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Fault Injection using Crowbars on
Embedded Systems

Colin O’Flynn

Abstract—Causing a device to incorrectly execute an instruction or store faulty data is well-known strategy for attacking cryptographic
implementations on embedded systems. One technique to generate such faults is to manipulate the supply voltage of the device. This
paper introduces a novel technique to introduce those supply voltage manipulations onto existing digital systems, requiring minimal
modifications to the device being attacked. This uses a crowbar to short the power supply for controlled periods of time. High-accuracy
faults are demonstrated on the 8-bit AVR microcontroller, which can generate both single and multi-bit faults with high repeatability.
Additionally this technique is demonstrated on a FPGA where it is capable of generating faults in both internal registers and the
configuration fabric.

F

1 INTRODUCTION

FAULTS cause a computer program to behave in an unin-
tended manner. For many systems this could have dire

consequences, and protecting systems from such faults is
an important area of research. Fault injection encompasses
the techniques which are used to purposely cause faults to
occur, for example as part of validating or testing a fault-
tolerant or fault-detecting scheme [1]. Fault injection is also
useful as a testing tool when designing for environments
likely to cause single-bit failures, such as space applications
or high-radiation environments [2].

Fault injection is also a powerful tool to break cryp-
tographic algorithms. The previous example assumed the
‘dire consequences’ of a fault occurring were a result of
the system performing an unexpected action. But a fault
could be purposely injected to cause a system to behave
abnormally, to an attackers advantage. It has been well
known that a variety of fault injection methods can be used
for this purpose [3], [4].

Previous work on fault injection has demonstrated meth-
ods of breaking cryptographic algorithms such as DES [5],
AES [6], [7], [8], and RSA [9], [10], [11] by introduction of
faults at specific parts of the algorithm. Of these, a practical
demonstration of the proposed method is also given in [7],
[8], [10], [11]. All of these demonstrations are performed on
a custom board, specifically designed to inject faults into the
embedded computer running the cryptographic algorithm.
The reader is referred to [12] for a more detailed survey of
attacks on AES and RSA.

Having a practical method of injecting faults into an em-
bedded computer is of great importance to both these areas
of research: understanding the vulnerability of systems to
fault injection attacks, and validating design of fault-tolerant
computing systems.
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1.1 Our Contribution

Our work focuses on the practical aspect of injecting faults
into a commercial off-the-shelf (COTS) embedded computer.
Previous work has demonstrated the use of clock glitch-
ing or EM glitching on COTS embedded computers, such
as attacking the Beaglebone Black using EM glitching as
demonstrated in [13]. Our work instead uses power supply
glitching to insert faults in COTS embedded computers.
Clock glitching will not work on more complex devices
(discussed in section 2.1), and EM glitching is very sen-
sitive to setup and equipment (discussed in section 2.2).
We introduce a novel method of reliably introducing faults
using power-supply glitching, applicable to a wide range of
platforms and devices.

The novel method of generating power supply glitches
uses a crowbar circuit, which aggressively shorts the power
supply of the device to generate faults. This introduces
ringing in the power distribution network on the circuit
board, which propagates into the on-chip power distribu-
tion network. Ringing in this on-chip network is known to
cause faults in digital devices, as shown in [14].

It will be demonstrated that a power supply glitch can
be used to glitch a specific instruction. Previously it was
considered that clock glitching could achieve much better
temporal accuracy than power supply glitching [12], but we
will demonstrate that it is possible to achieve high temporal
accuracy with power supply glitching on embedded sys-
tems.

This fault insertion is first characterized on a custom
board using an AVR 8-bit microcontroller, then demon-
strated on several COTS embedded computer boards: a
Raspberry Pi running Linux, a Beaglebone Black running
Linux, and an Android smart phone. The applicability of
this method to fault injection against Field Programmable
Gate Array (FPGA) targets will also be demonstrated using
the SAKURA-G board.



2

2 RELATED WORK

The related work on cryptographic attacks may broadly be
broken into two categories: methods of attacking algorithms
using injected faults, and methods of injecting the faults on
physical devices. Papers may often cover both categories:
a new attack using fault injection is proposed, and this
method is tested on a physical device. An excellent sum-
mary of papers in both these categories is given in [12].

