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Abstract. Attribute based signature schemes (ABS) constitute impor-
tant and powerful primitives when it comes to protecting the privacy
of the user’s identity and signing information. More specifically, ABS
schemes provide the advantage of anonymously signing a message once a
given policy is satisfied. As opposed to other related privacy preserving
signatures, the verifier is not able to deduce from the signature, which at-
tributes have been used to satisfy the (public) signing policy. In this work
we give new and efficient constructions of lattice-based ABS signature
schemes, that are not based on the traditional approach of using span
programs or secret sharing schemes as for classical schemes. In fact, our
approach is less involved and does not require such complex subroutines.
In particular, we first construct a new (¢, B)-threshold ABS scheme that
allows to anonymously generate signatures, if ¢ out of p = | B| attributes
are covered by valid credentials. Based on this scheme, we propose a
lattice-based ABS scheme for expressive (A, V)-policies, by use of a new
credential aggregation system that is built on top of a modified vari-
ant of Boyen’s signature scheme. The signature size of the so obtained
ABS scheme is linear in the number of disjunctive terms rather than the
number of attributes.
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1 Introduction

Often we are less concerned with who signed something than with what at-
tributes (e.g. director of this company) they have. We want to be able to verify
the authenticity of signers without revealing attributes that can include their
nationality, age, job title or any other identifying/private criterium. Attribute-
Based Signatures (ABS) are a promising, versatile primitive that allows signers
to anonymously authenticate messages while enjoying fine-grained control over
identifying information, i.e. attributes. They were first introduced by Maji et al.
in a preliminary version [27]. Subsequently, other ABS schemes were proposed
by Li and Kim in [23], Shahandashti and Safavi-Naini in [33], and Li et al. in [22].
In an ABS scheme, users can only sign messages w.r.t. policies satisfied by a set
of attributes they possess. The verifiers of a given valid ABS signature are then



convinced that a signer with a set of attributes satisfying the policy in question
has signed the message but learn neither the identity of the signer nor the exact
attributes he/she used to produce the signature. Attribute-based signatures are
a generalization of many existing and widely-used anonymous digital signature
notions such as group [7] and ring [32] signatures. Attribute-based signatures
have many applications including trust negotiation, e.g. [13], attribute-based
messaging, e.g. [3], and leaking secrets.

Various features have been added to attribute-based signature schemes to
meet real-world security requirements such as decentralization [31], traceability
[12,11,16], user-controlled linkability [10], and controllable-linkability [35].

ABS schemes have different variants according to how expressive the policies
they support are. For instance, we have threshold Attribute-Based Signatures
(tABS), proposed by Shahandashti and Safavi-Naini [33], in which the signing
policy is restricted to the threshold type, i.e. a signer who has ¢ out of n attributes
can sign a message w.r.t. the policy ¢ = (¢,5), where |S| = n for some set S
of pre-specified attributes. Gagné et al. [14] gave a tABS scheme that is pairing
efficient in the sense that they decreased the number of pairing computations.
Herranz et al. [18] gave two tABS schemes with constant-size signatures. ABS
schemes supporting more expressive policies, i.e. any monotonic access struc-
ture, were first given by Maji et al. [27]; Policies here take the form of Boolean
formulas, i.e. with OR and AND gates. Okamoto and Takashima [30,31], gave
constructions of ABS supporting non-monotonic access structures, i.e. negation
of attributes is also allowed. Note that any scheme supporting monotonic access
structures could support non-monotonic access structures simply by doubling
the universe of attributes.

Other useful features were also added to ABS schemes. El Kaafarani et
al. [10] recently introduced the notion of Attribute-Based Signatures with User-
Controlled Linkability (ABS-UCL), which adds the user-controlled linkability
feature to standard ABS schemes, where users can at discretion choose to make
some of their ABS signatures, directed at a specific verifier, linkable without
sacrificing their privacy.

Decentralized Traceable ABS (DTABS) schemes [11,16] are ABS schemes
that don’t rely on a central authority and furthermore entail traceability, which
allows an opener that has a special tracing key to identify the signer of a signature
in the case of misuse/dispute.

Related Work. There has been an interesting progress recently regarding
quantum-resistant anonymous digital signatures. For instance, lattice-based group
signatures were recently proposed in [17,20,21,26,24]. The proposed schemes im-
proved upon the results presented by Gordon et al. (ASTACRYPT 2010), both
in terms of public key and signature sizes. Later on, Boyen proposed in [5] an
attribute-based functional encryption from lattices; It is in fact a key-policy
attribute-based encryption scheme. However, no equivalent attribute based sig-
nature schemes for general policies from lattices have been realized so far. In
[8], Cheng et al. proposed Policy-Based Signatures (PBS) from lattices, where a
signer is only allowed to sign messages satisfying a certain policy, but where the



signatures do not reveal the underlying policy to the verifiers, in other words,
the verifiers have no say in the policy itself. Another relevant scheme is anony-
mous attribute tokens (AAT) proposed by Camenish et al. in [6]. As they define
it, an AAT scheme can be seen as an extension of group signatures where the
issuer can assign a list of attributes to a user’s signing key. The user would
then need to selectively reveal some of these attributes to convince the verifier
that he/she has valid credentials (i.e., signing key with attributes) certifying
the claimed attribute values, but without revealing any information about the
non-revealed attributes. This clearly provides a lower level of privacy compared
to attribute-based signatures where signers don’t need to reveal anything about
their attributes except that they indeed satisfy a certain policy, i.e. verifiers can’t
deduce which attributes the signer has.

Due to recent developments to consider the transition to quantum resistant cryp-
tographic primitives induced by many well-known institutions such as the Na-
tional Institute of Standards and Technology (NIST), the PQCRYPTO project
and the National Security Agency (NSA) we construct post-quantum secure at-
tribute based signature schemes from lattice assumptions.

Contribution and Techniques. Our contributions are twofold. First, we con-
struct a novel lattice-based threshold ABS scheme for a given (¢, B)-policy ¢,
where the signature size is linear in p = | B|. The user has to prove the possession
of ¢ valid credentials for attributes in B C Attributes in order to output a valid
anonymous signature on a message m. However, the user does neither reveal its
identity nor the attributes for which he/she has valid credentials.

1. To this end, we first modify Boyen’s signature scheme that has (A, {A;}¢_,, )
as a public key, where A, A; € Zy*™ and u € Zy; In order to obtain a cre-
dential system for polynomially many attributes, the new scheme requires
the public part to be extended to (A, {A;}¢_,, Attributes = {u;},_,). The
attribute authority can now generate valid credentials for an attribute u;
and signer id by sampling zqg ; such that Aiq - zig; = u; and ||zig;|| < v
are satisfied. By doing so, the signer obtains valid credentials for a subset of
attributes.

2. Second, and in order to anonymously prove to the verifier that a given user
has indeed t valid credentials for attributes in B, we further generate fake
credentials dig ; for all other attributes in B such that Ajq - dig; = u;.

3. Third, we use a zero-knowledge system to prove the possession of ¢ out of
n attributes. Namely, we modify the statistical zero-knowledge argument of
knowledge (sZKAoK) from [26]. In particular, we prove Ajq - Xjg,; = u; for
u; € B, where x;q ; is either a real or a fake credential. This is accomplished
by use of masking terms for all credentials and further permutations in order
to scramble the positions of the credentials in relation to the attributes, such
that the verifier cannot link the credentials to the attributes when verifying
the sZKAoK. Via the Fiat-Shamir transform or the post-quantum secure
transformation due to Unruh [34], we obtain a signature of knowledge.



In the second part of this work, we turn the threshold ABS scheme into an
ABS construction for expressive (A, V)-policies. We proceed by transforming the
policy into an adequate format.

1. First we turn any (A, V)-policy v into its disjunctive normal form (DNF)
such that ¢ can be rewritten as

Yv=C1 V...V,

where C; constitutes a A\-policy for some attributes in B, i.e. we have C; =
Ul A...AU! for i € [k]. The boolean variables U] are set to 1, if the signer
possesses valid credentials for the associated attributes B; = {u;,, -+ ,u;,},
otherwise 0. Satisfying one of the disjunctive terms suffices in order to satisfy
the policy, i.e. C; =1y =1.

