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Abstract. Two main computational problems serve as security foundations of current fully
homomorphic encryption schemes: Regev’s Learning With Errors problem (LWE) and Howgrave-
Graham’s Approximate Greatest Common Divisor problem (AGCD). Our first contribution is
a reduction from LWE to AGCD. As a second contribution, we describe a new AGCD-based
fully homomorphic encryption scheme, which outperforms all prior AGCD-based proposals: its
security does not rely on the presumed hardness of the so-called Sparse Subset Sum problem,
and the bit-length of a ciphertext is only Õ(λ), where λ refers to the security parameter.
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1 Introduction

Fully homomorphic encryption has been a major focus of interest in cryptography since Gen-
try’s first proposal of a fully homomorphic encryption scheme [23, 22]. The security of Gentry’s
proposal relies on two hardness assumptions: some relatively ad-hoc problem involving lat-
tices arising in algebraic number theory is assumed intractable, as is the Sparse Subset Sum
Problem (SSSP), a variant of the subset sum problem in which the subset is constrained to
be very small. The efficiency of Gentry’s scheme was later improved [46, 47, 24], but soon two
other design approaches were developed. The interest in Gentry’s original design faded, as the
latter approaches rely on better understood hardness assumptions and lead to more efficient
instantiations.

Chronologically, the first alternative design was proposed by van Dijk, Gentry, Halevi and
Vaikuntanathan [20]. They constructed a fully homomorphic scheme whose security relies on
the hardness of SSSP as well as that of the Approximate Greatest Common Divisor problem
(AGCD). The AGCD problem, introduced by Howgrave-Graham in [29], is to recover a secret
integer p from many approximate multiples qi ·p+ri of p (see Section 2 for a formal definition).
The efficiency of the DGHV scheme has been improved in a series of works [18, 19, 30, 14, 17],
and recently adapted to devise a graded encoding scheme serving as an approximation to
cryptographic multilinear maps [16].

The other main family of fully homomorphic schemes was initiated by Brakerski and
Vaikuntanathan, in [9, 10]. They proposed two fully homomorphic schemes with similar de-
signs. One was relying on the hardness of the Learning With Errors problem (LWE) from [41,
42] while the other used the less understood Ring Learning With Errors problem from [32] to
gain on the efficiency front. Note that in both cases, the SSSP hardness assumption is not re-
quired anymore. A series of subsequent works proposed efficiency and security improvements,
as well as implementations [26, 25, 5, 6, 28, 12, 3].

The co-existence of these two main design strategies for fully homomorphic encryption is
due to the combination of circumstances. On one hand, it is not known how the underlying
hardness assumptions compare: there is no known reduction from AGCD and SSSP to LWE
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(or its ring variants), and reciprocally. On the other hand, both approaches seem to lead to
implementations whose performances are relatively comparable.

Contributions. This work contains two main results that together lead to a better under-
standing of the relationship between the AGCD-based and LWE-based fully homomorphic
encryption schemes.

Our first contribution is a reduction from LWE to a new and quite natural decision variant
of AGCD. Informally, the goal is to distinguish between random approximate multiples qip+ri
of a random p and integers uniformly chosen in an interval, with non-negligible distinguishing
advantage and non-negligible probability over the choice of p. This AGCD variant is clearly
no easier than the search variant considered in [20]. Our reduction implies that for certain
distributions for p, the ri’s and the qi’s, AGCD is no easier than LWE. It may be combined with
Regev’s quantum reduction [41, 42] from the approximate variant of the shortest independent
vectors problem (SIVPγ) to LWE. Concretely, if we assume that SIVPγ in dimension n with
γ = poly(n) is exponentially hard to solve (quantumly) with respect to n, which is compatible
with the state of the art algorithms for SIVP (see [35]), then AGCD is also exponentially hard
to solve, even for bit-sizes of p, ri, qi that are quasi-linear in n.

Our second contribution is a fully homomorphic encryption scheme with security based on
the hardness of our AGCD variant. In particular, the security does not rely on the presumed
hardness of SSSP.1 The scheme is a variant of the DGHV encryption scheme that embeds the
plaintext message in the most significant bit modulo p of an AGCD sample: a ciphertext c
corresponding to a plaintext m is of the form c = qp + bp/2em + r. Parameters may be set
so that security relies on the quantum hardness of SIVPγ in dimension n with γ = nO(logn),

while the secret key, public/evaluation key and ciphertext expansion remain bounded as Õ(λ),
Õ(λ3) and Õ(λ), where λ is such that all known attacks require time 2Ω(λ).

Compared to DGHV, we obtain improved asymptotic efficiency and security solely relying
on the hardness of LWE. The security and performance are quite similar to those of Brakerski’s
LWE-based scheme [5]. This is no coincidence, as both contributions build upon ideas from
Brakerski’s work.

Technical overview. The reduction from LWE to AGCD relies on several sub-reductions. We
use the dimension-modulus trade-off for LWE from [8] and start from 1-dimensional LWE with
an exponential modulus q. Informally, the goal is to distinguish from uniform the distribution
(a, a · s+ e) ∈ (1qZ)/Z×R/Z with a uniform, e small and s an integer. We reduce this variant
of LWE to another one where a is instead uniformly sampled in R/Z. The computational
irrelevance of the discretization parameter q is implicit in [5, 8]: we go one small step further
by simply removing it. We then reduce this one-dimensional scale-invariant variant of LWE
to the problem considered by Regev in [39] and inspired from [1]. The problem consists in
distinguishing from uniform samples of the form (k + e)/s ∈ R/Z, where k is uniformly
sampled in [0, s) and e is a small noise. A converse reduction was sketched in the appendix
of [43], and our reduction was sketched by Oded Regev in a private communication [44]. We
formalize the latter reduction. Our chain of reductions improves over the result of [39] in that
for comparable hardness assumptions our reduction allows to take a bitsize for s that is the
square root of that allowed by [39]. Finally, we scale and re-discretize samples (k+e)/s ∈ R/Z
to obtain a reduction from the latter problem to a decision variant of AGCD.

1 We still require a circular security assumption, like all known fully homomorphic encryption schemes.
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Our encryption scheme is inspired from that of [39] and the LWE-based Brakerski’s fully
homomorphic encryption scheme [5]. It is scale-invariant in the sense that it remains un-
changed if we multiply both the secret key p and the ciphertext by the same quantity. It does
not use a hidden greatest common divisor that is a square as in the Coron et al. scale invari-
ant version of the DGHV scheme [17]. Homomorphic addition comes without extra work. For
homomorphic multiplication, we adapt the dimension-reduction technique from [9], that uses
(invalid) encryptions of the bits of secret p (we assume that it is safe to publish these data,
hence making a circular-security assumption). Finally, we bound the multiplicative depth of
the decryption circuit is bounded as O(log λ) where λ refers to the security parameter. As the
parameters may be set so that our homomorphic scheme supports this multiplicative depth,
it is hence possible to bootstrap it [23], leading to a fully homomorphic encryption scheme.
This allows us to circumvent the SSSP hardness assumption made in prior variants of the
DGHV encryption scheme.

Finally, we propose a modification of our scheme in which the ciphertext bit-size is reduced.
This is achieved by truncating the least significant bits of the ciphertext, which is made
possible by the fact that the plaintext is not embedded into these. As a result, the ciphertext
size is almost as low as γ − ρ, where γ is the bit-length of the AGCD samples and ρ is the
bit-length of the AGCD noise. We remark that one can additionally use the technique of [19]
to compress the public key.

Open problems. Our results show that the DGHV fully homomorphic encryption scheme [20]
can be made to fit into the LWE landscape. The modified scheme asymptotically outper-
forms DGHV (and all subsequent variants), but its performance only matches Brakerski’s
LWE-based scheme [5]. Further, there exist recent LWE-based fully homomorphic encryption
schemes with strengthened security [28, 11, 3],2 and efficiency can be increased if one relies on
the ring variant of LWE problem.

