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Abstract - Hill Cipher is a symmetric cryptosystem that was claimed to 

suffer from known-plaintext attack for many years. Different methods 

have been proposed to make this cipher more secure against known 

attacks. The introduced classic Hill cipher by Tourani and Falahati in 

2011 that was devised in two variants and based upon affine 

transformation, was considered to be more secure against known 

attacks. Recently, this well modified Hill cipher is claimed to be 

vulnerable to zero-plaintext attack. In this paper, by using a chaotic 

map and scrambling methods, a novel cryptosystem based on Tourani 

and Falahati Hill cipher is presented which overcomes the zero-

plaintext attack. The proposed Hill cipher is more reliable and faster.  
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1. Introduction 

    The famous classical symmetric ciphering algorithm, known as Hill cipher which is based 

on matrix transformation, is said to be vulnerable to cryptanalysis that has rendered it 

inapplicable in practice. However, it still serves as an important educational material in both 

cryptology and linear algebra. It employs simply the matrix multiplication and inversion to 

encrypt and decrypt, causing to conceal letter frequencies of the plaintext. Throughput and high 

speed of operation, are of many advantages that are offered by the Hill cipher [3], but it suffers 

from the known-plaintext attack [4]. Many methods have been prescribed to abandon this 

security defect [5-7]. Most recent of all, by Tourani and Falahati [8], in 2011, proved 

commonly trusted Lin et al [6] is not so efficient and it can be exposed to the chosen-ciphertext 

attack because of an evident security flaw in the underlying protocol. Their presented method 

named as affine Hill cipher and was based on Lin et al.’s scheme, it was emanated with two 

protocols for data communication between Alice and Bob. We refer to their cipher as Tourani-

Falahati Hill Cipher and shorten the name to TFHC. However in 2013, TFHC was proved by 

Keliher and Delaney [9] that the proposed scheme is vulnerable to Zero-plaintext attack in spite 

of its many security improvements. 

This present manuscript aims to introduce a further secure Hill cipher cryptosystem. It includes 

every security advantages of TFHC by employing Arnold transformation to heal the only 
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security drawback claimed by [9]. The encryption core has the same structure deployed by 

TFHC and is based on the affine Hill cipher. HMAC can be additionally used regarding the 

generation of corresponding random number for each block in a hash chain. This facilitates 

more randomization into the linear structure of the affine Hill cipher over ordinary hash 

functions. Arnold Transform which is a well-known chaotic map is also deployed to stop the 

possibility of Zero-plaintext attack, proposed by Keliher and Delaney [9]. 

2. Background and Related Work 

2.1. The Hill cipher and TFHC 

In Hill cryptosystem, the cipher-text content is extracted from the plaintext through a linear 

transformation. Each plaintext row vector X, is encrypted to a cipher-text row vector 𝐘1×𝑛 =

𝐗1×𝑛𝐊𝑛×𝑛(mod 𝑚). The key matrix K, must be shared between the participators of the 

protocol securely where 𝑘𝑥𝑦 ∈ 𝑍𝑚 and 𝑍𝑚 is a ring of integers modulo m, in which m is a 

natural number greater than one which can be selected optionally. The cipher text Y is 

decrypted as 𝐗 = 𝐘𝐊−𝟏(mod m). For the feasibility of decryption, the key matrix K must be 

invertible and it should satisfy gcd(det 𝐊(mod 𝑚), 𝑚)  =  1 equivalently [4]. Bearing in 

mind, many of square matrices are not invertible over 𝑍𝑚. The key-space for the Hill cipher 

is 𝐺𝐿(𝑛, 𝑍𝑚), the group of 𝑛 × 𝑛 matrices that are invertible over 𝑍𝑚 [8]. The probability of a 

randomly selected square matrix to be invertible is almost one for any large prime modulus as 

demonstrated by [10], while it is almost zero for a composite modulus. Moreover, choosing a 

prime modulus leads to a larger key-space in comparison with a composite modulus [10]. The 

key-space also increases with the increase of n, the rank of the key matrix. Therefore, an 

increase in the rank of the key matrix and selecting a large enough prime number as the 

modulus, can in consequence lead to a larger key-space and higher security. However, there is 

obviously a tradeoff between the whole system’s favored security and efficiency that are 

additional parameters causing an augmentation with the running time and reduces the 

efficiency. 