2. We construct from the modified Boyen signature scheme an aggregation
credential system such that we can generate valid credentials for C; if and
only if the signer possesses a valid credential for each attribute related to
C;. In fact, we prove that z¢, = 23:1 z;; is an aggregate credential for the
attributes in B;, i.e.

0 SV Amax;

t
Aig-zo, =Y i, |zc,
=1

where Bpmax denotes the set with the largest number of attributes dmax =
maxie[k] |Bz| .

3. Subsequently, we proceed as with the threshold ABS scheme, since we can
generate a valid aggregate credential for any disjunctive term C; and fake
aggregated credentials for the remaining terms. This results in a 1-out-of-k
policy. Then, we can use all the same techniques as for the threshold ABS
scheme. The signature size is only linear in the number & of disjunctions
rather than the number of attributes Zle | B;].

4. Finally, we also point out how to realize traceability, which is also an impor-
tant feature in order to allow the tracing authority to open signatures and
trace identities in case of, for example, misbehavior or misuse of credentials.
To achieve this feature, the signer has to further encrypt its identity id with
the public key of the tracing authority and provide a proof for the correct
format of the ciphertext. Furthermore, we present some concepts of how to
extend our construction to the multi-authority setting, which reflects the
situation in many real world scenarios. In fact, the threshold ABS scheme
can be extended to a setting with multiple attribute authorities in a natural
way. However, for expressive (A, V)-policies, one has to make sure that a
disjunctive term C; is always related to attributes that are managed by one
single attribute authority.



1.1 Organization

This paper is structured as follows. In Section 2, we provide the relevant back-
ground of our work. In Section 3, we present Boyen’s signature scheme and
our modification. Subsequently in Section 4, we give the security model of ABS
schemes. In Section 5, we introduce our lattice-based threshold ABS scheme.
Our zero-knowledge argument of knowledge and its features, which are applied
to the threshold ABS scheme, are presented in Section 6. In Section 7 we pro-
pose our lattice-based ABS scheme for expressive policies, which is built from
the threshold ABS scheme introduced in Section 5. Finally, we show in Section 8
how to use our ABS schemes within a setting involving multiple authorities.

2 Preliminaries

2.1 Notation

We denote vectors by lower-case bold letters e.g. x, whereas for matrices we use
upper-case bold letters e.g. A. Integers modulo ¢ are denoted by Z, and reals
by R. Furthermore, we denote by [k] the set of integers {1,...,k}.

2.2 Discrete Gaussian Distribution

We define by p : R — (0,1] the n-dimensional Gaussian function p,c(x) =
lx—cll3
e , Vx,c € R". The discrete Gaussian distribution D4, s is defined to

have support A + ¢, where ¢ € R™ and A C R" is a lattice. For x € A + ¢, it
basically assigns the probability Djje s(X) = ps(X)/ps(A+¢).

2.3 Lattices

A k-dimensional lattice A is a discrete additive subgroup of R™ containing all
integer linear combinations of k linearly independent vectors by,..., by with
k < m and m > 0. More formally, we have A = { B-x | x € Z* }. Throughout
this paper we are mostly concerned with g-ary lattices A;- (A) and A4(A), where
q = poly(n) denotes a polynomially bounded modulus and A € Zg™™ is an
arbitrary matrix. Ay (A) resp. A4(A) are defined by

€L m —
A7 (A)={x€Z™ | Ax=0 mod ¢}
AJA)={x€Zm|IFscZmst.x=A"s mod q}.
By A;(A) we denote the i-th successive minimum, which is the smallest radius

r such there exist 4 linearly independent vectors of norm r (typically lo norm)
in A. For instance, A\ (4) = m;%l ||x||, denotes the minimum distance of a lattice
X

determined by the length of its shortest nonzero vector.
Micciancio and Regev introduced the smoothing parameter in [29]:



Definition 1. For any n-dimensional lattice A and positive real € > 0, the
smoothing parameter n.(A) is the smallest real s > 0 such that py;,(A*\{0}) < €.

Lemma 1. (/15, Theorem 3.1]). Let A C R™ be a lattice with basis B, and
let € > 0. We have

ne(A) < B || -v/In(2n(1 + 1/€)) /7.
Specifically, we have 1.(A) < b+ /In(2n(1 + 1/¢))/7 for basis B=15-1 of A.

Lemma 2. ([29, Lemma 4.4]). Let A be any n-dimensional lattice. Then for
any € € (0,1), s > n.(A), and c € R™, we have
1—e€

SCA Y
prcld) € [

1] ps(A).

Lemma 3 (Lemma 2.4, [2]). For any real s > 0 and T > 0, and any x € R,
we have

Pl (%, Dzn )| 2 T s |x]] < 2eap(—m - T2).
Lemma 4 ([15], Theorem 3.1). Let A C R™ be a lattice with basis S, and
let € > 0.We have n(A) <| S || ~\/ln (2n (14 1)) /7. In particular, for any

function w(v/logn), there is a negligible e(n) for which n.(A) <|| S || -w(v/Iogn).

2.4 Lattice Problems.

For the SIS problem we consider the full-rank m-dimensional integer lattices
AF(A) = {x € Z™ | Ax =0 mod ¢} consisting of all vectors that belong to
the kernel of the matrix A. In particular, SI.9, . g is an average-case problem of
the approximate shortest vector problem on A;-(A) for > 0. Given a uniform
random matrix A € Z"*™ with m = poly(n), the problem is to find a non-zero
vector X € A;-(A) such that || x ||< 8. For ¢ > Bv/nw(y/logn) finding a solution
to this problem is at least as hard as probabilistically O(B+/n)-approximating
the Shortest Independent Vector Problem on n-dimensional lattices in the worst-
case [15,1].

3 Boyen’s Standard Model Signature Scheme

In this section we recap the construction of Boyen’s signature scheme [4] that
is proven to be secure in the standard model. Based on our modification, that
we propose in Section 3.1, we will establish an ABS scheme, where the signa-
ture size is logarithmic in the number of users. We give a description of the
underlying signature scheme instantiated with the trapdoor construction [28].
The parameters are defined as follows. Since we are signing identities later in
our constructions in order to generate credentials for specific signers, we will use
id as the message to be signed.



q = poly(n) e m = O(nk)
k = [logq] = O(logn) e m =1m+2nk
O(Dw(logn) > n(AH(G)) e ide {0,1}*

Gen(1™): Sample a matrix A € Z?*™ uniformly at random and select T <
Dk o logm)- Define A 1= [A | G — AT ] and sample uniform random
matrices Ag, A; € ZI*™ for i € [(], where G is the public gadget matrix

from [28]. Furthermore, select a uniform random syndrome u € Zj. Output
secret key sk := T and public key pk := (A, Ag,..., Ay, u).

Sign(sk,id € {0,1}¢): Define Ay = [A | Zle id; - A; |. Subsequently, sample a
signature z <= D1 (a,),s satisfying Ajq-z = umod g by use of the trapdoor
T. Output z as the signature.

Verify(pk,id € {0,1}%,z): If Ajy-z = umod ¢q and ||z| < s\/m are satisfied,
output 1, else 0.

The scheme has been proven to be secure in the standard model as long as
SIS,,.m.5 is hard to solve for B = O(£(nk)3/?) - w(v/Togn)?.

3.1 Modification of Boyen’s Signature Scheme

In our construction, we let the attribute authority apply a variant of Boyen’s
signature scheme from lattice assumptions. It is closely related to the pairing-
based signature scheme of Waters [36]. However, for our anonymous protocol
we hide some public parts of the signature and prove in zero-knowledge the
possession of valid signatures. To this end, the identities of the users are encoded
as messages and both the identity and signatures represent the secret credentials
of a user. In order to allow for various attributes, we modify Boyen’s signature
scheme in such a way that we extend the number p = poly(n) of publicly available
syndromes.

Gen(1™): Sample a matrix A € Zp>*™ uniformly at random and select T <
Dyimxnk o(yTogm)- Define A 1= [A | G — AT ] and sample uniform random
matrices A,; € Z;‘X"k for ¢ € [¢]. Furthermore, select a set of uniform random
syndromes uy,...,u, € Zg. Output secret key sk := T and public key
pk:= (A, Ay, ..., Ay, Attributes = {u;}}_,).

