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Abstract

We provide a generic transformation from weakly selective secure FE to selective secure FE through
an approach called hybrid functional key generation. Furthermore, our transformation preserves the
compactness of the FE scheme. Additionally, we note that this transformation is much simpler than
the prior work [GS16]. We consider the simplicity of the construction in this work as a positive feature
and the hybrid functional key generation approach as a new method that can be applied in functional
encryption schemes. Furthermore, we try to weaken the input FE scheme of our transformation to be
a non-compact one instead of a fully-compact one, by additionally assuming the hardness of LWE (or
Ring-LWE) assumption. We achieve this result by utilizing the FE scheme for bounded collusions with
decomposable and succinct ciphertext property, which can be solely based on the LWE (or Ring-LWE)
assumption. Finally we present the implications of our result, which improves previous results, in building
general-purpose indistinguishability obfuscator from (well-expressed) functional encryption.

1 Introduction

Indistinguishability obfuscation (iO), first defined in the seminal work of Barak et al. [BGI+01] and
further investigated in [GR07], is currently an extraordinarily powerful object on the cryptographic landscape.
Since Garg et al. [GGH+13] put forward a plausible candidate obfuscation algorithm, iO has been successfully
used to solve a wide range of open problems (e.g., [GGH+13, SW14, CLP15, BGJ+16]), to achieve new
cryptographic goals (e.g., [KLW15, BGL+15, CHJV15]), and even to imply notions outside of cryptography
(e.g., [BPR15, GPS16])

However, the problem of building an indistinguishability obfuscator with a solid proof of security still
remains uncertain. The multilinear-map problems [GGH+13, CLT13, CHL+15, CLT15] underlying most
known candidate iO constructions [GGH+13, BR14, BGK+14, AB15, PST14, GMS16, MSZ16] have recently
been subject to attacks [CHL+15, GHMS14, ADGM16, CLLT16, CGH16], and basing iO on a solid, well-
understood standard complexity assumption, has rapidly emerged as perhaps one of the most pressing open
problems in theoretical cryptography.

Bitansky and Vaikuntanathan [BV15] and Ananth and Jain [AJ15] opened another door towards building
iO from standard assumptions, these two independent works showed that iO can be built from any public
key functional encryption scheme satisfying certain compactness requirements, but with sub-exponential
security loss. While general constructions of compact functional encryption (for arbitrary functions) are
only known using iO [GGH+13, AS16a], functional encryption is typically considered a weaker primitive
than general-purpose iO.
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We recall that a (public key) functional encryption scheme [BSW12, O’N10, Wat13, AGVW13] is an
(public-key) encryption scheme that allows for the creation of functional secret keys SKf corresponding to
functions f , such that when such a functional secret key SKf is applied to an encryption of message m, one
could decrypt it only yielding f(m), but nothing else more about the message m.

Properties of interest in the study of functional encryption generally lie in the following three phases 1:

• Security: The security of FE scheme can be captured by an indistinguishability-based security game
2 between a challenger and an adversary. Ideally, we want the FE scheme to achieve adaptive security,
which guarantees security that both functional secret keys and messages can be adaptively chosen at
any point in time. To ease the security notion people often consider security under a weaker notion
of selective security where the adversary is forced to commit the challenge messages before seeing the
public key. Furthermore, it is possible to further weaken the security notion of FE to weakly selective
security, where the adversary must commit not only to the challenge messages, but also to all the
functional queries before seeing the public key.

• Compactness: which captures the time (or circuit) complexity of the encryption algorithm. This is
the central notion of efficiency of FE. Ideally, we want to achieve the strongest efficiency notion of FE,
which is called full compactness. A FE scheme is said to be fully-compact if the size of the encryption
circuit is some polynomial in the size of the message to be encrypted and the security parameter, but
independent of the circuit size of the functions in the corresponding function family. A FE scheme
has non-compact ciphertext if the size of the encryption circuit grows with the maximum circuit size
of functions. A relaxed property lying between fully-compact FE and non-compact FE that has been
considered in literature is called weakly compact. A FE scheme has weakly-compact ciphertexts if the
size of the encryption circuit grows sublinearly with the maximum circuit size of functions.

• Collusion-resistance: The number of functional secret key queries that can be released is also an
essential parameter considered in the FE scheme. More specifically, FE schemes can be parameterized
based on whether the adversary obtains a-priori bounded or unbounded number of functional secret
key queries. In this work, we mainly consider FE for single-key query (i.e., single-key FE and FE for
multi-key queries (i.e., multi-key FE.

There are a lot of works considering these properties described above. Sahai and Seyalioglu [SS10] and
Goldwasser, Kalai, Popa, Vaikuntanathan and Zeldovich [GKP+13] provided FE scheme supporting all of
P/poly circuits based on standard assumptions. However, these constructions only support single-key query.
Garg et al. [GGH+13] construct a multi-key FE scheme for P/poly circuits. Nevertheless, their construction
is based on iO. Ananth et al. [ABSV15] show a generic transformation from selective security to adaptive
security in functional encryption schemes. However, their transformation is not compact-preserving, which
means that the output FE of their transformation is always non-compact. Goyal et al. [GKW16] give a
generic transformation from selective security to semi-adaptive security, which is a security notion of FE
schemes lying between the selective security and the adaptive security in FE schemes. We remark that
their transformation also works for the attribute-based encryption scheme, which is a restricted version of
the functional encryption scheme. Recently in the concurrent works of Garg and Srinivasan [GS16], and
Li and Micciancio [LM16a], they show how to transform any single-key FE to multi-key FE through two
different approaches respectively. Moreover, the transformation of Garg and Srinivasan can be viewed as a
transformation from weakly selective to selective security in FE schemes. However, the input FE scheme of
their transformation must be weakly compact.

In this work, we ask the following question:
1Also, the class of functions supported by the FE scheme is also an important property, but for simplicity here we will focus

on schemes for which the class of functions can be a class of polynomial sized circuits.
2The security of FE scheme can be captured by a simulation-based security game as well, but in this work we only consider

its indistinguishability-based security
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Can we reduce the general-purpose indistinguishability obfuscator to the weakest variant of functional
encryption (i.e., single-key, weakly selective secure, non-compact FE)?

We answer this question affirmatively through the contributions described in the next section3.

2 Our Contributions

In this work we show a simple generic transformation from any weakly-selective functional encryption
scheme for single-key query to a selectively-secure one for single-key query, without relying on any additional
assumptions. Our transformation applies equally to public-key schemes and to private-key ones 4, where
the resulting selective scheme inherits the public key or private-key flavor of the underlying scheme. In
particular, we note that this transformation preserves the compactness of FE scheme. Namely, if the input
FE scheme is compact, the output FE scheme is still compact. The following theorem informally summarizes
our main contribution.

Theorem 2.1 (Informal). Given any public-key (resp. private-key) weakly selective secure, fully-compact
functional-encryption scheme for the class of all polynomial-size circuits, there exists a public-key (resp.
private-key) selective secure, fully-compact functional encryption scheme.

We remark that, for the specific purpose of transforming weakly selective secure FE scheme to a selective
secure one, the transformation we provide is a simpler one than the prior work [GS16]. We achieve this
transformation through the novel technique called hybrid functional key generation, which is opposed to the
technique called hybrid functional encryption utilized in the work of Ananth et al.[ABSV15].