With this state of affairs, it may be tempting to drop the AGCD approach altogether.
We prefer a more optimistic interpretation of our work. First, it gives greater confidence into
the hardness of AGCD and simplifies AGCD-based encryption. This clearer landscape could
serve as a firmer grounding for further developments. The AGCD problem can be seen as
another way of expressing LWE: it may turn out to be more convenient for cryptographic
design. Finally, the analogy does not seem to be complete: some variants of DGHV rely on a
modification of AGCD in which a noiseless multiple of the secret integer p is published [18]
(the security of these variants relies on an extra hardness assumption related to factoring).
We are not aware of a similar problem in the LWE landscape.

Our scheme is relatively slow (compared to those based on Ring LWE), but several existing
techniques could be exploited to accelerate it. For instance, it may be possible to pack more
plaintexts into a single ciphertext, similarly to [14]. It may also be possible to refine the
bootstrapping step rather than looking at decryption as a generic binary circuit. Finally, our
variant with truncated ciphertexts raises the question of taking AGCD instances with small
(γ−ρ). To thwart attacks based on exhaustive search, we should have γ−ρ ≥ λ+Ω(log λ). If
γ − ρ ≈ λ+Ω(log λ) turns out to be safe, then the ciphertext bit-sizes of our variant scheme
based on truncation can be made quite small.

Road-map. We describe our LWE to AGCD reduction in Section 2. In Section 3, we describe
our AGCD-based scheme, and we show in Section 4 how it may be extended into a fully

2 Note that it may be possible to adapt these techniques to the AGCD framework. A DGHV variant was
proposed in appendix of [28].
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homomorphic encryption scheme. Section 5 contains a modification of the scheme with smaller
ciphertexts.

Notation. We use standard Landau notations. When manipulating reals, we in fact manip-
ulate finite-precision approximations, with polynomially many bits of precision. If x is a real,
then bxe refers to the nearest integer to x, rounding upwards in case of a tie. The notation
log refers to the base-2 logarithm. We use the notation (ai)i=1,...,k or simply (ai)i for a vector
(a1, . . . , ak). Given x, p ∈ R, we let [x]p denote the unique number in (−p/2, p/2] that is con-
gruent to x modulo p. The notation is extended to vectors x ∈ Rn in the obvious way. We let T
denote the torus R/Z. For an integer q ≥ 1, we let Tq denote the set {0, 1/q, . . . , (q − 1)/q}
with addition modulo 1.

We use a ← A to denote the operation of uniformly sampling an element a from a finite
set A. When D is a distribution, the notation a ← D refers to sampling a according to
distribution D. We recall that the statistical distance between two distributions D1 and D2

with supports contained in a common measurable set is half the `1-norm of their difference.
If X is a set of finite weight, we let U(X) denote the uniform distribution over X. For

a parameter s > 0, we let Ds denote the (continuous) Gaussian distribution of parameter s,
i.e., the law over R with density function x 7→ exp(−πx2/s2)/s. We write D≤s to refer
to a Ds′ for some s′ ≤ s. If Λ ⊆ Rn is a full-rank lattice, s > 0 and c ∈ Rn, we let
DΛ,s,c denote the (discrete) Gaussian distribution with support Λ and density function x 7→
exp(−π‖x− c‖2/s2)/C with C =

∑
x∈Λ exp(−π‖x− c‖2/s2). When c = 0, we omit the last

subscript. We recall a few properties of Gaussians in Appendix A.
We say that a distribution D over Zn is (B, ε)-bounded if Prx←D[‖x‖ ≤ B]] ≥ 1 − ε.

We say that D is (B, δ, ε)-contained if Prx←D[‖x‖ ∈ [δB,B]] ≥ 1 − ε. For example, for all
ε ∈ (0, 1/2), the distribution DZn,r is (B, ε)-bounded, with B = O(r

√
n ln(n/ε)) (see [33]). If

r = Ω(
√

ln(1/ε)), then the distribution DZ,r is (B, δ, ε)-contained, with B = O(r
√

ln(1/ε))
and δ = ε/

√
ln(1/ε).

Throughout the paper, we let λ denote the security parameter: all known valid attacks
against the cryptographic scheme under scope should require 2Ω(λ) bit operations to mount.

2 Hardness of Approximate GCD

We exhibit a reduction from the Learning With Errors problem (LWE) to a variant of the
Approximate Greatest Common Divisor problem (AGCD). We first introduce the precise
problems under scope.

We will consider the following decision variant of AGCD. The corresponding search variant
(consisting in finding the unknown p) is frequent in the literature. There exists a (trivial)
reduction from the search variant to the decision variant. Other decision variants of AGCD
were considered in [19, 30, 17]. We believe that our decision variant of AGCD is more natural
as it is less application-driven.

Definition 1 (AGCD). Let p,X ≥ 1, and φ a distribution over Z (that can depend on p).
We define AAGCD

X,φ (p) as the distribution over Z obtained by sampling q ← Z ∩ [0, X/p) and
r ← φ, and returning x = q · p+ r.

Let D be a distribution over Z ∩ [0, X). AGCDX,φ(D) consists in distinguishing, given
arbitrarily many independent samples, between the uniform distribution over Z ∩ [0, X) and
the distribution AAGCD

X,φ (p) for a fixed p← D. We use the notation AGCDm
X,φ(D) to emphasize

the number of samples m used by the eventual distinguisher.
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We say that an algorithm A is an (ε1, ε2)-distinguisher for AGCDX,φ(D) if, with prob-
ability ≥ ε2 over the randomness of p ← D, its distinguishing advantage between AAGCD

X,φ (p)

and U(Z ∩ [0, X)) is ≥ ε1.3

For ρ, η, γ ≥ 1, the (ρ, η, γ)-AGCD problem is AGCD2γ ,φ(D) with D the uniform distri-
bution over η-bit prime integers and φ the uniform distribution over Z ∩ (−2ρ, 2ρ).

We will not rely on (ρ, η, γ)-AGCD in our constructions, but we recall it for comparison
convenience with prior works. First, we do not need to impose that the secret p is prime. In
fact, there is no known attack that exploits the factorization of p. Also, if the distribution D
is sufficiently well-behaved, restricting D to prime integers (e.g., by rejection sampling) would
result in a problem that is no easier, as the density of prime numbers is non-negligible. Second,
we do not know how to reduce LWE to (ρ, η, γ)-AGCD. In particular, our reduction leads to
distributions D and φ that are somewhat more cumbersome. However, from the perspective
of cryptographic constructions, they may be used in the exact same manner as their (ρ, η, γ)-
AGCD counterparts.

LWE was introduced by Regev [42]. We use the variant from [8].

Definition 2 (LWE). Let n, q ≥ 1, s ∈ Zn and φ a distribution over R. We define ALWE
q,φ (s)

as the distribution over Tnq × T obtained by sampling a ← Tnq and e ← φ, and returning
(a, 〈a, s〉+ e).

Let D be a distribution over Zn. LWEn,q,φ(D) consists in distinguishing, given arbitrarily
many independent samples, between U(Tnq × T) and ALWE

q,φ (s) for a fixed s← D.

In [42], Regev described a quantum reduction from several standard (worst-case) problems
over n-dimensional Euclidean lattices to LWEn,p,D≤α(U((Z ∩ [0, p))n)), where the modulus p
may be chosen as a polynomial in n and the parameter α may be set as poly(n)/γ with
γ referring to the approximation factor of the considered lattice problem. The reduction
assumes that α ≥ Ω(

√
n/q). Regev’s reduction was partly dequantized in [37] and [8]. Further,

a modulus-dimension trade-off was exhibited in [8]: in particular, if q = Ω(pn) and α ≤
poly(n)β, then LWE1,q,D≤α(U(Z ∩ [0, q))) is no easier than LWEn,p,D≤β (U((Z ∩ [0, p))n)).