Hill cipher’s actual stability depends upon two main parameters. Secrecy of the key matrix 

K and its rank. For an unknown n and a diminutive modulus m, the attacker could simply 

examine successive values of n till K is found. The Hill Cipher’s weaknesses to the known-

plaintext attack is considered as its most important security imperfection since it can be cracked 

by taking n distinct pairs of plaintext and corresponding cipher-text [4-11]. 

One extension to the Hill cipher is the Affine Hill which appends it with a nonlinear affine 

transformation with encryption expression form of 𝐘 = 𝐗𝐊 + 𝐕(mod 𝑚) [4].  

Moreover, as mentioned, TFHC is a variant of Affine Hill. A brief description of their scheme 

is presented as follows. Alice decides to send a 𝑛 × 𝑛 message M to Bob. She breaks M into n 

tuple row vectors 𝐗𝑡, for 𝑡 = 1,2, … , 𝑛. In order to construct a secure communication, Alice 
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picks a random integer and computes a group of random numbers by means of a preferred one-

way hash function or HMAC to prevent excessive random number generation. For each step 

of encryption, Alice builds an auxiliary row vector 𝐕𝑡, in a specific manner. She also generates 

a new key matrix 𝐊𝑡 = 𝑣0𝐊. The encrypted version of each 𝐗𝑡 is 𝐘𝑡 = 𝐗𝑡𝐊𝑡 + 𝐕𝑡. Alice 

repeats this procedure for n times and constructs the whole encrypted message 𝐸(𝐌) =

(𝐘1, 𝐘2, … , 𝐘𝑛). She uses a secure protocol introduced in [8] and sends the necessary 

information to Bob. Consequently, Bob, by the given information that Alice provided him due 

to the protocol, can decrypt each 𝐗𝑡 using 𝐗𝑡 = (𝐘𝑡 − 𝐕𝑡)𝐊𝑡
−1to recover the original message 

M. Recently, the authors of [9] announced the vulnerability of this cryptosystem to zero-

plaintext attack. They declared that all the entries of the key matrix in each encryption step can 

be revealed by their chosen-plaintext attack in which if a plaintext 𝐗𝑡 = 0, then the 

corresponding ciphertext is 𝐘𝑡 = 0𝐊𝑡 + 𝐕𝑡 = 𝐕𝑡, that is, the ciphertext, is equal to 𝐕𝑡 =

(𝑣1, 𝑣2, … , 𝑣𝑛). This eventually leads to (
𝑛 − 1

2
)linear equations each involving two entries in 

K. A more detailed study of this attack can be found in [9]. 

2.2. Arnold Transform 

Scrambling methods are used widely in many digital processing methods particularly in 

digital watermarking applications for changing the distribution of the error bits in an image to 

improve the robustness of digital watermarking technology [12]. Arnold Transform named 

after Vladimir Arnold, also known as Arnold’s Cat Map (ACM), is a chaotic map in 

mathematics from the torus into itself [13]. As an example, when ACM applied to a digital 

image it randomizes the original position of its pixels and the image becomes ambiguous. Two 

main features of Arnold scrambling algorithm are its simplicity and periodicity. According to 

the periodicity of Arnold scrambling, the original image can be restored after several cycles. 

Generally, the cycle of Arnold transformation is not directly proportional to the image size. 

Original ACM algorithm is based on square digital image mostly with 𝑛 × 𝑛 pixels. The 

normal Arnold’s cat map method uses the following equation for transformation [12]:  

[
𝑎′

𝑏′] = [
2 1
1 1

] [
𝑎
𝑏

] (𝑚𝑜𝑑 𝑛)      (1) 

In which 𝑎, 𝑏 ∈ {0,1,2, … , 𝑛 − 1} and n is the input image size. A new image will be produced 

when all the image points are manipulated by the above equation. ACM is a simple but 

powerful transform and is normally applied over digital images as described in the following: 

Consider an 𝑛 × 𝑛 image I, for which c is the period of the transform. By applying Arnold 

Transform for a random repetition of t times, 𝑡 ∈ [1, 𝑐), a scrambled image I´ which is totally 

different from I, is obtained. For decryption, this process is repeated (𝑐 − 𝑡) times to regain 

the original image. In our proposed method ACM is applied at the last steps of encryption with 

a random iterations in order to strengthen the cryptosystem against zero-plaintext attack. In 

order to clarify, we represent ACM(X, c) as applying Arnold Transform to X matrix with c 
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number of iterations which leads to a new permuted matrix as 𝑋′. Fig. 1. Shows ACM’s 

scrambling period for different size of input matrices. 

