
Secure Multiparty RAM Computation in
Constant Rounds?,??

Sanjam Garg1, Divya Gupta1, Peihan Miao1, and Omkant Pandey2

1 University of California, Berkeley
{sanjamg,divyagupta2016,peihan}@berkeley.edu

2 Stony Brook University, omkant@gmail.com

Abstract. Secure computation of a random access machine (RAM) pro-
gram typically entails that it be first converted into a circuit. This con-
version is unimaginable in the context of big-data applications where the
size of the circuit can be exponential in the running time of the origi-
nal RAM program. Realizing these constructions, without relinquishing
the efficiency of RAM programs, often poses considerable technical hur-
dles. Our understanding of these techniques in the multi-party setting is
largely limited. Specifically, the round complexity of all known protocols
grows linearly in the running time of the program being computed.

In this work, we consider the multi-party case and obtain the following
results:

– Semi-honest model : We present a constant-round black-box secure
computation protocol for RAM programs. This protocol is obtained
by building on the new black-box garbled RAM construction by
Garg, Lu, and Ostrovsky [FOCS 2015], and constant-round secure
computation protocol for circuits of Beaver, Micali, and Rogaway
[STOC 1990]. This construction allows execution of multiple pro-
grams on the same persistent database.

– Malicious model : Next, we show how to extend our semi-honest re-
sults to the malicious setting, while ensuring that the new protocol
is still constant-round and black-box in nature.

1 Introduction

Alice, Bob, and Charlie jointly own a large private database D. For instance, the
database D can be a concatenation of their individually owned private databases.
They want to compute and learn the output of arbitrary dynamically chosen

? This paper was presented jointly with [25] in proceedings of the 14th IACR Theory
of Cryptography Conference (TCC) 2016-B.

?? Research supported in part from a DARPA/ARL SAFEWARE Award, AFOSR
Award FA9550-15-1-0274, NSF CRII Award 1464397 and a research grant from the
Okawa Foundation. The views expressed are those of the author and do not reflect
the official policy or position of the funding agencies.

private random access machine (RAM) programs P1, P2, . . ., on private inputs
x1, x2, . . . and the previously stored database, which gets updated as these pro-
grams are executed. Can we do this?

Beginning with the seminal results of Yao [41] and Goldreich, Micali, and
Wigderson [17], cryptographic primitives for secure computations are custom-
arily devised for circuits. Using these approaches for random access machine
(RAM) programs requires the conversion of the RAM program to a circuit. Us-
ing generic transformations [7,38], a program running in time T translates into
a circuit of size O(T 3 log T). Additionally, the obtained circuit must grow at
least with the size of the input that includes data, which can be prohibitive for
various applications. In particular, this dependence on input length implies an
exponential slowdown for binary search. For instance, in the example above, for
each program that Alice, Bob, and Charlie want to compute, communication
and computational complexities of the protocol need to grow with the size of
the database. Using fully homomorphic encryption [13], one can reduce the com-
munication complexity of this protocol, but not the computational cost, which
would still grow with the size of the database. Therefore, it is paramount that
we realize RAM friendly secure computation techniques, that do not suffer from
these inefficiencies.

Secure computation for RAM programs. Motivated by the above consid-
erations, various secure computation techniques that work directly for RAM
programs have been developed. For instance, Ostrovsky and Shoup [36] achieve
general secure RAM computation using oblivious RAM techniques [16,35,18].
Subsequently, Gordon et al. [20] demonstrate an efficient realization based on
specialized number-theoretic protocols. However, all these and other follow-up
works require round complexity linear in the running time of the program.
This changed for the two-party setting with the recent results on garbled RAM
[32,14,12] and its black-box variant [11].3 However, these round-efficient results
are limited to the two-party setting.

In this work, we are interested in studying this question in the multiparty
setting in the following two natural settings of RAM computations: persistent
database setting and the non-persistent database setting. Furthermore, we want
constructions that make only a black-box use of the underlying cryptographic
primitives.

Persistent vs. non-persistent database. In the setting of RAM programs,
the ability to store a persistent private database that can be computed on mul-
tiple times can be very powerful. Traditionally, secure computation on RAM
programs is thus studied in two models. In the first model, called the persis-
tent database model, one considers execution of many programs on the same

3 We note that several other cutting-edge results [19,15,6,4,31] have been obtained
in non-interactive secure computation over RAM programs but they all need to
make strong computational assumptions such as [39,10,9]. Additionally they make
non-black-box use of the underlying cryptographic primitives.

2

database over a time period; the database can be modified by these programs
during their execution and these changes persist over time. In this setting, the
database can be huge and the execution time of each program does not need to
depend on the size of the database.

In the non-persistent database setting, one considers only a single program
execution. This setting is extremely useful in understanding the underlying dif-
ficulties in obtaining a secure solution.

Black-box vs. non-black-box. Starting with Impagliazzo-Rudich [27,26], re-
searchers have been very interested in realizing cryptographic goals making just a
black-box use of underlying primitive. It has been the topic of many important
recent works in cryptography [29,37,40,21,23]. On the other hand, the prob-
lem of realizing black-box construction for various primitive is still open, e.g.
multi-statement non-interactive zero-knowledge [5,8,24] and oblivious transfer
extension [1].4 From a complexity perspective, black-box constructions are very
appealing as they often lead to conceptually simpler and qualitatively more ef-
ficient constructions.5

Note that putting together Garbled RAM construction of Garg, Lu, Ostro-
vsky, and Scafuro [12] and the multiparty secure computation protocol of Beaver,
Micali, and Rogaway [2] immediately gives a non-black-box protocol for RAM
programs with the persistent use of memory. However, motivated by black-box
constructions and low round complexity, in this work, we ask:

Can we realize constant-round black-box secure multiparty computation for
RAM programs?

1.1 Our Results

In this paper, addressing the above question, we obtain the first constant-round
black-box protocols for both the semi-honest and the malicious setting. Specifi-
cally, we present the following results:

– Semi-honest: We show a constant-round black-box secure computation pro-
tocol for RAM programs. This protocol is obtained by building on the new
black-box garbled RAM construction by Garg, Lu, and Ostrovsky [11], and
constant round secure computation protocol for circuits of Beaver, Micali,
and Rogaway [2]. Our construction allows for the execution of multiple pro-
grams on the same persistent database. In our construction, for an original
database of size M , one party needs to maintain a persistent database of
size M · poly(logM,κ). The communication and computational complexities
of each program evaluation grow with T ·poly(log T, logM,κ) where T is the
running time of the program and κ is the security parameter.

4 Interestingly for oblivious transfer extension we do know black-box construction
based on stronger assumptions [28].

5 Additionally, black-box constructions enable implementations agnostic to the imple-
mentation of the underlying primitives. This offers greater flexibility allowing for
many optimizations, scalability, and choice of implementation.

3

– Malicious: Next we enhance the security of our construction from semi-
honest setting to malicious, while ensuring that the new protocol is still
constant-round and black-box. In realizing this protocol we build on the con-
stant round black-box secure computation protocol of Ishai, Prabhakaran,
and Sahai [30]. However, this result is only for the setting of the non-
persistent database.6

Both our constructions only make a black-box use of one-way functions in the
OT-hybrid model.

1.2 Concurrent and Independent Work

In a concurrent and independent work, Hazay and Yanai [25] consider the ques-
tion of malicious secure two-party secure RAM computation. They present a
constant-round protocol building on the the semi-honest two-party protocols
[14,12]. They achieve a similar result as ours in the two-party setting but make
a non-black-box use of one-way functions. Moreover, they allow running of mul-
tiple programs on a persistent database when all the programs as well as the
inputs are known beforehand to the garbler.7 Finally, the protocol of [25] makes a
black-box use of ORAM8 and only one party needs to store the memory locally.
In this work, we can achieve the latter efficiency property in the semi-honest
setting but not in the malicious setting.

An independent work of Miao [33] addresses the same problem as [25] but
making only a black-box use of one-way functions and for the standard notion
of persistent database that allows for programs and inputs of later executions to
be chosen dynamically based on previous executions. [33] achieves a constant-
round malicious secure two-party computation protocol making a black-box use
of one-way functions in the OT-hybrid with the use of random oracle. It builds
on the techniques of [3] and [34].

2 Our Techniques

Semi-honest setting with a single program. First, we consider the problem
of constructing a semi-honest secure protocol for multi-party RAM computation.
That is, consider n parties Q1, . . . , Qn and a database D = D1|| . . . ||Dn such
that Qi holds the database Di. They want to securely evaluate a program P
on input x = x1, . . . , xn w.r.t. the database D, where xi is the secret input

6 We elaborate on the fundamental issue in extending this result to the persistent
database setting at the end of next section.

7 We note that our malicious secure protocol also achieves this weaker notion of per-
sistent database, but in this paper we only focus on the standard notion of persistent
data where later programs and inputs can be chosen dynamically.

8 Our protocol is non-black-box in the use of ORAM. But, since [11] and our paper
use an information theoretic ORAM, we are still black-box in the use of underlying
cryptography.

4

of party Qi. Recall that our goal is to construct a constant-round protocol that
only makes a black-box use of cryptographic primitives such as one-way function
and oblivious transfer (OT). Moreover, we require that our protocol should only
incur a one-time communication and computational cost that is linear in the size
of D up to poly-logarithmic factors. Subsequently, evaluating each new program
should require communication and computation that is only linear in the running
time of that program up to poly-logarithmic factors.

High level approach. Our starting point would be garbled RAM that solves
the problem in the two-party setting. Recall that a garbled RAM is the RAM
analogue of Yao’s garbled circuits [41], and allows for multiple program execu-
tions on a persistent database. Recently, Garg et al. [11] gave a construction of
a garbled RAM that only makes a black-box use of one-way functions. Given
this primitive, a natural approach would be to generate the garbled RAM via a
secure computation protocol for circuits. However, since garbled RAM is a cryp-
tographic object and builds on one-way functions, a straight-forward application
of this approach leads to an immediate problem of non-black-box use of one-way
functions.

