sets10 of output-wire labels {ỹi}i∈[s] corresponding to the
output y = C(x)11, where ỹi = (lbl1,i

out,y[1], . . . , lbl
vout,i
in,y[vout]

), but nothing else (for example, it does not learn

lbl1,i
out,1−y[1]). For clarity, in the following exposition the label lblj,i

in,b is the label that represents the bit-value

b ∈ {0, 1} for the jth input wire (j ∈ vin) in the ith garbled version of the circuit (for i ∈ s), namely C̃i.
Analogously, lblj,i

out,b represents the same, except that it is associated with an output wire (where j ∈ vout).
We further abstract two important properties of authenticity and input consistency. Loosely speaking,

the authenticity property ensures that a malicious evaluator will not be able to produce a valid encoding of
an incorrect output given the encoding of some input and the garbled circuit. This property is required due
to the reusability nature of our construction. Namely, given the output labels of some iteration, the evaluator
uses these as the input labels for the next circuit. Therefore, it is important to ensure that it cannot enter
an encoding of a different input (obtained as the output from the prior iteration). In the abstraction used in
our work, violating authenticity boils down to the ability to generate a set of output labels that correspond
to an incorrect output. Next, a natural property that a maliciously secure garbling scheme has to provide is
input consistency. We formalize this property via a functionality, denoted by FIC. That is, given a set of
garbled circuits {C̃i}i and a set of garbled inputs {x̃i}i along with the randomness r that was used by Garb;
the functionality outputs 1 if the s sets of garbled inputs {x̃i}si=1 (where |x̃i| = j) represent the same input
value, and 0 otherwise. This functionality is described in Figure 7. We now proceed to the formal definition.

Definition 2.8 (Garbled circuits.). A circuit garbling scheme with wire labels consists of the following two
polynomial-time algorithms:

- The garbling algorithm Garb:

(
{C̃i}i, {u, b, lblu,iin,b}u,i,b

)
← Garb

(
1κ, s,C, {v, b, lblv,i

out,b}v,i,b
)

for every u ∈ [vin], v ∈ [vout], i ∈ [s] and b ∈ {0, 1}. That is, given a circuit C with input size vin,
output size vout and s sets of output labels {v, b, lblv,i

out,b}v,i,b, outputs s garbled circuits {C̃i}i∈[s] and

s sets of input labels {u, b, lblu,i
in,b}u,i,b.

- The evaluation algorithm Eval:

{
lbl1,iout, . . . , lbl

vout,i
out

}
i∈[s]

= Eval

({
C̃i, (lbl1,iin , . . . , lbl

vin,i
in)

}
i∈[s]

)
.

10This s might be different from the s used in the garbling algorithm, still we used the same letter for simplification.
11Note that this holds with overwhelming probability since some of the garbled circuits might be malformed.

17

That is, given s garbled circuits {C̃i}i and s sets of input labels
{
lbl1,iin , . . . , lbl

vin,i
in

}
i
, outputs s sets

of output labels {lbl1,iout, . . . , lbl
vout,i
out }i. Intuitively, if the input labels (lbl1,iin , . . . , lbl

vin,i
in) correspond to

some input x ∈ {0, 1}vin then the output labels (lbl1,iout, . . . , lbl
vout,i
out) should correspond to y = C(x).

Furthermore, the following properties hold.

Correctness. For correctness, we require that for any circuit C and any input x ∈ {0, 1}vin , x = (x[1], . . . ,
x[vin]) such that y = (y[1], . . . , y[vout]) = C(x) and any s sets of output labels {v, b, lblv,ib,out}v,i,b (for
u ∈ vin, v ∈ vout, i ∈ [s] and b ∈ {0, 1}) we have

Pr

[
Eval

({
C̃i, (lbl1,i

in,x[1], . . . , lbl
vin,i
in,x[vin])

}
i

)
=
{
lbl1,i

out,y[1], . . . , lbl
vout,i
out,y[vout]

}
i

]
= 1

where
(
{C̃i}i, {u, b, lblu,iin,b}u,i,b

)
← Garb

(
1κ, s,C, {v, b, lblv,i

out,b}v,i,b
)

as described above.

Verifying the correctness of a circuit. Note that in a cut-and-choose based protocols, the receiver is
instructed to check the correctness of a subset of the garbled circuits. This check can be accomplished by
the sender sending the receiver the randomness used in Garb. In our protocol this is accomplished by giving
the receiver both input labels for each input wire of the check circuits, for which it can verify that the circuit
computes the agreed functionality. We note that this check is compatible with all prior known garbling
schemes.

Privacy. For privacy, we require that there is a PPT simulator SimGC such that for any C, x, Z and{
lbl1,zout, . . . , lbl

vout,z
out

}
z∈[Z]

, {v, b, lblv,z
out,b}v,z /∈[Z],b (i.e. one output label for wires in circuits indexed by z /∈ Z

and a pair of output labels for wires in circuits indexed by z ∈ Z), we have(
{C̃z (lbl1,z

in,x[1], . . . , lbl
vin,z
in,x[vin])}z

)
c
≈ SimGC

(
1κ,
{
lbl1,zout, . . . , lbl

vout,z
out

}
z∈[Z]

, {v, b, lblv,z
out,b}v,i/∈[Z],b

)
where

(
{C̃z}z, {u, b, lblu,zin,b}u,z,b

)
← Garb

(
1κ, s,C, {v, b, lblv,z

out,b}v,z,b
)

and y = C(x).

Authenticity. We describe the authenticity game in Figure 8 (Appendix A.1) where the adversary is ob-
tained a set of garbled circuits and garbled inputs for which the adversary needs to output a valid garbling of
an invalid output. Namely, a garbled scheme is said to have authenticity if for every circuit C, for every PPT
adversary A, every s and for all large enough κ the probability Pr[AuthA(1κ, s,C) = 1] is negligible. Our
definition is inspired by the definition from [BHR12] and also adapted for the cut-and-choose approach.

Input Consistency. We abstract out the functionality that checks the validity of the sender’s input across
all garbled circuits. We say that, a garbling scheme has input consistency (in the context of cut-and-choose
based protocols) if there exists a protocol that realize the FIC functionality described in Figure 7 (Appendix
A.1).

Realizations of our garbled circuits notion. We require the existence of a protocol ΠIC that securely
realizes the functionality FIC described in Figure 7, in the presence of malicious adversaries. In Appendix
B we exemplify this realization with [LP11].

18

3 Building Blocks

In this section we show how to overcome the challenges discussed in the introduction and design the first
maliciously secure 2PC protocol that does not require duplication of the data and works for every garbling
scheme that supports our definition based on wire labels. Recall first that in [GHL+14] Gentry et al. have
used a primitive called Timed IBE, where the secret-key for every memory location and stored bit (i, b)
is enhanced with another parameter: the last time step t in which it has been written to the memory. The
secret-key sk(t,i,b) for identity id = (t, i, b) is then generated using the hard-coded time secret-key TSKt.
Now, since algorithm KeyGen is randomized, running this algorithm s times will yield s independent secret
timed keys. This results in s different values to be written to memory at the same location, which implies
duplication of memory data D. In order to avoid this, our solution forces the s duplicated garbled circuits
for time step t to use the same random string r, yielding that all garbled circuits output the same key for the
identity (t, i, b). Importantly, this does not mean that we can hard-code r in all those s circuits, since doing
this would reveal r when applying the cut-and-choose technique on these garbled circuits as half of the
circuits are opened. Clearly, we cannot reveal the randomness to the evaluator since the security definition
of IBE (and Timed IBE) does not follow in such a scenario. Instead, we instruct the sender to input the same
randomness in all s copies of the circuits and then run an input consistency check to these inputs in order to
ensure that this is indeed the case. We continue with describing the components we embed in our protocol.
An overview of the circuits involved in our protocol can be found in Figure 4 and a high-level overview of
our protocol can be found in Section 4.

𝐺𝐶#$%&
','

𝐺𝐶#$%&
),'

𝐺𝐶#$%&
*,'

𝐺𝐶+,+*'

𝑀𝑃𝐾*, 𝑇𝑆𝐾*, 𝑟*

𝑀𝑃𝐾),𝑇𝑆𝐾),𝑟)

𝑀𝑃𝐾', 𝑇𝑆𝐾', 𝑟'

𝑅',𝑅) 𝑥',𝑥)

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒'
𝑖'<=>?
𝑖'@<AB=
𝑠𝑘',ADEFGHI,J

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒)
𝑖)<=>?
𝑖)@<AB=
𝑠𝑘),AKEFGHI,J

𝑦

𝑠𝑡𝑎𝑡𝑒)

𝑠𝑡𝑎𝑡𝑒'
(𝑥',𝑥))

𝑠𝑡𝑎𝑡𝑒O

𝑠𝑡𝑎𝑡𝑒* 𝑏*<=>?

𝑏)<=>?

𝐺𝐶#$%&
',Q

𝐺𝐶#$%&
),Q

𝐺𝐶#$%&
*,Q

𝐺𝐶+,+*Q

𝑀𝑃𝐾*, 𝑇𝑆𝐾*, 𝑟*

𝑀𝑃𝐾),𝑇𝑆𝐾),𝑟)

𝑀𝑃𝐾', 𝑇𝑆𝐾', 𝑟'

𝑅',𝑅) 𝑥',𝑥)

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒'
𝑖'<=>?
𝑖'@<AB=
𝑠𝑘',ADEFGHI,J

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒)
𝑖)<=>?
𝑖)@<AB=
𝑠𝑘),AKEFGHI,J

𝑦

𝑠𝑡𝑎𝑡𝑒)

𝑠𝑡𝑎𝑡𝑒'
(𝑥',𝑥))

𝑠𝑡𝑎𝑡𝑒O

𝑠𝑡𝑎𝑡𝑒* 𝑏*<=>?

𝑏)<=>?

Figure 4: Garbled chains GCINIT,GC1,i
CPU+ , . . .GCT,i

CPU+ for i ∈ [s]. Dashed lines refer to values that are
passed privately (as one label per wire) whereas solid lines refer to values that are given in the clear.

19

3.1 Enhanced CPU-Step Function

The enhanced cpustep+ function is essentially the CPU-step functionality specified in Section 2.1 enhanced
with more additional inputs and output, and defined as follows

cpustep+(statet, b
read
t ,MPK,TSKt, rt) = (statet+1, i

read
t , iwritet , bwritet , translatet)

where the additional inputs MSK,TSKt and rt are the master public-key, a timed secret-key for time t
and the randomness r used by the KeyGen algorithm. The output translatet is a pair of ciphertexts ct1, ct2,
encrypted under MPK, that allows the evaluator to obtain the appropriate label of the wire that corresponds
to the input bit in the next circuit. We denote the circuit that computes that function by Ct

CPU+ . The
functionality of Ct

CPU+ is described in Figure 5. We later describe how to securely realize this function and,
in particular, how these new additional inputs are generated and given to the T CPU-circuits. The enhanced
CPU-step circuit wraps the WriteTime algorithm defined in Definition 2.2.

3.2 Initialization Circuit

The initialization circuit generates all required keys and randomness to our solution and securely transfer
them to the CPU-step circuits. As explained before, our solution requires the parties to input not only their
input to the program but also a share to a randomness that the embedded algorithms would be given (that is,
the randomness is not fixed by one of the parties). The circuit is described in figure 6.