Figure 1. ACM’s scrambling period for different sizes of input matrix 

 

3. The Proposed Cryptosystem 

The encryption and decryption procedures of the proposed cryptosystem is depicted in Fig. 

2. Each 𝑛 × 𝑛 block of input data is encrypted using a unique random number in order to 

enforce more randomization to the introduced scheme and reinforcing it against the common 

attacks. In the same line, after generating the first random number, at the start of encryption 

process, a corresponding group of random numbers are recursively generated employing 

HMAC or a one-way hash function in a chain manner to avoid multiple random number 

generations. The primary random number that is generated at the beginning must be securely 

distributed among the participators. Consequently, a suitable protocol is essential to be 

performed. The recommended cryptosystem using an uncomplicated one-pass protocol for 

encryption and decryption of each 𝑛 × 𝑛 blocks of data is described in the following steps: 

Figure 2. Encryption and Decryption cores for the suggested cryptosystem 
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1. Alice will choose a random integer, a0 ∈ [1, p − 1] and 

computes a1, a2, … , an, where at = H(at−1) for 𝑡 ≥ 1. 𝐻(. ) Can be any 

selected one-way hash function.  

2. For 1 ≤ 𝑡 ≤ 𝑛, Alice assigns 𝑣0 = at(mod p), unless the resulting value 

of 𝑣0 is 0, in which case 𝑣0 = 1. 

3. Alice constructs the row vector 𝐕𝑡 = (𝑣1, 𝑣2, … , 𝑣𝑛) for 1 ≤ 𝑡 ≤ 𝑛  as 

follows: for1 ≤ 𝑖 ≤ 𝑛, she sets 𝑗𝑖 = (𝑣𝑖−1 𝑚𝑜𝑑 𝑛) + 1 and 𝑣𝑖 = (𝑘𝑖𝑗𝑖
+

𝑣𝑖−1𝑣0)(mod p), where 𝑣𝑖−1 = 2⌈𝛾/2⌉ + (𝑣𝑖−1 𝑚𝑜𝑑2⌈
𝛾

2
⌉) and 𝛾 =

⌊𝑙𝑜𝑔2𝑣𝑖−1⌋ + 1 in which ⌈.⌉ and ⌊.⌋ represent the ceiling and floor functions 

respectively. 

4. Alice builds the V matrix V𝑛×𝑛 = [

𝐕1

𝐕2

⋮
𝐕𝑛

], then she encrypts each X plaintext 

using 𝐘𝑛×𝑛 = 𝐗𝑛×𝑛𝐊´𝑛×𝑛 + 𝐕´𝑛×𝑛 where 𝐊´ = ACM(K, 𝑎̅) and 𝐕´ =

ACM(V, 𝑎̅) in which 𝑎̅ = ⌊
∑ 𝑎𝑡 𝑛

𝑡=1

𝑛
⌋(mod p) 

5. Alice selects a random integer 𝑏 ∈ [1, 𝑛2] and computes 𝑥 = ⌈
𝑏

𝑛
⌉ and 𝑦 =

𝑏 − 𝑛(𝑥 − 1). She then computes 𝑟 = 𝑎0𝑘𝑥𝑦(𝑚𝑜𝑑 𝑝). 

6. Alice sends (𝑌, 𝑏, 𝑟) to Bob.  

7. Bob derives x and y from b as in step 5, and obtains 𝑘𝑥𝑦 from K. He 

recovers 𝑎0 by computing 𝑟𝑘𝑥𝑦
−1(𝑚𝑜𝑑 𝑝) = 𝑎0𝑘𝑥𝑦𝑘𝑥𝑦

−1(𝑚𝑜𝑑 𝑝) =  𝑎0 and 

consequently each 𝑎𝑡 which leads to calculating 𝑎̅. Bob can then compute 

each 𝐕𝑡 in the same manner as Alice, which leads to computing  𝐊´ and 𝐕´ 

and finally recovers the original message using 𝐗𝑛×𝑛 = (𝐘𝑛×𝑛 −

𝐕´𝑛×𝑛)𝐊´−𝟏
𝑛×𝑛. 

 

Figure 3. The structure of one-pass protocol to deploy in the suggested system 



6 

 

Fig. 3 depicts a one-pass protocol for the proposed cryptosystem and is based on TFHC. Even 

though this protocol does not include any authentication phase, it is secure and does not expose 

any clandestine information. It is applicable when both partakers are not online [8]. 