Three main methods of injecting faults are compared
here: clock glitching, power glitching, and electromagnetic
(EM) glitching. The reader is referred to [3], [4], [12] for
other available methods. A summary of work relevant to
this paper for each of those three injection techniques will
be presented next.

2.1 Clock Glitching
Clock glitching involves inserting additional rising edges
into the input clock of the device, with the objective of
violating timing constraints in the target device. For this
to function, the clock must be used directly by the internal
core. This means clock glitching will not be effective against
two large classes of devices: those using internal oscillators,
and those that use a Phase Lock Loop (PLL) to derive a
new clock from the external clock. The majority of high-
performance devices fall into the latter category, as they will
run the internal core at a much higher frequency than the
external clock.

Clock glitching on an Atmel AVR microcontroller is
throughly presented in [15], which uses the same micro-
controller family as being used by our work. In addition an
extensive case study of clock glitching has been presented in
[16] that used perturbations in the device power supply to
improve the effect of the clock glitches, but did not consider
the effect of power supply glitching alone. In [16] two
devices are targeted: an ARM Cortex-M0 implemented in
a NXP LPC1114 device, and an Atmel ATxmega 256 device.

These two papers demonstrate that with fine-grained
control of the glitch timing, various instruction and data
movements can be faulted with fine-grained control over
the fault result.

2.2 EM Glitching
A typical EM glitch injection setup involves a precision X-
Y table that can position the probe over the surface of the
target chip. It has been demonstrated that for a successful
glitch injection a very high precision is required when
placing the probe over the chip surface [13], [17]. In addition
if Package-on-Package technology is used in the target chip,
this can make glitching more difficult, as a memory die has
been stacked over the processor die [13].

EM glitching can achieve very fine-grained control over
the fault effect, for example attempting to fault operations
of specific registers [13]. EM glitching is a very powerful
attack, but has the downside of requiring a more complex
physical environment.

2.3 Power Glitching
Power glitching involves manipulation of the power supply
of the target devices to generate faults; a simple example

is how lowering the supply voltage will again introduce
timing errors due to increased propagation delay. This un-
derpowering has proven to introduce faults in ARM-9 devices
during cryptographic operations [11]. This does not how-
ever provide good temporal accuracy, making it difficult for
the glitch to target specific instruction.

The ability to target specific instructions can be achieved
by instead inserting a ‘spike’ in the power rail at a specific
instance in time. Both positive and negative voltage spikes
can be inserted into the external power rails, where the
spikes have a narrow width and attempt to cause faults in
specific instructions. Both positive and negative spikes on
the external rails result in similar waveforms internally in
the target device, as demonstrated in [14].

A comparison of voltage glitching on three targets is
given in [18], including attacking a ‘secure’ device. The au-
thors of [18] provide a search methodology for determining
ideal parameters of a glitch, i.e. finding the glitch amplitude
and width. The results presented in [18] are extremely useful
in visualizing the sensitivity of a system to a voltage glitch.

A comprehensive discussion of voltage glitching against
FPGA target has been presented in [19], where the authors
compared voltage glitching to laser (optical) glitching. In
that work voltage glitching is shown to be effective against
FPGAs for fault injection, and voltages in the range of 45V –
80V were found to be most effective for their experimental
setup.

3 CROWBAR GLITCHING MECHANISM

The glitch mechanism explored in this work is a simple
‘crowbar’ circuit. This circuit applies a short across the
power rails of the device, the specific waveform generated
depending on the target device power supplies.

The glitch is generated with an N-Channel MOSFET (IRF
IRF7807), driven using the glitch generation circuitry from
the open-source ChipWhisperer hardware [20]. The selected
MOSFET is a higher-power logic-level MOSFET with 88A
of peak pulse current capability and 0.014Ω RDS(ON). As is
typical for such a MOSFET, the gate charge is sufficient that
generating very narrow glitches requires more care in the
design of the driver circuit [21].

If very narrow glitches are required, a lower-power
MOSFET (such as IRF IRLML2502) can be used, as this
device has lower gate charge requirements, and can be
switched faster than the higher-power MOSFET. This partic-
ular MOSFET has a RDS(ON) of 0.035Ω, meaning it would
be less effective against low-impedance power rails likely to
be found on high-speed processor boards.