3.3 Batch Single-Choice Cut-And-Choose OT

As a natural task in a cut-and-choose based protocol, we need to carry out cut-and-choose oblivious transfers
for all wires in the circuit, for which the receiver picks a subset Z ⊂ [s] and then obtains either both input
labels (for circuits indexed with z ∈ Z), or the input label that matches the receiver’s input otherwise. It is
crucial that the subset of indices for which the receiver obtains both input labels is the same in all transfers.
The goal of this functionality is to ensure the input consistency of the receiver and it is named by “batch
single-choice cut-and-choose OT” in [LP11]. See Figure 9 (Appendix A.3) for its formal definition.

In addition to the above, our protocol uses the following building blocks: A garbling scheme πGC =
(Garb,Eval) that preserves the security properties from Definition 2.8; Timed IBE scheme (Section 2.4)
πTIBE = (MasterGen,TimeGen,KeyGen,Enc,Dec) with security as specified in Definition 2.7 and a statis-
tically binding commitment scheme Com.

4 The Complete Protocol

Given the building blocks detailed in Section 3, we are now ready to introduce our complete protocol. Our
description incorporates ideas from both [LP11] and [GHL+14]. Specifically, we borrow the cut-and-choose
technique and the cut-and-choose OT abstraction from [LP11] (where the latter tool enables to ensure input
consistency for the receiver). Moreover, we extend the garbled RAM ideas presented in [GHL+14] for a
maliciously secure two-party protocol in the sense that we modify their garbled RAM to support the cut-
and-choose approach. This allows us to obtain constant round overhead. Before we delve into the details of
the protocol, let us present an overview of its main steps:

The parties wish to run the program P on inputs x1, x2 with the aid of an external random access storage
D. In addition to their original inputs, the protocol instructs the parties to provide random strings R1, R2

that suffice for all the randomness needed in the execution of the CPU step circuits.

20

Enhanced CPU-Step Circuit Ct
CPU+

This circuit computes the enhanced CPU-step function cpustep+. This circuit wraps the following al-
gorithms: (1) the usual cpu-step for computing the next CPU-step of program P , (2) WriteTime which
computes the last time t′ that the program wrote to location ireadt and (3) the TIBE related functionalities
KeyGen and Enc. Furthermore, the labels lblt+1

0 and lblt+1
1 are hard coded in the circuit.

Inputs.

- statet - the last state that was output by the previous circuit. We define state1 to be the parties’
inputs x1, x2 and set bread0 to be zero.

- breadt - the last bit that was read from the memory data (i.e. breadt was read from location ireadt).

- MPK - the master public key of the TIBE scheme.

- TSKt - a timed secret-key.

- rt - randomness to be used by algorithms KeyGen and EncMPK.

Outputs. Ct
CPU+ invokes CtCPU (the usual CPU-step circuit) that computes:

cpu-step(statet, b
read
t) = (statet+1, i

read
t , iwritet , bwritet)

where statet+1 is the next state of the program; ireadt+1 is the next location to read from; iwritet+1 is the next
location to write to and breadt+1 is the bit to write to location iwritet+1 .
The circuit outputs the translation translatet = (ct0t , ct

1
t) defined by:

t′ = WriteTime(ireadt+1)

ct0t = EncMPK(id = (t, t′, 0),msg = lbl0t+1)

ct1t = EncMPK(id = (t, t′, 1),msg = lbl1t+1)

Finally, the circuit computes sk(t,i,b) = KeyGen(TSKt, id = (t, iwritet+1 , b
write
t+1)) and outputs

(statet+1, i
read
t+1, i

write
t+1 , sk(t,i,b), translatet).

Figure 5: The CPU-step circuit.

- Chains construction. Considering a sequence of circuits CINIT,C
1
CPU+ , . . . ,C

T
CPU+ as a connected

chain of circuits, the sender S first generates s versions of garbled chains GCi
INIT,GC1,i

CPU+ , . . . ,GCT,i
CPU+

for every i ∈ [s]. It does so by iteratively feeding the algorithm Garb with s sets of pairs of output
labels, where the first set of output labels lblout are chosen uniformly and are fed, together with the
circuit CT

CPU+ , to procedure Garb, which in turn, outputs s sets of input labels. This process is being
repeated till the first circuit in the chain, i.e CINIT, the last s sets of input labels are denoted lblin.

- Cut-and-choose. Then, the parties run the batch Single-Choice Cut-and-choose OT protocol ΠSCCOT

on the receiver’s input labels, which let the receiver obtain a pair of labels for each of its input wires
for every check chain with an index in Z ⊂ [s] and a single label for each of its input wires for the
evaluation chains with an index not in Z, where Z is input by the receiver to ΠSCCOT.

21

Initialization Circuit CINIT

The circuit generates all keys and randomness for the T CPU step circuits C1
CPU+ , . . . ,CTCPU+ .

Inputs.

• The parties input x1, x2, and

• (2 · (1 +T +T + 2T)) ·m = (8T + 2) ·m random values where m an upper bound on the length of
the randomness required to run the TIBE algorithms: MasterGen,TimeGen,KeyGen and Enc. This
particular number of random values is explained below.

Computation. LetR1 (resp. R2) be the first (resp. last) (4t+1)·m bits of the inputs for the randomness.
The circuit computes R = R1 ⊕ R2 and interprets the result (4t + 1) · m bits as follows: (each of the
following is a m-bit string)

- rMasterGen used to generate the keys MPK and MSK.

- rTimedGen
1 , . . . , rTimedGen

T used to generate the timed secret-keys TSK1, . . . ,TSKT .

- rKeyGen
1 , . . . , rKeyGen

T used to generate secret-keys {skt,i,b}t∈[T],i∈[n],b∈{0,1} written to memory.

- {rEnc
t,b }t∈[T],b∈{0,1} are used by the encryption algorithm within the CPU circuits. (Recall that the

tth enhanced CPU step circuit Ct
CPU+ encrypts the two labels of the input wire that corresponds to

the input bit of the next circuit Ct+1
CPU+ .)

Then, the circuit computes:

(MPK,MSK) = MasterGen(1κ; rMasterGen)

∀t∈[T] : TSKt = TimeGen(MSK, t; rTimedGen
t)

Outputs. (
x1, x2, {MPKt}t∈[T], {TSKt}t∈[T], {rKeyGent }t∈[T], {rEnct,b }t∈[T],b∈{0,1}

)
where MPK1 = . . . = MPKT = MPK (the reason for duplicating MPK will be clearer later).

Figure 6: Initialization Circuit CINIT.

- Sending chains and commitments. Then S sends R all garbled chains together with a commitment
for every label associated with its input wires in all copies i ∈ [s].

- Reveal the cut-and-choose parameter. The receiver R then notifies S with its choice of Z and proves
that indeed that is the subset it used in ΠSCCOT (by sending a pair of labels for some of its input wires
in every chain with an index in Z).

- Checking correctness of check-chains. When convinced, S sends R a pair of labels for each input
wire associated with the sender’s input; this allows R check all the check chains, such that if all found
to be built correctly than the majority of the other, evaluation chains, are also built correctly with
overwhelming probability.

- Input consistency. S then supplies R with a single label for each input wire associated with the
sender’s input, for all evaluation chains; this step requires checking that those labels are consistent

22

with a single input x2 of the sender. To this end, S and R run the input consistency protocol that is
provided by the garbling scheme defined in 2.6.

- Evaluation. Upon verifying their consistency, R uses the input labels and evaluates all evaluation
chains, such that in every time step t it discards the chains that their outputs (ireadt , iwritet , skt, translatet)
do not comply to the majority of the outputs in all evaluation chains. We put a spotlight on the impor-
tance of the random strings R1, R2 that the parties provide to the chains, these allow our protocol to
use a single block of dataD for all threads of evaluation, which could not be done in a trivial plugging
of the cut-and-choose technique. As explained in Definition 2.8, verifying the correctness of the check
chains can be done given only (both of the) input labels for CINIT circuits.

Achieving to full security. In the next step we apply the general transformation discussed in Section 2.3,
from UMA to full security.

4.1 2PC in the UMA Model
We proceed with the formal detailed description of our protocol.

Protocol ΠP
UMA executed between sender S and receiver R. Unless stated differently, in the following

parameters z, i, t, j respectively iterate over [Z], [s], [T], [`].

Inputs. S has input x1 and R has input x2 where |x1| = |x2| = `′. R has a blank storage device D with
a capacity of n bits.

Auxiliary inputs.

• Security parameters κ and s.

• The description of a program P and a set of circuits CINIT,C
1
CPU+ , . . . ,C

T
CPU+ (as described above)

that computes its CPU-steps, such that the output of the last circuit stateT+1 equals PD(x1, x2), given
that the read/write instructions output by the circuits are being followed.

• (G, g, q) where G is cyclic group with generator g and prime order q, where q is of length κ.

• S and R respectively choose random strings R1 and R2 where |R1| = |R2| = (4t+ 1) ·m. We denote
the overall input size of the parties by `, that is, |x1| + |R1| = |x2| + |R2| = `′ + (4t + 1) ·m = `.
Also, denote the output size by vout.

The protocol.

1. GARBLED CPU-STEP AND INITIALIZATION CIRCUITS.

(a) Garble the last CPU-step circuit (t = T):

• Choose random labels for the labels corresponding to stateT+1.
• Garble Ct

CPU+ by calling

(
{GCt,i

CPU}i, {lblu,i,tin,b }u,i,b
)
← Garb

(
1κ, s,Ct

CPU+ , {lblv,i,tout,b}v,i,b; r
t
g

)
for v ∈ [vout], i ∈ [s], b ∈ {0, 1} and rtg the randomness used within Garb.

23

• Interpret the result labels {lblu,i,t
in,b }u,i,b as the following groups of values: statet, breadt ,

MPKt, TSKt and rt, that cover the labels: {lblu,i,tstate,b}u,i,b, {lbl
u,i,t

breadt ,b
}u,i,b, {lblu,i,tMPKt,b

}u,i,b,

{lblu,i,tTSKt,b
}u,i,b, {lblu,i,trt,b

}u,i,b resp.

(b) Garble the remaining CPU-step circuits. For t = T − 1, . . . , 1:

• Hard-code the labels {lblu,i
breadt+1,b

}u,i,b inside Ct
CPU+ .

• Choose random labels for the output wires that correspond to ireadt , iwritet , skt,i,b and translatet
and unite them with the labels {lblu,i,t+1

state,b }u,i,b correspond to statet+1 obtained from the pre-

vious invocation of Garb; denote the resulting set {lblv,i,t
out,b}v,i,b.

• Garble Ct
CPU+ by calling

(
{GCt,i

CPU}i, {lblu,i,tin,b }u,i,b
)
← Garb

(
1κ, s,Ct

CPU+ , {lblv,i,tout,b}v,i,b; r
t
g

)
with {lblv,i,t

out,b}v,i,b the set of labels from above and rtg the randomness used within Garb.