Garbled RAM abstraction. To handle the above issue regarding non-black-
box use of one-way functions, we would massage the garbled RAM construction
of [11] such that all calls to one-way functions are performed locally by parties
and ensure that the functionality computed by generic MPC is information-
theoretic. Towards this goal, we need to understand the structure of the garbled
RAM of [11] in more detail. Next, we abstract the garbled RAM of [11] and
describe the key aspects of the construction, which avoids the details irrelevant
for understanding our work.

The garbled RAM for memory database D, program P and input x consists
of the garbled memory D̃, the garbled program P̃ , and the garbled input x̃. At a
high level, the garbled memory D̃ consists of a collection of memory garbled cir-
cuits (for reading and writing to the memory) that invoke other garbled circuits
depending on the input and the execution. More precisely, the garbled circuits
of the memory are connected in a specific manner and each garbled circuit has
keys of several other garbled circuits hard-coded inside it and it outputs input
labels for the garbled circuit that is to be executed next. Moreover, for some of
these garbled circuits, labels for partial inputs are revealed at the time of the
generation of garbled RAM, while the others are revealed at run-time. Among
the labels revealed at generation time, semantics of some of the labels is public,
while the semantics of the others depend on the contents of the database as
well as the randomness of the ORAM used.9 Similarly, the garbled program P̃
consists of a sequence of garbled circuits for CPU steps such that each circuit
has input labels of several garbled circuits, from the memory and the program,

9 The labels revealed at generation time are later referred to as the tabled garbled
information. For security of garbled RAM, it is crucial to hide the semantics of
the labels dependent on the database contents and we will revisit this later in the
technical overview.

5

hard-coded inside itself. Finally, the garbled input consists of the labels for the
first circuit in the garbled program that are revealed depending on the input x.

Our crucial observation about [11] is the following: Though each circuit has
hard-coded secret labels for several other garbled circuits, the overall structure
of the garbled memory as well as garbled program is public. That is, how the
garbled circuits are connected in memory and the program as well as the struc-
ture of hard-coding is fixed and public, independent of the actual database or
the program being garbled. This observation would be useful in two aspects:
(1) To argue that the functionality being computed using the generic MPC for
circuits is information theoretic. This is crucial in getting a black-box secure
computation protocol for RAM. (2) When running more than one program on
a persistent database, the basic structure of garbled RAM being public ensures
that the cost of garbling additional programs does not grow with the size of the
database.

Using above observations, we provide a further simplified formalization of the
garbled RAM scheme of [11], where intuitively, we think of the circuits of memory
and program as universal circuits that take secret hard-coded labels as additional
inputs.10 The labels for these additional input wires now have to be revealed at
the time of garbled RAM generation. For details refer to Section 3.2. In light of
this, our task is to devise a mechanism to generate all these garbled circuits and
(partial) labels in a distributed manner securely. As mentioned above, since these
garbled circuits use one-way functions (in generating encrypted gate tables), we
cannot generate them näıvely.

Handling the issue of non-black-box use of one-way functions. We note
that the garbled RAM of [11] makes a black-box use of a circuit garbling scheme
and hence, can be instantiated using any secure circuit garbling scheme. This
brings us to the next tool we use from the literature, which is the distributed
garbling scheme of Beaver et al. [2], referred to as BMR in the following. In
BMR, for each wire in the circuit, every party contributes a share of the label
such that the wire-label is a concatenation of label shares from all the parties.
Moreover, all calls to PRG (for generating encryptions of gate tables) are done
locally such that given these PRG outputs and label shares, the generation of a
garbled gate-table is information theoretic. This ensures that the final protocol
of BMR is black-box in use of one-way functions. Our key observation is that we
can instantiate the black-box garbled RAM of [11] with the BMR distributed
garbling as the underlying circuit garbling scheme.

Based on what we have described so far, to obtain a constant-round semi-
honest secure protocol for RAM, we would do the following: First, we would
view the garbled RAM of [11] as a collection of suitable garbled circuits with
additional input wires corresponding to the hardcoded secret labels (for sim-
plicity). Next, we would use BMR distributed garbling as the underlying circuit
garbling scheme, where each party computes the labels as well as PRG outputs

10 Though this transformation is not crucial for security, it helps simplify the exposition
of our protocol.

6

locally. And, finally, we would run a constant-round black-box secure computa-
tion protocol for circuits (that is, BMR) to generate all the garbled circuits of
the garbled RAM along with labels for partial inputs. In Section 5.3, we argue
that the functionality being computed by MPC is information theoretic. Hence,
this gives a black-box protocol.

Subtlety with use of ORAM. At first, it seems that we can generate all the
garbled circuits of the garbled RAM in parallel via the MPC. But, separating
the generation of garbled circuits creates a subtle problem in how garbled RAM
internally uses oblivious RAM. As mentioned before, some of the labels revealed
at the time of garbled RAM generation depend on the database contents and
the randomness used for ORAM. For security, the randomness of ORAM is
contributed by all the parties and any sub-group of the parties does not learn
the semantics of these labels. Therefore, separating the generation of garbled
circuits requires all the parties to input the entire database to each garbled
circuit generation, which would violate the efficiency requirements. In particular,
efficiency of garbling the database would be at least quadratic in its size.

We solve this problem by bundling together the generation of all the garbled
circuits under one big MPC. This does not harm security as well as provides
the desired efficiency guarantees. More precisely, all the garbled circuits are
generated by a single MPC protocol, where all the parties only need to input
once the entire database along with all the randomness for the oblivious RAM
(as well as their label shares and PRG outputs). We defer the details of this to
the main body. There we also describe how we can extend this protocol for the
setting of multiple program executions on a persistent database.

Malicious Setting. Next, we consider the case of malicious security. Again,
to begin with, consider the case of a single program execution. For malicious
security, we change the underlying secure computation protocol for generating
garbled RAM to be malicious secure instead of just semi-honest secure. This
would now ensure that each garbled circuit is generated correctly. Given that
this secure computation is correct and malicious secure, the only thing that
a malicious adversary can do is choose inputs to this protocol incorrectly or
inconsistently. More precisely, as we will see in the main body, it is crucial that
the PRG outputs fed into the secure computation protocol are correct. In fact,
use of incorrect PRG values can cause honest parties to abort during evaluation
of generated garbled RAM. This would be highly problematic for security if
the adversary can cause input-dependent abort of honest parties as this is not
allowed in ideal world. Note that we cannot use zero-knowledge proofs to ensure
the correctness of PRG evaluations as this would lead to a non-black-box use
of one-way functions. To get around this hurdle, we prove that the probability
that an honest party aborts is independent of honest party inputs and depends
only on the PRG values used by the adversary. In fact, given the labels as well
as PRG outputs used by our adversary, our simulator can simulate which honest
parties would abort and which honest parties would obtain the output.

7

The case of persistent data in the malicious setting. The final question is,
can we extend the above approach to handle multiple programs? In the malicious
setting, the adversary can choose the inputs for the second program based on
the garbled memory that it has access to. Note that the garbled RAM of [11]
does not guarantee security when the inputs can be chosen adaptively given the
garbled RAM. Recall that the garbled memory of [11] consists of a collection
of garbled circuits. In fact, to construct a scheme that satisfies this stronger
security guarantee will require a circuit garbling scheme with the corresponding
stronger security guarantee. In other words, we would need a circuit garbling
scheme that is adaptively secure where the size of garbled input does not grow
with the size of the circuit. However, we do not know of any such scheme in the
standard model, i.e., without programmable random oracle assumption. Hence,
we leave open the question of black-box malicious security for executing multiple
RAM programs on a persistent database.

3 Preliminaries

We describe garbled RAM formally and give a brief overview of black box gar-
bled RAM construction from [11]. Here we describe an abstraction of their con-
struction which will suffice to describe our protocol for secure multi-party RAM
computation as well as its security proof. Parts of this section have been taken
verbatim from [14] and [11]. In the following, let κ be the security parameter. For
a brief description of RAM model and garbled circuits, refer to the full version
of this paper.

3.1 Garbled RAM

The garbled RAM [32,14,12] is the extension of garbled circuits to the setting of
RAM programs. Here, the memory data D is garbled once and then many dif-
ferent garbled programs can be executed sequentially with the memory changes
persisting from one execution to the next.

Definition 1. A secure single-program garbled RAM scheme consists of four
procedures (GData, GProg, GInput, GEval) with the following syntax:

– (D̃, s) ← GData(1κ, D): Given a security parameter 1κ and memory D ∈
{0, 1}M as input, GData outputs the garbled memory D̃ and a key s.

– (P̃ , sin) ← GProg(1κ, 1logM , 1t, P, s,m) : Takes the description of a RAM
program P with memory-size M and running-time t as input. It also requires
a key s (produced by GData) and current time m. It then outputs a garbled
program P̃ and an input-garbling-key sin.

– x̃← GInput(1κ, x, sin): Takes as input x ∈ {0, 1}n and an input-garbling-key
sin, and outputs a garbled-input x̃.

– (y, D̃′) = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and
garbled memory data D̃ and outputs a value y along with updated garbled
data D̃′. We model GEval itself as a RAM program that can read and write
to arbitrary locations of its memory initially containing D̃.

8

Efficiency: The run-time of GProg and GEval are t ·poly(logM, log T, κ), which
also serves as the bound on the size of the garbled program P̃ . Here, T denotes
the combined running time of all programs. Moreover, the run-time of GData is
M · poly(logM, log T, κ), which also serves as an upper bound on the size of D̃.
Finally the running time of GInput is n · poly(κ).