In [4], Applebaum et al gave an LWE self-reduction from secret distribution U((Z∩[0, p))n)
to secret distribution DZn,O(αp) which reduces the distinguishing advantage from ε to Ω(ε),

if α ≥ Ω(
√

ln(n/ε)/p).
The main result of this section is the following.

Theorem 1. Let α, β ∈ (0, 1), X,B,m, q ≥ 1, and D a distribution over Z. Assume that
there exists an (ε1, ε2)-distinguisher for AGCDm

X,bD≤αe(bX/De). If D is (B, δ, ε2/2)-contained,

q ≥ Ω(
√

ln(m/ε1)B/β), X ≥ Ω(mB2/(βε1)) and β ≤ O(αδB/X), then there exists an
(Ω(ε1), Ω(ε2δβ/

√
ln(m/ε1))-distinguisher for LWEm1,q,D≤β (D).

Setting parameters in AGCD. We discuss a possible choice of secure parameters for AGCD.
Recall that there exists a (quantum) reduction from λ-dimensional lattice problems with

approximation factors λÕ(1), to LWE1,q,D≤β′ (DZ,σ), for q = 2Õ(λ), β′ = λ−Ω̃(1) and σ =

O(β′q). We can hence reasonably assume that for these parameters, the time required to

solve LWE1,q,D≤β′ (DZ,σ) is 2Ω̃(λ), even for ε1, ε2 as small as 2−Ω̃(λ).

3 We do not explicitly focus on the distinguishing run-times, as our reductions almost preserve run-times.
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We set β =
√
λβ′. As we can publicly increase the Gaussian noise of the LWE samples,

LWE1,q,D≤β (DZ,σ) is no easier than the latter variant. Now, Theorem 1 depends quite impor-
tantly on the potential smallness of samples from D. We avoid such small values by rejection
sampling. We define D as follows: Sample a fresh s ← DZ,O(σ) until s ∈ (σ/2, 2σ). As a
result, we can set B = O(σ) and δ = Ω(1). The condition on q in Theorem 1 is fulfilled. If
we set X = 2λσ2 and α = Ω(βX/σ) ≈ β2λσ, then all conditions are fulfilled, guaranteeing
exponential hardness of AGCDm

X,bD≤αe(D
?
σ), with D?σ = bX/De.

To ease comparison with prior works, we define

γ = logX, η = logX − log σ, and ρ = logα+ (log λ)/2.

The bit-size of each AGCD sample pq+r is ≈ γ, the bit-size of the AGCD secret p is ≈ η, and
the bit-size of each noise term r is bounded by ρ, with probability exponentially close to 1
(in the analysis of the primitives, we will assume that each fresh noise r has magnitude ≤ 2ρ,
hence forgetting about the unlikely event that one of the noises is bigger). With our choices
of X and α, we have: γ ≈ λ+ 2 log σ, η ≈ λ+ log σ and ρ ≈ η + log(

√
λβ).

Proof overview. The proof of Theorem 1 consists of three sub-reductions. We first show that
LWE is essentially equivalent to a variant of LWE that does not involve any discretization
parameter q. That variant, which we name scale-invariant LWE (SILWE), is implicit in [5, 8].
We then show that SILWE is essentially equivalent to the problem studied in [40] (and inspired
from [1]), which we name zero-dimensional LWE (ZDLWE). Finally, the third sub-reduction
is from ZDLWE to AGCD.

In Appendix B, we give converse reductions for each one of the three sub-reductions. This
implies that from the hardness viewpoint, AGCD and LWE are quite closely related.

2.1 Scale-invariant LWE

We consider the following LWE variant, in which the modulus q does not play a role anymore.

Definition 3 (Scale-Invariant LWE). Let n ≥ 1, s ∈ Zn and φ a distribution over R. We
define ASILWE

φ (s) as the distribution over Tn × T obtained by sampling a ← Tn and e ← φ,
and returning (a, 〈a, s〉+ e).

Let D be a distribution over Zn. SILWEn,φ(D) consists in distinguishing, given arbitrarily
many independent samples, between U(Tn × T) and ASILWE

φ (s) for a fixed s← D.

Lemma 1. Let α, β ∈ (0, 1), m,n, q,B ≥ 1 and D a distribution over Zn. Assume that
there exists an (ε1, ε2)-distinguisher for SILWEmn,D≤α(D). If D is (B, ε2/2)-bounded, q ≥
Ω(
√

ln(mn/ε1)B/β) and β ≤ O(α), then there exists an (Ω(ε1), Ω(ε2))-distinguisher for
LWEmn,q,D≤β (D).

Proof. We map each input sample (a, b) for LWEn,q,D≤β to an input sample (a′, b′) for

SILWEn,D≤α , as follows: Sample f ← Dn
r with r = Ω(

√
ln(mn/ε1)/q); set a′ = a + f

and b′ = b. We show below that, with probability ≥ 1− ε2/2 over the randomness of s← D,
this transformation maps the distributions U(Tnq × T) and ALWE

q,D≤β
(s) to distributions within

statistical distances O(ε1/m) from U(Tn × T) and ASILWE
D≤α

(s), respectively.

By Lemma 10, the distribution of f mod 1/q is within statistical distance O(ε1/m) from
U((T/q)n), and the distribution of f conditioned on (f mod 1/q) is DZn/q,r. The former
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implies that a′ is uniformly distributed over Tn. Now, we consider two cases. If b was uniformly
distributed in T independently of a, then b′ is uniformly distributed in T independently of a′.
Now, assume that b = 〈a, s〉+ e for some fixed s and e← D≤β. Then b′−〈a′, s〉 = e−〈f , s〉.
By Lemma 12, the distribution of e− 〈f , s〉 (conditioned on a′) is within statistical distance
O(ε1/m) from D≤

√
β2+‖s‖2r2 , assuming that (1/r2 + ‖s‖2/β2)−1/2 ≥ Ω(

√
ln(mn/ε1)/q). We

have ‖s‖ ≤ B with probability ≥ 1 − ε2/2 (over the randomness of s). When this is the
case, we obtain that e−〈f , s〉 (conditioned on a′) is within statistical distance O(ε1/m) from
D≤
√
β2+‖s‖2r2 (by using the condition on q and the definition of r). Finally, the assumptions

on β, B and r ensure that
√
β2 + ‖s‖2r2 ≤ α. ut

2.2 Zero-dimensional LWE

We now show that SILWE is essentially equivalent to the problem studied by Regev in [40].
The latter may be viewed as a zero-dimensional variant of LWE, as the provided samples are
from T rather than Tnq × T.

Definition 4 (Zero-Dimensional LWE). Let s ∈ Z and φ a distribution over R. We define
AZDLWE
φ (s) as the distribution over T obtained by sampling k ← Z ∩ [0, s) and e ← φ, and

returning [(k + e)/s]1.
Let D be a distribution over Z. ZDLWEφ(D) consists in distinguishing, given arbitrarily

many independent samples, between U(T) and AZDLWE
φ (s) for a fixed s← D.

The following result and its proof are derived from [44].

Lemma 2. Let α, β ∈ (0, 1), B ≥ 1 and D a distribution over Z. Assume that there exists an
(ε1, ε2)-distinguisher for ZDLWEmD≤α(D). If D is (B, δ, ε2/2)-contained and β ≤ O(α), then

there exists an (Ω(ε1), Ω(ε2δα/
√

ln(m/ε1)))-distinguisher for SILWEm1,D≤β (D).

Proof. We describe a reduction from SILWE to ZDLWE. Let r = Θ(
√

ln(m/ε1)) (chosen to
be able to use Lemma 10) and δ′ ≤ Θ(δα/

√
ln(m/ε1)). The reduction produces a guess s′ of

the SILWE secret s by sampling s′ ← Bδ′ · (Z ∩ [0, d1/δ′e)); then it maps any input sample
(a, b) for SILWE1,D≤β to an input sample y for ZDLWED≤α , by setting y = [a− b/s′]1.