3.1. Properties of the proposed scheme 

The suggested cryptosystem which is introduced above is a variant and an improvement 

of TFHC [8] with the main difference of securing the zero plaintext attack. It is able to confuse 

the attacker using an Arnold Cat Map that permutes the V and K matrices. In spite of security 

improvements in the proposed algorithm presented by [8], it was proved by Keliher et al. that it 

can be easily broken by a chosen-plaintext attack in which if a plaintext 𝐗𝑡 = 0, then the 

corresponding ciphertext is 𝐘𝑡 = 0𝐊𝑡 + 𝐕𝑡 = 𝐕𝑡, i.e., the ciphertext 𝐕𝑡 = (𝑣1, 𝑣2, … , 𝑣𝑛). Using 

each 𝑣𝑖 and the information in step 3 from their proposed scheme, each 𝑣𝑖 can be computed.  

This eventually leads to (
𝑛 − 1

2
) linear equations each involving two entries in K. In TFHL, the 

attacker can benefit the covered information in the V vector by means of a zero-plaintext attack. 

In this work, instead of using a vector we produced a random square matrix, then we permuted 

this matrix using the ACM with a random number of iteration in order to make attacker more 

confused. In this way, by using the proposed scheme in this paper the vulnerability to zero- 

plaintext attack is totally defeated because, by placing the input plaintext to 0, the attacker can 

reach a 𝐕´matrix for each 𝑛 × 𝑛 input blocks that doesn’t provide him with any useful 

information about the V matrix. In fact 𝐕´ is a permuted version of V matrix, after applying 

ACM to V with a random number of iteration. The iteration value, 𝑎̅ is also vague for the 

attacker by means of using the safe proposed protocol. In the same manner, the security of the 

system has been improved significantly due to generating a different key matrix in each 

encryption step using a chaotic map with a random number of iterations in order to make the 

attacker more confused through the final step of encryption.  

ACM’s scrambling cycle for some selected sizes of input matrix is presented in table 1. It 

is important to notice that the scrambling cycle can be the same for different input sizes (as it is 

independent of the input size), however, the larger the scrambling cycle, the better from a 

security point of view.  
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Table 1. ACM’s Scrambling cycle for different input matrix size 

Size of input 

Matrix(N) 

Scrambling Cycle Size of input 

Matrix(N) 

Scrambling Cycle 

50 150 100 150 

70 120 125 250 

74 114 130 210 

86 132 150 300 

98 168 256 192 
 
 
3.2. Computational Costs 
 

An important criterion for evaluating a cryptosystem is its computational costs that is 

evaluated in this section. However, since the proposed scheme is mainly based on TFHC, and 

a comprehensive study of TFHC’s computational costs is presented by the same authors in [8], 

hence, we focus on the extra costs of applying ACM to TFHC cryptosystem. By neglecting 

required computations of the protocol and considering only the computational costs of the 

ciphering core, we have: 

𝑇𝐸𝑛𝑐 ≅ (𝑛2 + 𝑛)𝑇𝑀𝑢𝑙 + (𝑛2)𝑇𝐴𝑑𝑑 + 𝑇𝐻 + 𝑇𝐴𝐶𝑀   (2) 

𝑇𝐷𝑒𝑐 ≅ (𝑛2 + 𝑛)𝑇𝑀𝑢𝑙 + (𝑛2)𝑇𝐴𝑑𝑑 + 𝑇𝐻 + 𝑇𝐴𝐶𝑀 + 𝑇𝐼𝑛𝑣  (3) 

where encryption and decryption of each block of data are represented by 𝑇𝐸𝑛𝑐 and 𝑇𝐷𝑒𝑐as 

running times respectively. TH is the running time for the Hash calculations that is determined 

by the kind of embedded hash function [16]. 𝑇𝐴𝐶𝑀 is the required Arnold Scrambling time. 𝑇𝑀𝑢𝑙, 

𝑇𝐼𝑛𝑣 𝑎𝑛𝑑 𝑇𝐴𝑑𝑑 are the time necessary for the modular multiplication, inversion and addition 

calculations respectively. 