Sign(sk,id € {0,1}*,u € Attributes): Define Ayy = [A | Zle id; - A; ]. Subse-
quently, sample a signature z <> D11 (a,),s satisfying Ai4 -z = umod g by
use of the trapdoor T. Output z as the signature.

Verify(pk,id € {0,1}¢,u € Attributes,z): If A -z = umod ¢ and ||z|| < sy/m
are satisfied, output 1, else 0.

By a straightforward proof, the modified scheme is shown to be still secure
in the standard model as long as SIS,, ,,, 5 is hard to solve for 3 = O(¢(nk)>/?) -

w(vlogn)®.



Theorem 1 (Adapted [28]). There exists a PPT oracle algorithm (a reduc-
tion) S attacking the problem for large enough B = O(£(nk)3/?) - w(\/Togn)?
such that, for any adversary F mounting an SU-CMA attack (strongly unforge-
able under chosen message attacks) on the signature scheme BS* above with p
syndromes and making at most Q) queries,

Advss, 4 (

%) < %Advééf;c“f“(f)/(z(e ~1)Q +2)  negl(n)

Proof. The proof of this theorem is straightforward strictly following the proof
steps of [28]. The only difference is that the adversary is now given the choice
to provide a forgery for any of the u € Attributes. So the advantage of the
adversary is higher by a factor of poly(n), which is still negligible. In particular,
the reduction § obtains m + nk + p uniform random vectors in Zy as input and

parses them as a matrix A = [A | B € Z2™ %) and p syndromes . . ., w,.

The reduction will then use the adversary F to find z € Z™ with |jz|| < 5 —1
such that Az = u; mod g for any i € [p],ie. [A|uw|...|u,]: —zei =0 mod g,
where e; € ZP is the i-the unit vector with 1 at position ¢ and zero elsewhere. Or
S will use F to generate z € Z™\{0} such that [A |u; |...|u, ] LZ)] =

All other proof steps of [28] essentially remain the same. a

0 mod gq.

4 Definition and Security Model

In this section, we define the syntax and security of Attribute-Based Signatures.

4.1 Syntax of ABS
An ABS scheme consists of the following algorithms [27]:

« Setup(1*): On input a security parameter ), it returns public parameters pp.

» AASetup(pp, aid): It is run by attribute authority AA,i4 to generate its pub-
lic/secret key pair (vkaa, skaa). The authority publishes vkaa and keeps skaa
secret.

+ AttKeyGen(pp,id, at,skaa): It is run by attribute authority AA who manages
attribute at, it gives the user id the secret key skiq at-

« Sign(pp, m, 1, skig, 4): It takes the message m, the policy 1, and the signer’s
secret key skig 4 and outputs L if ¢(A) = 0, otherwise, it returns a signature
.

 Verify(pp, o, %, {vkaa, }i,m): It takes a signature o, a message m, the sign-

ing policy ¥ and the public keys of attribute authorities involved in 1, i.e.

{vkaa, }:. It returns 1 if o is a valid signature on the message m w.r.t. the

signing policy ¥ and 0 otherwise.



4.2 Security Requirements

Besides correctness, the security of an ABS scheme requires:

Unforgeability. This requires that users cannot output signatures on messages
w.r.t a signing policy not satisfied by their set of attributes, even if they pool
their attributes together, which ensures resistance against collusion.

Definition 2 (Unforgeability). An ABS scheme is unforgeable if for all se-
curity parameters A € N, for all PPT adversaries the advantage in winning the
following game is negligible:

Setup: The challenger runs Setup and gives pp to the adversary.

Play: Throughout the game the adversary can ask for attribute authorities to be
created and ask for their secret keys. He can also ask for honest users to be
created and ask for their personal secret keys. He can also ask for keys for
attributes for users and signatures on tuples (m,1) of his choice on behalf
of honest users.

Output: The adversary outputs (o*, m*,¢*)

We say that the adversary wins the game if o* is a valid signature on m* w.r.t.
*, where (m*,1*) was not queried to the signing oracle, and there exists no
subset of attributes A* whose keys have been revealed to the adversary or managed
by corrupt attribute authorities s.t. P(A*) = 1.

Anonymity. This requires that a signature reveals neither the identity of the
signer nor the attributes used in the signing engine.

Definition 3 (Anonymity). An ABS scheme is anonymous if for all security
parameters A € N, for all PPT adversaries the advantage in winning the follow-
ing game is negligible:

Setup: The challenger runs Setup and gives pp to the adversary.

Phase I: The adversary can fully control all attribute authorities. It can also
ask for the secret keys of signers of his choice; those signers will be referred
to as corrupt users. Also, the adversary can ask for the secret key of any
attribute and signatures on tuples (m, ) of his choice on behalf of honest
USers.

Challenge: The adversary outputs (m,idg, Ao, id1, A1, ) where ¥(A;) =1 for
i = 0,1. We require that both idy and id; are honest users. The adversary
gets back a signature oy produced using (idy, Ap) for b+ {0,1}.

Phase II: Same as in phase I with the additional condition that the adversary
cannot corrupt any of idg or idy.

Output: The adversary outputs its guess b* and wins if b* = b.

More formally, we define the advantage of an adversary F in winning the anonymity
game as

AdVE s (N) = | Prlb” = ] - 1/2]



5 Threshold Attribute-based Signatures

In this section, we will present a new threshold ABS scheme from lattice assump-
tions that is built on top of the signature scheme introduced in Section 3.1. It
turns out that this construction can efficiently be turned into an attribute based
signature scheme. In particular, we let the public part u of (Ag,..., Ay, u) take
over the role of the public attributes. The attribute authority generates arbi-
trary many uniform random elements u;, which together represent all available
attributes, such that a particular user id is assigned a number of attributes wu;
if he possesses valid signatures z; on those attributes u;, i.e. Ajq-2z; = u; mod q
and ||z;]] < . Thus, the public key and attributes are given by the tuple
(Ao, ..., Ay, Attributes = {u; }*_,).

5.1 Construction

Setup (1) : The public parameters are set to n and g and the discrete Gaussian
parameter s.

AASetup(pp, aid) : The attribute authority generates public random matrices
vkaa == {A,Ag,..., Ay € Zy*™} as the public key and the associated trap-
door skaa := T according to the modified Boyen’s signature scheme in Sec-
tion 3.1, where 2¢ denotes the number of users. Furthermore he generates a
set of attributes

Attributes = {uy,...,up},

where u; € ZZ]L is uniform random. Each attribute at; is associated to a uni-
form random element w;, for instance via a public list of tuples
Qli] = (at;, w).

AttKeyGen(pp,id, B C Attributes, skaa) : A certain user represented as a bit
string id € {0,1}* is assigned a set of attributes

skia = {(Zid,jr> Wjr)s - - (Zid g, W5,) }
by the attribute authority such that
Aig - Zig,j, = uj, mod ¢, [|zia;, || <~

is satisfied for u; € B.

Sign+(pp,m, 1, skig): On input the message m, a policy ¥ and the secret key,
the signer generates a signature of knowledge

IT = SPoK(public := {m, Attributes, A}, witness := {sk;q} :
3 B C skig s.th. (B) = 1)

Output signature X = (m, IT).

10



Verify+(pp, X, ¥, vkaa, Attributes): On input the policy, the list of attributes, the
public verification matrices vkap and an ABS signature X', which is parsed
as X' = (m, II), the verifier returns 1 if IT = SPoK is a valid proof, otherwise
he outputs 0.

We note that a user cannot generate signatures on an attribute unless he can
solve SIS instances. And different signers cannot collude in order to generate a
signature on an attribute due to differing public keys A;y. This directly follows
from the unforgeability of the underlying signature scheme.

At a high level view of our threshold ABS scheme and for a given policy
a, with A C Attributes, a user id satisfying this policy such that ¢4 ,(skig) = 1
utilizes ¢ signatures for attributes in B C A and generates |A| — t ”dummy”
signatures on the remaining ones in A\ B. In the non-interactive zero-knowledge
argument of knowledge, we hide the relationship between the signatures and the
attributes. This is done by use of different permutations shuffling the positions,
when constructing the commitments, such that the verifier cannot link any sig-
nature to a particular attribute. He will only be able to observe the sizes and
that ¢ out of the signatures are valid.