Correctness: For correctness, we require that for any initial memory data
D ∈ {0, 1}M and any sequence of programs and inputs {Pi, xi}i∈[`], following
holds: Denote by yi the output produced and by Di+1 the modified data result-
ing from running Pi(Di, xi). Let (D̃, s) ← GData(1κ, D). Also, let (P̃i, s

in
i) ←

GProg(1κ, 1logM , 1ti , Pi, s,
∑
j∈[i−1] tj), x̃i ← GInput(1κ, xi, s

in
i) and (y′i, D̃i+1) =

GEvalD̃i(P̃i, x̃i). Then, Pr [yi = y′i, for all i ∈ {1, . . . , `}] = 1.

Security: For security, we require that there exists a PPT simulator GramSim
such that for any initial memory data D ∈ {0, 1}M and any sequence of pro-
grams and inputs {Pi, xi}i∈[`], the following holds: Denote by yi the output
produced and by Di+1 the modified data resulting from running Pi(Di, xi). Let
(D̃, s) ← GData(1κ, D), (P̃i, s

in
i) ← GProg(1κ, 1logM , 1ti , Pi, s,

∑
j∈[i−1] tj) and

x̃i ← GInput(1κ, xi, s
in
i), then

(D̃, {P̃i, x̃i}i∈[`])
comp
≈ GramSim(1κ, 1M , {1ti , yi}i∈[`])

3.2 Black-Box Garbled RAM of [11]

The work of [11] gives a construction of garbled RAM that only makes a black-
box use of one-way functions. In particular, it proves the following theorem.

Theorem 1 ([11]). Assuming the existence of one-way functions, there exists
a secure black-box garbled RAM scheme for arbitrary RAM programs satisfying
the efficiency, correctness and security properties stated in Definition 1.

Below, we describe the construction of [11] at a high level. We describe the
algorithms (GData,GProg,GInput). In following, in the context of garbled cir-
cuits, labels refers to one of the labels for an input bit and keys refers to both
labels (one for 0 and one for 1) corresponding to an input bit.

[11] construct black-box garbled RAM in two steps. First a garbled RAM
scheme is constructed under the weaker security requirement of unprotected
memory access (UMA2-security) where only the sequence of memory locations
being accessed is revealed. Everything else about the program, data and the input
is hidden. Next this weaker security guarantee is amplified to get full security by
using statistical oblivious RAM that hides the memory locations being accessed.

Garbled RAM achieving UMA2-security Let the corresponding proce-

dures be (ĜData, ĜProg, ĜInput, ĜEval).

9

– (D̃, s) ← ĜData(1κ, D): D̃ consists of a collection of garbled circuits and a
tabled garbled information Tab. The key s corresponds to a PRF key.

Garbled Circuits. The collection of garbled circuits is organized as a binary
tree of depth d = O(log |D|) and each node consists of a sequence of garbled
circuits.11 For any garbled circuit, its successor (resp. predecessor) is defined
to be the next (resp. previous) node in the sequence. For a garbled circuit,
all garbled circuits in parent (resp. children) node are called parents (resp.
children). There are two kinds of circuits: leaf circuits Cleaf (at the leaves
of the tree) and non-leaf circuits Cnode (at the internal nodes of the tree).
Intuitively speaking, the leaf nodes carry the actual data.
Each garbled circuit has hard-coded inside it (partial) keys of a set of other
garbled circuits. We emphasize that for any circuit C, the keys that are hard-
coded inside it are fixed (depending on the size of data) and is independent
of the actual contents of the data. This would be crucial later.

Tabled garbled information. For each node in the tree as described above,
the garbled memory consists of a table of information Tab(i, j), where (i, j)
denotes the jth node at ith level from the root. Note that d denotes the
depth of the tree. The tabulated information Tab(i, j) contains labels for
partial inputs of the first garbled circuit in the sequence of circuits at node
(i, j) (i.e., one label for some of the input bits). As the garbled memory is
consumed by executing the garbled circuits, the invariant is maintained that
the tabulated information contains partial labels for the first unused garbled
circuit at that node.
A crucial point to note is the following: Labels in Tab entry corresponding to
non-leaf nodes, i.e., Cnode, depend on the keys on some other garbled circuit.
Also, the tabulated information for the leaf nodes depends on actual value
in the data being garbled. More precisely, the entry Tab(d, j) for level d of
the leaves contains the partial labels for the first Cleaf circuit at jth leaf
corresponding to value D[j] value.12

The keys of the all the garbled circuits are picked to be outputs of a PRF
with key s on appropriate inputs.

– (P̃ , sin)← ĜProg(1κ, 1logM , 1t, P, s,m) : The garbled program P̃ consists of
a sequence of garbled circuits, called Cstep. Again, each garbled circuit has
(partial) keys of some circuits of P̃ and D̃ hard-coded inside it. We emphasize
that for any circuit Cstep ∈ P̃ , which keys are hard-coded inside it is fixed
and is independent of the actual program and actual data.

11 Note that for security, any garbled circuit can only be executed once. Hence, to
enable multiple reads from the memory, each node consists of a sequence of garbled
circuits. Number of garbled circuits at any node is chosen carefully. See [11] for
details. For our purpose, we do not need to specify the number of garbled circuits
at each node, but it is worth emphasizing that the total number of garbled circuits
is |D| · poly(log |D|, κ) .

12 Note that it is public that jth leaf corresponds to D[j]. Later, statistical ORAM is
used to hide this correspondence.

10

sin corresponds to the keys of the first circuit in this sequence.

– x̃← ĜInput(1κ, x, sin): The GInput algorithm uses x as selection bits for the
keys provided in sin, and outputs x̃ that is just the selected labels.

Remark 1. Note that for [11] the labels in Tab for Cnode and hard-coded key
values are independent of the actual data D and input x. The labels in Tab for
Cleaf depend on data D and labels in x̃ depend on input x.

Garbled RAM achieving full security [11] prove the following lemma.

Lemma 1. [11] Given a UMA2-secure garbled RAM scheme (ĜData, ĜProg, ĜInput, ĜEval)
for programs with (leveled) uniform memory access, and a statistical ORAM
scheme (OData,OProg) giving (leveled) uniform memory access that protects the
access pattern, there exists a fully secure garbled RAM scheme.

The construction works by first applying ORAM compiler followed by UMA2-
secure garbled RAM compiler. More formally,

– GData(1κ, D): Execute (D∗)← OData(1κ, D) followed by (D̃, s)← ĜData(1κ, D∗).
Output (D̃, s). Note that OData does not require a key as it is a statistical
scheme.

– GProg(1κ, 1logM , 1t, P, ŝ,m): Execute P ∗ ← OProg(1κ, 1logM , 1t, P) followed

by (P̃ , sin)← ĜProg(1κ, 1logM
′
, 1t

′
, P ∗, s,m) . Output (P̃ , sin).

– GInput(1κ, x, sin): Note that x is valid input for P ∗. Execute x̃← ĜInput(1κ, x, sin),
and output x̃.

– GEvalD̃(P̃ , x̃): Execute y ← ĜEval
D̃

(P̃ , x̃) and output y.

Note that UMA-2-secure garbled RAM does not hide which leaf nodes of
garbled data correspond to which bit of data D. In the garbled RAM with full
security, this is being hidden due to compilation by ORAM. In the final garbled
RAM with full security, which keys are hardwired in each garbled circuit remains
public as before. Also, which keys are stored in Tab are public except those for
Cleaf as they correspond to data values. These are determined by the randomness
used in ORAM as well as actual data.

Transformation of garbled RAM to remove the hard-coding of keys.
As is clear from the above description, the garbled RAM (D̃, P̃ , x̃) consists of a
collection of garbled circuits of three types: Cleaf ,Cnode and Cstep and a collection
of labels given in tabled garbled information of D̃ and x̃. Each of these circuits
have (partial) keys of other garbled circuits hard-coded inside them and this
structure of hard-coding is public and fixed independent of the actual data,
program and randomness of ORAM. In this work, we change the circuits in
garbled RAM construction as follows: We consider these hard-coded values as
additional inputs whose labels are given out at time of garbled RAM generation.
Once we remove the hard-coding of keys from inside these circuits, the structure

11

of these circuits is public and known to all. The remark below summarizes our
garbled RAM abstraction.

Remark 2. Garbled RAM abstraction. The garbled RAM consists of a col-
lection of garbled circuits. The structure of these garbled circuits as well as se-
mantics of each of the input wires are public. For each of these garbled circuits,
labels for partial inputs are revealed at the time of garbled RAM generation. La-
bels which are not revealed become known while evaluating the garbled RAM.
Labels which are revealed correspond to one of the following inputs: The ones
for which labels were given in Tab, earlier hardcoded keys, or the input x.

The semantics of the labels revealed in Tab corresponding to Cnode is public.
But, ORAM hides the semantics of the labels in Tab corresponding to Cleaf

and these depend on data values in memory at specific locations. Moreover, the
mapping of these leaves to locations of memory is also hidden by ORAM and is
determined by the randomness used by ORAM.

It is easy to see that the garbed RAM obtained after this transformation
is equivalent to the original garbled RAM of [11]. In the following, the garbled
RAM will refer to this simpler version of garbled RAM where circuits do not
have any hard-coded keys. This transformation would help in ensuring that the
secure computation protocols that we describe only make a black-box use of
cryptography.

4 Our Model

In this section we define the security of secure computation for RAM programs
for the case of persistent database. In this work, we consider both semi-honest as
well as malicious adversaries. A semi-honest adversary is guaranteed to follow the
protocol whereas a malicious adversary may deviate arbitrarily from the protocol
specification. In particular, a malicious adversary may refuse to participate in
the protocol, may use an input that is different from prescribed input, and may
be abort prematurely blocking the honest parties from getting the output. We
consider static corruption model, where the adversary may corrupt an arbitrary
collection of the parties, and this set is fixed before the start of the protocol. We
consider security with abort using real world and ideal world simulation based
definition. We consider a ideal computation using incorruptible third party to
whom parties send their inputs and receive outputs. This ideal scenario is secure
by definition. For security, we require that whatever harm the adversary can do
by interacting in the real protocol is mimicked by an ideal world adversary. We
provide a detailed formal description of our model in our full version.