• Interpret the result labels {lblu,i,t
in,b }u,i,b as the following groups of values: statet, breadt ,

MPKt, TSKt and rt, that cover the labels: {lblu,i,tstate,b}u,i,b, {lbl
u,i,t

breadt ,b
}u,i,b, {lblu,i,tMPKt,b

}u,i,b,

{lblu,i,tTSKt,b
}u,i,b, {lblu,i,trt,b

}u,i,b resp.

(c) Garble the initialization circuit CINIT:

• Combine the group of labels {lblu,i,1state,b}i,b, that is covered by the value state1 which resulted

from the last invocation of Garb, with the groups of labels {lblu,i,tMPKt,b
, lblu,i,tTSKt,b, lbl

u,i,t
rt,b
}u,i,b

that are covered by the values {MPKt,TSKt, rt} for all t ∈ [T]. That is, set {lblv,i
out,b}v,i,b ={

lblu,i,1state,b ∪ lblu,i,tMPKt,b
∪ lblu,i,tTSKt,b ∪ lblu,i,trt,b

}
u,i,b

for all u, i, t, b.
• Garble the initialization circuit:(

{GCi
INIT}i, {lbl

u,i
in,b}u,i,b

)
← Garb

(
1κ, s,CINIT, {lblv,iout,b}v,i,b; r

0
g

)
.

• Interpret the input labels result from that invocation of Garb by {lblu,iS,b}u,i,b and {lblu,iR,b}u,i,b
which are the input wire labels that are respectively associated with the sender’s and re-
ceiver’s input wires.

2. OBLIVIOUS TRANSFERS.

S and R run the Batch Single-Choice Cut-And-Choose Oblivious Transfer protocol ΠSCCOT.

(a) S defines vectors v1, . . . ,v` so that vj contains the s pairs of random labels associated with R’s
jth input bit x2[j] in all garbled circuits GC1

INIT, . . . ,GCs
INIT.

(b) R inputs a random subset Z ⊂ [s] of size exactly s/2 and bits x2[1], . . . , x2[`].

(c) The result of ΠSCCOT is that R receives all the labels associated with its input wires in all circuits
GCz

INIT for z ∈ Z, and receives a single label for every wire associated with its input x2 in all
other circuits GCz

INIT for z /∈ Z.

24

3. SEND GARBLED CIRCUITS AND COMMITMENTS.

S sends R the garbled circuits chains GCi
INIT,GC1,i

CPU+ , . . . ,GCT,i
CPU+ for every i ∈ [s], and the com-

mitment comu,i
b = Com(lblu,iS,b, dec

u,i
b) for every label in {lblu,iS,b}u,i,b where lblu,iS,b is the bth label

(b ∈ {0, 1}) for the sender’s uth bit (u ∈ [`]) for the ith garbled circuit GCINIT.

4. SEND CUT-AND-CHOOSE CHALLENGE.

R sends S the set Z along with the pair of labels associated with its first input bit in every cir-
cuit GCz

INIT for every z ∈ Z. If the values received by S are incorrect, it outputs ⊥ and aborts.
Chains GCz

INIT,GC1,z
CPU+ , . . . ,GCt,z

CPU+ for z ∈ Z are called check-circuits, and for z /∈ Z are called
evaluation-circuits.

5. SEND ALL INPUT GARBLED VALUES IN CHECK CIRCUITS.

S sends the pair of labels and decommitments that correspond to its input wires for every z ∈ Z,
whereas R checks that these are consistent with the commitments received in Step 3. If not R aborts,
outputting ⊥.

6. CORRECTNESS OF CHECK CIRCUITS.

For every z ∈ Z, R has a pair of labels for every input wire for the circuits GCz
INIT (from Steps 2

and 5). This means that it can check the correctness of the chains GCz
INIT,GC1,z

CPU+ , . . . ,GCT,z
CPU+ for

every z ∈ Z. If the chain was not built correctly for some z then output ⊥.

7. CHECK GARBLED INPUTS CONSISTENCY FOR THE EVALUATION-CIRCUITS.

• S sends the labels
{

(lbl1,z
in,x1[1], . . . , lbl

`,z
in,x1[`])

}
z /∈[Z]

for its input x1.

• S and R participate in the input consistency check protocol ΠIC.

– The common inputs for this protocol are the circuit CINIT, its garbled versions {GCi
INIT}z /∈Z

and the labels
{

(lbl1,z
in,x1[1], . . . , lbl

`,z
in,x1[`])

}
z /∈[Z]

that were sent before.

– S inputs its randomness r0
g and the set of output labels {lblv,i

out,b}v,i,b that were used within
Garb on input GCINIT, along with the decommitments {decu,zb }u∈[`],z /∈Z,b∈{0,1}.

8. EVALUATION.

Let Z̃ = {z | z /∈ Z} be the indices of the evaluation circuits.

(a) For every z ∈ Z̃, R evaluate GCz
INIT using Eval and the input wires it obtained in Step 7 and

reveal one label for each of its output wires lblout,zINIT .

(b) For t = 1 to T :

i. For every z ∈ Z̃, evaluate GCt,z
CPU+ using Eval and obtain one output label for each of its

output wires, namely, lblout,t,z
CPU+ . Part of these labels refer to statet+1,z . In addition Eval

outputs outt,z = (ireadt,z , i
write
t,z , bwritet,z , translatet,z) in the clear12. For t = T Eval outputs

stateT+1 in the clear and we assign outt,z = stateT+1,z .
ii. Take the majority outt = Maj({outt,z}z∈Z̃) and remove from Z̃ the indices z̃ for which

outt,z̃ 6= outt. Formally set Z̃ = Z̃ r {z′ | outt,z′ 6= outt}. This means that R halts the
execution thread of the circuit copies that were found flawed during the evaluation.

12Note that if S is honest then outt,z1 = outt,z2 for every z1, z2 ∈ Z̃.

25

iii. Output outT+1.

The composition theorem of [Can00] allows us to work in a simpler environment where a trusted party
is exist for some black-box use of other secure protocol, and so, and we prove the following theorem in the
hybrid model (for further details see A.2).

Theorem 4.1. Assume that πGC is a garbling scheme (cf. Definition 2.8), that πTIBE is TIBE scheme (cf
Definition 2.7) and that Com is a statistical binding commitment scheme (cf. Definition A.1). Then, protocol
ΠP

UMA securely realizes FUMA in the presence of malicious adversaries in the {FSCCOT,FIC}-hybrid for all
program executions with ptWrites.

High-level overview of our proof. In this section we present the intuition of why does our protocol secure
in the UMA model, while a full proof of lemma 4.1 presented at Section 5. With respect to garbled circuits
security, we stress that neither the selective-bit-attack nor the incorrect-circuit-construction attack can harm
the computation here due to the cut-and-choose technique, which prevents the sender from cheating in more
than s−|Z|

2 of the circuits without being detected. As explained in [LP11], the selective-bit attack cannot be
carried out successfully since R obtains all the input keys associated with its input in the cut-and-choose
oblivious transfer, where the labels associated with both the check and evaluation circuits are obtained
together. Thus, if S attempts to run a similar attack for a small number of circuits then it will not effect
the majority, whereas if it does so for a large number of circuits then it will be caught with overwhelming
probability. In the protocol, R checks that half of the chains and their corresponding input garbled values
were correctly generated. It is therefore assured that with high probability the majority of the remaining
circuits and their input garbled values are correct as well. Consequently, the result output by the majority of
the remaining circuits must be correct.

The proof for the case the receiver is corrupted is based on two secure components: The garbling scheme
and the timed IBE scheme, in the proof we reduce the security of our protocol to the security of each one of
them. The intuition behind this proof asserts that R receives |Z| opened check circuits and |Z̃| = s − |Z|
evaluation circuits. Such that for each evaluation circuit it only receives a single set of keys for decrypting
the circuit. Furthermore, the keys that it receives for each of the |Z̃| evaluation circuits are associated with
the same pair of inputs x1, x2. This intuitively implies that R can do nothing but correctly decrypt |Z̃|
circuits, obtaining the same value P d(x1, x2). One concern regarding the security proof stems from the
use of a TIBE encryption scheme within each of the CPU-step circuits. Consequently, we have to argue
the secrecy of the input label that is not decrypted by R. Specifically, we show that this is indeed the case
by constructing a simulator that, for each CPU-step, outputs a fake translate table translate that correctly
encrypts the active label (namely, the label observed by the adversary), yet encrypts a fake inactive label.
We then show, that the real view in which all labels are correctly encrypted, is indistinguishable from the
simulated view in which only the active label is encrypted correctly.

5 Proof of Theorem 4.1

We prove Theorem 4.1 in a hybrid model where a trusted party is used to compute the batch single-choice
cut-and-choose oblivious transfer functionality FCT and the input consistency check functionality FIC. We
separately prove the case that S is corrupted and the case that R is corrupted.

26

5.1 The Case S is Corrupted

This case is very similar to the case in which S is corrupted in a standard cut-and-choose based protocol (e.g.
[LP11]). Intuitively, S can only cheat by constructing some of the circuits in an incorrect way. However,
in order for this to influence the outcome of the computation, it has to be that a majority of the evaluation
circuits, or equivalently over one quarter of them, are incorrect. Furthermore, it must hold that none of
these incorrect circuits are part of the check circuits. The reason this bad event only occurs with negligible
probability is that S is committed to the circuits before it learns which circuits are the check circuits and
which are the evaluation circuits. Specifically, observe first that in protocol ΠSCCOT, R receives all the
keys associated with its own input wires for the check circuits in Z (while S knows nothing about Z).
Furthermore, S sends commitments for all input wire labels for input wires associated with its input before
learning Z. Thus, it can only succeed in cheating if it successfully guesses over s/4 circuits which all
happen to not be in Z. As shown in [LP11], this event occurs with probability of approximately 1

2s/4
. The

sender S further participates in an input consistency protocol ΠIC which proves to R that all its inputs to the
evaluation circuits are consistent.

We now proceed to the formal proof. Let A be an adversary controlling S in an execution of ΠP
UMA

where a trusted party is used to compute the cut-and-choose OT functionality FSCCOT and the input consis-
tency check functionality FIC. We construct a simulator S that runs in the ideal model with a trusted party
computing FPD

UMA. The simulator S internally invokes A and simulates the honest R for A as well as the
trusted party computing FSCCOT and FIC functionalities. In addition, S interacts externally with the trusted
party computing FPD

UMA. S works as follows:

1. S invokesA upon its input and receives the inputs thatA sends to the trusted party computingFSCCOT

functionality. These inputs constitute an `×smatrix of label pairs {(lbl1,1R,0, lbl
1,1
R,1), . . . , (lbl`,sR,0, lbl

`,s
R,1)},

where lblj,iR,b is the label associated with the jth input wire of the receiver R in the ith garbled version
of the circuit CINIT. Recall that these labels constitute the garbled x1 and R1 for all chains i ∈ [s].

2. S receives from A s garbled chains GCi
INIT,GC1,i

CPU+ , . . . ,GCT,i
CPU+ for every i ∈ [s] and 2`s com-

mitments {comu,i
b } for every label lblu,iS,b as described in the protocol (the garbled values associated

with the sender’s input wires to {CINIT}i for all i ∈ [s]).