We now present a description of the SPoK used in our construction. More
specifically, we modify the Stern-like statistical zero-knowledge argument system
that has been applied in [26] for group signature schemes. Following this the
soundness property is guaranteed for computationally bounded cheating provers
and the zero-knowledge property is satisfied even for unbounded cheating ver-
ifiers. We realize the statistical zero-knowledge argument system by use of the
statistical hiding commitment scheme of Kawachi et al. [19], where the binding
property (computational) is based on the worst-case hardness of SIVPO(H).

The sZKAoK construction from [26] is designed to prove the knowledge of
a message signature pair (id,z) € {0,1}* x Z?™ for Boyen’s signature scheme
such that ||z|| ., < v and Ajq -z = umod ¢. The public key is given by vkaa :=
{A, A, ..., Ag) € ZP*™}, where Ajg = [A[Ag+Y;_, id;A;]. To have a unique

public key for all users the public matrix A = [A|Ag]...|A/] € Z;X@H)m has
been introduced such that

A;d-z:A-fid(z)Eumodq
-
fa(z) = fu (z(n,z@)) — (z<1>,z<2>,id1 ~z(2),...,idg~z(2)> c 7,2+0m

Now, the goal is to prove in zero-knowledge that A - f(z,id) = umod g,
Ifia(z)]] <~ and fiq(z) is of the form as described above, where the entries are
either set to zero or z(?) according to the bit positions of id.

e To this end, the identifier has been extended to a bit vector id* = (idy, . .., idgy) €
B2y having Hamming weight ¢ for every user. Permutations are applied to
finally scramble the real structure of id* such that the verifier still knows
that a valid identity is concealed due to the constant Hamming weight. But
he cannot correctly guess which identity has been scrambled.

11



e Proving that | fia(z)|| < ~ is accomplished by use of the Decomposition-
Extension Technique introduced in [25]. In particular, the signature parts
z(1) 2z are split into k = [log~v] + 1 vectors zgl),zl@) eZ™ 1<i<kof

similar shape with entries in {—1,0, 1} such that

k
2= % (z.5") for
i=1

M =1[v/2],v = f(v—iw)/ﬂm =1, 1<i<k.
j=0

The vectors zgl), 252) are subsequently extended to vectors 251), 252) € Bam

such that each vector contains exactly m entries of each of {—1,0,1}. Sub-
sequently, we have

k
At - (Z% * fig~ (21(1)’22(_2))> = A - fq(z) = umod g for
i=1

A = [A|0 € Z7 2™ Ag|0 € ZM™| . |Ay|0 € Z7*3™] € Zn*(2F03m

Similar to the case of id*, where permutations are applied to scramble the
structure, we use permutations to hide the structure of z; as well.

Using these tools we show how to scramble and mask the different secret vectors.

e Scrambling: All secret vectors (z,id) are extended into vectors either with
the same Hamming weight or same number of entries from each of {—1,0,1}.
By use of permutations in a Stern-like fashion the real structure is concealed
in such a way that without the knowledge of the permutations each identity
could have been the real signer and each vector in Bs,,, could have been the
preimage of the permuteted vectors. We now give an overview of how to
apply the permutations. Let m, ¢ € Sg,,, and 7 € Soy, where 7(id*) represents
a permutation on the bits of the extended identity id*. Furthermore, define
the permutation

P7T,¢,T(y) = (ﬂ—(x)a ¢(y0)v QS(YT(l))a R ¢(y7(2£)))u
which reorders the blocks y; € Z3™ for 1 < i < 2¢ and shuffles each
block with either ¢ or 7. In order to convince the verifier that fig«(Z;) is
related to id* for z; = (2\",7%), the verifier checks for all 1 < j < k
that y/ = Py .(fia=(Z;)) is a valid vector for v = 7(id*), i.e. we obtain
y? = (x7,¥0,01 - ¥hs -+, V20 ¥)-
e Masking: In order to mask the signature parts fiq(2;) for 1 < j < k the signer
((12+2Z)3m such that the verifier

can check the relation Aqy - (Zle vi - fid(Z;)) = umod g via

k k
Aext . (Z Yi - fid (iz) + IJ) —u= Aext : <Z Yi - r(z)> .
=1 =1

samples uniform random elements r/ <>€ Z
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The prover ensures, when building the commitments and responses for the
sNIZKoA proof, that the structure of the secret key material is concealed either
by the scrambling or hiding techniques. This prevents the verifier from learning
sensible information out of the proof.

5.2 Ingredients of our Threshold ABS scheme

In the following section we show how to extend the previous construction in order
to realize a threshold ABS scheme from lattice assumptions. More precisely, we
introduce further permutations and ”dummies” to hide the attributes, for which
the user possesses valid signatures. Based on the basic scheme, we use 2 further
techniques in order to achieve anonymity of the attributes.

e Generation of Fake Credentials: Suppose the user id possesses valid cre-
dentials for the attributes C' = {u;,,...,u;,} and the policy is given by
Y = {t out of B C Attributes,t € NA (B = {u;,,...,u;,})}, then the user
defines two sets A1 = BN C and Ay = B\ A;. Furthermore, assume that
|A1| =t and hence |As| = p —t.

1. Real Credentials: For A; the user applies the associated secret creden-
tials from skig and generates using the Decomposition-Extension tech-
nique ¢ sets of vectors {z] € Bz, }¥_, for i € [t] such that

A - ZVJ fiar = A fulzi) =w € Ay, ielt].

For each set of vectors, we generate masking terms {r/}%_, i € [t] as

described above, such that the verifier can check

Jj=b

Aoy - Z’YJ (I‘i + fid*(if)) —u; = At - Z'y] rj for u; € A;

2. Fake Credentials: For the remaining attributes in A, the user generates
P — t uniform random sets of dummy variables {d] € Zf%)?’m}f;f such

that

Ay Z*yj 7]l =ued t<i<n

Similar to the case with real credentials, the signer samples {r for

t <1 < n such that

Aot - Z’y] (rngdg) —u; = A - nyj rj for u; € A,.

Jj=1

13



e Scrambling: We apply permutations Py, 4. - (-) to all sets of vectors. We show
in Section 6 how to reduce the sNIZAoK related cost of communication. In
particular, all the permutations are completely revealed when the challenge
is CH = 2,3. Via a large enough seed, the verifier can recover the respective
permutations.

In our construction we require one further permutations £ € S,,, which has
the goal to scramble the positions of the attributes within the commitments.
This prevents the verifier from learning anything about the target attributes
in Ay, when viewing the set of vectors { Pr, 4. - (fia(2])) ?:1 for i € [t] with
small entries in the response part of the signature. This is possible, since he
cannot link these vectors with the attributes. For the sake of illustration, we
give a very rough sketch of the main changes within the commitments ignor-

ing all other parts. Let r; = (Z?:l i - rz) Furthermore, denote by P;(-)

some permutation and denote the real/fake credentials by xg = fia* (ZZ) for
i€ [t] and x! = dJ for t < i < n. Then, the commitments c; are of the fol-
lowing form, where COM denotes a statistically hiding and computationally
binding commitment scheme.

c1 =COM(... [Aext " T1,- -, Aext - Tpl, &, -..)
ex = COM((E (e s -+ (o PN )

c3 = COM({P; (x 1y +rl)Yicrs o s APk Ly +ri) ) Yt )

By use of the additional permutation £, the verifier is prevented from learn-
ing, for which attributes the user possesses real credentials. Intuitively, this
follows from the fact that when CH = 1, the prover has to build a response
such that the verifier can check ¢; and c3. Only in this case, the prover
reveals small elements, i.e. he provides permuted set of vectors

{{P( 5(1)) Jj= 1’{P( 5(1)) g=1s--" {P( 5(1)) j= lv{P( 5(1))}7 1}

where the verifier sees permuted vectors XE( 1 of small elements and neither
learns the permutation £ itself nor the relationship to the attributes.