Consider partiesQ1, . . . , Qn holding secret databaseD1, . . . , Dn, respectively.
They want to compute a sequence of programs P = (P (1), . . . , P (`)) on the

persistent database D = D1|| . . . ||Dn. Qi has secret input x
(j)
i for program P (j).

The overall output of the ideal-world experiment consists of all the values
output by all parties at the end, and is denoted by IdealPS (1κ, D, {x(j)}j∈[`], z),
where z is the auxiliary input given to the ideal adversary S at the beginning.

12

In the case of an semi-honest adversary S, all parties receive the same output
from the trusted functionality. In the case of the malicious adversary, S after
receiving the output from the trusted party, chooses a subset of honest parties
J ⊆ [n] \ I and sends J to the trusted functionality. Here, I ⊆ [n] denotes the
set of corrupt parties. The trusted party sends the output to parties in J and
special symbol ⊥ to all the other honest parties.

Similarly, the overall output of the real-world experiment consists of all the
values output by all parties at the end of the protocol, and is denoted by
RealπA(1κ, D, {x(j)}j∈[`], z), where z is the auxiliary input given to real world
adversary A. Then, security is defined as follows:

Definition 2 (Security). Let P = (P (1), . . . , P (`)) be a sequence of well-formed
RAM programs and let π be a n-party protocol for P . We say that π securely com-

putes P , if for every {Di, x
(1)
i , . . . , x

(`)
i }i∈[n], every auxiliary input z, every real

world adversary A, there exists an ideal world S such that RealπA(1κ, D, {x(j)}j∈[`], z) ≈
IdealPS (1κ, D, {x(j)}j∈[`], z).

Efficiency: We also want the following efficiency guarantees. We consider the
following two natural scenarios: Below, M is the size of total database, i.e. M =
|D|, tj denotes the running time of P (j) and T = maxj tj

1. All parties do computation: In this case, for all the parties we re-
quire the total communication complexity and computation complexity to
be bounded by M · poly(logM, log T, κ) +

∑
j∈[`] tj · poly(logM, log tj , κ)

and each party needs to store total database and program of size at most
M ·poly(logM, log T, κ) +T ·poly(logM, log T, κ). With each additional pro-
gram to be computed, the additional communication complexity should be
tj · poly(logM, log tj , κ).

2. Only one party does the computation: In this case, as before the
communication complexity and computation complexity of the protocol is
bounded by M · poly(logM, log T, κ) +

∑
j∈[`] tj · poly(logM, log tj , κ). But,

in some cases such as semi-honest security, we can optimize on the space
requirements of the parties and all parties do not require space proportional
to the total database. The one designated party who does the computation
needs to store M ·poly(logM, log T, κ)+T ·poly(logM, log T, κ). All the other
parties Qi only need to store their database of size |Di|. 13

5 Semi-Honest Multi-party RAM Computation

In this section, we describe the semi-honest secure protocol for RAM computa-
tion. We prove the following theorem.

13 During the protocol execution all parties would need space proportional to
M · poly(logM, log T, κ) + T · poly(logM, log T, κ). Looking ahead, this is needed to
run a protocol which outputs the garbled RAM to the designated party.

13

Theorem 2. There exists a constant-round semi-honest secure multiparty pro-
tocol for secure RAM computation for the case of persistent database in the
OT-hybrid model that makes a black-box use of one-way functions. This protocol
satisfies the security and the efficiency requirements of Section 4.

Below, we first describe a secure protocol for the case of a single program
execution for the case when all the parties compute the program and hence, need
space proportional to the total size of the database. Later, we describe how our
protocol can be extended to the case of multiple programs and optimizations of
load balancing.

Protocol Overview. Our goal is to construct a semi-honest secure protocol
for RAM computation. At a high level, in our protocol, the parties will run
a multiparty protocol (for circuits) to generate the garbled RAM. We want a
constant round protocol for secure computation that only makes a black-box
use of one-way functions in the OT-hybrid model. Such a protocol was given by
[2]. As already mentioned in technical overview, a näıve use of this protocol to
generate the garbled RAM results in a non-black-box use of one way functions.
The reason is the following: As explained before, the black-box garbled RAM of
[11] consists of a collection of garbled circuits and hence, uses one-way functions
inside it. Our main idea is to transform the garbled RAM of [11] in a way that
allows each party to compute the one-way functions locally so that the function-
ality we compute using [2] is non-cryptographic (or, information theoretic). To
achieve this, we again use ideas from distributed garbling scheme of [2]. Below
we review their main result and the underlying garbling technique.

5.1 Distributed Garbling Protocol of [2]

Following result was proven by [2].

Theorem 3 ([2]). There exists a constant-round semi-honest secure protocol
for secure compuatation for circuits, which makes black-box calls to PRG in the
OT-hybrid model. Let the protocol for a functionality F be denoted by ΠFbmr and
the corresponding simulator be Simbmr.

We describe this protocol next at a high level. Some of the following text has
been taken from [22].

Suppose there are n parties Q1, . . . , Qn with inputs x1, . . . , xn. The goal is
the following: For any circuit C, at the end of the garbling protocol, each party
holds a garbled circuit C̃ corresponding to C and garbled input x̃ corresponding
to x = x1, . . . , xn. Then, each party can compute C̃ on x̃ locally. At a high
level, the evaluation is as follows: Recall that in a garbled circuit, each wire w
has two keys keyw

0 and keyw
1 : one corresponding to the bit being 0 and another

corresponding to the bit being 1. In the multiparty setting, each wire also has
a wire mask λw that determines the correspondence between the two wire keys
and the bit value. More precisely, the key keyw

b corresponds to the bit b⊕ λw.
In the following, let F be a PRF and G be a PRG. The garbling protocol

Πsh
bmr is as follows:

14

– Stage 1. Party Qi picks a seed si for the PRF F . It generates its shares for
keys for all the wires of C and wire masks as follows: Define (kw

0 (i), kw
1 (i), λwi) =

Fsi(w). In the final garbled circuit C̃, key for any wire w will be a concate-
nation of keys from all the parties. That is, keyw

b = kw
b (1) ◦ . . . ◦ kw

b (n) and
λw = λw1 ⊕ . . .⊕ λwn .

– Stage 2. Recall that in a garbled circuit, for any gate, the keys for the output
wires are encrypted under the input keys for all the four possible values for
the inputs. These encryptions are stored in a garbled table corresponding
to each gate. For all garbled circuit constructions, this step of symmetric
encryption involves the use of one-way functions. In order to ensure black-
box use of one-way functions, each party will make the PRG call locally. The
parties locally expand their key parts into large strings that will be used as
one-time pads to encrypt the key for the output wire labels. More precisely,
Qi expands the key parts kw

0 (i) and kw
1 (i) using PRG G to obtain two new

strings, i.e., (pw
b (i), qw

b (i)) = G(kw
b (i)), for b ∈ {0, 1}. Both pw

b (i) and qw
b (i)

have length n|kw
b (i)| = |keyw

b | (enough to encrypt the key for output wire).
More precisely, for every gate in C, a gate table is defined as follows: Let
α, β be the two input wires and γ be the output wire, and denote the gate
operation by ⊗. Party Qi holds the inputs pαb (i), qαb (i), pβb (i), qβb (i) for b ∈
{0, 1} along with shares of masks λαi , λ

β
i , λ

γ
i . The garbled gate table is the

following four encryptions:

Ag = pα0 (1)⊕ . . .⊕ pα0 (n)⊕ pβ0 (1)⊕ . . .⊕ pβ0 (n)

⊕
{
kγ0 (1) ◦ . . . ◦ kγ0 (n) if λα ⊗ λβ = λγ

kγ1 (1) ◦ . . . ◦ kγ1 (n) otherwise

Bg = qα0 (1)⊕ . . .⊕ qα0 (n)⊕ pβ1 (1)⊕ . . .⊕ pβ1 (n)

⊕
{
kγ0 (1) ◦ . . . ◦ kγ0 (n) if λα ⊗ λβ = λγ

kγ1 (1) ◦ . . . ◦ kγ1 (n) otherwise

Cg = pα1 (1)⊕ . . .⊕ pα1 (n)⊕ qβ0 (1)⊕ . . .⊕ qβ0 (n)

⊕
{
kγ0 (1) ◦ . . . ◦ kγ0 (n) if λα ⊗ λβ = λγ

kγ1 (1) ◦ . . . ◦ kγ1 (n) otherwise

Dg = qα1 (1)⊕ . . .⊕ qα1 (n)⊕ qβ1 (1)⊕ . . .⊕ qβ1 (n)

⊕
{
kγ0 (1) ◦ . . . ◦ kγ0 (n) if λα ⊗ λβ = λγ

kγ1 (1) ◦ . . . ◦ kγ1 (n) otherwise

In [2] this garbled table is generated by running a semi-honest secure compu-
tation protocol by the parties Q1, . . . , Qn. Here, for the secure computation
protocol, the private input of partyQi are pαb (i), qαb (i), pβb (i), qβb (i), kγb (i), λαi , λ

β
i , λ

γ
i

for b ∈ {0, 1}. Note that the garbled table is an information theoretic (or,
non-cryptographic) function of the private inputs. Hence, the overall proto-
col is information theoretic in the OT-hybrid model. Moreover, to get the
constant round result of [2], it was crucial that the garbled table generation
circuit has depth constant (in particular, 2).