Furthermore, we try to weaken the input FE scheme of our transformation by taking advantage of
additional assumptions (i.e., LWE or Ring-LWE), and thus we obtain the following result.

Theorem 2.2 (Informal). Given any public-key (resp. private-key) weakly-selective, non-compact func-
tional encryption scheme for the class of all polynomial size circuits for single-key query, there exists a
selectively-secure public-key (resp. private-key) compact functional encryption scheme with similar proper-
ties, additionally assuming the hardness of LWE assumption.

We achieve the above result by utilizing the FE scheme for bounded collusions with decomposable and
compact ciphertext property. We remark that this kind of FE schemes was recently achieved by Agrawal and
Rosen [AR16], based solely on the LWE (or Ring-LWE) assumption.

We view the significance of our result in two dimensions. First of all, combining our work with the
transformation (from single-key to multi-key FE scheme) proposed in the recent work of Li and Micciancio
[LM16b], we could obtain a multi-key, selective, compact FE which has shorter public keys when compared
to the work of Garg and Srinivasan [GS16]. Also, if we just want the selective scheme to be single-key
secure then the weakly selective scheme can even be non-compact, whereas the input FE scheme of the
transformation proposed by Garg and Srinivasan must be weakly-compact. We consider the simplicity of
the construction in this work as a positive feature and the hybrid functional key generation approach as a
new method that can be applied in functional encryption schemes. Secondly, we investigate the implications
of our result in building general-purpose indistinguishability obfuscator and stronger variant of FE scheme,
and we obtain the following corollaries.

3Recently these works [Lin16a, Lin16a, Lin16b, AS16b] show how to construct general-purpose iO from degree-5 multilinear
maps. While their focus is on building iO from the minimal assumptions over multilinear maps, we focus on building iO from
functional encryption.

4Since the page limitation, we refer the reader to our transformation under the private-key setting in the fully version of this
work.
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Corollary 2.1 (This work + [AJ15, BV15], Informal). Assuming the existence of one-way functions and
the hardness of LWE assumption, there exists a general-purpose indistinguishability obfuscator given any
single-key, weakly-selective, non-compact FE scheme with sub-exponential security.

Corollary 2.2 (This work + [GS16, AS16a, HJO+15], Informal). Assuming the existence of one-way func-
tions and the hardness of LWE assumption, any multi-key, adaptively-secure, width-compact5 FE scheme can
be polynomially reduced to a single-key, weakly selective secure, non-compact FE scheme.

The corollary 2.1 answers the question we proposed in the last section affirmatively. In particular,
it improves the previous result that the general-purpose indistinguishability obfuscator is implied by any
single-key, weakly-selective, weakly-compact FE scheme with sub-exponential security. In contrast, our result
shows that general-purpose indistinguishability obfuscator is implied by any single-key, weakly-selective,
non-compact FE scheme with sub-exponential security, additionally assuming the hardness of LWE (or Ring-
LWE) assumption.

3 Our Techniques

We give an overview of our intuition and techniques utilized in this work.

From Weakly Selective Secure to Selective Secure FE. Before illustrating our intuition of the transfor-
mation, let us first show the gap between the weakly selective security game and the selective security game
by describing a reduction. The reduction could internally execute some adversaries to break the underlying
selective secure FE scheme, while simulating the role of the challenger of the selective secure FE scheme. At
the very beginning, the adversary first submits a pair of messages, and then the reduction which simulates
the role of the challenger returns back an functional encryption of the message corresponding to a random
bit b ∈ {0, 1} flipped by the challenger of the underlying weakly selective secure FE scheme. Recall that
the message challenge phase of weakly selective security game is the same as the one of selective security
game, except that the adversary must submit a function query (note that we only consider FE supporting
single-key query) along with the pair of challenge messages together. We notice that this difference does not
effect the challenger of the weakly selective game to compute the functional encryption over the message
corresponding to the random bit b ∈ {0, 1}. Nevertheless, the bad news is from the message challenge phase.
In the weakly selective security game, the adversary cannot generate any functional secret key since the
reduction does not receive any function query. Therefore, the key query phase between the reduction and
the adversary (of the selective secure FE) will not be opened. Thus the intractable point to construct the
reduction is how to submit the function query while not receiving any function query from the adversary (of
the selective secure FE).

To solve this problem, our idea is to deploy two functional secret keys rather than only one functional
secret key. Namely the final functional secret key is comprised of two functional secret keys in order to
separate the key generation step such that the reduction could submit the function query to the challenger
of weakly selective security game without the information of the function query from the adversary, and then
the reduction could receive back the challenge ciphertext and in turn go through the following steps.

Hybrid Key Generation. Taking this idea root in mind, one may ask how does the reduction generate
a function query without any information of the function query from the adversary? That is, the function
query generated by the reduction should be independent of the function query from the adversary. To handle
this we propose a novel approach called hybrid functional key generation. The intuition of this approach
is from the observation that messages and functions enjoy the same level of privacy in FE scheme. Indeed,
[BS15] shows this through transforming private-key FE schemes into function private FE schemes. Therefore,
after applying the [BS15] transformation, we can switch the roles of functions and messages. Our technique is

5We refer the reader to [GS16, HJO+15] for the formal definition of width-compact FE schemes.
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basically achieved by applying hybrid functional encryption and dual-system encryption over the functional
secret key generation algorithm.

Ananth et al. [ABSV15] have shown the power of hybrid functional encryption and dual-system en-
cryption techniques in transforming selective security to adaptive security in functional encryption schemes.
The idea in hybrid functional encryption is to combine two encryption schemes. An “external" scheme (i.e.,
key encapsulation mechanism) and an “internal" scheme (i.e., data encapsulation mechanism). In order to
encrypt a message in the hybrid scheme, a fresh key is generated for the internal schemes, and is used to
encrypt the message. Then the key itself is encrypted using the external scheme. The final hybrid ciphertext
contains two ciphertexts: CT0 = Encint,k(m) and CT1 = Encext(k) (all external ciphertexts use the same key).
To decrypt, one first decrypts the external ciphertext, retrieves k and applies it to the internal ciphertext.
The hybrid functional encryption method in functional encryption scheme relates to the dual-system encryp-
tion technique because the two ciphertexts CT0 = Encint,k(m) and CT1 = Encext(k) control the dual-system
encryption externally and internally. At first glance the execution of the functional encryption algorithm
and the functional secret key generation algorithm can be done interchangeably since messages and functions
enjoy the same level of privacy in FE schemes. Namely the functional encryption algorithm can be viewed
as a kind of functional secret key generation algorithm for the message m using the master public key (or
master secret key in private-key functional encryption schemes), and the functional secret key generation
algorithm can be viewed as a kind of functional encryption algorithm for the function f using the master
secret key.