Ezample 1. Suppose we have 5 attributes Attributes = {uy,...,us} and user
id has 2 real credentials z; and zs3. Suppose the policy is given by @ =
{2 out of 5 attributes}. For the sZKAoK the prover generates a uniform
random permutation such as £ = ( 3 5 1 4 2), which leads to the following
response for CH = 1:

{{f?’ﬂi?’)}fzh{fwxfyh 17{r17X1}g 17{Fi7)_(31 j= 17{r27x2}] 1}

where f{ denote the permuted and processed masking terms and )T:g the
scrambled fake/real credentials, out of which 2 contain small elements.

14



In case of CH = 2,3 the verifier indeed obtains all permutations but he

only views random vectors with no relationship to the real credentials, i.e.
: : J k J J k

he either obtains {P;(rg ) }j=y or {Pj(r{,) +x{;)}j=1-

A full description of the protocol is given below in Section 6. In the following
section we prove the security of the scheme.

5.3 Security Proofs

Theorem 2 (Unforgeability). If the non-interactive zero-knowledge (NIZK)
system has special soundness and the modified Boyen’s signature scheme is un-
forgeable, then our threshold ABS scheme is unforgeable in the random oracle
model.

Proof. We show that if an adversary C against the unforgeability of the ABS
exists, then we can construct an adversary JF; against the soundness of the
NIZK system and and adversary JF» against the unforgeability property of the
modified Boyen’s signature scheme (MBSS) for which we have:

nfor n nfor
AdVIAJBs,cg(/\) < AdVSKE (A) + AdVII\;IBSS,g.Fg(A)

First, by the soundness of the NIZK system, the adversary has negligible
probability to successfully fake proofs for false statements. Second, we will show
how to reduce the unforgeability of our ABS scheme to the unforgeability of the
modifed Boyen scheme. The adversary F» will first get the verification key of the
modified Boyen signature scheme vk = (A, A, ..., Ay, {u;}_,) from its game
and have access to a signing oracle to obtain signature’s on identities/attributes
of his choice. It then forwards pp = {vk,H} to C , where H is a hash function
that is modeled as a random oracle.

The adversary F» can answer all key generation queries by simply forwarding
them to its Sign oracle. When asked for signing queries, it can simulate the
NIZK proofs and forward them to C. Eventually, C outputs his forgery; by the
extractability property of the NIZK, the adversary JF» can extract the witness
which consists of a set of {z;};, where at least one of these signatures was not
obtained from the signing oracle. The adversary F, then forwards this signature
as its forgery to its game. a

Theorem 3 (Anonymity). If the NIZK system has statistical zero-knowledge,
then our threshold ABS scheme is anonymous in the random oracle model.

Proof. We will show that the adversary can’t distinguish between the following
two games but with negligible probability.

Game 1. In this game, the challenger sets up everything honestly, i.e. he gener-
ates the (vk, sk) of the modified Boyen scheme and publishes vk. Therefore, he can
answer all the key generation and signing queries sent by the adversary. When
he receives the challenge query with honest identities (idg, id1, m, Ao, A1, ), he
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chooses the bit b + {0,1} at random, produces an ABS signature o, and for-
wards it to the adversary.

Game 2. In this game, the challenger does exactly the same things except that
when asked to respond to the challenge query, he simulated a proof that doesn’t
involve a witness in it, and therefore is independent of the bit b.

It is easy to see that, by the statistical zero-knowledge property of the NIZK
system, these two games are indistinguishable and therefore our ABS scheme is
anonymous. O

6 Zero-Knowledge Argument of Knowledge

We now give a full description of the sZKAoK proof system based on the tech-
niques introduced in Section 5. We note that the protocol can be made non-
interactive via the Fiat-Shamir heuristic, where the challenge is computed as
{CH;}Y—y = H(m,{CMT};};_1,pp,vkaa). In order to obtain a post-quantum
secure non-interactive protocol we can use the transformation of Unruh [34],
which is secure in the quantum random oracle model. Though there exist other
approaches [9] to transform some protocols with oblivious commitments into a
post-quantum secure setting, the transformation due to Unruh is universal and
can be applied to any sigma protocol that entails the standard properties hon-
est verifier zero-knowledge and special soundness. For the sake of simplicity, we
mainly consider the Fiat-Shamir transform throughout this work in order to il-
lustrate how our constructions work.

Thus, let & = |logy| + 1 and n the number of attributes in the policy 1. Fur-
thermore, denote by x] = fig«(z]) for 1 < i < ¢ the decomposition of the real
credentials for attributes in A; and by xg = d{ for t < i < p the decomposition
of the fake credentials for attributes in A;. We modify the sZAoK of [26]. As a
commitment scheme, we can use the one proposed by Kawachi et al. [19].

Commitments
o Generate masking terms {r{ — Z,(]2€+2)3m ;?:1 for i € [p], j € [k] and
g < de
e Sample permutations 7 <= Sop, {¢; ng}ﬁ-’fl, {mj + ng}?:kl (for each
attribute k permutations), £ <= S,

The prover P generates commitments CMT = (c1,ca,c3) and sends them to
the verifier V.

® C1= COM([ At - (Z?:1 ’er{)a sy A (25:1 ’er:{?)L 7, {ﬂj}gjh {QSJ}?:ICD )

o co = COM({Pr; 4, (rl1)Yizts o s {Proyisionisir (Thp) Hi=1s T(id")), where
S; = (’L — l)k
¢ C3 = COM({Pﬂj,%,T(Xg(Q + r%(l))}j:la R {Pwsn+j7¢sn+jv7—(xé(p) + r%(p))}j:b

7(id* + rig=)), where s; = (1 — 1)k

16



Challenge: The verifier generates a challenge CH <« {1,2,3} uniformly at
random.

Response: The response is computed by the prover depending on the outcome
of CH. We differentiate 3 cases:

e CH =1: The response is composed as follows. For i € [p|] compute
{bj = Pﬂ'si+11¢si+]7 (ré( ))};c 1 {W = Pﬂ'si*J7¢Si+j’T(Xé(i))}§):1 fOI'
si = (i — 1)k. Furthermore, determine pig- = 7(id*) and big+ = 7(rig+).
Output

RSPl == { {bjh W{}?zlv 7{bé7 Wg}?:la Pid* bid*}'

e CH=2: For i € [n] compute {v! = x} 4+ r %_,. Determine
and vig- = id" + rjj. The response is then given by

RSP?_{T {(b]}] 1> {ﬂ-]} =1 57 {Vl}] 15 ¢ > {Vg}§=1’ Vid*}'

e CH = 3: The prover needs only to output the response

RSP3 {T {¢J}j 1 {Trj} =1 57 {rl}j 1y =+ {rgy}‘?:la I‘id"‘}~

Verification The verifier requires always to check only 2 out of 3 commitments,
as otherwise the availability of responses to all 3 commitments allows to deduce
the witness.

e CH = 1:Given RSP, check that pig~ € Bys and wf is valid with respect
to pig~ for at least ¢ set of vectors and all j € [k]. Furthermore, verify that

« ¢y =COM({b}s 1, ... {bJ}r 1, D)
e c3 = COM({wl—Fb }J 15 -~ {w’—!—b]}J 1, Did* + bid=)

e CH = 2: On input RSP; the verifier takes £, computes ¥/ = PﬂSiH}miH,T(vg(i))
for s; = (i — 1)k and verifies that
ca= COM([ ext ° (Zle Vi) =y Aee - (52 15VE) — up),
T, {7"]}3 1) {¢J} 2 6)

« c3=COM{¥{ ooy, ..., {¥i}o1, T(viar))

. CH 3: On input RSPg the verifier takes £, computes
T, = Pr, 6. ,r(T £(0) ) for s; = (i — 1)k and verifies that
¢ CL = COM([ ext * (Z? 1 ’er{)v cee ,Aext . (Z;::l ’er{))}v

T, {ﬂ—J}] 17 {¢J 1a £)
e cy= COM({I‘1 Tty e s {F{,}f:h 7(ria+))
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Reducing the Communication Costs. We observe that the communication
costs can be reduced in terms of permutations. In the sZKAoK the prover has to
provide the set of permutations, whenever the commitment c; is being verified.
As opposed to revealing the permutations themselves or including them, when
computing the commitment c;, we reveal the underlying randomness instead,
i.e. we generate the set of permutations by use of a random function F(-) such
as a pseudo random number generator taking as input a uniform random string
w € {0,1}* of sufficient entropy. All permutations can thus deterministically be
deduced from p. As a result, we can replace all permutations in ¢; by p. The
prover requires only to reveal u, if required.