– Stage 3. The parties also get the garbled input x̃. For a wire w with value
xw, let Λw = xw⊕λw1 ⊕ . . .⊕λwn . All parties get Λw, keyw

Λw . Parties also reveal
their masks for each output wire λoi .

15

– Stage 4. Finally, given the garbled circuit C̃ consisting of all the garbled
tables and garbled input x̃, the parties can compute locally as follows: For
any wire w, ρw denote its correct value during evaluation. It is maintained
that for any wire w, each party learns the masked value Λw and the label
keyw

Λw where Λw = λw ⊕ ρw. It is clearly true for the input wires. Now,

for any gate g with input wires α, β, each party knows Λα, keyαΛα , Λ
β , keyβ

Λβ
.

If (Λα, Λβ) = (0, 0), decrypt the first row of the garbled gate, i.e., Ag, if
(Λα, Λβ) = (0, 1) decrypt Bg, if (Λα, Λβ) = (1, 0) decrypt Cg, and else if
(Λα, Λβ) = (1, 1) decrypt Dg and obtain keyγ = kγ(1) ◦ . . . ◦ kγ(n). Now,
party Qi checks the following: If kγ(i) = kγb (i) for some b ∈ {0, 1}, it sets
Λγ = b. Else, party Qi aborts. Finally, each parties computes the output
using λo and Λo for the output wires.

5.2 Garbled RAM Instantiated with Distributed Garbling of BMR

The aforementioned garbling protocol implies a special distributed circuit gar-
bling scheme, which we refer to in the following as BMR scheme, denoted by
(GCircuitbmr,Evalbmr,CircSimbmr). It has the same syntax as the a secure circuit
garbling scheme, but with the special labeling structure described above. The
scheme has the following properties.

Black-box use of OWFs. The scheme only involves a black-box use of one-way
functions in the OT-hybrid model.

Security. Since the above protocol from [2] is a semi-honest secure computation
protocol, the BMR scheme is a secure circuit garbling scheme. That is, it does
not reveal anything beyond the output of the circuit C on x to an adversary
corrupting a set of parties I ⊂ [n]. More precisely, we can abstract out the BMR
scheme as well as its security as follows: Let us denote the collection of labels
used by party Qi using PRF si by Labelsi and the set of wire masks by λi.
Similarly, let LabelsI denote {Labelsi}i∈[I] and λI denote {λi}i∈[I]. Then, the
following lemma states the security of the BMR scheme.

Lemma 2 (Security of BMR garbling scheme). There exists a PPT sim-
ulator CircSimbmr such that CircSimbmr(1

κ, C, xI , LabelsI , λI , y) ≈ (C̃, x̃). Here
(C̃, x̃) correspond to the garbled circuit and the garbled input produced in the real

world using Πsh
bmr conditioned on (LabelsI , λI). We denote it by GCircuitbmr(1

κ, C, x)
∣∣∣
(LabelsI ,λI)

.

The proof of the above lemma follows from the security of [2].

Distributed garbling scheme of garbled RAM. Our next step is instan-
tiating the garbled RAM of [11] with the BMR circuit garbling scheme. As
mentioned in Lemma 2, the BMR scheme (GCircuitbmr,Evalbmr,CircSimbmr) is a
secure circuit garbling scheme. And we note that [11] makes a black-box use of
a secure circuit garbling scheme (GCircuit,Eval,CircSim). Our key observation is
that it can be instantiated using the BMR scheme. This would be very useful for
our protocol of secure computation for RAM programs. When we instantiate the

16

garbled RAM of [11] with the BMR scheme, the following lemma summarizes
the security of the resulting garbled RAM relying upon Lemma 2.

Lemma 3 (Garbled RAM security with BMR garbling). Instantiating
the garbled RAM construction of [11] with the BMR circuit garbling scheme
(GCircuitbmr,Evalbmr,CircSimbmr) gives a secure garbled RAM scheme. In partic-
ular, the garbler picks s1, . . . , sn as the seeds of the PRF to generate the keys
of the garbled circuit. Let the ith set of keys be Labelsi. Denote the resulting
scheme by Grambmr. Denote the corresponding simulator for garbled RAM by
GramSimbmr, which would internally use CircSimbmr. Using the security of gar-
bled RAM and the security of BMR scheme, we have the following:

Grambmr(1
κ, 1t, D, P, x) ≈c GramSimbmr(1

κ, 1t, 1|D|, y),

where y denotes the output of P (D,x). In fact, using the security property of
CircSimbmr, we have the following stronger security property. Let (x = x1, . . . , xn)
and D = (D1|| . . . ||Dn). Let I ⊂ [n]. Then

Grambmr(1
κ, 1t, D, P, x, LabelsI , I) ≈c GramSimbmr(1

κ, 1t, 1|D|, (xI , DI , LabelsI), y).

Recall that a garbled RAM consists of a collection of garbled circuits along
with partial labels. It is easy to see that using the BMR garbling scheme preserves
the black-box nature of the garbled RAM construction of [11].

Removing the hard-coding of keys in the scheme of [11]. As mentioned
before, the garbled circuits in garbled RAM of [11] contain hard-coding of keys
of other garbled circuits. For ease of exposition, we remove this hard-coding of
sensitive information and provide the previously these values as additional in-
puts.14 Moreover, labels corresponding to these new inputs would be revealed at
the time of garbled RAM generation. More precisely, we would do the following:

Consider a circuit C in the original scheme of [11] which has the partial
keys of some circuit C ′ hardcoded inside it. Since we will be using the BMR
garbling scheme, key keyw

b of any wire w of C ′ consists of a concatenation of keys
kw

b (i) such that the party Qi contributes kw
b (i). Wire w will also have a mask

λw = λw1 ⊕. . .⊕λwn such that λwi is contributed by partyQi. Now, the transformed
C will have input wires corresponding to each bit of keyw

0 and keyw
1 and also λw.

That is, the circuits along with having keys of some other circuits, will also
have masks for the corresponding wires.15 This is necessary for consistency and
correctness of evaluation of the garbled circuits. We further expand the input

14 This would be useful in arguing that the functionality computed under generic MPC
is information theoretic as well as arguing efficiency while garbling multiple programs
w.r.t. a persistent database.

15 The circuits described in [11] will be modified naturally to include these mask bits
in evaluation. For example, consider a circuit which was originally producing output
qKeyx, where qKey was a collection of keys (two per bit) being selected by string x.
Now new circuit will output qKeyx⊕λ, where λ contains the mask bits for all wires
in x. Hence, if qKey was given as input, then we also need to provide λ as input.

17

λw into n bits as λw1 , . . . , λ
w
n . Finally, input wires of C corresponding to kw

b (i)
for b ∈ {0, 1} and λwi will correspond to input wires of party Qi. Note that the
transformed circuit falls in the framework of [2].

5.3 Semi-Honest Secure Protocol for RAM Computation

In this section, we describe our constant-round protocol for semi-honest secure
multiparty RAM computation that only makes a black-box use of one-way func-
tions in the OT-hybrid model. The parties will run the semi-honest protocol from
[2] to collectively generate the garbled RAM and compute the garbled RAM lo-
cally to obtain the output. As mentioned before, a näıve implementation of this
idea results in a non-black-box use of one-way functions because a garbled RAM
consists of a bunch of garbled circuits (that use PRG inside them). To overcome
this issue, we will use the garbled RAM instantiation based on garbling scheme
of [2] described above (see Lemma 3) without the hard-coding of keys. Here, the
main idea is that each party invokes the one-way function locally and off-the-
shelf secure computation protocol is invoked only for an information theoretic
functionality (that we describe below). Moreover, recall that the garbled RAM
scheme with full security compiles a UMA-2 secure scheme with a statistically
secure ORAM. It is crucial for black-box nature of our protocol that the ORAM
scheme is statistical and does not use any cryptographic primitives. Hence, in-
tuitively, since the secure computation protocol of [2] is black-box, the overall
transformation is black-box in use of OWFs.

The functionality FGram. We begin by describing the functionality FGram

w.r.t. a program P that will be computed by the parties via the constant-round
black-box protocol of [2].

1. Inputs: The input of party Qi consists of xi, database Di, shares of keys
for all the garbled circuits denoted by Labelsi, all the wire masks denoted by
λi, the relevant PRG outputs on labels denoted by PRGi, and randomness
for ORAM ri.

2. Output: Each party gets the garbled RAM (D̃, P̃ , x̃) for program P promised
by Lemma 3. The randomness used by ORAM is computed as ⊕i∈[n]ri.

Now we argue that the above described functionality is information theoretic.
We first note that garbled RAM consists of a collection of garbled circuits and
the structure of these circuits as well as interconnection of these circuits is known
publicly. This is true because we have removed all the sensitive information that
was earlier hard-coded as additional input to the circuits. Moreover, the circuits
that are being garbled in [11] are information theoretic. This follows from the
fact that [11] only makes a black-box of one-way functions. Secondly, once all the
labels as well as PRG outputs are computed locally by the parties, the garble
table generation is information theoretic (see Section 5.1). Thirdly, the circuit
to compute the labels for partial inputs that are revealed at the time of garbled
RAM generation is information theoretic. This is because the values of those
partial inputs can be computed information theoretically from the inputs of the

18

parties. And finally, we use the fact that the ORAM used is statistical and hence,
information theoretic. Therefore, the overall functionality FGram is information
theoretic.

Our protocol. Consider n parties Q1, . . . , Qn who want to compute a program
P . The party Qi holds an input xi and database Di. Let us denote the semi-
honest protocol for RAM computation of P by Πsh

RAM that is as follows:

– Step 1. Party Qi computes the inputs for the functionality FGram described
above. More precisely, party Qi does the following: It picks a seed si for
a PRF and randomness ri for ORAM. It generates its shares for keys to
all wires of all the circuits Labelsi by computing the PRF with key si on
appropriate inputs. It also picks a random mask for each wire λi. Party Qi
also locally computes the relevant PRG outputs PRGi needed for garbled
tables (see Section 5.1).