Our idea in hybrid functional key generation is to combine two key generation schemes in a similar
internal-external manner. In order to generate a functional secret key in the hybrid scheme, a fresh key
k is generated for the internal scheme, and is used to generate the functional secret key. Then the key
k itself is hardwired into a circuit G. We denote the hardwired circuit by Gk. Then a functional secret
key corresponding to the circuit G is generated using the external scheme. The final hybrid functional key
generation contains the two functional secret keys (KGext(Gk),KGint,k(f)) (all external functional secret keys
use the same key). To decrypt, one first decrypts the ciphertext using the external functional secret key,
retrieves a ciphertext CT (i.e., the soldier hidden in the Trojan Horse) and applies the internal functional
secret key to decrypt it.

From Non-compact FE to Compact FE.While the hybrid functional key generation method successfully
transforming any weakly selective secure FE to selective secure FE, we observe that this transformation is
compact-preserving. Namely, if the input FE scheme is fully-compact, then the output FE scheme is also
fully-compact. To weaken the input FE scheme of our transformation to be a non-compact scheme instead of
a fully-compact one, we employ the recent result of Agrawal and Rosen [AR16]. Recall that they showed how
to construct an improved FE scheme for bounded collusions, assuming the hardness of LWE (or Ring-LWE)
assumption, where it enjoys a special property called decomposable and compact ciphertext. More specifically,
the ciphertext CT of their FE scheme, which encrypts a message m = (m1, · · · ,m`) of length ` = `(λ), can
be decomposed as the following form:

CT =

 CTdata = (CT1, · · · ,CT`)︸ ︷︷ ︸
compact data-dependent component

CTindpt︸ ︷︷ ︸
non-compact data-independent component


CTi = FE.Enc(MPK,mi, r; r̂i) ∀i ∈ [`] CTindpt = FE.Enc(MPK, r; r̂)

where r is the shared randomness of each component. Additionally each component may utilize independent
randomness r̂1, · · · , r̂` and r̂ respectively. We call CTdata as the compact data-dependent component, and
it can be further decomposed as CTdata = (CT1, · · · ,CT`), where each CTi is compact (i.e., the size of each
CTi is polynomial only in the security parameter and the message length but not related to the circuit size
and the number of functional queries.). In contrast, we call CTindpt as the non-compact data-independent
component.
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Since a (selectively-secure) private-key FE scheme for bounded collusions is one of the building blocks
of our transformation, we can naturally embed such FE scheme (with decomposable and compact ciphertext
property) into it. More specifically, to generate the functional secret key we let the circuit Gk to output the
compact data-dependent component CTdata = {CTi}i∈[`] and the non-compact data-independent component
CTindpt as an additional element of the functional secret key. Recall that in our transformation the com-
pactness of the ciphertext is only associated with the circuit size of Gk, therefore the result scheme of our
transformation is fully-compact even though the input scheme is non-compact. We remark that [AJS15] also
provided a similar transformation from non-compact FE to fully-compact FE. However, we utilize the decom-
posable and compact ciphertext property of FE schemes for bounded collusions, instead of the decomposable
randomized encoding schemes.

Our Construction in a Nutshell. We give a brief description of our construction. It first sets up the
master key pair (MPK,MSK) with respect to the underlying weakly selective secure FE scheme. To generate
functional secret keys, the key generation algorithm constructs the trapdoor circuit G as follows: the circuit
G, which is hardwired with a master secret key that is newly generated with respect to a selectively-secure
one-ciphertext FE scheme, a pseudorandom ciphertext CE and a random tag τ , takes as input the message
m, a PRF key Kp, a symmetric key KE and a bit β and it outputs the result in two threads. If β = 1, it
outputs the symmetric decryption of CE using the symmetric key KE , otherwise it outputs an encryption
over the message m using the master secret key hardwired inside of the circuit G. Note that this encryption
is derandomized using the PRF key Kp. Finally the key generation algorithm outputs a pair of functional
secret keys (SKf ,SKG) as the functional secret key. The ciphertext of our construction is an encryption of
the tuple (m,Kp, 0

λ, 0), where Kp is a newly sampled PRF key, using the underlying weakly selective secure
FE scheme. To decrypt, one can decrypt the ciphertext using the functional secret key SKG to release the
internal ciphertext and then to decrypt the internal ciphertext using the functional secret key SKf .

4 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For a distribution
X we denote by x← X the process of sampling a value x from the distribution X. For a set X we denote by
x← X the process of sampling a value x from the uniform distribution over X . We denote by y ← f(x) the
process of sampling a value y from the distribution f(x) given a randomized function f ∈ F and an input
x ∈ X . A function negl : N → R is negligible if for any polynomial poly(·) we have negl(λ) < 1/poly(λ) for
all sufficiently large λ ∈ N.

4.1 Public-Key Functional Encryption

A public-key functional encryption scheme PKFE over a message spaceM = {Mλ}λ∈N and a function
space F = {Fλ}λ∈N is a tuple (PKFE.Setup,PKFE.KG,PKFE.Enc,PKFE.Dec) of PPT algorithms with the
following properties.

• PKFE.Setup(1λ): The setup algorithm takes as input the unary representation of the security parame-
ter, and outputs a master public key MPK and a master secret key MSK.

• PKFE.KG(MSK, f): The key generation algorithm takes as input a secret key MSK and a function
f ∈ Fλ and outputs a functional secret key SKf .

• PKFE.Enc(MPK,m): The encryption algorithm takes as input a master public key MPK and a message
m ∈Mλ, and outputs a ciphertext CT.

• PKFE.Dec(SKf ,CT): The decryption algorithm takes as input a functional secret key SKf and a
ciphertext CT, and outputs m ∈Mλ ∪ {⊥}
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We say a public-key functional encryption scheme is defined for a complexity class C if it supports all
the functions that can be implemented in C.

Correctness. We require that there exists a negligible function negl(·) such that for all sufficiently large
λ ∈ N, for every message m ∈Mλ, and for every function f ∈ Fλ we have

Pr [PKFE.Dec(PKFE.KG(MSK, f),PKFE.Enc(MPK,m)) = f(m)] ≥ 1− negl(λ)

where (MPK,MSK) ← PKFE.Setup(1λ), and the probability is taken over the random choices of all algo-
rithms.

Security. We consider the standard selective and adaptive indistinguishability-based notions for functional
encryption. Intuitively, these notions ask that encryptions of any two messages, m0 and m1, should be
computationally indistinguishable given access to functional secret keys for any function f such that f(m0) =
f(m1). In the case of selective security, adversaries are required to specify the two messages in advance (i.e.,
before interacting with the system). In the case of adaptive security, adversaries are allowed to specify the
two messages even after obtaining the master public key and functional secret keys.

Remark. Our notions of security consider a single challenge, and in the public-key setting these are known
to be equivalent to their multi-challenge variants via a standard hybrid argument.

Definition 4.1 (Weakly Selective Security). A public-key functional encryption scheme PKFE over a function
space F = {Fλ}λ∈N and a message spaceM = {Mλ}λ∈N is weak selective secure if for any PPT adversary
A there exists a negligible function negl(·) such that

AdvwSel
pkfe,A(λ) =

∣∣∣Pr[ExpwSel
pkfe,A(λ, 0) = 1]− Pr[ExpwSel

pkfe,A(λ, 1) = 1]
∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment ExpwSel
pkfe,A(λ, b), modeled as a game

between the adversary A and a challenger, is defined as follows:

1. Challenge Phase: The adversary A outputs two messages (m0,m1) such that |m0| = |m1| and a set
of functions f1, · · · , fq ∈ F to the challenger. The parameter q and the size of message vectors are
apriori-unbounded.