F N3 x {0,1}* = Sop x S, x S5, X Sp X S34
F(na k7 Ea ,u) = (Ta {(bj};;:klv {Wj}é?jl}a 5)

6.1 Features of Statistical Zero-Knowledge Arguments of
Knowledge

In this section, we show how to extend the sZKAoK from [26] in order to cover the
new functionality. In particular, we prove that our construction still maintains
the desired properties of statistical zero-knowledge (even for the position of the
real credentials) and special soundness. Thus let COM be a statistically hiding
and computationally binding commitment scheme. In the next sections we will
step by step prove that our construction is a sZKAoK for the language

L(n, k,£,m,v,p,t) = {public := {A, Ag,..., Ap € Zy*™;uy,. .., up},
witness := {id € {0,1}",2,,,...,2;, € Z*"}:
4
(lzill o <v A [A] Ao—i-Zidej |- z; =u; mod ¢
j=1
fori e {j1,...,5: )}
We mainly follow the proof techniques of Stern-type protocols.

Theorem 4. For a a statistically hiding and computationally binding commit-
ment scheme COM, the protocol given in Section 6 is a SZKAoK for the language
L(n,k,d, £,m,~,B,t), where the execution of each round has perfect complete-
ness, soundness error 2/3, argument of knowledge property and communication
cost O(pfmlog ) log q.

The proof of this theorem is given within the following subsections.

6.2 Communication Cost

When using the commitment scheme due to Kawachi et al. [19] the output of
COM is nlog g bits. Thus the prover sends 3 commitments at the start of the in-
teraction amounting to 3n log g bits. The challenger subsequently responds with
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a 2 bit challenge CH € {1,2,3}. Let p denote the number of attributes and
k = [log7] 4+ 1 be the number of basis elements for the interval [0,~], then the
responses composed by the prover include elements from

Masking Terms
e pk vectors from ZEJQHQ)?’M
e 1 vector from Z2*

Permutations

e 1 permutation for n elements
e 1 permutation for 2¢ elements
e 2pk permutations for (2¢ + 2)3m elements.

Thus, the overall communication cost is upper bounded by O(pfm log ) log q
bits.

6.3 Completeness

The completeness requirement ensures that an honest prover P, that possesses
valid credentials (id*,z;,,...,z;) and follows the protocol for a policy
¥ = {t out of B C Attributes}, should be able to generate a proof for given
public input (A, Ay,..., Ay ui,...,up) such that it successfully satisfies the
verification checks by V. In fact, he prepares {Zf € Bgm}§:1 fori € {j1,...,7t}
such that

k
Aot [ Y7 fiur @) | = & falz) = w,.
j=1

The same is accomplished with fake credentials {dZ € Zngr%)Sm}?;f for

i € [p\{s1,...,7¢} such that

k
Ao (D 7i-d] | = .
j=1

We now prove that P correctly computes the responses passing the verifica-
tion checks for all CH € {1, 2, 3}.

e CH =1 Since id" € By, and the set By is invariant under permutations,
we have pjg« € Bgy and wz]» is valid with respect to pig- for at least t set of
vectors and all j € [k], i.e. w/ € {~1,0,1}(3t2037™ and has zero blocks at
the zero-positions of pjg=.
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e CH = 2 The honest prover should be able to generate wg and rz such that
the following expressions are true

k k
Ae - (Z VjW{) —u; = Aex - (Z er?t)
j=1 Jj=1

6.4 Statistical Zero-Knowledge Property

The zero-knowledge property is shown as follows. In particular, we construct
a simulator § interacting with the verifier for some given public input. The
simulator outputs with probability 2/3 — negl(n) a simulated transcript that is
statistically close to an honestly generated transcript by the prover in the real
interaction. The simulator predicts the challenge to take values CH; = 2,3,
CH2 = 173 or CHg = ].,2

e Case A (CH =2,3)

« Generate xJ - Z{2T20%m

for i € [p], j € [k] such that
k .
A - (Z v;%x7) = u; mod ¢
j=1

« Generate id € de

Z((12+25)3m

« Sample uniform random r? fori € [p], j € [k] and rig = Z2*

+ Sample permutations 7 <= Sg, {¢; < ng}gfp{wj — ng}fjl (for

each attribute k permutations), £ < S,

The simulator S generates commitments CMT = (c/, ¢, c4) and sends them
to the verifier V.

eci= COM([AeXt'(Z§:1 ’er{)v"'7AeXt'(Z§:1 ’er%)]v 7 {ﬂ-j}?:l’ {¢j}§j1> )

° C,Q = COM({Pﬂ'j@jﬁ(rgu))}?:lv sty {Pﬂsn+ja¢sn+ja7'(rg(p))}";:17 T(id))a where
S; = (Z — 1)k
e cy= COM({PM@J,T(Xé(1)+ré(1))}§:17 SRR {Pﬂ'sn+jv¢sn+j7T(xé(p)+r‘2(p))}§::17

7(id + riq)), where s; = (i — 1)k

If the verifier selects
CH =1, S outputs L and aborts.
CH =2, S outputs

RSP, = {{X{+I‘{}?=17 EER {Xg\f+rg\/}?:lv id+rida T, {ﬂ'j}?jlv {d)]}f:kla 6}
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CH = 3, S outputs
_ ik Jj\k p-k p-k
RSPs = {{rl}jzla'~~v{rN}j:1’rid7 T, {"Tj}jzla {d)j}j:lv f}

e Case B (CH =1,3)

+ Generate id € By

« Sample x] <= B(oyop)3m for i € {i1,...,4},j € [k], that are valid with
respect to id, and x/ ¢ Zg%%)?’m for i € [p]\{i1,-..,it},7 € [k].

« Sample uniform random r? Z((I2+2Z)3m fori € [p],j € [k] and rig <= Z2°

+ Sample permutations 7 <= Sg, {¢; < ng}fjl,{wj — ng}fjl (for
each attribute k permutations), £ <= S,

The simulator S generates commitments CMT = (¢}, ¢}, cs) as in the pre-
vious case and sends them to the verifier V.

If the verifier selects
CH =1, S outputs

RSP, = {{Pﬂj,%ﬁ(xg(l))}?:p R {PmN+j7¢5N+17T(ré(p))}§=1a
{Pﬂjatbjf(réu))}?:lv LR {Pﬂsp+j7¢sp+j77—(ré(p))}.];:17 T(id)7 T(rid)} .

CH = 2, S outputs L and aborts.
CH = 3, S outputs

RSP3 = {{rjl'}_ly?:la ceey {ré}‘;‘;:l? Id, 7, {Trj}fzkla {(rb]}z;zkp g} .

e Case C (CH = 2,3) The main difference to the previous case is the way
¢} is generated. More precisely, S computes
A : . & . )
¢y = COM([ Aeer - (3051 (X1 +11)) =, A - (3051 7 (%) + 1)) —
-k &
up]v 7, {ﬂ-j}i'):h {¢j}§'}:1’ 5)

If the verifier selects
CH =1, § outputs RSP following Case B, CH =1.
CH = 2, § outputs RSP following Case A, CH = 2.
CH = 3, S outputs L and aborts.

Based on the statistically hiding property of COM(-) the distribution of the
commitments and challenges are statistically close to those in a real interaction.
Thus, the probability that S outputs L and aborts is 1/3 — negl(n), otherwise
he outputs valid transcripts, that are distributed statistically close to those in a
real interaction. Thus, the so constructed simulator can impersonate an honest
prover with probability 2/3 + negl(n).
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6.5 Argument of Knowledge

In the following section we will show that the protocol satisfies the special sound-
ness property for the language L(n, k, £, m,~, p,t), i.e. if there exists a prover who
is able to simultaneously provide valid responses to all 3 challenges ( i.e. CH =
1,2, 3) satisfying the same commitment CMT, then there exists a polynomial-
time witness extractor K that outputs (id, z;,,...,2;,, A, Ag, ..., Ag,uy,...,u,) €
L(n,k, 0, m,v,p,t).