3. S chooses a subset Z ⊂ [s] of size s/2 uniformly at random. For every z ∈ Z , S hands A the values
lbl1,zR,0, lbl

1,z
R,1 (i.e. the two labels for the first input wire of R in every check chain, this proves toA that

this chain is indeed a check chain, otherwise, R could not know both of the labels for that wire).

4. A sends the decommitments to all labels of its input wires for the check chains (i.e. all chains indexed
by z ∈ Z). Namely, upon receiving the set

{
lblu,iS,b, dec

u,i
b } where lblu,iS,b is the bth label (b ∈ {0, 1})

for the sender’s uth bit (u ∈ [`]) for the ith garbled circuit GCINIT and decu,ib is its decommitment
information. S verifies that the decommitment information is correct. If not, S sends ⊥ to the trusted
party, simulates R aborting and outputs whatever A outputs.

5. S verifies that all the check chains GCz
INIT,GC1,z

CPU, . . . ,GCT,z
CPU for z ∈ Z are correctly constructed

(the same way that an honest R would). If not, it sends ⊥ to the trusted party, simulates R aborting
and outputs whatever A outputs.

6. S receives labels
{

(ˆlbl
1,z

in,x1[1], . . . ,
ˆlbl
`,z

in,x1[`])
}
z /∈[Z]

. In addition S, as a trusted party in the input con-

sistency protocol ΠIC, receives the randomness r0
g , the output labels {lblv,i

out,b}v,i,b that were used byA

27

to generate the s garbled chains in Step 1 of the protocol, together with the decommitments decu,ib for
every label associated with the sender’s input wires.

7. Given the values in the previous step, S checks the consistency of the labels it received from S (as if
the trusted party in FIC would). Note that if the check follows, the simulator S is able to extract the
sender’s input x1.

- If FIC returns 0 then S outputs ⊥, simulates R aborting and outputs whatever A outputs.

- Otherwise, for every u ∈ [`′] (|x1| = `′ as specified above), if ˆlbl
u,z

in,x1[u] = lblu,z
in,0 set x1[u] = 0

and if ˆlbl
u,z

in,x1[u] = lblu,z
in,1 set x1[u] = 1. Note that S only extracts the values associated with x1

and not R1.

8. S sends (INPUTS, x1) to the trusted party computing FPD

UMA and outputs whateverA outputs and halts.

We next prove that for every A corrupting S and every s it holds that{
IDEALF

PD

UMA

S(z),S(κ, x1, x2)

}
κ∈N,x1,x2,z∈{0,1}∗

κ,s
≈
{

REALΠP
UMA

A(z),S(κ, x1, x2)
}
κ∈N,x1,x2,z∈{0,1}∗

The sender’s view in our protocol is very limited, the values that it sees during the execution are (1)the set of
indices Z (in Step 4 of the protocol), (2) |Z| pairs of labels that proves that that Z is indeed the one used in
ΠSCCOT, and (3) the output of the execution. The simulator S chooses Z exactly as a honest receiver would
and sends S the rest of the values correctly (also, if it caught a cheat, it aborts as a honest receiver would
do). Importantly, is we argue immediately, the adversary could not deviate from the protocol (and produce
sufficient amount of incorrect garbled chains) without being caught with overwhelming probability.

Note that after Step 3 all labels for input wires of S, and all garbled chains are fully determined, also,
one label for every input wire associated with R is fully determined as well. Therefore, after this step each
of the chain of circuits GCi

INIT,GC1,i
CPU+ , . . . ,GCT,i

CPU+ is either “bad” or “not bad”.
It was previously shown, with regard to cut-and-choose analysis, that the probability that R does not

abort and yet the majority of the evaluation circuits is bad, is at most 1
2s/4

. We denote this above event by
badMaj ∧ noAbort and claim that as long that this event does not occur, the result of the ideal and hybrid
executions (where the oblivious transfers and input consistency are ideal) are identically distributed. This
is due to the fact that if less than s/4 circuits are bad, then the majority of circuits evaluated by R compute
the correct chain of circuits GCi

INIT,GC1,i
CPU+ , . . . ,GCT,i

CPU+ which in turn correctly evaluates the program
PD due to the correctness of the garbled scheme. In addition, by the ideal input consistency, the input x1

extracted by the simulator S and sent to the trusted party computing PD corresponds exactly to the input x1

in the computation of every not-bad chain of circuits. Thus, in every not-bad chain R outputs PD(x1, x2),
and this is the majority of the evaluation circuits. We conclude that as long as badMaj ∧ noAbort does not
occur, R outputs PD(x1, x2) in both the real and ideal executions. Finally, we observe that S sends⊥ to the
trusted party whenever R would abort and output ⊥. This completes the proof of this corruption case.

5.2 The Case R is Corrupted

The intuition of this proof is as follows. For each of the evaluation chains the receiver only receives a single
set of input labels. Furthermore, these labels are associated with the same pair of inputs x1, x2 due to the
single-choice cut-and-choose OT FSCCOT functionality. This implies that R can do nothing but honestly
evaluating the evaluation circuits, where each final circuit outputs the same value PD(x1, x2). That it,

28

assume that R evaluates the s/2 garbled circuits GCt,z
CPU+ for CPU-step t and all z /∈ Z; these garbled

circuits output a translate translatet tuple which corresponds to the values ct0 = EncMPK(id0, lbl
t+1
0) and

ct1 = EncMPK(id1, lbl
t+1
1).13 Now, since R only knows a secret key for the identity idb from a previous

write operation, yet it does not know the secret key that is associated with id1−b it can only decrypt ctb.
Below we formalize this intuition, namely, we show that R cannot learn any significant information about
the plaintext within ct1−b and thus, cannot extract the other label lbl1−b for the next CPU step circuit.

Let A be an adversary controlling R in an execution of protocol ΠP
UMA where a trusted party is used

to compute the cut-and-choose OT functionality FSCCOT and the input consistency functionality FIC. We
construct a simulator S for the ideal model with a trusted party computing FPD

UMA.

1. S invokesA upon its input and receives its inputs to the trusted party computingFSCCOT. These inputs
consist of a subset Z ⊂ [s] of size exactly s/2 and bits x2[1], . . . , x2[`]. (If Z is not of size exactly
s/2 then S simulates S aborting, sends ⊥ to the trusted party computing FPD

UMA, and halts outputting
whatever A outputs.)

2. S sends (INPUTR, x2) to the trusted party computing FPD

UMA and receives the output (OUTPUTR, T, y)
and the memory accesses MemAccess = {(ireadt , iwritet , bwritet)}t∈[T] where ireadt is the address to read
from, iwritet is the address to write to and bwritet is the bit value to be written to iwritet in time step t.

3. S builds s chains of garbled circuits, starting from the last CPU step T towards the first one, in the
following manner. (Note that a single call to SimGC produces both the evaluation and the check
circuits).

(a) Initialize the TIBE scheme: generate the keys (MPK,MSK) ← MasterGen(1κ) and TSKt ←
TimeGen(MSK, t) for t = 1, . . . , T .

(b) For the last time step t = T , create {GCt,z
CPU+}z by calling SimGC on the circuit Ct

CPU+ such that
for the evaluation circuits (z /∈ Z) the output labels statet+1 are set to the value y in the clear,
whereas for the check circuits (z ∈ Z) the simulator chooses random pairs of output labels. This
produces the input labels for the input statet and the bit breadt .

(c) For any other t = T − 1 . . . 1, recall first that the values ireadt , iwritet , bwritet are given in the clear
(from MemAccess). Also, note that the labels lblt+1,z

read,b for the input bit b of circuit GCt+1,z
CPU+ had

been produced by the simulator in step t + 1. The simulator S computes the secret key sk(t,i,b)

and the translation table translatet as follows:

- Let i = iwritet and b = bwritet . If i =⊥ then set sk(t,i,b) :=⊥. Else, set sk(t,i,b) ←
KeyGen(TSKt, id = (t, i, b)).

- Let i = ireadt , t′ < t be the last write-time to location i (i.e., the largest value such that
iwritet′ = ireadt) and let b = bwritet′ be the bit written to the location at time t′ (this can be easily
computed given MemAccess). Then, set:

ctb ← EncMPK((t′, i, b), lblt+1,z
read,b), ct1−b ← EncMPK((t′, i, b), 0)

for all z /∈ Z, and set translatet = (ct0, ct1).
13Recall that all the circuits evaluated in time t output the same value for translatet since they all use the same randomness to

compute it.

29

(d) Generate {GCt,z
CPU+}z by calling SimGC on the circuit Ct

CPU+ such that for the evaluation circuits
(z /∈ Z) it inputs the values iwritet , ireadt , sk(t,i,b), translatet as output labels and for the check
circuits (z ∈ Z) it inputs random pairs of labels. Note that when t = 1, the input labels
produced by SimGC for state1 actually refer to the parties inputs x1, x2.

(e) At this point, the input labels for all CPU-step circuits {GC1,z
CPU+ , . . . ,GCT,z

CPU+}z are known
to S (specifically, these correspond to either a single label per wire for z /∈ Z, or a pair of
labels per wire for z ∈ Z). These constitute the output labels that are required for SimGC to
simulate the initialization circuits {GCz

INIT}z . Namely, we have the output labels for x1, x2

and {MPKt,TSKt, r
KeyGen
t , rEnct,0 , r

Enc
t,1 }t∈[T] (again, a single label if z /∈ Z and pair of labels if

z ∈ Z). The simulator S inputs these labels as the output labels to SimGC which produces the
labels for the input wires of the circuits {Cz

INIT}z .

4. Let Z̃ = s \ Z be the indices of the evaluation chains. Then in the previous step the simulator
produced s sets of labels. For chains indexed with z ∈ Z (check chain) the set consists of ` pairs
of labels corresponding to R’s inputs wires in GCz

INIT, whereas for chains indexed with z ∈ Z̃
(evaluation chains) the set consists of ` single labels corresponding to R actual input x2. These
(2`|Z| + `|Z̃|) labels are denoted by lblZ = (lbl1,zR,0, lbl

1,z
R,1, . . . , lbl

`,z
R,0, lbl

`,z
R,1) for all z ∈ Z, and by

lblZ̃ = (lbl1,zR,x2[1], . . . , lbl
`,z
R,x2[`]) for z ∈ Z̃. Then, S hands A all the above labels, i.e. the union

lblZ ∪ lblZ̃ as its output from the oblivious transfers. (Note that S knows x2 because it extracted it in
the beginning of the simulation).

5. The simulator S sends A the garbled chains and commitments on the labels of all input wires of
circuits {GCi

INIT}i∈[s].

6. S receives the set Z ′ along with a pair of labels for every z ∈ Z (proving that A indeed entered Z).

(a) If Z 6= Z ′ and yet the values received are all correct then S outputs ⊥ and halts.

(b) If Z = Z ′ and any of the values received are incorrect, then S sends ⊥ to the trusted party,
simulates S aborting. and halts outputting whatever A outputs.

(c) Otherwise, S proceeds as below.

7. S hands A the input labels that correspond to the sender’s input for all z /∈ Z and u ∈ [`], and sends
the value 1 as the output of the trusted party when using the input consistency check functionalityFIC.