– Step 2. The parties run the semi-honest secure protocol ΠFGram

bmr (provided
by Theorem 3) to compute the functionality FGram described above. Each
party will get the garbled RAM (D̃, P̃ , x̃) as output.

– Step 3. Each party runs GEvalD̃(P̃ , x̃) to obtain the output y.

Correctness. The correctness of the above protocol follows trivially from the
correctness of ΠFGram

bmr and correctness of garbled RAM of [11].
Round complexity. The round complexity of the above protocol is same as
the round complexity of ΠFGram

bmr . Hence, it is a constant by Theorem 3.
Black-box use of one-way functions. This follows from the fact that the
protocol ΠFbmr in Theorem 3 only makes a black-box use of one-way functions in
the OT-hybrid model and that the functionality FGram is set up to be information
theoretic (as argued above).
Efficiency. First of all, [11] guarantees that the number of circuits needed
for D̃ is only proportional to |D| up to poly-logarithmic factors, and that the
number of circuits needed for P̃ is proportional to the running time of P up
to poly-logarithmic factors. The functionality FGram that generates the garbled
RAM (D̃ and P̃) has size linear in the garbled RAM itself. And finally, the
communication and computation complexities of ΠFGram

bmr grow linearly in the size
of FGram. Therefore the entire communication and computation complexities are
satisfactory.

Note that for the desired efficiency, it is crucial that we run a single MPC
protocol to generate all the garbled circuits instead of running multiple sessions
of MPC (each generating one garbled circuit) in parallel. This is because partial
labels for some garbled circuits depend on the actual database values and for
security it is crucial to hide which circuit corresponds to which index in the
database. This security guarantee is achieved by the use of ORAM in the gar-
bled RAM scheme. In our protocol, for security, the randomness of ORAM is
contributed by all the parties. Hence, separating the generation of garbled cir-
cuits would require all the parties to input the entire database to each garbled
circuit generation, and the resulting efficiency of garbling the database would be
at least quadratic in its size.

19

5.4 Proof of Semi-Honest Security

In this section, we prove that the above protocol is secure against a semi-honest
adversary corrupting a set I ⊆ [n] of parties. We would rely on the semi-honest
security of garbled RAM from [11] when instantiated using the BMR garbling
scheme (see Lemma 3) as well as semi-honest security of ΠFbmr (see Theorem 3).

We will define our simulator Simsh
mpc and prove that the view computed by Simsh

mpc

is indistinguishable from the view of the adversary in the real world.16

1. Simsh
mpc begins by corrupting the parties in set I and obtains the inputs

xI = {xi}i∈I and database DI = {Di}i∈I of the corrupt parties. Simsh
mpc

queries trusted functionality for program P on input (xI , DI) and receives
output y.

2. Simsh
mpc picks PRF keys si and randomness ri for ORAM for all i ∈ I. It

computes the shares of keys for all the wires of all the circuits Labelsi, wire
masks λi as well as PRG outputs PRGi honestly for all the corrupt parties.

3. Simsh
mpc invokes the simulator of the garbled RAM GramSimbmr(1

κ, 1t, 1|D| ,
(xI , DI , LabelsI), y) to get the simulated garbled RAM. Let us denote it by
(D̃, P̃ , x̃).

4. Simsh
mpc now invokes Simbmr for functionality FGram where the inputs of the

corrupt parties are obtained in Step 2 above, that is, {(xi, Di, ri, Labelsi, λi,PRGi)}i∈I
and output is the simulated garbled RAM (D̃, P̃ , x̃). More precisely, the simu-
lator Simsh

mpc outputs Simbmr(1
κ, {(xi, Di, ri, Labelsi, λi,PRGi)}i∈I , (D̃, P̃ , x̃)).

Next, we show that the output of the simulator Simsh
mpc is indistinguishable

from the real execution via a sequence of hybrids Hyb0,Hyb1,Hyb2, where we
prove that the output of any pair of consecutive hybrids is indistinguishable. Hyb0
corresponds to the real execution and Hyb2 corresponds to the final simulation.

Hyb1: This is same as the hybrid Hyb0 except we simulate the protocol for ΠFGram

bmr

by using Simbmr with real garbled RAM as output. More precisely, this hybrid
is as follows:

1. For all i ∈ [n], let xi and Di denote the input and database respectively.
2. Pick PRF keys si and randomness ri for ORAM for all i ∈ [n].
3. For each i ∈ I, compute the shares of keys for all the wires of all the circuits,

wire masks as well as PRG outputs honestly for the corrupt parties. For the
party Qi, denote the collection of wire key shares by Labelsi, collection of
wire masks shares by λi and the collection of PRG outputs by PRGi.

4. Generate the garbled RAM (D̃, P̃ , x̃) honestly as Grambmr(1
κ, 1t, D[n], P, x[n], s[n]).

5. Run Simbmr for functionality FGram where the inputs of the corrupt parties
are obtained in Steps 2 and 3 above, that is, {(xi, Di, ri, Labelsi, λi,PRGi)}i∈I
and output is the garbled RAM (D̃, P̃ , x̃) obtained above. More precisely, the
simulator Simsh

mpc outputs Simbmr(1
κ, {(xi, Di, ri, Labelsi, λi,PRGi)}i∈I , (D̃, P̃ , x̃)).

16 In the semi-honest setting, outputs of the honest parties are identical in the real
world and the ideal world.

20

Intuitively, Hyb0 ≈c Hyb1 by the correctness and the semi-honest security
of the multi-party protocol from [2] used for computing the garbled RAM (see
Theorem 3 for formal security guarantee).

Hyb2: This is same as simulator Simsh
mpc. In other words, this is same as the

previous hybrid except instead of using actual circuits of garbled RAM, we use
simulated garbled circuits output by GramSimbmr on GramSimbmr(1

κ, 1t, 1|D| ,
(xI , DI , LabelsI), y). Note that unlike previous hybrid, this hybrid does not rely
on the inputs and the database of honest parties.

Hybrids Hyb1 ≈c Hyb2 by Lemma 3.

5.5 Running More Than One Program On A Persistent Database

In this section, we provide a protocol for executing multiple programs P (1), . . . , P (`)

on a persistent database. For exposition, it suffices to describe the case of P (1)

and P (2), and it would be easy to extend to more programs in a natural way.
Recall that the garbled memory consists of a collection of garbled circuits that

get consumed when a program is executed. Note that for security each garbled
circuit can only be executed on a single input. Hence, the main issue in executing
multiple programs on a persistent memory (as already observed by [11]) is that
we need a way to replenish the circuits in the memory so that we can allow for
more reads/writes by programs. To address this challenge, [11] gave a mechanism
for replenishing circuits obliviously where each garbled program running for time
T also generates enough garbled circuits for memory to support T more reads.
Recall that the garbled memory consists of a tree of garbled circuits where each
node consists of a sequence of garbled circuits. In [11], since the execution of the
program P (1) as well as which circuits get consumed is hidden from the garbler,
they need a more sophisticated oblivious technique for replenishing. This can
be simplified in our setting because all the parties execute the garbled RAM for
D,P (1) and hence, know which garbled circuits have been consumed and need
to be replenished at any node of the tree.

At the time of garbling of the second program P (2), the parties would com-
pute the functionality FRep described next.

The functionality FRep. This functionality guarantees that the parties re-
plenish the garbled memory to support M reads before executing the program
P (2), where M is the size of the database. The garbled circuits that need to be
replenished is determined by the execution of P (1) and hence, is known to all
the parties.

1. Inputs: The input of party Qi consists of xi (inputs for program P (2)),
shares of keys, wire masks needed for the garbled circuits of program P (2) as
well as share of keys, wire masks for the memory garbled circuits to be added.
Note that these keys and wire masks for garbled circuits of the program and
memory need to be consistent with previously generated garbled circuits. As
before, we denote these by Labelsi and λi respectively. Parties also generate
the relevant PRG outputs on labels denoted by PRGi.

21

2. Output: Each party gets the garbled program and garble input (P̃ (2), x̃(2))
for program P (2), as well as more garbled circuits for the memory which
restores the garbled memory to support M more reads.

Our protocol. We describe the protocol for running P (1) and P (2) on a per-
sistent database D below. Note that at a high level, the following invariant is
maintained. Before executing a program, the memory is replenished to support
M reads, where M is the size of the memory (which is w.l.o.g. greater than the
running time of the program).

– Step 1. The parties Q1, . . . , Qn run the protocol Πsh
RAM to generate the

garbled RAM D̃(1), P̃ (1), x̃(1). Each party Qi executes the above garbled

RAM to obtain the output y(1) and the resulting garbled memory D̃′
(1)

.
(The parties know what all garbled circuits got consumed from the garbled
memory and need to be replenished.)

– Step 2. Party Qi computes the inputs for the functionality FRep described
above. More precisely, party Qi does the following: It uses its PRF seed si to
generate its shares for all keys needed for generating the new circuits Labelsi.
It picks a random mask for each wire λi, and locally computes the relevant
PRG outputs PRGi needed for garbled tables. Note that the shares for keys
and wire masks need to be consistent with previously generated garbled
circuits. Since we are in the semi-honest setting, we can safely assume that
the consistency is maintained.

– Step 3. The parties run the semi-honest secure protocol ΠFRep

bmr to compute
the functionality FRep described above. Each party will obtain the garbled
program and garbled input (P̃ (2), x̃(2)). Each party will also get more circuits
for the memory which restores the garbled memory to support M more reads,
thus obtaining an updated garbled memory D̃(2).

– Step 4. Each party runs GEvalD̃
(2)

(P̃ (2), x̃(2)) to obtain the output y(2) and

modified garbled memory D̃′
(2)

.