2. The challenger samples (MPK,MSK)← PKFE.Setup(1λ) and generates the challenger ciphertext CT←
PKFE.Enc(MPK,mb). The challenger also computes SKf,i ← PKFE.KG(MSK, fi) for all i ∈ [q]. It then
sends (MPK,CT), {SKf,i}i∈[q] to the adversary A.

3. If A makes a query fj for some j ∈ [q] to functional secret key generation oracle such that fj(m0) 6=
fj(m1), the output of the experiment is ⊥. Otherwise the output is b′ which is the output of A

Remark. We say that the functional encryption scheme PKFE is single-key, weakly selective secure if the
adversary A in ExpwSel

pkfe,A(λ, b) is allowed to obtain the functional secret key for a single function f .

Definition 4.2 (Selective Security). A public-key functional encryption scheme PKFE over a function space
F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is selectively secure if for any PPT adversary A there
exists a negligible function negl(·) such that

AdvSel
pkfe,A(λ) =

∣∣∣Pr[ExpSel
pkfe,A(λ, 0) = 1]− Pr[ExpSel

pkfe,A(λ, 1) = 1]
∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment ExpSel
pkfe,A(λ, b), modeled as a game

between the adversary A and a challenger, is defined as follows:

1. Setup Phase: The challenger samples (MPK,MSK)← PKFE.Setup(1λ).
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2. Challenge Phase: The adversary submits a pair of message (m0,m1), and the challenger replies with
MPK and CT← PKFE.Enc(MPK,mb), where b is a random coin flipped by the challenger.

3. Query Phase: The adversary adaptively queries the challenger with any function f ∈ Fλ such that
f(m0) = f(m1). For each such query, the challenger replies with SKf ← PKFE.KG(MSK, f).

4. Output Phase: The adversary outputs a bit b′ which is defined as the output of the experiment.

Efficiency. We now define the efficiency requirements of a PKFE scheme.

Definition 4.3 (Fully Compact). A public-key functional encryption scheme PKFE is said to be fully compact
if for all security parameter λ ∈ N and for all message m ∈ {0, 1}∗ the running time of the encryption
algorithm PKFE.Enc is poly(λ, |m|).

Definition 4.4 (Weakly Compact). A public-key functional encryption scheme PKFE is said to be weakly
compact if for all security parameter λ ∈ N and for all messagem ∈ {0, 1}∗ the running time of the encryption
algorithm PKFE.Enc is sγ ·poly(λ, |m|), where γ < 1 is a constant and s = maxf∈F |Cf |, where Cf is a circuit
implementing the function f .

A public-key functional encryption scheme is said to be non-compact if the running time of the encryption
algorithm can depend arbitrarily on the maximum circuit size of the function family.

Definition 4.5 (Bounded Collusions). We say a functional encryption is q-bounded if the adversary is given
functional secret keys for a-priori bounded number of functions f1, · · · , fq, which can be made adaptively.

Definition 4.6 (Decomposable and succinct FE Ciphertext, [AR16]). We say a functional encryption has
decomposable and succinct ciphertext CT if it can be decomposed as CT = (CTdata,CTindpt), where CTdata is
called compact data dependent component and CTindpt is called as non-compact data independent compo-
nent. Furthermore, let m = m1, · · · ,m` be the message encrypted by the ciphertext CT, the compact data
dependent component CTdata can be decomposed as (CT1, · · · ,CT`), where CTi depends solely on the bit mi

and each CTi is compact (i.e., the ciphertext size is a polynomial in the security parameter and the message
length). More specifically, each component CTi and CTindpt can be represented as the following form.

CTi = FE.Enc(MPK,mi, r, r̂i) ∀i ∈ [`]

CTindpt = FE.Enc(MPK, r, r̂)

where r is a common randomness used by all components by the encryption algorithm. Apart from the
common randomness r, each CTi may additionally make use of independent randomness r̂i. We note that
such a FE scheme with bounded collusions can be solely based on the LWE (or Ring-LWE) assumption
[AR16].

4.2 Pseudorandom functions

We rely on the following standard notion of a pseudorandom function family [GGM86], asking that a
pseudorandom function be computationally indistinguishable from a truly random function via oracle access.

Definition 4.7 (pseudorandom function). A family F = {PRFK : {0, 1}n(λ) → {0, 1}m(λ) : K ∈ K} of
efficiently-computable functions is pseudorandom if for every PPT adversary A there exists a negligible
function negl(·) such that∣∣∣∣∣ Pr

K
$←K

[
APRFK(·)(1λ) = 1

]
− Pr

R
$←U

[
AR(·)(1λ) = 1

]∣∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where U is the set of all functions from {0, 1}n(λ) to {0, 1}m(λ).
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4.3 Symmetric Encryption with pseudorandom ciphertexts

A symmetric encryption scheme consists of a tuple of PPT algorithms (SKE.Setup,SKE.Enc,SKE.Dec).

• The algorithm SKE.Setup takes as input a security parameter λ in unary and outputs a key KE .

• The encryption algorithm SKE.Enc takes as input a symmetric key KE and a message m and outputs
a ciphertext SKE.CT.

• The decryption algorithm SKE.Dec takes as input a symmetric key KE and a ciphertext SKE.CT and
outputs the message m.

In this work, we require a symmetric encryption scheme SKE where the ciphertexts produced by SKE.Enc
are pseudorandom strings. Let OEncK(·) denote the (randomized) oracle that takes as input a message m,
chooses a random string r and outputs SKE.Enc(KE ,m; r). Let R`(λ)(·) denote the (randomized) oracle that
takes as input a message m and outputs a uniformly random string of length `(λ) where `(λ) is the length
of the ciphertexts. More formally, we require that for every PPT adversary A the following advantage is
negligible in λ:

AdvSKE,A(λ) =
∣∣∣Pr [AOEncKE (·)(1λ) = 1

]
− Pr

[
AR`(λ)(·)(1λ) = 1

]∣∣∣
where the probability is taken over the choice of KE ← SKE.Setup(1λ), and over the internal randomness of
the adversary A, the oracle OEnc and R`(λ).

We note that such a symmetric encryption scheme with pseudorandom ciphertexts can be construct-
ed from one-way functions, e.g., using weak pseudorandom functions by defining SKE.Enc(KE ,m; r) =
(r,PRFK(r)⊕m).

5 Transformation in the Public Key Setting

In this section we describe the transformation from {1,wSel,FC}-IND-FE scheme to {Unb,Sel,FC}-IND-
FE scheme. We first list the building blocks used in the transformation. We denote by our resulting scheme
as pSel = (pSel.Setup, pSel.KG, pSel.Enc, pSel.Dec).

• A fully compact, single-key public-key functional encryption wSel = (wSel.Setup,wSel.KG,wSel.Enc,wSel.Dec).
We require this scheme is weakly selective secure.

• A private-key functional encryption sSel = (sSel.Setup, sSel.KG, sSel.Enc, sSel.Dec) for single message
and many functions. We require this scheme is selectively secure. 6

• A symmetric encryption scheme with pseudorandom ciphertext SKE = (SKE.Setup,SKE.Enc,SKE.Dec).