8. S outputs whatever A outputs and halts.

We now show that for every A corrupting R and every s it holds that:{
IDEALF

PD

UMA

S(z),R(κ, x1, x2)

}
κ∈N,x1,x2,z∈{0,1}∗

κ,s
≈
{

REALπA(z),R(κ, x1, x2)
}
κ∈N,x1,x2,z∈{0,1}∗

In order to do so, we define a series of hybrid distributions Hybt for t = 1, . . . , T . In the hybrid t, the
garbled CPU step circuits GC1,z

CPU+ , . . . ,GCt,z
CPU+ for z ∈ Z are created as in the simulation and the garbled

CPU step circuits GCt+1,z
CPU+ , . . . ,GCT,z

CPU+ for z ∈ Z are created as in the real distribution (that is, both
labels lblt+1,z

read,0, lbl
t+1,z
read,1 for the input bit of the next circuit are encrypted). In Hybt, when we simulate the

tth circuits GCt,z
CPU+ , we use the output labels for statet+1, b

read
t+1 that these wire takes on during the real

computation.

30

We also define a hybrid distribution Hyb′t which is like Hybt except for the simulation of the tth CPU
step circuits GCt,z

CPU+ for z ∈ Z. Instead of choosing translatet as in the simulation described above, we
choose translatet = (ct0, ct1) to both be encryptions of the correct label of the next circuit:

ctb ← EncMPK((t′, ireadt , b), lblt+1,z
read,b) , ctb ← EncMPK((t′, ireadt , b), lblt+1,z

read,1−b)

where lblt+1,z
read,0), lblt+1,z

read,1 are the labels corresponding to the bits 0, 1 for the wire bwritet+1 in garbled circuit

GCt+1,z
CPU+ , which is still created using the real garbling procedure. (If t = T we define Hyb′t to be the same

as Hybt).
Note that in Hyb0 none of the CPU step circuits are simulated, yet, the initialization circuits GCz

INIT are
still simulated. Therefore, we define the hybrid Hyb(−1) to be the distribution where all circuits are created
as in the real distribution.

Note that Hyb−1 is equal to the real distribution and HybT is equal to the simulated distribution.
Therefore, we prove indistinguishability by showing that for each t, we have:

Hybt
c
≈ Hyb′t+1

c
≈ Hybt+1

and
Hyb(−1)

c
≈ Hyb0

We prove this by the following claims:

Claim 5.1. For each t ∈ {0, . . . , T} it holds that Hybt
c
≈ Hyb′t+1.

Proof: This follows directly from the security of the circuit garbling scheme applied only to the garbled
CPU set of circuits for step t + 1. This is because, in Hybt, all of the circuits GC1,z

CPU+ , . . . ,GCt,z
CPU+ are

already simulated and hence they only rely on a subset of the input wire labels for the input statet+1, b
write
t+1 ,

in the t+1th set of circuits, corresponding to the actual values that these wires should take on during the real
computation. (this is true for the wire corresponding to bwritet+1 since the simulated translatet used to create
the tth circuit only encrypts one label and the other ciphertext is “dummy”.)

Claim 5.2. For each t ∈ {0, . . . , T} it holds that Hyb′t
c
≈ Hybt.

Proof: This follows directly from the security of the TIBE scheme. The only difference between Hyb′t
and Hybt is the value of translatet = (ct0, ct1) used to simulate the tth set of circuits. Let b = bwritet+1 be the
value of the read-bit in location ireadt in the computation. Then, in Hyb′t we set

ctb ← EncMPK((t′, ireadt , b), lblt+1,z
read,b) , ctb ← EncMPK((t′, ireadt , b), lblt+1,z

read,1−b)

whereas in Hybj we set

ctb ← EncMPK((t′, ireadt , b), lblt+1,z
read,b) , ctb ← EncMPK((t′, ireadt , b), 0)

where u < t.
Therefore we reduce this to the TIBE game where the adversary is given the master public key MPK, the

timed-keys TSKt+1, . . . ,TSKT , a single identity secret key for the identity (t′, iwritet′ , bwritet′) for each time
step 0 < t′ < t (this key is used to simulate the set of circuits for time step t′).

Assume the existence of parties inputs x1, x2 for which there exists a distinguisher D for the hybrids
Hyb′t and Hybt. We construct a distinguisherD′ for the TIBE scheme. D′ is given MPK,TSKt+1, . . . ,TSKT
from the game along with one secret key for every time step t′ < t. D′ works as follows:

31

1. Build the circuits GCT,z
CPU+ , . . . ,GCt+1,z

CPU+ for all z /∈ Z as in the real distribution.

2. For the tth circuits GCt,z
CPU+ , let b = breadt be the bit that is being read from memory at time t in

the real execution of the program (D′ knows it since it knows x1, x2 and can infer b from it) and let
lblt+1,z

read,b, lbl
t+1,z
read,1−b be the labels of the input bits for the next CPU step circuits (D′ knows them as

well because it generated these labels using Garb).

3. D′ hands the TIBE game the identity id∗ = (t, iwritet , b) and the two messages: msg0 = lblt+1,z
read,1−b and

msg0 = 0 and receives the ciphertext ct.

4. Set translatet = (ct0, ct1) where ctb = EncMPK((t′, ireadt , b), lblt+1,z
read,b) where t′ the last time that

location ireadt was written to, and ct1−b = ct.

5. For CPU step circuits GCt,z
CPU+ , use the suitable input labels statet+1 that was output from the previous

invocation of Garb, and the values iwritet , ireadt , bwritet , translatet that are output “in the clear” and input
them to SimGC to get the appropriate input labels for CPU step circuits GCt−1,z

CPU+ .

6. Keep the simulation till the CINIT and hand the result garbled chains together with the memory ac-
cesses to D.

7. If D outputs Hyb′t then output 0, otherwise, if D outputs Hybt output 1.

Note that if ct = EncMPK((t′, ireadt , b), lblt+1,z
read,b) then the result hybrid is identically distributed to Hyb′t

and if ct = EncMPK((t′, ireadt , b), 0) then the result hybrid is identically distributed to Hybt. Thus, if D
distinguishes between the two hybrids Hyb′t and Hybt then the distinguisher D′ distinguish between the
above messages in the TIBE game.

Claim 5.3. It holds that Hyb(−1)

c
≈ Hyb0.

Proof: Note that the difference between the hybrids is merely whether the first circuits Cz
INIT are simulated

or not. Hence, we rely on the security of the garbling scheme as done in the proof of Claim 5.2.

6 Removing the IBE Assumption

Next, we demonstrate how to apply our technique to the construction of Garg et al. [GLOS15]. We start be
putting the theorem that is being shown in this section and then we describe how the garbled RAM primitive
is being achieved by only assuming the existence of one-way-functions (OWF).

Theorem 6.1. Under the standard assumptions for achieving static malicious 2PC security, there exists a
constant round protocol that securely realizes any RAM program in the presence of malicious adversaries,
making only black-box use of an Oblivious RAM construction, where the size of the garbled database is
|D| · poly(κ, log n) the size of the garbled input is |x| · O(κ) + T · poly(κ) and the size of the garbled
program and its evaluation time is |CP

CPU| × T × poly(κ, log(n))× s.

6.1 GRAM Based on OWF [GLOS15]

As in the previous GRAM schemes, the garbler first garble the data D, the program P and the input x, and
forwards these to the evaluator who runs the evaluation algorithm to obtain the program output y.

32

6.1.1 Garbling Data

• Let the data D be of n blocks D0, D1, . . . , Dn−1, each of size κ bits. These blocks will be the leafs
of a binary tree of depth d = log n such that its n− 1 internal nodes are determined next.

• Choose a set of n − 1 random keys from {0, 1}κ indexed by the tuple i, j where i is the depth in
the tree and j is the index of that node within the i-th tree level, where that the i-th level includes
2i keys. For example, when |D| = 8κ then n = 8 and the nodes in the tree store the values:
r0,0, r1,0, r1,1, r2,0, r2,1, r2,2, r2,3, D0, D1, D2, D3, D4, D5, D6, D7 where r0,0 is the root. This tree
is the plain data, whereas the encrypted data is described next.

• Encrypt each value within a node (expect for the root) using the key that is associated with its parent
node, where the encryption is carried out using a PRF F and the tags left and right. For example, the
block r2,1 is encrypted using the key r1,0 (its parent in the tree) with the tag right (since r2,1 is the
right child of r1,0). That is, r̂2,1 = Fr1,0(right, r2,1). Similarly, D̃2 = Fr2,1(left, D2).

• For each plain key ri,j output its encrypted version r̂i,j and for each plain data block Dj output its
encrypted version D̃j . This entire tree of blocks is the garbled data D̃.

6.1.2 Garbling Program

Each step in the original program P is performed using d = log n steps in the new scheme, such that the
first log n − 1 steps are used to navigate to the required data block in Dj , whereas the last step is used to
perform the CPU-step of the program on this block and to kick start the next CPU-step. Concretely, the first
log n− 1 navigation steps are carried out by evaluating log n− 1 nav garbled circuits and the last (log n-th)
step is performed by evaluating a single garbled circuit step. In the following, we further elaborate on the
internal design of the nav and step circuits:

The nav circuit. We index each nav circuit by the tuple i, j (i ∈ [T] and j ∈ [d]) such that circuit
navi,j is the j-th circuit in the i-th group of circuits. navi,j helps to navigate in the j-th level of the
tree towards the data item DL that is required in the i-th CPU-step. The circuit navi,j is given as
input two plain keys r`, r`+1 (` ∈ [2j+1]) from level j along with the current state of the program
and the location L required for the next CPU-step within program P . In addition, the values j, s, r′

and labelleft
0 , labelleft

1 , labelright
0 , labelright

1 are hardwired in navi,j , where s is the key of the parent of
the two keys r` and r`+1, r′ is a fresh key that will replace either r` or r`+1 (depends on the location
L). Moreover, the set of labels labelxb are the input labels that correspond to two keys in the next
navigation circuit (for x ∈ {left,right}, b ∈ {0, 1}). The output of navi,j are the result of F applied
on the two pair of keys using the parent key s, and a translation table that initiates the evaluation of
the next circuit in the i-th group of circuits, which is either circuit navi,j+1 or stepi. In more details,
the navi,j circuit works as follows:

– If Lj = 0 (namely, the j-th bit of L), then replace r` with r′, otherwise replace r`+1 with r′

(remember that r` and r`+1 are given as inputs). Call the new key pair r̂`, r̂`+1. Encrypt this pair
using their parent’s key s (hardwired) and output: write =

(
Fs(r̂`), Fs(r̂`+1), L, state

)
. The

two ciphertexts would be written to the appropriate locations, (i, `) and (i, ` + 1), in memory
while the location L and the state are passed to the next navigation circuit.