4 TARGET DEVICES

The glitching attack is demonstrated against five tar-
gets: four microcontroller/microprocessor devices, and one
FPGA device. The first target is a simple 8-bit microcon-
troller, the next three are various types of ARM-based
System-on-a-Chip (SoC) devices, and the final target is
a Xilinx Spartan 6 FPGA. The SoC devices are selected
to represent those found in a wide variety of embedded
systems, from single-board Linux computers to standard
smartphones.
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Fig. 1. The crowbar circuit using an N-Channel MOSFET is connected
across the AVR power pins, and also allows power measurement across
a shunt resistor.

4.1 AVR Microcontroller.
As the AVR microcontroller has been studied for clock
glitching ( [15]), and power glitching ( [10], [18]), it serves
as a useful benchmark for this work. Our work specifically
uses the ATMega328P AVR microcontroller in DIP package
running from a 7.3728 MHz crystal oscillator.

The glitching attack against the AVR uses the lower-
power MOSFET (part number IRLML2502), connected as
shown in Fig. 1. The series resistor serves two purposes:
first, it allows the lower-power MOSFET to clamp the sup-
ply voltage towards zero, and second it allows simultaneous
power-analysis, including triggering the fault based on pat-
terns in the power consumption waveform.

4.2 Raspberry Pi (ARM11)
The Raspberry Pi is a low-cost single-board computer with
an ARM11 based single-core processor, the BCM2835 from
Broadcom, and runs at 700 MHz core frequency. This plat-
form was loaded with Linux Debian with kernel 3.12.28.

For the power-glitching attack, we used the higher-
power MOSFET IRF7807 connected across 220 nF de-
coupling capacitor C65, that capacitor being part of the
V DDCORE power distribution network. Additional details
of the hardware setup are available as part of a tutorial1.

4.3 Beaglebone Black (ARM Cortex-A8)
The Beaglebone Black is a low-cost development board with
an ARM Cortex-A8 based single-core processor, the AM3358
from Texas Instruments (TI), and runs at 1 GHz core fre-
quency. This is the most powerful platform tested in this
paper, and runs Linux Debian with kernel 3.8.13-bone47.

This platform was selected in particular as it is also used
as an EM glitching target by Hummel in [13]. Hummel
extensively characterized the results of EM glitching over
the surface of the main processor, and noted that careful po-
sitioning of the glitching coil was required to avoid simply
rebooting the target.

Our power-glitching attack again used the higher-power
MOSFET connected across 100 nF decoupling capacitor C63,
part of the V DDMPU rail. Note that attacks when the crow-
bar was connected across the V DDCORE network were
unsuccessful, only attacks against the V DDMPU succeeded.

1. Details are posted as part of the ChipWhisperer Documentation,
available at http://newae.com/sidechannel/cwdocs/tutorialglitchvcc.
html

Fig. 2. A small length of magnet wire is used to connect a capacitor
around the MSM7227 device to the crowbar MOSFET for glitch inser-
tion. The ground connection comes from another point closer to where
the MOSFET is mounted.

4.4 Android Smart Phone (ARM11)

A HTC Wildfire S smart phone was used with the stock
image for this phone (Android 2.3.3). The main System-on-
a-Chip (SoC) in this phone is a Qualcomm MSM7227. This
is a highly integrated device with an ARM11 applications
processor, applications DSP, ARM9 baseband processor, and
baseband DSP. The user code will run in the ARM11 appli-
cations processor, which has a clock speed of 400 MHz.

The crowbar is attached across the capacitor shown in
Fig. 2. This capacitor appears to be part of the power distri-
bution network for the application processor core, based on
comparison of the voltage at this point to the known core
voltage of the device.

4.5 FPGA Board (SAKURA-G)

For this work the SAKURA-G board [22] is used as a plat-
form for fault injection. This board contains a Spartan 6 LX75
FPGA (part number XC6SLX75-CSG484 in 2C speed grade)
along with supporting circuitry. This board is designed for
side-channel analysis so does not have capacitors mounted
on the V CCINT power rail, and contains a shunt resistor
across this power rail. The lack of decoupling capacitors
on this rail suggests the fault waveform should have little
ringing when the crowbar is released.

The higher-power MOSFET (IRF7807) is used to short
the V CCINT power rail for the FPGA. As the SAKURA-G
board contains a SMA connector on the V CCINT rail, the
MOSFET can be connected across this connector (J2).