The correctness, constant round complexity, and black-box use of one-way func-
tions of the protocol can be argued similarly as before in Section 5.4. A crucial
idea in arguing correctness is that the structure of the garbled circuits needed
is public and the keys of new circuits should be consistent with previously gen-
erated garbled circuits. This is easy to ensure as the parties behave honestly in
generating consistent labels using the same PRF keys as before.

Efficiency. We argue that the complexity of garbling second program is propor-
tional to the running time of P (2) up to poly-logarithmic factors. The argument
follows in a similar manner as Section 5.4. First note that the number of garbled
circuits in garbled program P̃ (2) is proportional to the running time of P (2). The
replenishing mechanism of [11] ensures that the number of new circuits needed
is only proportional to the running time of P (1) up to poly-logarithmic factors

22

(since these are the number of circuits consumed from memory while running
P (1) program).17

It is crucial to note that the cost of replenishing does not grow with the
size of the memory. We note that replenishing does not require the database
contents or the randomness used by ORAM as input. More precisely, for any
node in the tree of the garbled memory, adding more circuits to that node only
requires knowledge of the labels used in the previous circuit in that node and
being consistent with that.18

Security. We can argue the semi-honest security of the above protocol as follows:
The simulator needs to simulate the view of the adversary for all the program
executions using the corresponding simulator of garbled RAM provided by [11] as
before. The only non-triviality is that the underlying simulator of garbled RAM
would need to know the outputs of all the executions in order to do successful
simulation of garbled RAM. Since we are the semi-honest setting, these are easy
to compute. This is because since all the parties are semi-honest, the parties
choose the inputs for different execution just based on their previous inputs and
outputs. This choice does not depend on the garbled RAM given to the parties
in the real execution. This will be the major bottleneck for the malicious setting
and we will revisit this point later.19

At a high level, our simulator for the persistent database would do the follow-
ing. As before, let I ⊂ [n] denote the set of corrupt parties. The simulator will

use DI and x
(1)
I of corrupt parties to learn the output y(1) from the trusted func-

tionality. Then, it will use the honest party strategy to compute the next round

of adversarial inputs x
(2)
I for the second program, and learn the output y(2). This

way the simulator learns the outputs y(1), . . . , y(`) for all the executions. Now
we can use the simulator of [11] to simulate the garbled RAM consisting of all
the garbled circuits. Finally, we use the simulator Simbmr on garbled RAM to
simulate the view of adversary for all the program executions. The argument of
indistinguishability follows in the same manner as proof of a single program in
Section 5.4.

5.6 Load Balancing

In the protocol we have described above for semi-honest RAM computation, each
party gets a garbled RAM, which can be computed locally. This requires each
party to store information whose size is at least as large as size of total database.
In some settings, this might not be desired. In the semi-honest setting it is easy
to guarantee security even when only one party stores the garbled memory and

17 For ease of calculation, we can include of replenishing after running P (1) in the cost
of P (1) and cost of replenishing after P (2) in the cost of P (2) and so on.

18 This is because the keys of the successor circuit are already fed as input to the
predecessor and the new circuit just has to be consistent to the previously generated
circuit.

19 Note that a malicious party might choose its inputs for the second program execution
based on the garbled memory obtained in the first execution.

23

computes the program. We can simply modify the protocol such that only one
party gets the garbled RAM as output. All the other parties get no output. The
party which gets the garbled RAM, computes it, and sends the output of the
computation to all the other parties. Since we are in the semi-honest setting, it
is easy to see that this protocol is correct and secure given the correctness and
security of the original protocol.

6 Malicious Setting

In this section, we show how the semi-honest protocol presented in Section 5 can
be extended using appropriate tools to work for the malicious setting in the case
of non-persistent database.20 We show the following result:

Theorem 4. There exists a constant-round malicious secure multiparty proto-
col in the OT-hybrid model that makes a black-box use of one-way functions
for secure RAM computation for the case of non-persistent database satisfying
security and efficiency requirements of Section 4.

Protocol Overview. We first recall the semi-honest protocol from Section 5.3
at a high level. In the first step, each party picks a seed of a PRF and computes
the share of keys and masks for all the circuits in the garbled RAM as output of
the PRF as well as the PRG outputs on all the key shares. The parties also pick
randomness for statistical ORAM such that final randomness used is the sum of
the randomness from all the parties. Next, the parties run the constant round
protocol of [2] to generate all the garbled circuits for the garbled RAM of [11]
instantiated with distributed garbling scheme (see Lemma 3). A key point was
that the functionality FGram executed via the secure computation protocol is
information theoretic that gives us a black-box constant-round protocol. In this
section, we would extend these ideas to construct a malicious secure protocol as
follows:

To protect against malicious behavior, we need to ensure that the adversary
behaves honestly in the above high-level protocol. Towards this, we transform
the above protocol as follows: The first step is to replace the execution of ΠFGram

bmr

with a malicious secure computation protocol. Since the overall goal is to get a
constant round protocol for RAM which makes a black-box use of PRG in the
OT-hybrid model, we use the protocol from [30] that gives such a protocol for
circuits. Denote this protocol by ΠFGram

ips . More formally, the following theorem
was proven by [30].

Theorem 5 ([30], Theorem 3). For any n ≥ 2 there exists an n-party constant-
round secure computation protocol in the OT-hybrid model which makes a black-
box use of a pseudorandom generator and achieves computational UC-security
against an active adversary which may adaptively corrupt at most n− 1 parties.

20 We address the issue of persistent database at the end of this section.

24

Let Simips be the simulator provided by the above theorem. In our case,
we only need stand-alone security against a static malicious adversary which is
weaker than what is provided by the above theorem.

Next, recall that in a distributed garbling scheme of Section 5.2, each party
computes shares of labels using a PRF seed as well as PRG outputs on these
labels to be used in garbling of individual gates. If we can ensure that a malicious
party correctly computes the labels as outputs of a PRF and also the PRG out-
puts, intuitively the security would follow similarly to the semi-honest scenario
by relying on the malicious security of ΠFGram

ips . Since the goal is to construct a
protocol that only makes a black-box of one-way functions, we cannot make the
parties prove that they computed the PRF or PRG values correctly. In particu-
lar, proving correctness of PRF and PRG outputs would lead to a non-black-box
use of cryptography. To solve this issue we make two key observations described
below.

First, we observe that in any scheme for circuit garbling as well as garbled
RAM, the wire labels are chosen to be outputs of a PRF only for efficiency and
not security. That is, even if malicious parties choose these labels as arbitrarily
chosen strings, it does not compromise the security of the garbled circuits, or
garbled RAM scheme, and hence, our construction. But, the correct computation
of PRG values used to encrypt the keys in garbled gate tables, is indeed critical.
In fact, if a malicious party feeds the wrong output of PRG in computing of
the garbled tables, it can cause the honest parties to abort during evaluation of
garbled circuits or garbled RAM.21 Note that an adversary can choose to cause
this abort selectively by computing, let us say, most PRG outputs correctly and
only a few incorrectly. This seems highly problematic at first, since this can
lead to the problem of selective abort based on the inputs of honest parties and
would break security. Our key observation is that the probability of this abort
happening is independent of the inputs of the honest parties and is, indeed,
simulatable given just the labels and the PRG outputs used by the adversary
during the secure computation. This holds because of the following:

1. In the distributed garbling scheme, during evaluation, all parties decrypt the
same row during evaluation (See Sections 5.1, 5.2 for details). That is, the
adversary as well as the honest parties decrypt the same row for all the gate
tables. Now, since this scheme is semi-honest secure, which row is decrypted
during evaluation is independent of the honest parties’ inputs. In fact, it
depends on the mask value λw for the wires which is secret shared among
all parties and hence, hidden from all the parties.

2. The protocol ΠFGram

ips is a correct and malicious secure protocol. Hence, the

simulator of ΠFGram

ips would extract an input for the adversary that consists
of xi, Di, ri, Labelsi,PRGi for all corrupt parties. Here, Labelsi and PRGi
correspond to the label shares and PRG outputs used by Qi. Looking at

21 Recall that during evaluation, when a party Qi decrypts the key for the output of a
gate, it aborts if the ith sub-part of the key does not match either the 0 or 1 key of
Qi.

25

these, the simulator can check which PRG outputs have been computed
incorrectly. Moreover, each PRG value is used in exactly one row of one
gate table that is fixed. Now, as mentioned before, incorrect PRG values can
cause an honest party to abort. But, whether Qi aborts or not is independent
of input of Qi or any other party because of the following: The adversary
feeds a PRG value to mask the keys in this row of garbled table, which acts
independently on kw

b (i) for each i. This is because keyw
b = kw

b (1) ◦ . . . ◦ kw
b (n).

If the PRG value used by the adversary does not match the correct PRG
output for masking kw

b (i), then w.h.p. it would not match the keys of Qi for
both 0 and 1 and the party Qi would abort. This behavior is completely
simulatable just given the input of the adversary.

In short, the adversary can only control whether an honest party Qi aborts
or not on some specific gate. The adversary cannot set up the incorrect PRG
values to change the label from 0 to 1 for an honest party because honest labels
are chosen to be outputs of a PRF. We can continue the same argument for each
gate to conclude that the adversary cannot make an honest party compute a
wrong output.

Recall that each garbled gate has 4 rows of encryptions. For any gate, the
adversary can behave honestly for α rows of the gate and cheat in 4 − α rows.
In this case, the honest party would abort with probability 1 − α/4, again in-
dependent of inputs as which row gets decrypted during evaluation is uniform
(depends only on mask values). This cheating behavior is simulatable as well.