33

– Note that if Lj = 0 this means that in the next level of the tree (i.e. level j + 1) we wish to use
the children of the left key r`, denoted by rm and rm+1. Whereas, if Lj = 1 then we wish to use
the children of the right key r`+1, denoted by r′m and rm′+1.
W.l.o.g assume that Lj = 0, then the current navigation circuit navi,j outputs a translation table
that enables the evaluator to evaluate the next navigation circuit navi,j+1 which receives two
keys from the j+1 level of the tree, namely, the keys rm, rm+1. Thus the current navigation cir-
cuit outputs the translation table translate = Fr`(0, left)⊕labelleft

0 , translate = Fr`(1, left, 1)⊕
labelleft

1 and translate = Fr`(0, right)⊕ labelright
0 , translate = Fr`(1, right, 1)⊕ labelright

1 . This
way the evaluator can input the valid labels that corresponds to values rm, rm+1 without know-
ing these values.14

The step circuit. Recall that the tree with n leafs has d+ 1 layers: 0, . . . , d (d = log n) such that the
data items reside on layer d and the keys reside on the rest of the layers. In order to navigate to the
L-th data item on layer d we skip the 0-layer of the tree (the root) and navigate through the rest of the
d − 1 layers 1, . . . , d − 1. Next, circuit step is evaluated by choosing one out of the two data items
(from level d) that are given as input.

To be concrete, circuit stepi is given 2 data items as input DL+b, DL+(1−b) (b ∈ {0, 1}) along with
the location L that is required for the i-th CPU-step and the current state of the program. As before,
the values r and s, as well as a set of labels labelxb (for x ∈ left,right, b ∈ {0, 1}) are hardcoded into
this circuit, where r is the key that is associated with the parent of DL+b, DL+(1−b), s is the key of
the root of the tree and labelxb are the labels for the input wires that correspond to the key pair of the
next navigation circuit navi+1,0, this is the first navigation circuit of the next CPU-step, the keys that
it is given are those of locations (1, 0) and (1, 1) in the tree.

Circuit stepi works as follows:

– Set b = Ld−1 andDread = DL+b to be the data item that is required for the i-th CPU-step. Upon
reading Dread, the evaluator computes (state′, L′, Dwrite) = CPCPU(state, Dread), where state’
is the new state of the program, L′ is the next location to read from and Dwrite is the value to
overwrite location DL+b with.

– Encrypt the updated data items in locations DL+b, DL+(1−b) (where now DL+b contains Dwrite)
with their parent’s key r. If b = 0 output

(
fr(DL, left), fr(DL+1, right), L′, state’

)
, otherwise

output
(
fr(DL−1, left), fr(DL, right), L′, state’

)
.

– Note that the following circuit navi+1,0 restarts the navigation from layer 1 toward location L′

(skipping layer 0). Thus, it expects to be given as input the two keys r1,0, r1,1. Those keys are
encrypted by the root-key, s, which is, as mentioned earlier, is hardwired into the current stepi
circuit15. Thus stepi also outputs a translation table translate that would help to input these
two keys r1,0, r1,1 to the navi+1,0 circuit.

The overall construction can be seen as a chain of T groups of circuits such that each group consists of
d− 1 nav circuits and one step circuit. Each of the nav circuits is hardwired with a new fresh key and the

14We note that our description is informal. Specifically, the keys are encrypted bit-by-bit implying 2κ ciphertexts, as each key
is of size κ. Also, the authors of [GLOS15] define a test procedure Test that can tell whether a given label is valid for some input
wire or not. This way, the evaluator can identify the correct label while applying the translation procedure. For simplicity we omit
these details from our description.

15This root key is replaced in the first navigation circuit by a new fresh key.

34

key that was refreshed in the prior circuit. A demonstration of a program with two CPU-steps and 8 data
items is presented next.

6.1.3 Program Execution Demonstration

We start with a memory with 8 items: D0, D1, D2, D3, D4, D5, D6, D7. Thus, the new plain data would be
D = {r0,0, r1,0, r1,1, r2,0, r2,1, r2,2, r2,3, D0, D1, D2, D3, D4, D5, D6, D7} and the garbled data would be

D̃ =

{
Fr0,0(r1,0, left), Fr0,0(r1,1, right), Fr1,0(r2,0, left), Fr1,0(r2,1, right), Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fr2,1(D2, left), Fr2,1(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}
.

Let the program P consists of the instructions: {i = x · D[3]; output i · D[7]; }. That is, we have 2
memory accesses to locations 3 and 7 and finally the program outputs x ·D[3] ·D[7]. Furthermore, L is of
length 3 bits starting 000 and till 111 (L = 3 means L = 011 and L = 7 means L = 111). Note that the
program uses an internal variable i in its state. The circuits of P̃ works as follows (we ignore the hardwired
labels and the translation table for simplicity):

nav1,0. Inputs: keys = {r1,0, r1,1}, L = 3, state = x.
Hardwired: v0, v1, i = 0.
Data D̃ upon navigation:

D̃ =

{
Fv0(v1, left),Fv0(r1,1, right),Fr1,0(r2,0, left), Fr1,0(r2,1, right), Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fr2,1(D2, left), Fr2,1(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

nav1,1. Inputs: keys = {r2,0, r2,1}, L = 3, state = x.
Hardwired: v1, v2, i = 1.
Data D̃ upon navigation:

D̃ =

{
Fv0(v1, left), Fv0(r1,1, right), Fv1(r2,0, left),Fv1(v2, right),Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fr2,1(D2, left), Fr2,1(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

step1. Inputs: Items = {D2, D3}, L = 3, state = x.
Hardwired: v2, v0.
State upon running this step: state = x ·D[3].

35

Data D̃ upon running this step:

D̃ =

{
Fv0(v1, left), Fv0(r1,1, right), Fv1(r2,0, left), Fv1(v2, right), Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fv2(D2, left),Fv2(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

Note: The above circuit is hardwired with v0 and thus can decrypt the two values in level 1 of the tree,
currently these values are v1 and r1,1. This kick starts the evaluation of the next CPU-step, which begins by
the circuit nav2,0.

nav2,0. Inputs: keys = {v1, r1,1}, L = 7, state = x ·D[3].
Hardwired: u0, u1, i = 0.
Data D̃ upon navigation:

D̃ =

{
Fu0(v1, left),Fu0(u1, right),Fv1(r2,0, left), Fv1(v2, right), Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fv2(D2, left), Fv2(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

nav2,1. Inputs: keys = {r2,2, r2,3}, L = 7, state = x ·D[3].
Hardwired: u1, u2, i = 1.
Data D̃ upon navigation:

D̃ =

{
Fu0(v1, left), Fu0(u1, right), Fv1(r2,0, left), Fv1(v2, right), Fu1(r2,2, left),

Fu1(u2, right),Fr2,0(D0, left), Fr2,0(D1, right), Fv2(D2, left), Fv2(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

step2. Inputs: Items = {D6, D7}, L = 7, state = x ·D[3].
Hardwired: u2, u0.
State upon running this step: state = x ·D[3] ·D[7].
Data D̃ upon running this step:

D̃ =

{
Fu0(v1, left), Fu0(u1, right), Fv1(r2,0, left), Fv1(v2, right), Fu1(r2,2, left),

Fu1(u2, right), Fr2,0(D0, left), Fr2,0(D1, right), Fv2(D2, left), Fv2(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fu2(D6, left),Fu2(D7, right)
}

Where the state in the last CPU-step is outputted in the clear.

36

6.2 2PC in the Presence of Malicious Adversaries Relying on OWF

In order to apply the cut-and-choose technique we need to figure out what randomness affects the data to be
written to the memory (because we want all copies of the circuits to output the same values). We note that
the above fresh keys that are hardwired into the circuits, together with the initial data D and the program
input x fully determine the values to be written to the memory during the execution of the program. This
leads to the concrete construction of a malicious secure protocol using the cut-and-choose technique.

The protocol that relies on the existence of one way functions is the same as the protocol described in
Section 4.1 with the differences that now the random inputs R1, R2 that the parties enter the computation,
as well as the values that the CINIT generates, are interpreted differently. We next overview the changes to
the protocol from Section 4.1 in more details.

• Interpretation of R1 and R2. The circuit CINIT takes R1, R2 as inputs, calculates R = R1 ⊕R2 and
interprets R as values: {ut0, . . . , utd−1}t∈[T] which are the fresh keys that are used in the execution of
the program, grouped into T parts.

• Construction of the chains of circuits. We now describe how the chains of circuits are being built in
the new construction. To simplify notation, we describe how a single chain is being built, out of the s
chains that are used in the cut-and-choose process. A chain consists of T ·d+1 garbled circuits where
the first garbled circuit is CINIT followed by groups of d garbled circuits, such that the last circuit
in each group t is a step circuit stept whereas the rest d − 1 garbled circuits are navigation circuits
navt,0, . . . ,navt,d−1. The functionalities of these circuits were described above (see [GHL+14] for
further explanation). For each time step t = T, . . . , 1, the garbling procedure starts by garbling stept,
then garbling navt,d−1 and so on till the garbling of navt,1. Such that the labels associated with
the input wires of navt,j , that represent the current state, are hardwired into circuit navt,j−1 and
similarly, the labels of the input wires of stept, that represent the current state, are hardwired into
circuit navt−1,d−1. This is done in the same manner as in the protocol described in Section 4.1.

• The bootstrapping circuit. The bootstrapping circuit (CINIT) hands the values u1
0, u

1
1 to the naviga-

tion circuit nav1,0 (where u1
0 = r0,0 - the first root-key); in addition, it hands u1

1, u
1
2, to the nav1,1

navigation circuit and so on till the first step circuit step1 which is given the keys u1
d−1, u

1
0. Generally

speaking, the bootstrapping circuit transfers the navigation circuit navi,j the keys uij , u
i
j+1, and the

circuit stepi the keys uid−1, u
i
0.

Security intuition. The above nav and step circuits are given two random keys as an input from the
bootstrapping circuit CINIT. These circuits relate to the keys they are given as if they were hardcoded in them,
that is, the functionality remains the same. Next we argue the following two arguments: (a) Correctness:
That applying the cut-and-choose technique does not require a usage of multiple instances of memory D,
i.e., that the same write-data is being output from all chain copies; and (b) Security: That the evaluator
does not learn anything beyond the program output and the memory access. We base these argument on the
following informal arguments:

• Correctness. Since all the PRF keys used during the execution of the program are extracted from R1

and R2 that are input by the parties, it follows that if the same R1, R2 are being used by all copies of
CINIT then the same values will be output by all navigation and step circuits copies.

• Privacy. A simulator in this case can be constructed in the exact same manner as it was built in 5.2,
with the exception that we now combine the simulators of [LP11] and [GLOS15]. The only difference

37

is that now, the random strings R1, R2 that the parties input to the chains are interpreted as the fresh
random keys that are used in each of the navigation and step circuits rather then being used for the
IBE procedures. We note that the random string R = R1⊕R2 is being hidden from the evaluator just
like it was hidden in the previous construction. Also, an existence

As above, in case that the garbler has cheated, it is guaranteed by the cut-and-choose analysis that the
majority of the chains will output the same value to be written to memory, with high probability.

References
[AHMR15] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to efficiently evaluate RAM

programs with malicious security. In EUROCRYPT, pages 702–729, 2015.

[BB11] Dan Boneh and Xavier Boyen. Efficient selective identity-based encryption without random oracles. J.
Cryptology, 24(4):659–693, 2011.

[Bea91] Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377–391, 1991.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. SIAM J. Comput.,
32(3):586–615, 2003.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In CCS, pages
784–796, 2012.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols. In Harriet
Ortiz, editor, 22nd STOC, pages 503–513. ACM, 1990.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1):143–
202, 2000.