5 FAULT INSERTION RESULTS

Two types of faults were tested: in the first a simple code
sample that should be highly sensitive to faults was tested,
and in the second we explored faulting specific operations
or data within algorithms. We refer to the first as a ‘low-
precision fault’, as timing of the fault does not have a
precise temporal trigger – the fault is being inserted at a

http://newae.com/sidechannel/cwdocs/tutorialglitchvcc.html
http://newae.com/sidechannel/cwdocs/tutorialglitchvcc.html
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Listing 1. This code should result in 25000000-5000-5000 being
printed for every successful loop.

i n t i , j , cnt ;
while ( 1 ) {

for ( i =0 ; i <5000; i ++){
for ( j =0 ; j <5000; j ++){

cnt ++;
}

}
p r i n t f ( "%d−%d−%d\n" , cnt , i , j ) ;

}

random point during the clock cycle of the device. Low-
precision fault insertion uses a fixed pulse width to activate
the crowbar circuit.

For faulting specific operations or data, we use a ‘high-
precision fault’, where specific temporal relationships be-
tween activity on the target device and fault injection time
are maintained.

5.1 Low-Precision Faults on Microprocessors

For this low-precision work, the code being glitched is given
in Listing 1. This was based on previously published glitch-
ing examples in [18]. The objective of the glitch is causing
an incorrect count for the variable cnt. We do not explore
the specific cause of the glitch (i.e. what instruction or data
is being affected), only the resulting output was incorrectly
calculated (i.e. a fault was inserted at some point).

This code is used on the four microcontroller / micropro-
cessor targets. Discussion of low-precision faults on FPGA
targets will be given in Section 5.2.

On the AVR target, Listing 1 is compiled directly onto
‘bare metal’ – there is no OS, only Listing 1 is running, with
the printf() statements sending data over the serial port.

We have compiled Listing 1 as a regular user program on
both the two Linux-based system and the Android system.
The underlying OS will still be running background pro-
cesses, and our objective is only to fault the user program.
For the two Linux systems we interact the user program
via a remote ssh terminal over the Ethernet connection,
and with the Android system we interact using the touch-
screen interface. The Android system uses a Java version of
Listing 1.

This fault has been successfully applied against all four
of the processor target devices described in Section 4. A
successful fault is one where a single outer loop of the
program from Listing 1 produces an incorrect result. The
program must continue to run after the incorrect calculation
without crashing. Details of the parameters for a successful
fault are given in Table 1 for each target device.

As the fault is inserted at a random point in time, the
only parameter to vary is the pulse width. The test program
on the AVR has exclusive use of the core, as there is no OS, so
a randomly inserted fault is almost certain to occur around
a sensitive operation. On the Linux and Android system
the underlying OS and other processes are also running,
but due to the use of a infinite loop the test program will
monopolize a single core, making it very likely a randomly
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Fig. 3. The signal on the V CCCORE rail for the Raspberry Pi during
fault injection.

Fig. 4. An implementation of Listing 1 in C was used in a Linux appli-
cation for testing purposes on the Raspberry Pi and Beaglebone Black.
The output is monitored via a ssh connection, which is done to ensure
the OS and network connection does not crash during the fault injection.

selected point in time will result in a fault inserted into our
sensitive code rather than crashing the OS or a background
process.

An example of the fault waveform for the Raspberry Pi
device is given in Fig. 3. It can be seen the fault waveform
involves both the power drooping while the crowbar is
activated, along with substantial ringing once the crowbar
is released.

The output of the software from Listing 1 running on the
Raspberry Pi during a fault injection is shown in Fig. 4, and
the Android Smartphone shown in Fig. 5.

This work does not characterize which aspects of this
waveform are critical to fault generation, but instead simply
parameterizes the fault based on length of time the crowbar
is activated. The level and frequency of the ringing gen-
erated when the crowbar is released depends greatly on
the power distribution network (PDN) design (including
for example circuit board layout and number of decoupling
capacitors), along with the location where the crowbar is
connected across.

5.2 Low-Precision Faults on FPGAs
Fault injection on FPGAs has many uses, from simulating
errors such as are expected from high-radiation environ-
ment [23] to attacking cryptographic implementations built
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Fig. 5. An implementation of Listing 1 in Java was used in a simple
Android application for testing purposes. The injected fault causes an
incorrect count for a single loop iteration (49363180 instead of expected
25000000).