• A pseudorandom function PRF.

5.1 Construction

We construct the scheme pSel = (pSel.Setup, pSel.KG, pSel.Enc, pSel.Dec) as follows.
6Such scheme can be obtained from semantically secure encryption schemes. More specifically, Gorbunov, Vaikuntanathan

and Wee [GVW12] present an adaptively secure one-time bounded FE scheme, which implies an selectively secure one-time
bounded FE scheme. This scheme allows to only generate a key for one function, and to encrypt as many messages as the user
wishes. [BS15] shows how to transform private-key FE schemes into function-private FE, where messages and functions enjoy
the same level of privacy. Therefore, after applying the [BS15] transformation, we can switch the roles of the functions and
messages, and obtain a private-key FE scheme which is selectively secure for a single message and many functions.
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• Setup pSel.Setup(1λ): On input a security parameter λ in unary, it executes the algorithm wSel.Setup(1λ)
to obtain the key pair (MPKwSel,MSKwSel). The algorithm outputs the public key MPKpSel = MPKwSel
and the master secret key MSKpSel = MSKwSel.

• Key Generation pSel.KG(MSKpSel, f): Takes as input a master secret keyMSKpSel and a function f , it
first executes sSel.Setup(1λ) to obtain the master secret key MSKsSel. Then it samples a random cipher-
text CE ← {0, 1}`1(λ)7 and a random tag τ ← {0, 1}`2(λ). It constructs a circuit G = G[MSKsSel, CE , τ ]
as described in the figure 1 and then generates a functional secret key SKG ← wSel.KG(G,MSKwSel)
and a functional secret key SK′f ← sSel.KG(MSKsSel, f). Finally it outputs SKf = (SK′f ,SKG) as the
functional secret key.

G[MSKsSel, CE , τ ](m,Kp,KE , β)

1. If β = 1, outputs SKE.Dec(KE , CE).

2. Otherwise outputs CTsSel ← sSel.Enc
(
(MSKsSel,m);PRFKp(τ)

)
.

Figure 1: The circuit G[MSKsSel, CE , τ ]

• Encryption pSel.Enc(m,MPKpSel): Takes as input the message m and the public key MPKpSel, which
is parsed as MPKwSel. It samples a PRF key Kp ← K and outputs the ciphertext CTpSel by executing
wSel.Enc

(
MPKwSel, (m,Kp, 0

λ, 0)
)
.

• Decryption pSel.Dec(SKf ,CTpSel): On input a functional secret key SKf = (SK′f ,SKG) and the ci-
phertext CTpSel, it computes CTsSel ← wSel.Dec(CTpSel,SKG) and outputs f(m)← sSel.Dec(CTsSel,SKf ).

The correctness of the above scheme easily follows from the underlying building blocks, and in the
remainder of this section we prove the following theorem:

Theorem 5.1. Assuming that (1) fully-compact, single-key, public-key functional encryption scheme with
weakly selective security, (2) selective secure one-ciphertext private-key functional encryption scheme, (3)
symmetric encryption with pseudorandom ciphertext and (4) a pseudorandom function family, then there
exists a fully-compact, single-key, public-key functional encryption scheme with selective security.

Proof. We prove by providing a sequence of hybrid arguments described as below. We refer the reader to
the formal proof in the full version of this paper since the page limitation.

For security, we consider a sequence of hybrids to prove the above theorem. For simplicity we only
consider the one-ciphertext setting and we remark that it is easily generalized to multi-ciphertext setting.
We show that any PPT adversary A succeeds in the selective security game with only negligible advantage.
We denote by Hybi.b as the ith hybrid argument for b ∈ {0, 1} and Advi.b is denoted by the probability
that the adversary outputs 1 in the hybrid Hybi.b.

Hyb1.b: This corresponds to the real experiment where the challenger encrypts the message mb, that is, the
ciphertext is CTpSel ← wSel.Enc

(
MPKwSel, (mb,Kp, 0

λ, 0)
)
.

Hyb2.b: For every functional query f , the challenger replaces CE with a symmetric encryption SKE.Enc(KE ,CTsSel),

where CTsSel ← sSel.Enc
(
(MSK∗sSel,mb);PRFK∗

p
(τ)
)
(note that each functional secret key has its own differ-

ent symmetric ciphertext CE), and K∗p is a PRF key sampled from the key space K. The symmetric encryp-
tion is computed with respect toK∗E whereK∗E is the output of SKE.Setup(1λ) and τ is the random tag associ-
ated to the functional secret key of f . The sameK∗E andK∗p are used while generating all the functional secret

7The length of CE is determined as follows. Denote by `sSel be the length of the ciphertext obtained by encrypting a message
of length |m|, using sSel.Enc. Further, denote by `1 to be the length of ciphertext obtained by encrypting a message of length
`sSel, using SKE.Dec. We set the length of CE to be `1
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keys, andK∗p is used in generating the challenge ciphertext CT∗pSel = wSel.Enc
(
MPK∗wSel, (m,K

∗
p , 0

λ, 0)
)
. The

rest of hybrid is the same as the previous hybrid Hyb1.b. Note that the symmetric key K∗E is not used for
any purpose other than generating the symmetric ciphertext CE . Therefore, the pseudorandom ciphertexts
property of the symmetric encryption scheme implies that Hyb2.b and Hyb1.b are indistinguishable.

Lemma 5.1. Assuming the pseudorandom ciphertexts property of SKE, for each b ∈ {0, 1}, we have∣∣∣AdvA1.b −AdvA2.b
∣∣∣ ≤ negl(λ)

Proof. Suppose there exists a PPT adversary A such that the difference in the advantages is non-negligible,
then we construct a reduction that can break the security of SKE. The reduction internally executes the
adversary by simulating the role of the challenger in the selective public-key FE game. It answers both the
message and the functional queries made by the adversary as follows.

The adversary commits to a pair of messages (m0,m1) which is submitted to the reduction. The
reduction first obtain a master secret key MSK∗sSel by executing sSel.Setup(1λ), it then samples the PRF
key K∗p from the key space K. Further, the reduction generates (MPKwSel,MSKwSel) which is the output
of wSel.Setup(1λ) and K∗E which is the output of SKE.Setup(1λ). The reduction sends back the challenge
ciphertext CT∗pSel ← wSel.Enc

(
MPKwSel, (mb,K

∗
p , 0

λ, 0)
)
. Now the reduction is ready to handle functional

secret key queries from the adversary. When the adversary submits a functional query f , the reduction first
picks the tag τ at random. The reduction obtains CTsSel by executing sSel.Enc

(
(MSK∗sSel,mb);PRFK∗

p
(τ)
)
.

It then sends CTsSel to the challenger of the symmetric encryption scheme. The challenger returns back
with CE , where CE is either a uniformly random string or it is an encryption of CTsSel. Then the reduction
generates a functional secret key SKG by executing wSel.KG(G[MSK∗sSel, CE , τ ],MSKwSel) and a functional
secret key SK′f by executing sSel.KG(MSK∗sSel, f), then the reduction denotes the tuple (SK′f ,SKG) by SKf
which is sent to the adversary as the functional secret key. The output of the reduction is the same as the
output of the adversary.