[CP13] Kai-Min Chung and Rafael Pass. A simple oram. Cryptology ePrint Archive, Report 2013/243, 2013.
http://eprint.iacr.org/2013/243.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In Proceedings of
the 4th Annual ACM Symposium on Theory of Computing, May 1-3, 1972, Denver, Colorado, USA, pages
73–80, 1972.

[DMN11] Ivan Damgård, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure oblivious RAM without
random oracles. In TCC, pages 144–163, 2011.

[GGH+13] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, and Daniel Wichs.
Optimizing ORAM and using it efficiently for secure computation. In PETS, pages 1–18, 2013.

[GGMP16] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure multiparty ram computation in
constant rounds. To appear in TCC, 2016.

[GHJR14] Craig Gentry, Shai Halevi, Charanjit S. Jutla, and Mariana Raykova. Private database access with he-
over-oram architecture. IACR Cryptology ePrint Archive, 2014:345, 2014.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs. Garbled
RAM revisited. In EUROCRYPT, pages 405–422, 2014.

[GKK+12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova, and
Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time. In CCS, pages 513–524,
2012.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. 2015.

38

http://eprint.iacr.org/2013/243

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM from one-way func-
tions. In STOC, pages 449–458, 2015.

[GMOT12] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia. Privacy-
preserving group data access via stateless oblivious RAM simulation. In SODA, pages 157–167, 2012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. J. ACM,
43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams. In STOC,
pages 182–194, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press, New York, NY, USA, 2004.

[HMR15] Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. Efficient zero-knowledge proofs of non-algebraic
statements with sublinear amortized cost. In CRYPTO, pages 150–169, 2015.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient non-
interactive secure computation. In EUROCRYPT, pages 406–425, 2011.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In CRYPTO, pages 572–591, 2008.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority.
In TCC, pages 294–314, 2009.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed inputs. In
EUROCRYPT, pages 97–114, 2007.

[KLO12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious RAM and
a new balancing scheme. In SODA, pages 143–156, 2012.

[KS14] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for MPC. In ASIACRYPT, pages
506–525, 2014.

[LHS+14] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael W. Hicks. Automating efficient ram-
model secure computation. In IEEE Symposium on Security and Privacy, pages 623–638, 2014.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In CRYPTO
(2), pages 1–17, 2013.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In EUROCRYPT, pages 719–734, 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
In TCC, pages 329–346, 2011.

[Mia] Peihan Miao. Cut-and-choose for garbled ram. Personal Communication.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO, pages 392–404, 1991.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. Lego for two-party secure computation. In TCC, pages 368–
386, 2009.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious rams. In STOC, pages 514–523, 1990.

39

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM, 26(2):361–
381, 1979.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party computa-
tion is practical. In ASIACRYPT, pages 250–267, 2009.

[RFK+15] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and Srini-
vas Devadas. Constants count: Practical improvements to oblivious RAM. In USENIX, pages 415–430,
2015.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with o((logn)3) worst-
case cost. In ASIACRYPT, pages 197–214, 2011.

[SvDS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, and Srini-
vas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In CCS, pages 299–310,
2013.

[WCS15] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: on tightness of the Goldreich-Ostrovsky
lower bound. In CCS, pages 850–861, 2015.

[WHC+14] Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, Abhi Shelat, and Elaine Shi. SCORAM: oblivious
RAM for secure computation. In CCS, pages 191–202, 2014.

[WS12] Peter Williams and Radu Sion. Single round access privacy on outsourced storage. In CCS, pages 293–
304, 2012.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164,
1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

A Building Blocks
In this section we discuss the notations and definitions of some of the standard building blocks employed in our
constructions, as well as a formal description of the circuits and functionalities used in our protocols.

A.1 Garbled Circuits
The definition of garbled circuits with respect to the cut-and-choose technique is presented in Section 2.6. In this
section we present the Input Consistency Functionality (Figure 7) which is realized via a secure 2PC protocol when
the underlying garbling scheme is applied using a cut-and-choose based protocol. We next present the authenticity
game (Figure 8) used in the definition of garbled circuits.

A.2 The Hybrid Model
The F-hybrid model. In order to simplify the exposition of our main protocol, we will use secure two-party
protocols as subprotocols. The standard way of doing this is to work in a “hybrid model” where parties both interact
with each other (as in the real model) and use trusted help (as in the ideal model). Specifically, when constructing a
protocol π that uses a subprotocol for securely computing some functionality F , we consider the case that the parties
run π and use “ideal calls” to a trusted party for computing F . Upon receiving the inputs from the parties, the trusted
party computes F and sends all parties their output. Then, after receiving these outputs back from the trusted party
the protocol π continues. Let F be a functionality and let π be a two-party protocol that uses ideal calls to a trusted
party computing F . Furthermore, letA be a non-uniform probabilistic polynomial-time machine. Then, the F-hybrid
execution of π on inputs (x1, x2), auxiliary input z to A and security parameter κ, denoted HybπF ,A(z)(κ, x1, x2),
is defined as the output of the honest party and the adversary A from the hybrid execution of π with a trusted party

40

The Input Consistency Functionality - FIC

The functionality checks that the set of garbled inputs {x̃i}i that are sent to the receiver represent the same
input x. Note that this functionality checks the input of the sender S, and thus, the variable x in this context
actually refers to its input only (and not the receiver’s input). Also note that |x| = vin.

Common inputs.

• The circuit C and the security parameters κ, s.

• s garbled versions of C, namely {C̃i}i∈[s].

• s sets of garbled input
{

(lbl1,i
in,x[1], . . . , lbl

vin,i
in,x[vin]

)
}
i∈[s].

• s sets of commitments for the sender’s input labels, denoted by {comi
1,b, . . . , com

i
vin,b
}b∈{0,1},i∈[s].

Sender’s private inputs. (The receiver has no private input)

• The output labels used in Garb, denoted by {lblv,i
out,b}v,i,b.

• The randomness r used in Garb.

• Decommitments {deci1,b, . . . , dec
i
vin,b}b∈{0,1},i∈[s] for the above commitments to the input labels.

Output. The functionality works as follows:

• Compute (
{Ĉi}i, {u, b, ˆlbl

u,i

in,b}u,i,b
)
← Garb

(
1κ, s,C, {v, b, lblv,i

out,b}v,i,b; r
)

• For every u ∈ [vin]:

– For every i ∈ [s] set bi as

bi =

0, com(lblu,i

in,x[u], dec
i
u,0) = comi

u,0

1, com(lblu,i
in,x[u], dec

i
u,1) = comi

1,0

⊥ otherwise

– If bi =⊥ for some i then output 0. Also If b1 6= bi for some i output 0. (This checks that all

labels are interpreted as the same input bit in all garbled circuits).

• Given that the above algorithm has not output 0, then output 1.

Figure 7: The input consistency functionality FIC.

computing F . By the composition theorem [Can00] any protocol that securely implements F can replace the ideal
calls to F .

A.3 Batch Single-Choice Cut-and-Choose OT
The Batch Single-Choice Cut-and-Choose Oblivious Transfers is presented in Figure 9

41

The authenticity game AuthA(1κ, s,C)

Parameters. For an arbitrary circuit C, a security parameters κ and s the game is as follows.

1. The adversary hands an input x and a subset Z ∈ [s] to the game.

2. The game chooses s sets of output labels {v, b, lblv,i
out,b}v,i,b for every v ∈ [vout], i ∈ [s] and b ∈

{0, 1} and computes:

(
{C̃i}i, {u, b, lblu,iin,b}u,i,b

)
← Garb

(
1κ, s,C, {v, b, lblv,i

out,b}v,i,b
)

3. The game sends the adversary s sets of garbled circuits {C̃i}i∈[s] and s sets of garbled inputs x̃i:
For garbled circuits indexed with z ∈ Z it is given x̃z = (lbl1,z

in,b, . . . , lbl
vin,z
in,b) for every b ∈ {0, 1};

while for garbled circuits indexed with z /∈ Z the set is x̃z = (lbl1,z
in,x[1], . . . , lbl

vin,z
in,x[vin]

) for some
input x.

4. The adversary returns a single index z and one set of output labels ŷz = (ˆlbl
1,z

out,b, . . . ,
ˆlbl
vout,z

in,b).

5. The game concludes as follows:

(a) If z ∈ Z return 0. Otherwise continue.

(b) Compute (lbl1,z
out,y[1], . . . , lbl

vout,z
in,y[vout]

) = Eval
(
C̃z, x̃z

)
.

(c) If for some j ∈ [vout] it holds that ˆlbl
j,z

out,b = lbl1,z
out,1−y[1] then output 1. Otherwise, output 0.

Figure 8: The authenticity game AuthA(1κ, s,C).

Batch Single Choice Cut-And-Choose OT FSCCOT

Inputs.

• The sender S inputs vectors of pairs xi of length s, for i = 1, . . . , ` (where ` is the input length of
the parties, i.e. ` = |xi| + |Ri| for i ∈ {1, 2}). Every vector is a row of s pairs. There are ` such
rows. This can be viewed as an s× ` matrix of pairs).

• The receiver R inputs x2[1], . . . , x2[`] ∈ {0, 1} and a set of indices Z ⊂ [s] of size exactly s/2.
(For every row the receiver chooses a bit σi. It also chooses s/2 of the s columns.)

Output. If Z is not of size s/2 then S and R receive for output ⊥. Otherwise,

• For every j = 1, . . . , ` and for every z ∈ Z, the receiver R obtains the zth pair in vector xj . (i.e.
the receiver obtains the two items of every pair, in all rows.)

• For every j = 1, . . . , ` and for every z /∈ Z the receiver R obtains the x2[j] value in every pair of
the vector xi. (i.e. the receiver obtains its choice x2[j] of the two items in the pair, where x2[j] is
the same for all entries in a row.)

Figure 9: Batch single choice cut-and-choose OT FSCCOT.

42

A.4 Commitment Schemes
Commitment schemes are used to enable a party, known as the sender, to commit itself to a value while keeping it
secret from the receiver (this property is called hiding). Furthermore, in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the committing phase (this property is
called binding). In this work, we consider commitment schemes that are statistically-binding, namely while the hiding
property only holds against computationally bounded (non-uniform) adversaries, the binding property is required to
hold against unbounded adversaries.

Definition A.1 (Commitment schemes.). A pair of PPT machines Com = (R,S) is said to be a commitment scheme
if the following two properties hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that, the following ensembles are computa-
tionally indistinguishable.

• {ViewR∗

Com(m1, z)}n∈N,m1,m2∈{0,1}n,z∈{0,1}∗

• {ViewR∗

Com(m2, z)}n∈N,m1,m2∈{0,1}n,z∈{0,1}∗

where ViewR∗

Com(m, z) denotes the random variable describing the output of R∗ upon interacting with the sender
S which commits to m.