This transformation maps U(T × T) to U(T). We now show that it maps ASILWE
D≤β

(s) to

a distribution that is within statistical distance O(ε1/m) from AZDLWE
D≤α

(s), with probability

Ω(ε2δ
′) over the choice of s ← D. Thanks to the assumption on D, we have that |s| ∈

[δB,B], with probability ≥ 1 − ε2/2 over the randomness of s. The success probability of
the ZDLWED≤α distinguisher conditioned on that event is ≥ ε2/2. Further, with probability
≥ Ω(δ′) over the choice of s′, we have |s′ − s| ≤ Bδ′. We now assume that |s| ∈ [δB,B],
|s′− s| ≤ Bδ′ and that the ZDLWED≤α distinguisher suceeds. This event has weight Ω(ε2δ

′).
By Lemma 10, the distribution of a is within statistical distance O(ε1/m) of the distribu-

tion obtained by sampling k ← Z∩ [0, s) and f ← Dr, and returning [(k+ f)/s]1. With these
notations, we have b = f+e mod 1 and y = k/s+f(1/s−1/s′)−e/s′ mod 1. The distribution
of sy−k is within statistical distance O(ε1/m) of D≤α′ with α′ = ((βs/s′)2+r2(1−s/s′)2)1/2.
Thanks to the properties on s and s′, we have |s/s′| ≤ O(1) and |1 − s/s′| ≤ O(δ′/δ). This
leads to α′ ≤ O(β + rδ′/δ). The condition on β and the choice of δ′ ensure that α′ ≤ α. ut
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Note that the hardness result obtained here via LWE is stronger than the one from [40].
Indeed, the present approach leads to a (quantum) reduction from standard n-dimensional
lattice problems with polynomial approximation factors to ZDLWE with an s of bitsize Õ(n),
whereas [40] leads to an s of bitsize Õ(n2). However, the latter reduction is classical rather
than quantum.

2.3 Reducing ZDLWE to AGCD

Lemma 3. Let α, β ∈ (0, 1), X,B ≥ 1 and D a distribution over Z. Assume that there
exists an (ε1, ε2)-distinguisher for AGCDm

X,bD≤αe(bX/De). If D is (B, δ, ε2/2)-contained, X ≥
Ω(mB2/(αε1)) and β ≤ O(αδB/X), then there exists an (Ω(ε1), Ω(ε2))-distinguisher for
ZDLWEmD≤β (D).

Proof. Given an input sample y for ZDLWED≤β , the reduction produces an input sample x
for AGCDDZ,≤α , as follows: Set x = [bXye]X .

If y is uniformly distributed over T, then so is x over Z ∩ [0, X). Now, assume that
y = (k + e)/s for some fixed s (sampled from D), k ← Z ∩ [0, s) and e ← D≤β. Then
x = kp+ r −∆ with p = bX/se, r = bXe/se and ∆ = bX(k + e)/se − kbX/se − r. We have
|∆| ≤ 2 + k ≤ O(B), with probability ≥ 1− ε2/2 over the choice of s← D. The distribution
of r is bDα′e for some α′ ∈ [Xβ/B,Xβ/(δB)] (where we used the fact that |s| ≥ δB, which
holds with high probability over the choice of s, by assumption on D). We observe that the
statistical distance between bDα′e and bDα′e −∆ is O(∆/α′) ≤ O(B2/(Xβ)) ≤ O(ε1/m).

It now suffices to show that the distribution of k ← Z ∩ [0, s) is statistically close to the
uniform distribution over Z∩ [0, X/p). A simple calculation shows that the statistical distance
between the uniform distributions over these two intervals is O(|X/p−s|/s). By definition of p,
we have that |ps−X| ≤ s and hence |X/(ps)− 1| ≤ 1/p. The latter is O(B/X) ≤ O(ε1/m),
thanks to the assumption on X. ut

Theorem 1 is obtained by combining Lemmas 1, 2 and 3.

3 An AGCD-based additive homomorphic encryption scheme

In this section, we propose an additive homomorphic encryption (AHE) scheme whose security
relies on the hardness of the AGCD problem. This scheme is similar to the DGHV encryption
scheme [20], but the plaintext message is embedded into the ciphertext c as the most significant
bit of c mod p for the secret key p. It may be viewed as an AGCD adaptation of Regev’s
encryption scheme from [39].

We let ρ denote a bound on the bit-length of the error, η the bit-length of the secret
greatest common divisor, and γ the bit-length of an AGCD sample. The parameter τ refers
to the number of encryptions of zero contained in the public key.

Parameters. We set parameters such that they satisfy the following constraints.

• ρ ≥ λ, to protect against the brute force attacks on the noise such as [13, 29].
• γ ≥ Ω( λ

log λ(η−ρ)2), to thwart the lattice reduction attacks on AGCD such as the orthog-
onal lattice attacks [36, 20], Lagarias’ simultaneous Diophantine approximation [31] and
the Cohn-Heninger attack [15] (see [21] for a review on these attacks).
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• η will be determined later to support correct decryption. For the moment, we only suppose
that ρ < η.
• τ = γ + 2λ + 2, to be able to use the leftover hash lemma in the security proof (see

Subsection 3.3).

Note that there is some discrepancy with the conditions with prior works on AGCD. Part
of it stems from the fact that we place ourselves in the context of sub-exponential attackers
rather than polynomial-time attackers. Further, once adapted to this attacker setup, the
condition corresponding to thwarting lattice attacks is γ ≥ Ω(λη2) in prior works. In fact,
that condition is too stringent: lattice attacks are tharted even if our (weaker) condition is
satisfied. Moreover, our condition is compatible with the LWE to AGCD reduction when
applied to exponentially intractable LWE parameters, as explained in Section 2. This has
a significant impact on the asymptotic performance of the scheme, as γ may be set much
smaller.

Concretely, we set ρ = λ, η = ρ + L log λ for an L > 0 to be chosen to provide desirable
functionalities, γ = Ω(L2λ log λ) and τ = γ + 2λ + 2. Note that the ciphertext size γ is
quasi-linear in λ. Assume one wants to rely on the exponential hardness of lattice problems
for approximation factors nO(L) for a small L. First, one has to set n = Ω(Lλ). In that case,
via the reduction from Section 2, one can set σ = Ω(L2λ log λ), and η′ = cL2λ log λ for some
constant c, ρ′ = η′ − L log λ, γ′ = 2η′ + λ and τ ′ = γ′ + 2λ+ 2.

3.1 The construction

The scheme AHE is defined as follows:

AHE.KeyGen(λ). Given a security parameter λ, determine parameters (X,σ, α) and
(γ, η, ρ) providing security λ and decryption correctness (see analysis below). We refer to
the discussion just after Theorem 1 for the relationship between the two parameter sets.
Sample p← D?σ (of bitsize ≈ η). For 0 ≤ i ≤ τ , sample xi ← AAGCD

X,bDαe(p). Relabel so that

x0 is the largest and x1 has an odd bx1p e, and restart if we cannot find such an x1. Output
the secret key sk = p and the public key pk = (x0, x1, . . . , xτ ).

AHE.Encpk(m). Given a messagem ∈ {0, 1}, uniformly sample a subset S ⊆ {1, 2, . . . , τ},
and output

c =

[∑
i∈S

xi +
⌊x1

2

⌉
m

]
x0

.

AHE.Addx0(c1, c2). Given two ciphertexts c1, c2, output cadd = [c1 + c2]x0 .

AHE.Decsk(c). Given a ciphertext c, output m =

[⌊
2c

p

⌉]
2

.