The extractor K obtains {RSPj}g?:l, that satisfy CMT. In particular, he
obtains:

e RSP ={ {1, w{]}ﬁ:l, k,{bg;, w1, g, big- }.
° RSPQZ{Tv {¢] ?:13 {’”j}?:lv ga {V_jl}?:la ey {v;)}év:la vid*}-
o RSPy ={r, {6}V, {m}¥2, & {eI}os,, .. {xi}y, 1}

Since w}, = wé(i) for some 4, we can reorder vi,, bl,, wi, to v{,bl, w! by use

of the inverse £ ~!. Subsequently, we note that {Wé(i) }§=1 are valid with respect

to pig~ for at least ¢ set of vectors. It holds that pig« + rig« = 7(vig~). Thus, we

apply the inverse of P to each set of vectors, i.e. {x] = P7;1+j7¢%+j77(wf) k_ for

s; = (i—1)k and i € [p]. We deduce id* = (idy,...,ids,...,idy) = 77 (pig~) and
obtain id = (idy,...,id;).
Furthermore, we obtain {x]}

k

j=1, where at least ¢ sets have elements in B(242¢)3m

. . k. i j i j . j .
and are valid with respect to id”, i.e. x; = (Xi,l’xi,2’ idy X5 0,00, |d25~xi,2), since

g are valid with respect to pig~. Furthermore, it holds that vi = xg + rg with

X; = Z?:l ~v;x) and ||x;| < 7 for t set of vectors such that

W

k k
Aoy - (Z Vvl = = At - (Z vr]).
j=1 Jj=1

This implies Aex-X; = u; such that z; = fig*l (x;) is a valid signature for (A4, u;).

7 Attribute-based Signature Scheme with Expressive
Policies

In this section we present our attribute-based signature scheme for expressive
policies. This is accomplished by use of our threshold ABS scheme introduced in
Section 5. We furthermore require a mechanism that aggregates the signatures
of a certain user id on different attributes. Thus, we first develop an attribute
aggregation scheme and combine it with the threshold ABS scheme in order to
allow for expressive policies.

An attribute aggregation scheme allows a certain signer possessing signatures
on different attributes u; € B C Attributes to generate a single aggregate signa-

ture on all those attributes, i.e. for the policy ¥ 5 = /\u,-eB U;, where U; € {0,1}.
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This allows to hide the number of used attributes within the zero-knowledge ar-
gument. We omit a description of the key generation step as the aggregation
scheme is built upon the ABS scheme from Section 5.

Attribute Aggregation Scheme for /-Policies

o AggAttribute(skiq, B C Attributes): On input a set of valid attributes and
set of signature attribute pairs skjq, the user checks that he possesses for all
attributes u € B a valid signature. Subsequently, he generates a signature

Zp = Z z; for Yp = /\ U;,

(zj,u;)EskigA u;eB
uj €eB
where g denotes the associated conjunction policy. The value of the j-th
decision variable is U; = 1 if the user possesses a valid signature for u; € B,
else U; = 0. If the user does not possess a valid signature on an attribute in
B, he outputs L.

o AggVerify(zg, B C Attributes): On input the aggregate signature zp and
the related set of attributes B, check that

Agan= 3w lzsl < /1Bl 7.
u;eB

If satisfied output 1, else 0.

The security of the scheme is based on the fact, that it is hard for a fixed
user to generate small vectors that map to one or more attributes. We therefore
give a security model capturing this idea. We note that different users cannot
collude in order to generate valid signatures on attributes due to differing public
keys Ajq and signature parts related to Zle id; - A; are not zero. Thus, we
consider in the following experiment adversaries against a fixed identity. To this
end, we allow the adversary to receive from the attribute authority signatures on
attributes of choice. Eventually, he outputs an aggregate signature on a policy
that contains at least one attribute, for which he did not receive any signature.

Experiment: Expf‘gg (n, Attributes)
e (T,A)+ KeyGen(1")
e (2}, B* C Attributes, St) « ASig(T:),AggAttribute(-,-), AggVerify(-.-) (A | Attributes)
e [If all u; € B* were queried to Sign, return 0.
e Return 1 if AggVerify(z};, B* C Attributes) = 1, else 0.

Theorem 5. If there exists a PPT adversary that wins the game Expigg for a
subset of attributes B C Attributes, then there exists a PPT algorithm M that
solves SISy, m.s for 6 <2,/|B| -~ and |B| < |Attributes|.
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Proof. Let A € Zy*™ denote the problem instance to algorithm M. The goal of
MA is to output a solution to the SIS problem A -x = 0 mod ¢, where ||z|| < d.
Let p := |Attributes| be the number of attributes.

Setup. The algorithm M maintains a list Q[-] which is filled at the beginning
with Q[i] = (z; <= Dzzm ,u; = Az; mod ¢,0) for i € [p]. The list of at-
tributes is set to Attributes = {Azy,...,Az,}

Signing Queries. If the signing oracle is queried on some u; € Attributes, the
algorithm M looks up in the @Q-List for an entry (z,u,*) such that u; = u,
outputs z and sets (z,u, 1), else M aborts. He also aborts, if all entries have
been set to (z;,u;,1) for i € [p], because the adversary has then obtained
signatures for all attributes.

Queries to AggAttribute(:,-). If the oracle AggAttribute(-,-) has been queried

on input a subset B C Attributes and a set of tuples {(x;, uj)}‘ji‘l, the
algorithm M computes x = lei‘l x; and outputs x.

Queries to AggVerify(-,-). If the oracle AggVerify(, -) has been queried on input
a subset B C Attributes and a vector x, the algorithm M checks that indeed
B C Attributes, ||x|| < +/|B|y and Ax = leill u;, where u; € B. If satisfied,

he outputs 1, else 0.

Eventually, the adversary A outputs a valid tuple (z*, B* C Attributes) such
that AggVerify(z%., B*) = 1 and B* contains an attribute, for which .4 has not
queried the signing oracle. Let u* denote this attribute. Then, M computes
X=z"— ZUJEB z; , which is due to the high min-entropy of a discrete Gaussian
not equal to zero and hence represents a valid solution to SIS with A-x = 0 mod ¢
and ||x|| < 24/|BJy. O

This aggregation mechanism can be seen as a further property of Boyen’s
signature scheme or its modified variant. Furthermore, it allows to reduce the
communication cost, when proving to the verifier that the user possesses valid
signatures for attributes in A-policies, since the aggregate signature represents
just a single vector. In addition to that, it essentially hides the number of ag-
gregated signatures, since for the sZKAoK the upper bound can be set such that
all aggregate signatures underlying /\-policies satisfy this bound. Based on these
tools we can construct ABS schemes for arbitrary (A, V)-policies. In the following
section we present our construction that is built upon the threshold ABS scheme
instantiated with the modified variant of Boyen’s signature scheme (Section 3.1)
and its attribute aggregation property.

7.1 Construction

The generic ABS scheme for expressive policies essentially represents an in-
stance of an 1-out-of-1-threshold ABS scheme introduced in Section 5, i.e. we
expand an arbitrary (A, V)-policy % into its disjunctive normal form (DNF)
¥ =C1 V...V for A-policies C; and show via the aggregation scheme that
a user satisfies 1, if he possesses a valid aggregate signature for any of the Cj.
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In fact, we do not even need to introduce span programs as required in classical
ABS schemes. Consequently, this relieves the signer from standard techniques
such as secret sharing schemes.

Setupg(1*) : The public parameters are set to n and ¢ and the discrete Gaussian
parameter s.

AASetupg(pp, aid) : The attribute authority generates ¢ + 2 public matrices
vkaa := {A, Ay, ..., Ay € Zy*™} as the public key and the associated trap-
door skaa := T according to the modified Boyen’s signature scheme in Sec-
tion 3.1, where 2¢ denotes the number of users. Furthermore he generates a
set of attributes

Attributes = {uy,...,up},

where u; € Z;‘ is uniform random. Each attribute at; is associated to a uni-
form random element wu;, for instance via a public list of tuples
QM = (ati,ui).