TABLE 1
Low-precision fault injection is used against all of these devices to

cause the code from Listing 1 to calculate an incorrect result.

Target Crowbar Activation Time

ATMega328P 135 nS
Raspberry Pi 635 nS
Beaglebone Black 485 nS
Android Smartphone 615 nS

on FPGA systems [24]. Work on the former has shown
for example how to determine what specific type of errors
occurred as a result of radiation-induced faults in an FPGA
[25], and methods of simulating [26] or emulating [27]
single-event upsets.

As mentioned, this work uses the SAKURA-G board [22]
with a crowbar against the V CCINT rail. As expected due
to the lack of decoupling capacitors, the crowbar insertion
has a very ‘clean’ waveform, as can be seen in Fig. 6. There
is almost no ringing as a result of releasing the crowbar.
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Fig. 6. The lack of decoupling capacitors on the SAKURA-G board along
with inclusion of resistive shunt

5.2.1 FPGA Design

A basic design consisting of sixteen separate 32-bit registers
is instantiated in the FPGA. Eight of these registers are
loaded with all 1’s based on an external reset signal, and
the other eight of these registers are loaded with all 0’s
when that external signal is asserted.

The status of the registers are monitored by two external
pins – this is able to detect one or more bits flipping from
0 to 1 (bit-set fault), or from 1 to 0 (bit-reset fault). An
additional input signal temporarily overwrites the register
value, used as a self-test to confirm the fault detection logic
is still functioning.

As the configuration data of the FPGA itself is stored
in SRAM and subject to corruption, the configuration data
itself may become corrupted when inserting a fault [28]. A
fault that is able to be cleared by asserting the external reset
signal is considered a temporary fault (labeled a ‘Design
Register Fault’ in the results from Table 2). If the design fails
to function after the fault insertion even with an external
reset, this is considered a ‘Functional Failure’.

Determining that a ‘functional failure’ has occurred only
means the configuration data specific to this design has
been corrupted in such a way to prevent the design from
working. It is also necessary to determine if other bits of the
configuration data has been corrupted to properly charac-
terize the fault injection results. These other configuration
bits are portions of the FPGA that are not being used in the
current design.

To accomplish this, the continuous CRC-check feature
of the Spartan 6 FPGA can be used. This feature causes
the FPGA to set the INIT_B pin to a logic low when the
configuration memory of the FPGA changes. Monitoring
this pin determines when a ‘CRC Failure’ has occurred,
indicating the configuration data of the FPGA has been
changed by the fault [29].

Once a ‘CRC Failure’ is detected, the readback feature of
the FPGA is used to determine how many bits have flipped.
A reference bitstream is first created based on a correctly
loaded FPGA, and this reference is then compared to the
new read-back file from the FPGA with a CRC failure. Based
on the difference between these files the specific number of
bits corrupted in the FPGA bitstream can be determined.

5.2.2 Fault Results

The results of various crowbar activation times on faults in
the FPGA is given in Table 2. If the crowbar is activated
longer than 900 nS, the FPGA enters a reset state and
attempts to reload the configuration data.

For small fault injection widths (≤550 nS), the configura-
tion data of the FPGA is only occasionally corrupted (1 of 10
fault attempts causes at least one bit of configuration data
corruption at 550 nS). Crowbar activation widths of 600 nS
or greater always result in at least one bit of corruption of
the configuration data stored in the FPGA. The number of
bits corrupted tends to increase non-linearly with relation to
crowbar activation time. The total FPGA readback bitstream
has 2 452 898 bits, so for example if 1028 bits are corrupted
this represents 0.042% of bits corrupted. A graph showing
the relationship between glitch length and number of bits
corrupted is provided in Fig. 7.
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Fig. 7. Amount of FPGA configuration data corrupted based on length
of crowbar activation.

Assuming the objective is to insert a fault into the
registers inside the FPGA design, it can be seen there
is an optimal glitch width that minimizes the amount of
corruption within the configuration data, while still causing
the values of registers to change inside the FPGA design.
In this specific design a glitch width of about 750 nS would
frequently (50 % of the time) result in one or more bit flip(s)
in the register(s) without noticeably damaging the FPGA
design. Note there is some corruption of the FPGA design,
but the ‘damage’ is sparse enough to make a functional
failure in the design unlikely.