Note that [bxe]2 may not be equal to b[x]2e for some x ∈ R. In fact, the latter has value
in {0, 1,−1} while the former has value in {0, 1}. However, they are congruent modulo 2.

3.2 Correctness

We analyze the noise growth at encryption and addition, and provide a sufficient condition
for decryption correctness.
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Lemma 4 (Encryption noise). Let (sk = p, pk = (x0, . . . , xτ ))← AHE.KeyGen(λ) and
c← AHE.Encpk(m) for a message m ∈ {0, 1}. Then

c = r +
⌊p

2

⌉
m mod p

for some r with |r| ≤ (2τ + 1/2)(2ρ − 1) + 1/2.

Proof. Write xi = pqi+ri with qi ∈ Z and ri = [xi]p for 0 ≤ i ≤ τ . We have bx12 e = pq1
2 + r1

2 +δ
for |δ| ≤ 1/2. Since q1 is odd, we have, modulo p:

c =
∑
i∈S

xi +
⌊x1

2

⌉
m− kx0 =

∑
i∈S

ri − kr0 +
⌊p

2

⌉
m+

(r1
2

+ δ
)
m,

for some k ∈ [0, τ ]. Therefore, we have c = r +
⌊p
2

⌉
m mod p for some r with |r| ≤ (2τ +

1/2)(2ρ − 1) + 1/2. ut

Lemma 5 (Addition noise). Let (sk = p, pk = (x0, . . . , xτ )) ← AHE.KeyGen(λ) and
ci ← AHE.Encpk(mi) with ci = ri+

⌊p
2

⌉
mi mod p for all i ∈ {1, 2}. If cadd ← AHE.Addx0(c1, c2),

then
cadd = r +

⌊p
2

⌉
[m1 +m2]2 mod p,

for some r with |r| ≤ |r1 + r2|+ 2ρ.

Proof. We have, modulo p:

cadd = c1 + c2 − δx0 = r1 + r2 − δr0 +
⌊p

2

⌉
[m1 +m2]2 − δ′

for some δ, δ′ ∈ [−1, 1]. Hence we can write cadd = r+
⌊p
2

⌉
[m1 +m2]2 mod p for some r with

|r| ≤ |r1 + r2|+ 2ρ. ut

Lemma 6 (Decryption noise). Let p be a positive integer and m ∈ {0, 1}. Given an inte-
ger c, we have

AHE.Decp(c) = m if c = r +
⌊p

2

⌉
m mod p with |r| < p

4
− 1

2
.

Proof. Write c = pq + r +
⌊p
2

⌉
m. Then, for some b ∈ {0, 1}:⌊

c · 2

p

⌉
=

⌊
2q +m+

2r + b

p

⌉
= 2q +m+

⌊
2r + b

p

⌉
,

which is congruent to m modulo 2 when |r| < p
4 −

1
2 . ut

Theorem 2 (Correctness). Let ` ≥ 1. Let (sk = p, pk = (x0, . . . , xτ ))← AHE.KeyGen(λ)
and ci ← AHE.Encpk(mi) for i = 1, . . . , ` and mi ∈ {0, 1}. Let c = [

∑`
i=1 ci]x0. Then we

have

AHE.Decp(c) =

[∑̀
i=1

mi

]
2

when ` ≤ 2η−ρ

6(4τ + 1)
.

In particular, a fresh ciphertext (i.e., with ` = 1) decrypts correctly if η − ρ ≥ log(24τ + 6).
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Proof. For 1 ≤ i ≤ `, write ci = pqi + ri + bp2emi for some integers qi, ri, and mi with

|ri| ≤ (2τ + 1/2)(2ρ − 1) + 1/2 and mi ∈ {0, 1} by Lemma 4. Since |
∑`

i=1 ci| ≤ `x0/2, there
exists a k ∈ Z ∩ [0, `/2] such that, modulo p:

c =
∑̀
i=1

ri − kr0 +
⌊p

2

⌉[∑̀
i=1

mi

]
2

+
⌊p

2

⌉(∑̀
i=1

mi −

[∑̀
i=1

mi

]
2

)
.

So c is correctly decrypted when r :=
∑`

i=1 ri− kr0 + 1
2

(∑`
i=1mi − [

∑`
i=1mi]2

)
is small. By

applying Lemmas 4 and 5, we have |r| ≤ (3`/2)((2τ + 1/2)(2ρ−1) + 1/2) + `/2. It is less than
p
4 −

1
2 if ` ≤ 2η−ρ

6(4τ+1) . The proof may be completed by using Lemma 6. ut

To guarantee correct decryption, it suffices to take η ≥ ρ+ log(24τ + 6).

3.3 Security

We first recall the classical Leftover Hash Lemma (LHL) over finite sums modulo an integer
as in [20].

Lemma 7. Sample x1, . . . , xτ ← Zx0 independently, sample s1, . . . , sτ ← {0, 1}, and set y =∑τ
i=1 sixi mod x0. Then (x1, . . . , xτ , y) is within statistical distance 1

2

√
x0/2τ from U(Zτ+1

x0 ).

This LHL is used to show that the AHE ciphertext is computationally indistinguishable
from a uniform integer modulo x0, independently of the encrypted plaintext bit.

Theorem 3 (Security). Under the assumptions that AGCDX,bDαe(D?σ) is hard and that
τ ≥ logX + 2λ+ 2, the AHE scheme described above is IND-CPA secure.

Proof. The key generation procedure produces independent xi ← AAGCD
X,bDαe(p). With proba-

bility exponentially close to 1, there exists i such that xi is not the largest, and bxi/pe is
odd.

Now, in the IND-CPA security experiment, we replace the sampling of the xi’s by xi ←
U(Z∩ [0, X)), independently, for i = 0, . . . , τ . We still sort them so that x0 is the largest, and
x1 is such that bx1/pe is odd (we resample if we cannot find such an x1). The resulting public
key distribution is computationally indistinguishable from the genuine public key distribution,
under the assumption that AGCDX,bDαe(D?σ) is hard.

With this modified key generation procedure, the distribution of (xi)2≤i≤τ is within expo-
nentially small statistical distance from U((Z∩ [0, x0))

τ−1). Using Lemma 7 and the assump-
tion on τ , the tuple (x2, · · · , xτ ,

∑
i>1 sixi mod x0) is within exponentially small statistical

distance from U((Z∩ [0, x0))
τ ). As a result, the distribution of the challenge ciphertext in the

IND-CPA experiment is within exponentially small statistical distance from U(Z ∩ [0, x0)),
independently of the underlying plaintext. In that experiment, the distinguishing advantage
of the adversary is exponentially small. ut

4 A scale-invariant AGCD-based FHE

In this section, we first extend the AHE scheme into a somewhat homomorphic scheme allow-
ing a certain amount of homomorphic data manipulation, and then use Gentry’s bootstrapping
technique [23] to obtain a fully homomorphic encryption scheme.
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We adapt some notations from [7] to our context. Let n be a positive integer. Given
x ∈ Z ∩ [0, 2n) and y ∈ R, define

BDn(x) = (x0, x1, . . . , xn−1) ∈ {0, 1}n with x =

n−1∑
i=0

xi2
i

Pn(y) = (y, 2y, . . . , 2n−1y) ∈ Rn.

Then we can see that

〈BDn(x),Pn(y)〉 =
n−1∑
i=1

xi(2
iy) = xy.

We also recall the definition of a tensor product on the vector space Rn

(u1, . . . , un)⊗ (v1, . . . , vn) = (u1v1, u1v2, . . . , u1vn, . . . , unv1, . . . , unvn),

and its relation with the inner product

〈u⊗ u′,v ⊗ v′〉 = 〈u,v〉 · 〈u′,v′〉.

4.1 The construction

The scheme SHE is identical to AHE, except concerning the following two procedures. Its
security is inherited from that of AHE.