6.1 Our Protocol

We now describe our protocol for constant-round malicious secure RAM compu-
tation denoted by Πmal

RAM. This protocol is same as the semi-honest secure protocol

with one change that we use malicious secure protocol ΠFGram

ips from [30] instead of

semi-honest secure ΠFGram

bmr to compute the garbled RAM in a distributed manner.
Recall the functionality FGram described in Section 5.3 that takes as input

the shares of randomness for ORAM, keys for all wires of all the garbled circuits,
PRG outputs used in generating garbled tables (see Section 5.1), share of wire
masks as well as inputs x1, . . . , xn and data base D1, . . . , Dn and produces the
corresponding garbled RAM for P as output. The randomness used for ORAM
is the sum of the shares of randomness from all the parties. Note that as argued
in Section 5.3, the functionality FGram is information theoretic and does not
use oneway function or any other cryptographic primitives.22 Now the protocol
Πmal

RAM is as follows:

– Step 1. Party Qi computes the inputs for the functionality FGram. More
precisely, party Qi does the following: It picks a seed si for a PRF and
randomness ri for ORAM. It generates its shares for keys to all wires of all

22 This is because ORAM is statistical and garble table generation is information the-
oretic once wire labels as well PRG outputs are known.

26

the circuits Labelsi by computing the PRF with key si on appropriate inputs.
It also picks a random mask for each wire λi. Party Qi also locally computes
the relevant PRG outputs PRGi needed for garbled tables (see Section 5.1).

– Step 2. The parties run the constant round malicious secure protocol ΠFGram

ips

(provided by [30]) to compute the functionality FGram. Each party will get
the garbled RAM (D̃, P̃ , x̃) as output.

– Step 3. Each party runs GEvalD̃(P̃ , x̃) to obtain the output23 y.

Similar to the semi-honest case, the correctness, the constant round-complexity
and the black-box nature of the above protocol follow in a straightforward man-
ner from the corresponding properties of ΠFGram

ips as well as garbled RAM of [11].
The formal proof of malicious security of this protocol appears in Section 6.2.

The case of persistent database. As noted earlier, we do not handle the case
of persistent database against malicious adversaries, as remarked below:

Remark 3. We leave open the problem of realizing a solution against malicious
adversaries for the persistent database setting. Realizing a solution that supports
persistent database would involve realizing garbled RAM with adaptive input se-
curity. Specifically, a garbled RAM solution for which the inputs on which the
persistent garbled RAM is invoked can be chosen depending on the provided
garbled RAM itself. In order to construct such a scheme, efficient garbled circuit
construction satisfying analogous stronger security properties is needed. No con-
struction for such garbled circuits are known based on the standard assumptions
(i.e., without random-oracle model).

6.2 Proof of Malicious Security

In this section, we prove that the above protocol is secure against a malicious
adversary corrupting a set I ⊆ [n] of parties. We will construct a simulator
Simmal

mpc and prove that the joint distribution of the view computed by Simmal
mpc

and the outputs of the honest parties is indistinguishable from the real world.
Let us denote the collection of labels used by party Qi by Labelsi, set of PRG

outputs by PRGi and the set of wire masks by λi. Note that while generating the
garbled RAM, an honest party uses the correct PRG outputs but a malicious

party may use arbitrary strings. Let P̂RGi denote the correct PRG outputs
corresponding to Labelsi. Sim

mal
mpc works as follows.

1. Simmal
mpc begins by corrupting the parties in set I.

2. Next, Simmal
mpc runs Simips for functionality FGram that would begin by ex-

tracting the inputs xI = {xi}i∈I and database DI = {Di}i∈I of the corrupt
parties as well as the collection of labels LabelsI , PRG values PRGI , wire
masks λI and ORAM randomness share rI .

23 Since we are in the malicious setting, some honest parties may output ⊥. This would
be captured by the ideal world adversary described later.

27

3. Simmal
mpc queries trusted functionality for program P on input (xI , DI) and

receives output y.

4. Simmal
mpc runs a simulator GramSim′bmr on (1κ, 1t, 1|D|, (xI , DI , LabelsI ,PRGI), y)

to obtain the simulated garbled RAM. Let us denote it by (D̃, P̃ , x̃). Here,
GramSim′bmr denotes the stronger version24 of GramSimbmr that uses PRGI
instead of P̂RGI . We describe this simulator formally in full version.

5. Simmal
mpc gives (D̃, P̃ , x̃) to Simips as the output of the secure computation

protocol of ΠFGram

ips . Simips will now simulate the view of the adversary in the

protocol ΠFGram

ips .

6. Simmal
mpc computes the set J ⊆ [n]\I of honest parties who receive the output.

Details on how to do this are described below. Simmal
mpc will now send J to

the trusted functionality.

Computing the set J of honest parties who receive the output in
ideal world. Simmal

mpc runs GramSimbmr((1
κ, 1t, 1|D|, (xI , DI , LabelsI), y) to com-

pute the honest garbled RAM (D̂, P̂ , x̂) and executes it. This defines the set of
relevant rows as the ones that need to be decrypted in any gate that is executed
for any garbled circuit. Note that an honest party aborts iff decryption of at
least one of the relevant row fails. Moreover, decryption fails for party Qj if the
jth part of the decrypted label matches neither the party’s label 0 nor label 1.

For simplicity, consider one such relevant row that is used during execution.
W.l.o.g. it is enough to consider the xor of PRG values input by the adversary
on behalf of all corrupt parties. For this row, let p̂rg = â1 ◦ . . .◦ ân define the xor
of correct PRG values from the adversary and prg = a1 ◦ . . . ◦ an denote the xor
of PRG values used by the adversary. Here, intuitively, âj or aj defines the part
of PRG value used to mask the part of the label contributed by party Qj . See
Section 5.1 for details of each gate garbling. The index j ∈ [n] \ I belongs to set
J iff âj = aj for all relevant rows. That is, only then the honest party Qj is able
to decrypt all the relevant rows correctly. Note that since honest party chooses
its labels as outputs of a PRF, the encryption of label 0 cannot be decrypted
as label 1. This happens only when âj ⊕ aj = kw

0 (j)⊕ kw
1 (j), which happens with

negligible probability in κ.

For a formal proof of indistinguishability of views of real and ideal worlds,
refer to the full version of the paper.

References

1. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: 28th ACM STOC. pp. 479–488. ACM Press (May 1996)

24 Recall that PRG outputs are only used to mask the keys of the output wire (see
gate garbled technique in Section 5.1). This simulator uses the PRG values provided
by the adversary instead of correct PRG outputs. This change can be described by
a simple deterministic transformation on output of GramSimbmr.

28

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC. pp. 503–513. ACM Press (May 1990)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12. pp. 784–796. ACM Press (Oct
2012)

4. Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their ap-
plications. Cryptology ePrint Archive, Report 2014/771 (2014), http://eprint.
iacr.org/2014/771

5. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC. pp. 103–112 (1988)

6. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and RAM programs. Cryptology ePrint Archive, Report
2014/769 (2014), http://eprint.iacr.org/2014/769

7. Cook, S.A., Reckhow, R.A.: Time bounded random access machines. J. Comput.
Syst. Sci. 7(4), 354–375 (1973)

8. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
under general assumptions. SIAM Journal of Computing 29(1), 1–28 (1999)

9. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (May 2013)

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013)

11. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: 56th Annual IEEE
Symposium on Foundations of Computer Science (2015)

12. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC. pp. 449–458. ACM Press
(Jun 2015)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press (May / Jun 2009)

14. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (May 2014)

15. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. In: 55th FOCS. pp. 404–413. IEEE Computer Society Press (Oct 2014)

16. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: Aho, A. (ed.) 19th ACM STOC. pp. 182–194. ACM Press (May 1987)

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987)

18. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

19. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (Aug
2013)

20. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: CCS (2012)

21. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: A black-box approach. In: 53rd FOCS. pp. 51–60. IEEE Computer So-
ciety Press (Oct 2012)

29

http://eprint.iacr.org/2014/771
http://eprint.iacr.org/2014/771
http://eprint.iacr.org/2014/769

22. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation
against covert adversaries. In: EUROCRYPT. pp. 289–306 (2008)

23. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero
knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC. pp. 515–524. ACM Press
(May / Jun 2014)

24. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for np.
In: Proceedings of Eurocrypt 2006, volume 4004 of LNCS. pp. 339–358. Springer
(2006)

25. Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation
in the RAM model. In: TCC (2016-B)

26. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC. pp. 44–61. ACM Press (May 1989)

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way
permutations. In: Goldwasser, S. (ed.) CRYPTO’88. LNCS, vol. 403, pp. 8–26.
Springer, Heidelberg (Aug 1990)

28. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (Aug 2003)

29. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Kleinberg, J.M. (ed.) 38th ACM STOC. pp. 99–108. ACM
Press (May 2006)

30. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (Aug 2008)

31. Lin, H., Pass, R.: Succinct garbling schemes and applications. Cryptology ePrint
Archive, Report 2014/766 (2014), http://eprint.iacr.org/2014/766

32. Lu, S., Ostrovsky, R.: How to garble RAM programs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (May 2013)

33. Miao, P.: Cut-and-choose for garbled RAM. Personal Communication (2016)
34. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,

O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (Mar 2009)
35. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: 22nd ACM STOC.

pp. 514–523. ACM Press (May 1990)
36. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: 29th

ACM STOC. pp. 294–303. ACM Press (May 1997)
37. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way

functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (Mar 2009)

38. Pippenger, N., Fischer, M.J.: Relations among complexity measures. J. ACM 26(2),
361–381 (1979)

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005)

40. Wee, H.: Black-box, round-efficient secure computation via non-malleability am-
plification. In: 51st FOCS. pp. 531–540. IEEE Computer Society Press (Oct 2010)

41. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS. pp. 160–164. IEEE Computer Society Press (Nov 1982)

30

http://eprint.iacr.org/2014/766

	Secure Multiparty RAM Computation in Constant Rounds,