These results demonstrate it is possible to use a crowbar
fault mechanism on a FPGA to introduce random faults into
both the configuration information and the registers used in
the working FPGA design. Previous work on voltage fault
attacks against FPGAs reported the ability to cause bit-flips
in registers used within the FPGA design, but not modify
the configuration information [19].

5.3 High-Precision Faults on AVR

The high-precision fault insertion uses a more complex
fault waveform, shown in Fig. 8. This fault waveform is
capable of activating the crowbar circuit for fractions of
the clock cycle, and with precise timings from edges of
the device clock. This requires access to the device clock to
maintain synchronization, but it does not require the ability
to manipulate the clock.

While this work did not explore high-precision fault at-
tacks on a device with an internal oscillator or PLL, previous
work has demonstrated the ability of a simple circuit to
perform the clock recovery when no external oscillator is
available [30]. Thus the work in this section should also
be applicable to devices with internal oscillators or PLLs,
where clock-glitching attacks are not possible.

The high-precision fault injection uses a trigger signal
from the target device. The trigger signal indicates when the
target device is performing the sensitive operating we wish
to fault. For timing the crowbar activation, a ‘fault clock’
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Fig. 8. The signal on the V CC pin when performing high-precision fault
injections on the AVR is given in red. The black waveform is the ‘glitch
clock’, which is four times the device clock.

is generated that is phase-locked to the device clock, but
operating at four times the frequency of the device clock.

This means the following parameters can be adjusted
for each fault operation:

Starting Offset: After the trigger occurs, the number of
cycles of the glitch clock before the crowbar is activated.
This can be seen as starting the glitch during one of four
phases of the device clock (as the glitch clock is four times
the device clock).

Cycles Glitched: Number of cycles of the glitch clock
during which the crowbar is activated. Note from Fig. 8 the
crowbar is only activated for a portion of each cycle.

Phase Offset: The delay from the rising edge of the
glitch clock to the crowbar being activated for that cycle. A
positive offset indicates it is activated after the rising edge,
a negative offset indicates before the rising edge.

Glitch Length: The length of time the crowbar is
activated for within each cycle.

Three different code samples are used for fault injection.
These samples are designed to test bit-set and bit-reset
faults, along with exploring modifying single or multiple
bytes within an operation (such as when targeting a specific
byte of the AES state).

The code used for detecting bit-set faults is given in List-
ing 2, and bit-reset faults is given in Listing 3. Both of these
samples are designed to use both SRAM and registers, along
with repeating the operation over multiple clock cycles.

The results of varying the starting offset, cycles glitched,
and phase offset is given in Fig. 9 and Fig. 10 for bit-set and
bit-reset faults respectively (these figures appear at the end
of this paper). The glitch length was fixed at 16.9 nS (50% of
the glitch clock period). For each combination of parameters
the output of the code sample given in either Listing 2 or
Listing 3 is compared to the expected output. In addition
to detecting either single-bit or multi-bit faults, reset of the
device (via printing of a start-up sequence) is detected.
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TABLE 2
Results of fault injection against Spartan 6 LX75 FPGA, repeated 10× for each width.

Width SRAM Configuration Data Faults Design Register Faults
CRC Failures Functional Failures Avg Bit Diff. of Failure Set Reset Set & Reset

550 nS 1 0 1028 0 0 0
600 nS 10 0 1037 0 0 0
650 nS 10 1 1050 0 0 0
700 nS 10 0 1052 0 0 0
750 nS 10 0 1695 0 2 3
800 nS 10 0 7269 0 1 2
850 nS 10 0 20201 0 1 2
900 nS 10 8 40026 0 2 0

Listing 2. Passing 0x00 and 0x00 for both a and b allows this code to detect bit-set faults. As a is declared volatile the value is loaded from and
saved to SRAM after each OR operation as shown in the resulting assembly code.

u i n t 8 _ t g l i t c h _ b i t s e t ( v o l a t i l e u i n t 8 _ t a , u i n t 8 _ t b ) {
t r i g g e r _ h i g h ( ) ;
a = a | b ;
/ / Each OR o p e r a t i o n c o m p i l e s t o t h e f o l l o w i n g ASM:
/ / l d d r24 , Y+1
/ / o r r24 , r22
/ / s t d Y+1 , r24
a = a | b ;