SHE.MultKeyGen(sk). Let p = sk. For all k ∈ Z ∩ [0, 2γ − 2], sample q∗i,j , r
∗
i,j as in

AAGCD
X,bDαe(p) and publish a vector y = (pq∗i,j + r∗i,j)0≤i,j<γ + p

2 ([Pγ(2/p)]2 ⊗ [Pγ(2/p)]2) as
a multiplication key.

SHE.Multx0,y(c1, c2). Given two ciphertexts c1, c2, output

cmult := [〈BDγ(c1)⊗ BDγ(c2),y〉]x0 .

The (i, j) component of the γ2-dimensional vector y is a fake encryption of [2i+1/p]2 ·
[2j+1/p]2, because it is not decrypted into [2i+1/p]2 · [2j+1/p]2.

4.2 Correctness

We now prove the correctness of the homomorphic multiplication procedure.

Lemma 8. Let p be a positive integer. If c = pq + r + bp/2em ∈ Z ∩ [0, 2γ − 2] with q, r ∈ Z
and m ∈ {0, 1}, then we have

〈BDγ(c), [Pγ(2/p)]2〉 = 2a+m+ ε

for an integer a with |a| ≤ (γ − η + 4)/2 and a real ε with |ε| < (2|r|+ 1)/p.
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Proof. Let bp/2e = (p + b)/2, b ∈ {0, 1}. Then, 2c/p = 2q + m + ε, which is equal to m + ε
modulo 2 for ε = (2r + b)/p with |ε| ≤ (2|r|+ 1)/p.

Since BDγ(c) is an integer, we have, modulo 2:

〈BDγ(c), [Pγ(2/p)]2〉 ≡ 〈BDγ(c),Pγ(2/p)〉 = 2c/p.

So, 〈BDγ(c), [Pγ(2/p)]2〉 = 2a+m+ ε for some integer a. Using 2/p+ 22/p+ · · ·+ 2η−2/p =
2(2η−2 − 1)/p < 1, we have

|〈BDγ(c), [Pγ(2/p)]2〉| ≤
γ−1∑
i=0

∣∣∣∣[2i+1

p

]
2

∣∣∣∣ ≤ γ − η + 3,

which implies |a| ≤ (γ − η + 4)/2.
ut

Lemma 9 (Multiplication noise). Let (sk = p, pk = (x0, . . . , xτ )) ← AHE.KeyGen(λ)
and y ← SHE.MultKeyGen(sk). Given c1, c2 ∈ Z ∩ (−x0/2, x0/2] satisfying ci = ri +
bp2emi mod p for i ∈ {0, 1}, we have

[〈BDγ(c1)⊗ BDγ(c2),y〉]x0 = pq + r +
⌊p

2

⌉
m1m2

for some q, r ∈ Z with |r| < (γ − η + 6)(|r1|+ |r2|) + γ2 · 2ρ+1.

Proof. We have

y = (pq∗i,j + r∗∗i,j)0≤i,j<γ +
p

2
([Pγ(2/p)]2 ⊗ [Pγ(2/p)]2) ,

for some r∗∗i,j ∈ r∗i,j + [−1/2, 1/2] for all i, j. We now use Lemma 8:

〈BDγ(c1)⊗ BDγ(c2),y〉

= 〈BDγ(c1)⊗ BDγ(c2), (pq
∗
i,j + r∗∗i,j)i,j〉+

p

2
〈BDγ(c1), [Pγ(2/p)]2〉 · 〈BDγ(c2), [Pγ(2/p)]2〉

=
∑

(i,j)∈J

(
pq∗i,j + r∗∗i,j

)
+
p

2
(m1 + ε1 + 2a1)(m2 + ε2 + 2a2),

for some index set J ⊆ [0, γ)2, and some a1, a2 ∈ Z, ε1, ε2 ∈ R that satisfy |a1|, |a2| ≤
(γ−η+4)/2, |ε1| < (2|r1|+1)/p and |ε2| < (2|r2|+1)/p. Since p

2((m1+2a1)(m2+2a2)−m1m2)
is a multiple of p, we have that, for some integer q

[〈BDγ(c1)⊗ BDγ(c2),y〉]x0 = pq + r +
⌊p

2

⌉
m1m2,

where

r =
∑

(i,j)∈J

r∗∗i,j +
p

2
(ε2(m1 + 2a1) + ε1(m2 + 2a2) + ε1ε2)−

1

2
m1m2 − kr0

for some k ∈ [−1, γ2]. Therefore, we have |r| < γ2 · 2ρ+1 + (γ − η+ 6)(|r1|+ |r2|). Note that r
is an integer because all of BDγ(c1), BDγ(c2) and y has only integer components. ut



14

Let ci ← SHE.Encpk(mi) with ci = ri+
⌊p
2

⌉
mi mod p for i ∈ {1, 2}, cadd ← SHE.Addpk(c1, c2)

and cmult ← SHE.Multpk(c1, c2). From Lemmas 5 and 9, we can see that

cadd = radd +
⌊p

2

⌉
[m1 +m2]2 mod p

cmult = rmult +
⌊p

2

⌉
[m1m2]2 mod p,

with |radd| ≤ |r1|+ |r2|+2ρ and |rmult| ≤ (γ−η+6)(|r1|+ |r2|)+γ2 ·2ρ+1. Both the addition
and multiplication in our scheme increase noise only additively.

Definition 5. A scheme HE is L-homomorphic if for any depth L binary circuit C and any
set of inputs m1, . . . ,m` ∈ {0, 1}, it holds that

HE.Decsk(HE.Evalevk(C, (c1, . . . , c`)) = C(m1, . . . ,m`)

with probability ≥ 1−λ−ω(1), where (pk, evk, sk)← HE.KeyGen(λ) and ci ← HE.Encpk(mi)
for all i ≤ `.

Theorem 4. The scheme SHE is L-homomorphic if

η − ρ ≥ L(1 + log(γ − η + 6)) + 3 + log

(
2τ +

γ2

γ − η + 6

)
.

Proof. For each i ∈ [0, L], let ci be a ciphertext with ci = ri +
⌊p
2

⌉
mi mod p after the

evaluation of the i-th level gates. Let Ri be a bound on the noise magnitude |ri|. First,
we have R0 = (2τ + 1/2)(2ρ − 1) + 1/2 by Lemma 4. By Lemmas 5 and 9, we have that
Ri+1 := 2(γ − η+ 6)Ri + γ2 · 2ρ+1 is a valid level (i+ 1) bound (for all i ≥ 0). By solving the
recurrence equation, we obtain

RL ≤
(

2τ +
γ2

γ − η + 6

)
2ρ+12L(γ − η + 6)L − γ2 · 2ρ+1

γ − η + 6
,

which is at most p
4 −

1
2 if (η − ρ) satisfies the condition. In that case, any ciphertext after

evaluation of any circuit of depth L can be correctly decrypted. ut

Combining with ρ = λ, γ = Ω( λ
log λ(η−ρ)2), τ = γ+Ω(λ), we may take γ = Θ(λL2 log λ).

Note that the ciphertext size γ is quasi-linear in the security parameter λ.

4.3 Bootstrapping

We provide a bound on the multiplicative depth of the decryption circuit corresponding to
AHE.Decp(c) = [b2c/pe]2.

We take an approximation z to 2/p such that |z − 2
p | < 2−(γ+η). Write z =

∑γ+η
i=0 z−i2

−i

for z−i ∈ {0, 1} for each i. As c ∈ [0, 2γ − 2], we have |cz − 2c/p| < 2−η. Therefore, we have
[bcze]2 = m when c = pq + r + bp2em and |r| < p

4 −
1
2 . Since the η most significant bits

of z are zero, the most expensive step in decryption consists in adding up to γ integers of
bit-lengths ≤ 2γ. This can be implemented with a binary circuit of O(log γ) depth.