If the challenger of the symmetric key encryption scheme sends a uniformly random string back to the
reduction every time the reduction makes a query to the challenger then we are in Hyb1.b, otherwise we are
inHyb2.b. Since the adversary can distinguish both the hybrids with non-negligible probability, we have that
the reduction breaks the security of the symmetric key encryption scheme with non-negligible probability.
From our hypothesis, we have that the reduction breaks the security of the symmetric key encryption scheme
with non-negligible probability. This proves the lemma.

Hyb3.b: This is the same asHyb2.b, except that the challenge ciphertext will be an encryption of (mb, 0,KE , 1)

instead of (mb,Kp, 0
λ, 0). Note that the functionality of the functional secret keys generated for the function

f is not modified while modifying the challenger ciphertext CTpSel. Therefore, we prove that the weakly
selective security implies that Hyb3.b is indistinguishable from the hybrid Hyb2.b.

Lemma 5.2. Assuming the weakly selective security of wSel, for each b ∈ {0, 1}, we have∣∣∣AdvA2.b −AdvA3.b
∣∣∣ ≤ negl(λ)

Proof. Suppose there exists a PPT adversary A such that the difference in the advantages is non-negligible,
then we construct a reduction that can break the security of wSel. The reduction internally executes the
adversary A by simulating the role of the challenger of the selective FE scheme. It answers both the message
and the functional queries made by the adversary as follows.

The adversary first submits a pair of messages (m0,m1) to the reduction. The reduction executes the
algorithm sSel.Setup(1λ) to obtain MSK∗sSel and then sample a random tag τ . Then it generates a symmetric
key K∗E and a PRF key K∗p . The reduction computes CE = SKE.Enc(K∗E ,CTsSel), where CTsSel is the output

11



of sSel.Enc
(
MSK∗sSel,mb;PRFK∗

p
(τ)
)
, and then it constructs the circuit G[MSK∗sSel, CE , τ ](m,Kp,KE , β).

The reduction submits the pair of messages
(
(mb,K

∗
p , 0

λ, 0), (mb, 0,K
∗
E , 1)

)
along with the function query

G[MSK∗sSel, CE , τ ](m,Kp,KE , β) to the challenger of the weakly-selectively secure FE scheme (Note that
the underlying weakly selectively secure FE scheme only supports a single-key query). Then the challenger
returns back a challenge ciphertext CT∗wSel and the functional secret key SKG to the reduction. The reduction
denote CT∗wSel by CT∗pSel as the challenge ciphertext and sends it to the adversary. Now the reduction is ready
to handle the functional secret key queries from the adversary. In the functional secret key query phase, when
the adversary submits a function query f , the reduction generates SK′f by executing sSel.KG(MSK∗sSel, f) and
sends back SKf = (SK′f ,SKG) as the functional secret key to the adversary. Finally the adversary outputs
a bit b′ to guess b and the output of the reduction is the output of the adversary.

We claim that the reduction is a legal adversary in the weak selective security game of wSel, i.e., for
challenge message query

(
M0 = (mb,K

∗
p , 0

λ, 0),M1 = (mb, 0
λ,K∗E , 1)

)
and every functional query of the form

G[MSKsSel, CE , τ ] made by the reduction, we have that G[MSKsSel, CE , τ ](M0) = G[MSKsSel, CE , τ ](M1).
G[MSKsSel, CE , τ ](M0) is the functional secret key which is independent of the function f , with respect to
the key MSK∗sSel and randomness PRFK∗

p
(τ). Furthermore, G[MSKsSel, CE , τ ](M1) is the decryption of CE

which is nothing but the encryption of the input message mb with respect to key MSK∗sSel and randomness
PRFK∗

p
(τ). This proves that the reduction is a legal adversary in the weak selective security game.

In conclusion, if the challenger of the weak selective security game sends back an encryption of (mb,K
∗
p , 0

λ, 0)

then we are inHyb2.b, otherwise if the challenger encrypts (mb, 0
λ,K∗E , 1) then we are inHyb3.b. By our hy-

pothesis, this means the reduction breaks the security of the weak selective security game with non-negligible
probability that contradicts the security wSel. This completes the proof of the lemma.

Hyb4.b: This is the same as Hyb3.b, except that for every function query f made by the adversary, the
challenger generates CE in all the functional secret keys with SKE.Enc(K∗E ,CTsSel), where CTsSel is the
output of sSel.Enc ((MSK∗sSel,mb);R), where R is picked at random. The rest of the hybrid is the same as the
previous hybrid. Note that the PRF key K∗p is not explicitly needed in the previous hybrid, and therefore
the pseudorandomness of F implies that Hyb4.b is indistinguishable from Hyb3.b. Finally we have that
Hyb4.0 is computationally indistinguishable from Hyb4.1 due to the selective security of the underlying sSel
scheme.

Lemma 5.3. Assuming that F is a pseudorandom function family, for each b ∈ {0, 1}, we have∣∣∣AdvA3.b −AdvA4.b
∣∣∣ ≤ negl(λ)

Proof. Suppose there exists a PPT adversary A such that the difference in the advantages is non-negligible,
then we construct a reduction that can break the security of F . The reduction will internally execute the
adversary by simulating the role of the challenger of the selectively secure FE scheme. It answers both the
message and the functional queries made by the adversary as follows.

The message queries are answered as in Hyb3.b and it answers the functional queries made by the
adversary as follows. For every functional query f made by the adversary, the reduction picks τ at random
which is then forwarded to the challenger of the PRF security game. In response it receives R∗. The
reduction then computes CE to be SKE.Enc(K∗E ,CTsSel), where CTsSel = sSel.Enc(MSK∗sSel,mb;R

∗). The
reduction then proceeds as in the previous hybrids to compute the functional secret key SKf which it then
sends to the adversary A.

If the challenger of the PRF game sent R∗ = PRFK∗
p
(τ) back to the reduction then we are in Hyb3.b

otherwise if R∗ is generated at random by the challenger then we are in Hyb4.b. From our hypothesis
this means that the probability that the reduction distinguishes the pseudorandom value from random is
non-negligible, contradicting the security of the pseudorandom function family.
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Finally we have that the hybrid Hyb4.0 is computationally indistinguishable from Hyb4.1.

Lemma 5.4. Assuming the selective security of the scheme sSel, we have∣∣∣AdvA4.0 −AdvA4.1
∣∣∣ ≤ negl(λ)

Proof. Suppose there exists a PPT adversary A such that the difference in the advantages is non-negligible,
then we construct a reduction that can break the security of sSel. The reduction internally executes the
adversary by simulating the role of the challenger in the selective public-key FE game. It answers both the
message and the functional queries made by the adversary as follows.