. . .
a = a | b ;
a = a | b ;
return a ;

}

r e s u l t = g l i t c h _ b i t s e t (0 x00 , 0x00 ) ;

Listing 3. Passing 0xFF and 0xFF for both a and b allows this code to detect bit-reset faults.

u i n t 8 _ t g l i t c h _ b i t r e s e t ( v o l a t i l e u i n t 8 _ t a , u i n t 8 _ t b ) {
t r i g g e r _ h i g h ( ) ;
a = a & b ;
a = a & b ;

. . .
a = a & b ;
a = a & b ;
return a ;

}

r e s u l t = g l i t c h _ b i t r e s e t (0 xFF , 0xFF ) ;

The phase offset is varied from −108◦ to 108◦ in 1.8◦

steps. The cycles glitched is varied from 4 to 40 cycles in
2-cycle steps. For all test cases the device is powered off
and on after each fault attempt. This is to avoid errors
caused by the device entering a lockup or failed state, or
in case some unknown faults have been introduced that
would affect future tests. Powering the device completely
off and on achieves a reliable known-state for each test to be
performed on.

These figures demonstrate that selecting the phase offset
is a critical parameter for a successful fault insertion. Tuning
of this parameter allows insertion of either single-bit or
multi-bit faults in both the bit-set and bit-reset fault case.

To extend this to multi-byte operations, the code from
Listing 4 is used. This code applies similar functions to
those used in many cryptographic operations, but does not
differentiate from bit-set and bit-reset faults.

This attack fixes the phase offset and cycles glitched
parameters based on those discovered from the single-bit
fault operations, in this case around 72 degrees phase offset
and 5 cycles glitched.

The starting offset is then varied to attempt targeting
of specific bits and bytes within an 8-byte array. The fault
attempt is repeated for each starting offset 20 times, in order
to determine the reliability of the fault operation.

As can be see in Fig. 11, faults can be targeted against
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Listing 4. By comparing the value of array a after the call to
glitch_mb() we can detect the location of faults across several bytes.
Note certain bits are only sensitive to bit-set and certain bits are only
sensitive to bit-reset faults.

void glitch_mb ( u i n t 8 _ t ∗ a , u i n t 8 _ t ∗ b ) {
t r i g g e r _ h i g h ( ) ;
for ( u i n t 8 _ t i = 0 ; i < 8 ; i ++){

a [ i ] ^= b [ i ] ;
}

}

void r u n _ t e s t ( void ) {
u i n t 8 _ t a [ 8 ] , b [ 8 ] ;

for ( u i n t 8 _ t i = 0 ; i < 8 ; i ++){
a [ i ] = 0xAA;
b [ i ] = 0xFF ;

}
glitch_mb ( a , b ) ;

/ / Value o f ‘ a ’ i s now c h e c k e d
}

specific bytes within the array operation. Specific starting
offsets have close to 100% reliability on fault insertion (this
figure appears at the end of this paper).

5.4 High-Precision Faults on Raspberry Pi

Finally, we consider the effect of a specific fault attack
on the Raspberry Pi. Whereas the results of the AVR
high-precision fault attack can be directly applied to an
algorithm-level attack, the Raspberry Pi’s BCM2835 main
SoC with a ARM1176 applications processor core contains
a considerably more complex arrangement of registers and
memory.

To determine the sensitivity of this device to algorithm-
level attacks, we first use a specific cryptographic attack
to determine where sensitive information is held, and then
perform a targeted attack against that information.

6 DISCUSSION

This section discusses the applicability of crowbar fault
injection to real-world platforms.

6.1 Generating Fault Signals

The crowbar attack method requires a very simple fault
signal. To replicate the results from Section 5.1, one only
requires a pulse generator to drive the MOSFET. This signal
can even be generated by a simple microcontroller if a
laboratory pulse generator is not available. This makes it
possible to add a fault generator to a system (such as
connecting to a trusted computing module inside a laptop),
while the user of the system is unaware of the fault genera-
tors presence. The attacker may choose to activate the fault
module at a later point in time, or only have the module
active during specific sensitive operations.

Replicating the results in Section 5.3 is easiest when
using a FPGA-based system. Our work uses the ChipWhis-
perer platform [20], but almost any FPGA board is capable
of performing the require clock multiplication and shifting
used to generate the fault signal. As was mentioned in the
results section, the fault waveform was extremely sensitive
to the location of the first faulted cycle, along with phase of
the fault relative to the device clock edge.