Statistical binding: Informally, the statistical-binding property asserts that, with overwhelming probability over the
coin-tosses of the receiver R, the transcript of the interaction fully determines the value committed to by the
sender.
Formally, a receiver’s view of an interaction with the sender, denoted (r, m̄), consists of the random coins
used by the receiver (namely, r) and the sequence of messages received from the receiver (namely, m̄). Let
m1,m2 ∈ Mn. We say that the receiver’s view (of such interaction), (r, m̄), is a possible m-commitment if
there exists a string s such that m̄ describes the messages received by R when R uses local coins r and interacts
with S which uses local coins s and has input (1n,m).
We say that the receiver’s view (r, m̄) is ambiguous if is it both a possible m1-commitment and a possible m2-
commitment. The binding property asserts that, for all but a negligible fraction of the coins toss of the receiver,
there exists no sequence of messages (from the sender) which together with these coin toss forms an ambiguous
receiver view. Namely, that for all but a negligible function of the r ∈ {0, 1}poly(n) there is no m̄ such that
(r, m̄) is ambiguous.

B Realizing the Garbled Circuit Definition 2.6
In this section we argue that our definition of garbled circuit with respect to cut-and-choose based protocols (see
Definition 2.6) can be realized by the [LP11] garbling scheme. We first describe the algorithms Garb,Eval and then
argue that they posses the correctness, privacy, authenticity and input consistency properties.

Garbling. Recall that in the notion of cut-and-choose based protocols the garbling scheme is given s sets of output
labels, from which it has to produce s garbled circuits along with their corresponding garbled inputs. To simplify
notation, we first describe in Figure 10 the garbling procedure for a single circuit; then, in Figure 11 we describe the
full garbling procedure Garb that uses GarbYao as a sub-procedure.

Evaluation. As modulated in the garbling procedure, we first show how a single garbled circuit can be evaluated
in Figure 12 and then in Figure 13 we show how, using EvalYao as a sub-procedure, we evaluate a set of s garbled
circuits.

Correctness and privacy. The correctness and privacy properties had been proven in [LP07] for a single circuit.
It is trivial to show that these properties hold in the cut-and-choose notion we defined.

43

Procedure GarbYao

Input.

- A circuit description CCPU with vin (resp. vout) input (resp. output) wires, and a total of W wires.

- A set of vout output labels lbl0out,1, lbl
1
out,1, . . . , lbl

0
out,vout , lbl

1
out,vout .

- A set of input labels lbl0in,1, lbl
1
in,1, . . . , lbl

0
in,vin , lbl

1
in,vin .

Output.

- Choose a pair of random labels lbl0, lbl1 for every wire inW that is neither an input nor output wire.

- Let (Gen,Enc,Dec) be a private-key encryption scheme that has indistinguishable encryptions for
multiple messages, and has an elusive efficiently verifiable range. (cf. [LP07]). For each gate
G ∈ CCPU with input wires a, b and output wire c such that G computes the binary function g :
{0, 1}2 → {0, 1}, compute G̃ = (ct00, ct01, ct10, ct11) where

ct00 = Enclbl0a(Enclbl0b (lbl
g(00)
c)) , ct01 = Enclbl0a(Enclbl1b (lbl

g(01)
c))

ct10 = Enclbl1a(Enclbl0b (lbl
g(10)
c)) , ct11 = Enclbl1a(Enclbl1b (lbl

g(11)
c))

- Return C̃CPU =
⋃
G∈CCPU

G̃.

Figure 10: Procedure GarbYao for a single circuit garbling.

Authenticity. The authenticity property is missing from [GHL+14] while it is indeed required even in the semi-
honest model. We now show that the above scheme has authenticity. Informally, breaking authenticity means that the
evaluator guesses a secret label that is not in the encoded output. Switching to a simulated garbling the way defined
in [LP07] produces an indistinguishable view, in that case the probability of guessing an additional label is negligible
since the inactive labels are not used at all, then it should be that case for garbled circuits as well.

More formally, given a circuit CCPU and an adversary A, for which Pr[AuthA(1κ, s,C) = 1] = p, we construct
a distinguisher D for the simulator SimGC that succeed in distinguishing with the same probability. D is given a view
which contains the garbled circuit C̃CPU and a garbled input x̃ for a given input x such that C̃CPU(x̃) = ỹ. D hands
C̃CPU, x, x̃ to A, if A outputs a valid â then output 1, otherwise output 0. Note that the probability that A outputs
a valid ŷ when given a simulated view is negligible ε (since the inactive labels are merely random string), thus if A
outputs a valid ŷ it means that it got a real view with probability p − ε. If p is non-negligible then D succeeds in
distinguishing with non-negligible probability.

Input consistency. We now show the protocol that realizes the input consistency functionality FIC from Figure 7
with respect to the garbling scheme (Garb,Eval) from above. The common inputs are

- Security parameters s, κ.

- The circuit CCPU and s garbled versions {C̃CPUi}i∈[s]. Note that s here is a subset of the s which the sender
used in the garbling phase.

- Labels (lbli1, . . . , lbl
i
`) = (ga

x[1]
1 ·ri , . . . , ga

x[`]
` ·ri) for all i.

- Commitments to all the sender’s input labels: a01, a
1
1, . . . , a

0
` , a

1
` ∈ Zq and r1, . . . , r` ∈ Zq .

Protocol. The sender proves that for everyj ∈ [`] the set {ga
x[j]
j ·ri}i∈[s] is consistent: For every j ∈ [`] the sender

uses the protocol in Figure 14 to prove that there exist a value σj ∈ {0, 1} such that for every i ∈ [s], lblij = ga
σj
1 ·ri .

44

Procedure Garb

Parameters. A “fixed” parameters for the garbling is a description (G, q, g) where G is a cyclic group
with generator g and prime order q. Inputs.

- Security parameters s, 1κ

- A circuit description CCPU with vin (resp. vout) input (resp. output) wires, and a total of W wires.

- s set of vout output labels lbl0,i
out,1, lbl

1,i
out,1, . . . , lbl

0,i
out,vout , lbl

1,i
out,vout for all i ∈ [s].

Output.

- Let [`] ⊂ [vin] be the indices of input wires that are associated with the sender’s input.

- Choose a01, a
1
1, . . . , a

0
` , a

1
` ∈ Zq and r1, . . . , r` ∈ Zq .

- For every j ∈ [`] and i ∈ [s] set:

lbl0,i
in,j = H(ga

0
j ·ri) and lbl1,i

in,j = H(ga
1
j ·ri)

- Choose a pair of random labels for each of the other ` input wires (for the receiver’s input wires),
denoted by lblb,i

in,j for every j ∈ [`], b ∈ {0, 1}, i ∈ [s].

- For i = 1, . . . , s compute:

C̃CPUi = GarbYao
(
C,
{
lblb,i

out,1, . . . , lbl
b,i
out,vout

}
b∈{0,1},

{
lblb,i

in,1, . . . , lbl
b,i
in,vin

}
b∈{0,1}

)
- Return {C̃CPUi}i∈[s],

{
lblb,i

in,1, . . . , lbl
b,i
in,vin

}
b∈{0,1},i∈[s].

Figure 11: Procedure Garb for s circuits garbling.

Namely, it proves that all garbled values of a wire are of the same bit. If any of the proofs fail, then P2 aborts and
outputs ⊥.

For completeness, we provide the protocol, used in [LP11], verbatim.
ZK proof for extended Diffie-Hellman tuples. A zero-knowledge proof of an extended Diffie-Hellman tuple is given
in Figure 14. The input is a tuple (g, h0, h1, u1, v1, . . . , uη, vη) such that either all {(g, h0, ui, vi)}ηi=1 are Diffie-
Hellman tuples, or all {(g, h1, ui, vi)}ηi=1 are Diffie-Hellman tuples. It is shown in [LP11] that the protocol in Figure
14 is a ZK-PoK.

45

Procedure EvalYao

Inputs.

- Garbled circuit C̃CPU.

- A set of vin labels lbl1in,x[1], . . . , lbl
vin
in,x[vin]

for some input x.

Output.

- For every garbled gate in the set of garbled gates in C̃CPU (in a topological order). Let a, b be its
input wires, lblαa , lbl

β
b the labels for these wires and α, β the bits {0, 1} they represent, finally let c

be G’s output wire.

- For t = 00, 01, 10, 11 compute ptt = Declblβb
(Declblαa (ctt)).

- Set lblγc = ptt for the only t for which ptt 6=⊥. (There is always a single ptt except with
negligible probability).

• Output (lbl1out,y[1], . . . , lbl
vout

out,y[vout]
) for some output y.

Figure 12: Procedure EvalYao for a single garbled circuit.

Procedure Eval

Inputs.

- s garbled circuits {C̃CPUi}i∈[s].

- s sets of vin labels
{

(lbl1,i
in,x[1], . . . , lbl

vin,i
in,x[vin]

)
}
i∈[s] for some input x.

Output.

- For every i = 1, . . . , s compute

(lbl1,i
out,x[1], . . . , lbl

vout,i
out,y[vout]

)← EvalYao
(
C̃CPU, (lbl

1,i
in,x[1], . . . , lbl

vin,i
in,x[vin]

)
)

- Output
{

(lbl1,i
out,y[1], . . . , lbl

vout,i
out,y[vout]

)
}
i∈[s] for some output y.

Figure 13: Procedure Eval to evaluate s garbled circuits.

46

ZK Proof of Knowledge of Extended Diffie-Hellman Tuple

Common input. (g, h0, h1, u1, v1, . . . , uη, vη) where g is a generator of a group of order q.
Prover witness. a such that either h0 = (g0)a and vi = (ui)

a for all i, or h1 = (g1)a and vi = (ui)
a for

all i.
The protocol.

- The verifier V chooses γ1, . . . , γη ∈R {0, 1}L where 2L < q, and sends the values to the prover.

• The prover and verifier locally compute:

u =

η∏
i=1

(ui)
γi and v =

η∏
i=1

(vi)
γi

• The prover proves in zero-knowledge that either (g0, h0, u, v) or (g1, h1, u, v) is a Diffie-Hellman
tuple, and V accepts if and only it accepts in the 1-out-of-2 ZK proof. (see [LP11] for more details).

Figure 14: ZK Proof of knowledge of extended Diffie-Hellman tuples.

47

	Introduction
	Our Results

	Preliminaries
	The RAM Model of Computation
	Predictably Time Writes

	Oblivious RAM (ORAM)
	Realization of the Modified Definition

	Secure Computation in the RAM Model
	Full Security
	The UMA Model
	A Transforation From UMA to Full Security
	On the Capabilities of Semi-Honest in a Garbled RAM and ORAM Schemes

	Timed IBE GentryHLORW14
	Garbled RAM Based on IBE GentryHLORW14
	Garbled Circuits

	Building Blocks
	Enhanced CPU-Step Function
	Initialization Circuit
	Batch Single-Choice Cut-And-Choose OT

	The Complete Protocol
	2PC in the UMA Model

	Proof of Theorem 4.1
	The Case S is Corrupted
	The Case R is Corrupted

	Removing the IBE Assumption
	GRAM Based on OWF GargLOS15
	Garbling Data
	Garbling Program
	Program Execution Demonstration

	2PC in the Presence of Malicious Adversaries Relying on OWF

	Building Blocks
	Garbled Circuits
	The Hybrid Model
	Batch Single-Choice Cut-and-Choose OT
	Commitment Schemes

	Realizing the Garbled Circuit Definition 2.6