The adversary first submits a pair of messages (m0,m1) which is in turn submitted to the challenger
of selective private-key FE, then the challenger returns back an encryption CTsSel and then the reduction
computes CE as CE = SKE.Enc(K∗E ,CTsSel) where K∗E is the output of SKE.Setup(1λ). The reduction first
generates MPKwSel and the symmetric key K∗E which is the output of SKE.Setup(1λ), and then it sends back
the challenge ciphertext CT∗pSel = wSel.Enc(MPKwSel, (mb, 0,K

∗
E , 1)). (Note that the challenger could choose

either m0 or m1 to encrypt since β = 1 which means that the random bit b is only related to the message
encrypted by the challenger of the selective private-key FE. Furthermore, the reduction could construct any
MSKsSel to construct the circuit G since it has access to the challenger to help him to encrypt the message.)
Now the reduction is ready to interact with the adversary A in the functional secret key query phase. If the
adversary submits a function query f , the reduction in turn submits the function f to the challenger and
it sends back a functional secret key SK′f . Now the reduction generates the functional secret key SKG by it
self and sends back SKf = (SK′f ,SKG) to the adversary as the functional secret key. Finally, the reduction
outputs what is output by the adversary.

We claim that the reduction is a legal adversary in the selective game of sSel, i.e., for every challenge
message query (m0,m1), functional query f , we have that f(m0) = f(m1) since each functional query made
by the adversary of pSel is the same as each functional query made by the reduction and the adversary of
pSel os a legal adversary. This proves that the reduction is a legal adversary in the selective game.

In conclusion, if the challenger sends an encryption of m0 then we are in Hyb4.0 and if the challenger
sends an encryption of m1 then we are inHyb4.1. From our hypothesis, this means that the reduction breaks
the security of sSel. This proves the lemma.

For efficiency, we prove that our transformation is compact-preserving. Namely, the resulting scheme is
also fully-compact. We note that the encryption algorithm of the resulting scheme is the encryption using
algorithm wSel.Enc, therefore the compactness of the resulting scheme only depends on the compactness of
the underlying weakly selective secure public-key FE scheme wSel. Therefore, if the scheme wSel is compact,
then the resulting scheme pSel is also compact. More specifically, we denote the size of a circuit C in a family
of circuits {Cλ}λ∈N as |C|, and then we have

|pSel.Enc| = |wSel.Enc|
= poly(λ,

∣∣(m,Kp, 0
λ, 0)

∣∣)
= poly(λ, |m|)

which proves that our transformation is compact-preserving.
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6 From Non-compact FE to Compact FE via Decomposable and
Compact FE Ciphertext

In this section we weaken the input FE scheme of our transformation to be a non-compact one. Namely,
we employ the decomposable and compact FE ciphertext property [AR16] to transform a single-key, weakly
selective, non-compact FE scheme to a single-key, selective, compact FE scheme.

6.1 Construction

We construct the compact FE scheme cSel = (cSel.Setup, cSel.KG, cSel.Enc, cSel.Dec) from a non-compact
FE scheme as follows.

• Setup cSel.Setup(1λ, 1`): On input a security parameter λ in unary and the message length ` in unary,
it executes the algorithm wSel.Setup(1λ) to obtain the key pair (MPKwSel,MSKwSel). The algorithm
outputs the public key MPKcSel = MPKwSel and the master secret key MSKcSel = MSKwSel.

• Key Generation cSel.KG(MSKcSel, f): Takes as input a master secret key MSKcSel and a function
f , it first executes sSel.Setup(1λ) to obtain the master secret key MSKsSel. Then it samples a random
ciphertext CE = (C1

E , · · · , C`E), where each CiE ← {0, 1}`=`1(λ)8, tags τ, τ̂1, · · · , τ̂` and τ̂ uniformly
at random from the space of length `2(λ) and a PRF key K ← {0, 1}λ. It constructs a circuit
G = G[MSKsSel, C

1
E , · · · , C`E , τ, τ̂1, · · · , τ̂`] as described in the figure 2 and then generates the following:

SKG ← wSel.KG(G[MSKsSel, C
1
E , · · · , C`E , τ, τ̂1, · · · , τ̂`],MSKwSel)

SK′f ← sSel.KG(MSKsSel, f)

CTindpt ← sSel.Enc(MSKsSel,PRFK(τ);PRFK(τ̂))

Finally it outputs SKf = (SK′f ,SKG,CTindpt) as the functional secret key.

G[MSKsSel, C
1
E , · · · , C`E , τ, τ̂1, · · · , τ̂`](m,Kp,KE , β)

1. If β = 1, outputs SKE.Dec(KE , CE).

2. Otherwise it computes

CTisSel ← sSel.Enc
(
(MSKsSel,m

i,PRFKp(τ));PRFKp(τ̂i)
)

for each i ∈ [`]. Finally it outputs {CTisSel}i∈[`].

Figure 2: The circuit G[MSKsSel, C
1
E , · · · , C`E , τ, τ̂1, · · · , τ̂`]

• Encryption cSel.Enc(m,MPKcSel): Takes as input the message m = (m1, · · · ,m`) and the public key
MPKcSel, which is parsed as MPKwSel. It samples a PRF key Kp ← K and it computes ciphertexts
CTcSel ← wSel.Enc

(
MPKwSel, (m,Kp, 0

λ, 0)
)
.

• Decryption cSel.Dec(SKf ,CTcSel): On input a functional secret key SKf = (SK′f ,SKG,CTindpt) and
the ciphertext CTcSel and then it computes {CTisSel}i∈[`] ← wSel.Dec(CTcSel,SKG) and outputs

f(m)← sSel.Dec
(
({CTisSel}i∈[`],CTindpt),SK

′
f

)
8The length of CE is determined as follows. Denote by `sSel be the length of the ciphertext obtained by encrypting a message

of length |m|, using sSel.Enc. Further, denote by `1 to be the length of ciphertext obtained by encrypting a message of length
`sSel, using SKE.Dec. We set the length of CE to be `1
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The correctness of the above scheme easily follows from the underlying building blocks, and in the
remainder of this section we prove the following theorem:

Theorem 6.1. Assuming that (1) non-compact, single-key, public-key functional encryption scheme with
weakly selective security, (2) selective secure one-ciphertext private-key functional encryption scheme with
decomposable and succinct ciphertext property, (3) symmetric encryption with pseudorandom ciphertext and
(4) a pseudorandom function family, then there exists a fully-compact, single-key, public-key functional
encryption scheme with selective security.

Proof. We give a proof sketch by providing a sequence of hybrid arguments.

Hyb1.b: This corresponds to the real experiment where the challenger encrypts the messagemb = (m1
b , · · · ,m`

b),
that is, the ciphertext is CTcSel = {CTiwSel}i∈`, where CTiwSel ← wSel.Enc(MPKwSel, (m

i
b,Kp, 0

λ, 0)) for each
i ∈ [`].

Hyb2.b.i: This is the same asHyb1.b except that for every functional query f , the challenger replaces each CiE
with a symmetric encryption SKE.Enc(KE ,CT

i
sSel), where CT

i
sSel ← sSel.Enc((MSK∗sSel,m

i
b,PRFK∗

p
(τ);PRFK∗

p
(τ̂i)))

where K∗p is a PRF key sampled from the key space K. The symmetric encryption is computed with respect
to K∗E where K∗E ← SKE.Setup(1λ) and τ and each τ̂i is the random tag associated to the functional secret
key of f . Since the pseudorandom ciphertext property of the symmetric encryption scheme SKE, we have
Hyb1.b ≈ Hyb2.b.1 ≈ · · · ≈ Hyb2.b.`.