6.2 Finding Vulnerable Supplies
When attacking a device, it is required to determine the vul-
nerable supply rail. Even very simple devices will typically
have at least two power rails (analog and digital), but more
complex devices such as SoC could have many more (such
as processor, memory, USB, clock domain, and analog).

This work attacked three such SoC devices, with varying
levels of public documentation. The Beaglebone Black had
full schematics and documentation published, including
details of the SoC device. The Raspberry Pi has schematics
but no details of the SoC, and the Android phone had
no schematics and no details of the SoC. Determining the
sensitive rail for each device will be discussed in sequence.

On the Beaglebone Black, the schematic shows there are
two power rails of interest: V DDCORE and V DDMPU .
Attempting to use a crowbar on the V DDCORE was not
successful, where the crowbar was inserted on a number
of different locations underneath the BGA package. By
comparison using a crowbar against the V DDMPU rail
was successful on the first attempt. As V DDMPU is the
MicroProcessor Unit rail, we would expect this rail to be the
sensitive rail.

The Raspberry Pi also had schematics available, but in
this case the SoC only had a V DDCORE rail. Glitching
against a randomly selected decoupling capacitor from this
rail was successful.

The Android phone presented the most difficulty in
determining the sensitive supply. There is no public docu-
mentation for the main SoC (Qualcomm MSM7227) device,
and of course no schematics for the phone. Probing the
decoupling capacitors mounted around the device showed
2.6V, 1.8V, 1.25V, and 1.33V being present. Based on the
layout the 1.8V capacitors were likely part of the memory
interface, leaving the 1.25V and 1.33V rails. Ultimately we
found the 1.33V rail, using the point from Fig. 2, was a
vulnerable location for fault insertion.

6.3 Triggering Faults
It has been shown in Section 5.3 that a very high precision of
timing allows crowbar fault injection to achieve extremely
high reliability. In practice, this can be achieved by using
either a trigger signal from the target device (in the case of
instrumentation purposely added), or with a trigger based
on a power consumption or I/O activity trigger of the target
device [20].

7 CONCLUSION

We have introduced a novel method of injecting voltage
faults into hardware devices using a MOSFET to short the
power supply of the device with very precise control over
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timing of the faults. This is called the crowbar injection tech-
nique. The use of this technique against several platforms,
including devices used in previous publications, has been
presented. In addition several platforms are standard ‘off-
the-shelf’ boards, showing how the crowbar technique can
be used on real embedded systems.

The crowbar technique takes advantage of the proper-
ties of the power distribution networks on printed circuit
boards to generate ringing in these networks. This ringing
is presumed to perturb the power distribution networks
on the target chip itself, which is known to cause faulty
operations [14].

The use of fine control over the fault timing has also
demonstrated that faults with very high reliability can be
inserted, determining for example if a single- or multi-bit
fault should be introduced, or to fault a single byte out of a
larger array operation.

Currently this ‘high-precision’ faulting has only been
demonstrated on simple 8-bit Atmel AVR microcontrollers.
Future work is needed to test larger platforms such as
embedded Linux computers to determine the reliability of
high-precision fault attacks, and their ability to target very
specific instructions or data.
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Bit-set Faults on ATMega328P

No Effect Single-bit Fault Multi-bit Fault Device Reset

Fig. 9. Bit-set faults mean at least one bit that should have been a ‘0’ was read as a ‘1’. It can be seen both single-bit and multi-bit faults can be
injected depending on the phase and starting offset.
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Fig. 10. Bit-reset faults mean at least one bit that should have been a ‘1’ was read as a ‘0’. It can be seen both single-bit and multi-bit faults can be
injected depending on the phase and starting offset.
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Fig. 11. A 64-bit number is manipulated, and the reliability of fault insertion on each bit for different glitch locations is graphed. Squares indicate a
single bit fault, horizontal lines indicate a device reset. The color of the square (or line) indicates empirical probability of that fault result for a given
offset. For example at an offset of 16.25 clock cycles results in the same four bits located within the second byte of the copy operating being marked
as incorrect for 100% of observations. As the data being copied is 10101010 binary, this may indicate only those bits set to ‘1’ were affected by a
bit-reset fault.
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