AttKeyGeng(pp, id, B C Attributes, skaa) : A certain user represented as a bit
string id € {0, 1}* is assigned a set of attributes

skig = {(zid7j17uj1)? BERE) (Zid,jkvujk)}
by the attribute authority using its secret key skaa such that
Aig - Zigj, = uj, mod g, [|zigj, || <~

is satisfied for u; € B.
Signg (pp, m, 1, skig): On input the message m, a policy ¢ and the secret key,
the signer id expands ¥ into its DNF

Yv=C V...V,
where ¢¢, denotes a A-policy for i € [I[]. We have
Y=1 <<= 3C;s.th ¢, =1.

Each C is associated to a set of attributes B; C Attributes. Further, suppose
that the user possesses valid credentials for the policy C; = /\uh, B, Uy and
the associated set of attributes B;. The user generates a proof of knowledge

IT = SPoK(public := {m, Attributes, A}, witness := {sk;q} :
3 B Cskig A C* s.th. ¢¥(B) = e« (B) = 1)

Output signature X = (m, ).

Verifyg (pp, X, ¥, vkaa, Attributes) : On input the policy, the list of attributes,
the public verification matrix A and an ABS signature, which is parsed as
X = (m, II), the verifier returns 1 if IT = SPoK is a valid proof, otherwise
he outputs 0.
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7.2 Informal Description

We briefly describe, how to anonymously sign a message, in case the user owns
signatures on attributes satisfying the policy. The key generation step is exactly
the same as for the threshold ABS scheme from Section 5. However, we need to
modify the signing step in order to allow for expressive (A, V)-policies 9.

1. Expand % into its DNF form ¢ = Cy v ...V C}, where

Ci= N\ Un

uhEBj

for the associated set of attributes B; C Attributes. The boolean variables
U, € {0,1} are equal to 1, if the user possesses valid signatures on the
corresponding attributes, else 0. Suppose that the user satisfies ¥ for one
disjunctive term C*. Let B* denote the associated set of attributes.

2. Determine

dmaz = max |B1|v
i€[l]
which denotes the maximum number of attributes per set. Then, the user
defines the upper bound on the size of a valid aggregate signature such that
|ze; || € Vdmas -y for all i € [I], where v denotes an upper bound on the
size of a single signature as before. This follows from Lemma 3 for sums of
discrete Gaussians.

3. The user generates real credentials and fake credentials as for the threshold
ABS scheme. In fact, we generate an aggregate signature satisfying C* and
fake credentials for C; # C* and apply an instance of the 1-out-of-1 thresh-
old ABS scheme.

e Real Credential: For C* and B* the user retrieves the corresponding
signatures from skjy and generates

Zpx = E Zj.

u;eB*

Let k = |log(7YV/dmaz)| + 1 be the parameter as for the threshold ABS
scheme. By use of the Extension-Decomposition technique applied on
zp- we obtain one set of vectors {z};. € Bap }¥_; such that

k
Aext' Z’iju:l*(zjg*) :A'fid(ZB*)E Z u; .
=1

The user further generates masking terms {rgg* — Z,(12£+2)3m}§=1 such
that the verifier can check the following expression used in the commit-
ments once he transforms the policy into the DNF form.

26



Act - Z’YJ (I'B*‘i‘fld* ZB ) Z ;= A - Z’YJ I'B*

u;eEB*

e Fake Credentials: For the remaining disjunctive terms C; # C* the user
generates fake aggregated credentials, where B; # B* defines the set of
associated attributes. In particular, he samples uniform random vectors
{d} <=z}, such that

Ao Z’Y] fld =A. fld Z u; .

u;€B;

Analogously, the signer masks the fake credentials by uniform random
vectors {r] < 232“2)3’”}?:1 for each disjunctive term. The verifier can
check for the knowledge of the credentials

A Z% ( + fia=( ) ZUJ— ext Z'YJ r; |,

u;€B;
where 3%~ dd =d; and 8 4, ) =1y
j=17 4z = d; j=17 Ty = Tq.

The verifier validates the signature, i.e. the SPoK proof, by calling
Verifyg on the signature, policy and message. We note that the verifier first
computes all aggregated attributes @i; = Zuje B, U; associated to C; for i € [I]
and then invokes the threshold verification sub-routine Verifyt. The security of
the ABS scheme follows from the following two theorems.

Theorem 6 (Unforgeability). If the NIZK system has special soundness and
the attribute aggregation scheme is unforgeable, then our ABS scheme with ex-
pressive policies is unforgeable in the random oracle model.

Theorem 7 (Anonymity). If the NIZK system has statistical zero-knowledge,
then our ABS scheme with expressive policies is anonymous in the random oracle
model.

The proofs of these statements exactly follow the same proof steps as for
Theorem 2 and Theorem 3, since the scheme is an instance of the threshold
ABS instantiated with the attribute aggregation scheme (which is basically the
modified Boyen’s signature scheme from Section 3.1 exploiting its aggregation

property).
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7.3 Efficiency and Comparison with the ABS Threshold Scheme.

The ABS scheme with expressive policies represents an instance of the (1, B)-
threshold ABS scheme from Section 5 for B = {C4,...,C;}, where | denotes the
number of disjunctive terms in the policy v» = C1 V...V ;. In fact, the signature
size is only dependent on the number [ of disjunction terms, which is in most
cases strictly smaller than the number n of related attributes. This reduces the
communication cost, i.e. masking terms and permutations. Therefore, the ABS
scheme with expressive policies is in general more efficient than its threshold
counterpart in terms of signature size and hence also its performance. For in-
stance, if there are two disjunctive terms only, where each is composed of n/2
different conjunctions, then the signature size depends only on 2 elements rather
than the n attributes.

7.4 Traceability.

It is very straightforward to extend our constructions to allow for traceabil-
ity by a given tracing authority. In fact, it is only required to encrypt the
identity id* by use of the public key of the tracing authority. This is accom-
plished, for instance, using the same tools as in [20,21,26] applied for group
signatures. This is a standard technique to realize traceability. The statistical
zero-knowledge argument of knowledge is hence extended by an additional term
c=Pe+(0,id*)7, i.e. the prover is required to provide a proof for the language

L = { public:={A,{A; € Z’;X"‘}le;ul, coouy, P

witness := {id € {0,1}%; z;,,...,2;, € Z*™; e c 2} :
¢
(Izillo <7 A [A] Ag+ ) id;jA; |-z = u; mod g
j=1
fori € {j1,...,5: ) A(c=P-e+(0,id)" Alle]| <B) }.

8 Multi-Authority ABS Schemes

In many scenarios there exists not only one single attribute authority, but a num-
ber of different attribute authorities issuing credentials for various attributes.
This also reflects real world scenarios, where a user is interacting within dif-
ferent domains such as universities or other institutions. However, some of the
attribute authorities may be malicious or are even not aware of the other ones.
In a multi-authority ABS scheme a signature trustee is setting up the various
public parameters of the ABS scheme. This entity is not required to trust any
of the attribute authorities. Our construction can naturally be extended to the
multi-authority setting. We give a brief and informal overview of the key con-
cepts.
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e The user obtains key material skijd from attribute authority AA; with public
key vkaa; and set of attributes Attributes; for j € [k].

e For each threshold policy v, ;, related to authority j with threshold ¢; the user
can either separately generate an ABS signature for each policy or combine
them within the SPoK, where the input to the commitment scheme is split
into seperate parts for each authority.

c; = ( related to AA; || ... || related to AAy )

If there is only one threshold policy v; involving the attributes of various
authorities, then the signer can proceed exactly as in Section 5 with the
modification that the application of the public keys within the computation
of ¢; occurs in the same order as the occurrence in 1; so that the verifier is
able to check c;.

e For expressive policies 1) one can produce independent ABS signatures on each
policy or combine them into one SPoK, if the policies target each author-
ity separately. However, if the expressive policy involves the attributes of
different authorities, the user has to make sure that the DNF of 1, i.e.

Y=CiV...VC,

contains only disjunctive terms C; that target the attributes of only one
authority, for instance C7 is a conjunction of attributes from AAs. In this
case, we can directly apply the construction from Section 7, where the order
of C; and related public keys is reflected in the computation of

C = (...,A3-I‘g,...,Ak-I‘k,...)
For policies, where any of the A-policies 1, involve more than one party,

it is not immediately possible to apply one of the proposed constructions,
since they require to aggregate all the related credentials of a policy ¥¢;,.
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