By Theorem 4 and [23], SHE is bootstrappable and may be turned into a fully homomor-
phic encryption scheme when η− ρ = Ω(log2 γ). For bootstrapping we publish encryptions of
zi’s as a bootstrapping key. This requires space O(γ2).
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5 Truncation of ciphertexts

Since the message bit is embedded into the most significant bit of the ciphertext modulo p,
some least significant bits of the ciphertext are irrelevant to decryption correctness. However as
we truncate more least significant bits of a ciphertext, decryption failure probability increases
slightly at first and becomes overwhelming after some point between ρ and η bits of truncation.

Let N = 2ν for a positive integer ν < γ. Given a ciphertext c, define ĉ = bc/Ne so
that |Nĉ − c| ≤ N/2. In the following, the quantity ĉ can play a similar role to that of the
corresponding ciphertext c in each component of SHE, for appropriate ν.

1. In the encryption stage, given ĉ := [
∑

i∈S x̂i + b x̂12 em]x̂0 for some S ⊆ Z ∩ [1, τ ], we have,
for some integer k:

Nĉ =
∑
i∈S

xi+
⌊x1

2

⌉
m−kx0+N

∑
i∈S

(x̂i−xi/N)+Nm

(⌊ x̂1
2

⌉
−
⌊x1

2

⌉
/N

)
−kN(x̂0−x0/N),

which is equivalent to r + bp2em modulo p for |r| ≤ (2ρ+1 +N)(τ + 1).

2. In the decryption stage, given ĉ = bc/Ne we have[⌊
2ĉ

p/N

⌉]
2

= m

if |r| < (p−N)/4− 1/2 when c = r + bp2em mod p.

3. In the addition stage, given ĉ1 and ĉ2, we define ĉadd = [ĉ1 + ĉ2]x̂0 . Then we can show
(similarly to Lemma 5):

Nĉadd = r +
⌊p

2

⌉
[m1 +m2]2 mod p

for |r| ≤ |r1|+ |r2|+ (2ρ + 3
2N) when ci = pqi + ri + bp2em for i ∈ {1, 2}.

4. In the multiplication stage, we use ŷ to be the vector of bit-length (γ − ν)2 obtained by
removing all entries (i, j) of y such that i < ν or j ≤ ν. Given ĉ1 and ĉ2, we set

ĉmult = [BDγ̂(ĉ1)⊗ BDγ̂(ĉ2), ŷ]x̂0 ,

where γ̂ = γ − ν. We can show that for all i ∈ {1, 2}, we have 〈BDγ̂(ĉi), [Pγ̂(2N/p)]2〉 =
2ĉi
p/N = 2ai + mi + εi for ai ∈ Z with |ai| ≤ (γ̂ − η + 4)/2, mi ∈ {0, 1} and εi ∈ R with

|εi| < 2(|r|+N)
p . Thus ĉmult = pq + r +

⌊p
2

⌉
m1m2 for some q, r ∈ Z satisfying

|r| < (γ̂ − η + 6)(|r1|+ |r2|) + γ̂2 · 2ρ+1,

when ci = ri + bp2emi mod p for i ∈ {1, 2}.
5. In the bootstrapping stage, we take z ∈ 2−(γ+η−ρ) to be an approximation of 2/p with
|z − 2

p | < 2−(γ+η−ρ). We have∥∥∥∥Nĉz − 2

p
c

∥∥∥∥ ≤ (c+
1

N

)(
2

p
+ 2−(γ+η−ρ)

)
≤ (2ρ+1 +N)

p
.

Combining with 2c
p = 2q + m + 2r+m

p for c = pq + r + bp2em, we have [bNĉze]2 = m

if (2r + m + 2ρ+1 + N)/p < 1/2. It is satisfied when |r| < p/4 − 2ρ − (N + 1)/2. If
N ≤ p/4, we have a similar homomorphic capacity of Theorem 4 and so SHE becomes
bootstrappable similarly. In this case, however, the decryption can be done with a binary
circuit of O(log(γ − ρ)) depth.
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In the above observations, we can see that encryption noise and addition noise are almost
the same when ν ≤ ρ and the decryption and the bootstapping work similarly when ν < η−1.
For multiplication, as ν grows, the multiplication error decreases. Hence truncating ciphertexts
by ρ bits results in similar performance, but with reduced ciphertext bit-length. In that setup,
the bit-size of ciphertext becomes γ − ρ.

The known attacks on AGCD do not say much on the complexity of AGCD when γ − ρ
is small. A naive attack is as follows. Given c = pq + r, we first guess the γ − η bits of q and
then compute b cq e = p + b rq e. Since r

q < 2ρ−(γ−η), we can obtain the γ − ρ most significant
bits of p. This is significant. To avoid this attack, we need to set γ − η ≥ λ. In that case, the
ciphertext size is ≈ γ − ρ = (γ − η) + (η − ρ) ≥ λ+Ω(L log λ).

Note that this truncation method is different from decreasing the bit-size ρ of the noise.
If ρ is set smaller, then the ciphertext bit-length γ should be increased to resist lattice-based
attacks, i.e., it must satisfy γ ≥ Ω( λ

log λ(η−ρ)2). If we reduce ρ and η simultaneously, resistance
against the lattice-based attacks can be maintained, but the scheme becomes susceptible to
exhaustive search on the noise components ri.
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A Some useful lemmas on lattice Gaussians

The first statement of the following lemma is a special case of [34, Le. 4.1]. The second
statement can be obtained by a simple calculation exploiting [41, Claim 3.8].

Lemma 10. Let r, ε > 0 such that r ≥ Ω(
√

ln(1/ε)). Then the distribution Dr mod 1 is
within statistical distance O(ε) from U(T). If x← Dr, then the distribution of x conditioned
on x mod 1 is within statistical distance O(ε) of DZ,r.

Lemma 11 (Special case of [27, Cor. 2.8]). Let q ≥ 1 and r, ε > 0 such that r ≥
Ω(
√

ln(1/ε)). Then the distribution DZ/q,r mod 1 is within statistical distance O(ε) from U(Tq).

Lemma 12 (Special case of [41, Cor. 3.10]). Let n ≥ 1, z ∈ Rn and r, ε, α > 0 with
(1/r2 + ‖z‖2/α2)−1/2 ≥ Ω(

√
ln(n/ε)). Then the distribution of 〈Dn

Z,r, z〉 + Dα is within

statistical distance O(ε) from Dβ with β = (α2 + ‖z‖2r2)1/2.

Lemma 13 (Special case of [38, Th. 3.1]). Let r, q, s, ε > 0 such that r ≥ Ω(
√

ln(1/ε)/q).
Sample x← Ds and k ← DZ/q,r,x. Then the distribution of k is within statistical distance O(ε)
from DZ/q,(r2+s2)1/2 and, conditioned on k, the distribution of x is within statistical dis-

tance O(ε) from k 1
(1+r2/s2)1/2

+D(r−2+s−2)−1/2.

We also use the following result, which can be derived from Lemmas 10, 11 and 13.

Lemma 14. Let r, q, ε > 0 such that r ≥ Ω(
√

ln(1/ε)/q). Sample x ← T and k ← DZ/q,r,x.
Then k mod 1 is uniformly distributed over Tq and the distribution of x conditioned on k is
within statistical distance O(ε) from k +Dr mod 1.

Proof. Let s ≥ Ω(
√

ln(1/ε)/q). By Lemma 10, the uniform distribution over T is within
statistical distance O(ε) from the distribution Ds mod 1. By Lemma 13, the distribution
of k is within statistical distance O(ε) from DZ/q,(r2+s2)1/2 mod 1 and conditioned on k the

distribution of x is within statistical distance O(ε) from k 1
(1+r2/s2)1/2

+D(r−2+s−2)−1/2 mod 1.