A comparison between the required number of operations for encrypting/decrypting each block 

of data are revealed in Table 2 for the proposed scheme and other schemes. Regardless of the 

security advantages of the proposed scheme over the previously existing ones, it has a high 

computational efficiency due to one-time encryption/decryption process instead of n time 

encryption/decryption for an 𝑛 × 𝑛 input block of data. 
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Table 2. Number of operations required for Encryption and Decryption of each 1 × 𝑛 block of 

data by different methods 

Scheme Operation 𝑻𝑴𝒖𝒍 𝑻𝑨𝒅𝒅 𝑻𝑯 𝑻𝑨𝑪𝑴 𝑻𝑰𝒏𝒗 

Original Hill Enc/Dec 𝑛2 𝑛2 − 𝑛 - - - 

Affine Hill Enc/Dec 𝑛2 𝑛2 - - - 

TFHC Enc 𝑛2 + 2𝑛 𝑛2 + 𝑛 + 1 * - - 

Dec 𝑛2 + 2𝑛 𝑛2 + 𝑛 + 1 * - * 

Proposed 

Scheme 

Enc 𝑛2 + 𝑛 𝑛2 * * - 

Dec 𝑛2 + 𝑛 𝑛2 * * * 

The total processing time for enciphering/deciphering the whole block of plaintext/ciphertext 

can be assessed by multiplying the running time of each 1 × 𝑛 block of data with the whole 

number of data blocks. Considering a plaintext to have a length of L letters that is not a multiple 

of n, padding can then be deployed to obtain a multiple of n to reach the number of data blocks 

as ⌈𝐿/𝑛⌉. However, if data length is fixed, increasing n will decrease the number of data blocks 

and vice versa [8], so the running time for encrypting/decrypting the whole plaintext/ciphertext 

can be followed by relations 4 and 5:  

𝑇𝑇𝑜𝑡𝑎𝑙_𝐸𝑛𝑐 ≅ ⌈
𝐿

𝑛
⌉ ((𝑛2 + 𝑛)𝑇𝑀𝑢𝑙 + (𝑛2)𝑇𝐴𝑑𝑑 + 𝑇𝐻 + 𝑇𝐴𝐶𝑀)   (4) 

𝑇𝑇𝑜𝑡𝑎𝑙_𝐷𝑒𝑐 ≅ ⌈
𝐿

𝑛
⌉ ((𝑛2 + 𝑛)𝑇𝑀𝑢𝑙 + (𝑛2)𝑇𝐴𝑑𝑑 + 𝑇𝐻 + 𝑇𝐴𝐶𝑀 + 𝑇𝐼𝑛𝑣)  (5) 

For evaluating the computational costs of ACM, ACM is applied to 32×32 and 64×64 different 

input matrix and are utilized for Macintosh and Windows icon sizes respectively. The 

computational cost of ACM is also calculated for 200×200 and 250×250 input matrices which 

are standards for Internet Ads. The simulations executed on a Lenovo idea pad s410p laptop, 

running on a 64-bit operating system with an Intel Core i5 4200U processor, bearing a 4GB 

DDR3 RAM. 

Table 3 presents the average runtime of applying ACM to some selected input matrices. The 

simulations performed 200 times for each matrix dimension considering random iteration 

values of Arnold Transform. 

Table 3. Average runtime of applying ACM to some selected input matrices  

Input matrix 

dimension 
32×32 64×64 200×200 250×250 

Avg. ACM 

Runtime(sec) 
0.0096 0.0775 2.0665 3.3228 
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The simulation results show that the 𝑛 × 𝑛 matrix manipulation presented here saves 

considerable computation costs. This makes the computational costs due to added ACM 

insignificant. A comprehensive study of ACM’s computational cost can be found on [17]. Fig. 

4 shows an encrypted Lena Image using the proposed method. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) The original 256*256 Lena image used in simulation, (b) The encrypted image using the 

proposed method, (c) The decrypted image using the proposed method 

4. Conclusions 

In this paper, a further secure Hill cipher cryptosystem, which is actually a variant of the 

Tourani and Falahati Hill cipher, is presented. The proposed cryptosystem employs Arnold 

transformation to heal the only security drawback claimed by [9] and it can be implemented by 

the use of a simple cryptographic protocol without compounding any excess computational 

costs. In all published methods on the subject, in order to encrypting an 𝑛 × 𝑛 block of input 

data, each block of 1 × 𝑛 input data, is encrypted and the encryption process must be repeated 

for n times, but as it is shown in this manuscript, the encryption process will be performed for 

a 𝑛 × 𝑛 block of data and it contains fewer number of operations which leads to lower 

computational costs.  In addition to lower computational costs, all the known attacks to Hill 

Cipher including zero-plaintext attack can be thwarted by means of the proposed cryptosystem 

and its underlying protocol introduced in this paper. In the same line, security of key matrix is 

provided by using a different key for each encryption process.  
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