The proof can be completed by using Lemma 11 and letting s tend to infinity. ut
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B Converse results for Lemmas 1, 2 and 3

Lemma 15. Let α, β ∈ (0, 1), m,n, q,B ≥ 1 and D a distribution over Zn. Assume that there
exists an (ε1, ε2)-distinguisher for LWEmn,q,D≤β (D). If D is (B, ε2/2)-bounded, and α ≤ β −
Ω(
√

ln(mn/ε1)B/q), then there exists an (Ω(ε1), Ω(ε2))-distinguisher for SILWEmn,D≤α(D).

Proof. The reduction architecture is similar to the one of Lemma 1. We map each input
sample (a, b) for SILWEn,D≤α to an input samples (a′, b′) for LWEn,q,D≤β as follows: Sample

a′ ← DZn/q,r,a with r = Ω(
√

ln(mn/ε1)/q (for this, we independently sample each coordinate
a′j ← DZ/q,r,aj ); set b′ = b.

By Lemma 14, we have that the distribution of a′ is within statistical distance O(ε1/m)
from U(Tnq ), and that conditioned on a′, the distribution of f := a− a′ is within statistical
distance O(ε1/m) from Dr. As a result, the transformation maps the uniform distribution over
Tn × T to a distribution within statistical distance O(ε1/m) from the uniform distribution
over Tnq × T. Further, if b = 〈a, s〉 + e for some fixed s and e ← D≤α, then b′ = b =
〈a′, s〉 + 〈f , s〉 + e. Conditioned on a′, the distribution of 〈f , s〉 + e is within statistical
distance O(ε1/m) of D≤

√
α2+‖s‖2r2 . We have ‖s‖ ≤ B with probability ≥ 1 − ε2/2 over the

randomness of s← D. This allows to complete the proof. ut

Lemma 16 (Adapted from [43, App. A]). Let α, β ∈ (0, 1), B ≥ 1 and D a distri-
bution over Z. Assume that there exists an (ε1, ε2)-distinguisher for SILWEm1,D≤β (D). If D
is (B, δ, ε2/2)-contained and α ≤ O(β), then there exists an (Ω(ε1), Ω(ε2δα/

√
ln(m/ε1)))-

distinguisher for ZDLWEmD≤α(D).

Proof. We reduce ZDLWE to SILWE. Let r = Θ(
√

ln(m/ε1)) (chosen to be able to use
Lemma 10) and δ′ = Θ(δα/

√
ln(m/ε1)). The reduction produces a guess s′ of the ZDLWE

secret s by sampling s′ ← Bδ′·(Z∩[0, d1/δ′e)); then it maps any input sample y for ZDLWED≤α
to an input sample (a, b) for SILWE1,D≤β , as follows: Sample f ← Dr; set a = [y + f/s′]1
and b = [f ]1.

We assume that |s| ∈ [δB,B], |s′ − s| ≤ Bδ′ and that the SILWE1,D≤β distinguisher
succeeds. As in the proof of Lemma 2, this event has weight Ω(ε2δ

′).
Assume that y is uniformly distributed in T. By Lemma 10, the distribution of b is within

statistical distance O(ε1/m) from uniform, independently of y. Therefore, the distribution of
the pair (a, b) is within statistical distance O(ε1/m) from uniform.

Now, assume that y = (k + e)/s with k ← Z ∩ [0, s) and e ← D≤α. We have a =
(k + e)/s + f/s′ and b − as = [−e + f(1 − s/s′)]1. Let f ′ = fs/s′. By Lemma 10, the
distribution of a′ := (k + f ′)/s is within statistical distance O(ε1/m) from uniform and the
distribution of f ′ conditioned on a′ is within statististical distance O(ε1/m) of DZ,r|s/s′|.

The assumption of Lemma 10 holds because r|s/s′| ≥ Ω(r) ≥ Ω(
√

ln(m/ε1)), thanks to
the choices of δ′ and r. By Lemma 12, the distribution of b − as = −e + f ′(s′/s − 1) is
within statistical distance O(ε1/m) of D≤β′ with β′ =

√
α2 + r2(1− s/s′)2, assuming that

((s′/(rs))2 + (s′/s− 1)2/α2)−1/2 ≥ Ω(
√

ln(m/ε1)). As |s/s′| ≥ Ω(1) and |s′/s− 1| ≤ O(δ′/δ),
the definitions of r and δ′ imply that the latter condition holds. Further, as |1−s/s′| ≤ O(δ′/δ),
we have that β′ ≤ O(α+ rδ′/δ). This completes the proof. ut

Lemma 17. Let α, β ∈ (0, 1), X,B ≥ 1 and D a distribution over Z. Assume that there
exists an (ε1, ε2)-distinguisher for ZDLWEmD≤β (bX/De). If D is (B, δ, ε2/2)-contained, X ≥
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Ω(mB/ε1), α ≥ Ω(Bm/(δε1)) and β ≥ αB/X, then there exists an (Ω(ε1), Ω(ε2))-distinguisher
for AGCDm

X,bD≤αe(D).

Proof. Given an input sample x for AGCDX,bDαe, the reduction produces an input sample y
for ZDLWED≤α as follows: Sample f ← T; set y = (x + f)/X. If x is uniformly distributed
over Z ∩ [0, X), then so is y over T.

Now, assume that x = qp + r for some fixed p = bX/se (with s sampled from D),
q ← Z∩ [0, X/p) and r ← bD≤αe. We have y = (q+ e+∆)/s with s = bX/pe, e = (r+f)s/X
and ∆ = εqs/X for some ε ∈ [−1/2, 1/2].

As α ≥ Ω(
√

ln(m/ε1)), the distribution of e is within statistical distance O(ε1/m)
from D≤α|s|/X . Further, we have |∆| ≤ |s|/p ≤ O(B2/X) (assuming that |s| ≤ B). Thanks to

the assumtions on D and α, we have |∆| ≤ O( ε1m
α|s|
X ), and the term e+∆ is within statistical

distance O(ε1/m) from D≤α|s|/X . Note that αB/X ≤ β.
It now suffices to show that the distributions U(Z∩ [0, s)) and U(Z∩ [0, X/p)) are within

statistical distance O(ε1/m). The proof is identical to that of Lemma 3. ut

C Orthogonal lattice attack on AGCD

Let us recall the orthogonal lattice attack on AGCD in [20].
Suppose we are given samples (xi = pqi + ri)1≤i≤m from AAGCD

X,bDαe(p). Let 2ρ be an upper
bound on the magnitudes of the of ri’s. Consider the integral lattice L generated by the rows
of the following m× (m+ 1) matrix: 

x1 2ρ

x2 2ρ

...
. . .

xm 2ρ


Define the vector u := (1,− r1

2ρ , . . . ,−
rd
2ρ ). For any element v ∈ L, we have 〈u,v〉 ≡ 0 mod p.

Further, if ‖v‖1 < p, then we have |〈u,v〉| ≤ ‖v‖1 < p, since each component of u is at
most 1. That is, we have 〈u,v〉 = 0 over Z. Hence if we find m linearly independent vectors
v in L with ‖v‖1 < p, we can recover u and hence find p from gcd(x1− r1, . . . , xm− rm) with
overwhelming probability.

The lattice L has determinant ≈ 2γ+(m−1)ρ. Assuming that all minima are almost equal,
their norms are ≈ 2γ/m+ρ(m−1)/m. In time 2λ, lattice reduction [45, 2] allows to find m linearly
independent lattice vectors of norms ≈ λO(m/λ) · 2ρ(m−1)/m+γ/m. The optimal choice for m

is ≈ Θ(
√
γλ/ log λ), which leads to vector norms that are ≈ 2O(

√
γ log λ/λ)+ρ. The attack is

thwarted if γ ≥ Ω( λ
log λ(η − ρ)2).

The Simultaneous Diophantine Approximation algorithm for AGCD (see [20]) has similar
performance.