Hyb3.b: This is the same as the hybrid Hyb2.b.`, except that the challenge ciphertext will be an encryption
of the tuple (mb, 0,KE , 1) instead of (mb,Kp, 0

λ, 0). Note that the functionality of the functional secret keys
generated for the function f is not modified while modifying the challenge ciphertext CTwSel. Therefore,
Hyb3.b ≈ Hyb2.b.` due to the weakly selective security of the underlying FE scheme wSel.

Hyb4.b.i: The same as the hybrid Hyb3.b except that for every functional query f made by the adversary,
the challenger generates CiE in all the functional secret keys with SKE.Enc(K∗E ,CT

i
sSel), where CTisSel ←

sSel.Enc((MSK∗sSel,m
i
b,PRFK∗

p
(τ); R̂i)), where R̂i is picked at random. The rest of the hybrid is the same as

the previous hybrid. We have Hyb3.b ≈ Hyb4.b.1 ≈, · · · ,≈ Hyb4.b.` due to the security of pseudorandom
function.

Hyb5.b: The same as Hyb4.b.` except that the challenger generates the ciphertext CTindpt as CTindpt ←
sSel.Enc(MSKsSel,PRFK∗

p
(τ); R̂), where R̂ is picked at random. We have Hyb4.b.` ≈ Hyb5.b due to the

security of PRF.

Hyb6.b: The same as Hyb5.b except that the challenger generates the ciphertext CTindpt as CTindpt ←
wSel.Enc(MSKwSel, R; R̂), where R is picked at random. Therefore, we have Hyb5.b ≈ Hyb6.b due to the
security of PRF.

Finally, Hyb6.0 is computationally indistinguishable from Hyb6.1 based on the selective security of the
one-ciphertext private key functional encryption scheme sSel.

Corollary 6.1. Assuming the existence of one-way functions and the hardness of LWE assumption, if there
exists a single-key, weakly selective secure, non-compact FE scheme, then there exists a single-key, selective
secure, compact FE scheme (with only polynomial security loss).

7 Implications to Indistinguishability Obfuscation

Here we present the implications of our main result to general-purpose indistinguishability obfuscator.
We first recall the main result described in [AJ15, BV15].
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We first provide some theorems adapted from existing results:

Theorem 7.1 ([AJ15, BV15]). Public-key (weakly) compact FE for NC1 with sub-exponential security in
the selective security model for single-key query implies iO for P/poly.

Theorem 7.2. Assuming the existence of one-way functions, any multi-key, adaptively secure, width compact
FE can be polynomially reduced to a single-key, weakly selective secure, weakly compact FE.

Combining theorem 7.1 with the corollary 6.1, we obtain the following corollary.

Corollary 7.1. Assuming the existence of one-way functions and the hardness of LWE assumption, if
there exists a single-key, weakly selective, non-compact FE with sub-exponential security, then there exists an
indistinguishability obfuscator for P/poly.

Combining theorem 7.2 with the corollary 6.1, we obtain the following corollary.

Corollary 7.2. Assuming the existence of one-way functions and the hardness of LWE assumption, any
multi-key, adaptively-secure, width-compact scheme can be polynomially reduced to a single-key, weakly se-
lective secure, non-compact FE scheme.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded encod-
ing. In Theory of Cryptography Conference, pages 528–556. Springer, 2015.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to
adaptive security in functional encryption. In Annual Cryptology Conference, pages 657–677.
Springer, 2015.

[ADGM16] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of indistin-
guishability obfuscations of circuits over ggh13. Cryptology ePrint Archive, Report 2016/1003,
2016. http://eprint.iacr.org/2016/1003.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In Advances in Cryptology–CRYPTO 2013, pages
500–518. Springer, 2013.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Annual Cryptology Conference, pages 308–326. Springer, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation from
functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730, 2015.
http://eprint.iacr.org/2015/730.

[AR16] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revisited. Cryp-
tology ePrint Archive, Report 2016/361, 2016. http://eprint.iacr.org/2016/361.

[AS16a] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In Theory of
Cryptography Conference, pages 125–153. Springer, 2016.

[AS16b] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indis-
tinguishability obfuscation from degree-5 multilinear maps. Cryptology ePrint Archive, Report
2016/1097, 2016. http://eprint.iacr.org/2016/1097.

16

http://eprint.iacr.org/2016/1003
http://eprint.iacr.org/2015/730
http://eprint.iacr.org/2016/361
http://eprint.iacr.org/2016/1097


[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and
Ke Yang. On the (im) possibility of obfuscating programs. In Advances in cryptologyâĂŤCRYP-
TO 2001, pages 1–18. Springer, 2001.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and
Brent Waters. Time-lock puzzles from randomized encodings. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, pages 345–356. ACM, 2016.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 221–238. Springer, 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct random-
ized encodings and their applications. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, pages 439–448. ACM, 2015.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a nash
equilibrium. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium
on, pages 1480–1498. IEEE, 2015.

[BR14] Zvika Brakerski and Guy N Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. In Theory of Cryptography Conference, pages 1–25. Springer, 2014.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key setting.
In Theory of Cryptography Conference, pages 306–324. Springer, 2015.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for public-key
cryptography. Communications of the ACM, 55(11):56–64, 2012.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium
on, pages 171–190. IEEE, 2015.

[CGH16] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program
obfuscators. Cryptology ePrint Archive, Report 2016/998, 2016. http://eprint.iacr.org/
2016/998.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct garbling
and indistinguishability obfuscation for ram programs. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, pages 429–437. ACM, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanal-
ysis of the multilinear map over the integers. In Advances in Cryptology–EUROCRYPT 2015,
pages 3–12. Springer, 2015.

[CLLT16] Jean-SÃľbastien Coron, Moon Sung Lee, TancrÃĺde Lepoint, and Mehdi Tibouchi. Zeroiz-
ing attacks on indistinguishability obfuscation over clt13. Cryptology ePrint Archive, Report
2016/1011, 2016. http://eprint.iacr.org/2016/1011.

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. In Annual Cryptology Conference, pages 287–307. Springer,
2015.

[CLT13] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over
the integers. In Advances in Cryptology–CRYPTO 2013, pages 476–493. Springer, 2013.

17

http://eprint.iacr.org/2016/998
http://eprint.iacr.org/2016/998
http://eprint.iacr.org/2016/1011


[CLT15] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. New multilinear maps over the
integers. Technical report, Cryptology ePrint Archive, Report 2015/162, 2015. http://eprint.
iacr. org, 2015.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In Founda-
tions of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 40–49. IEEE,
2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM (JACM), 33(4):792–807, 1986.

[GHMS14] Craig Gentry, Shai Halevi, Hemanta KMaji, and Amit Sahai. Zeroizing without zeroes: Cryptan-
alyzing multilinear maps without encodings of zero. IACR Cryptology ePrint Archive, 2014:929,
2014.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 555–564. ACM, 2013.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and bundling
functionalities made generic and easy. Cryptology ePrint Archive, Report 2016/317, 2016.
http://eprint.iacr.org/2016/317.

[GMS16] Sanjam Garg, Pratyay Mukherjee, and Akshayaram Srinivasan. Obfuscation without the vul-
nerabilities of multilinear maps. Technical report, Cryptology ePrint Archive, Report 2016/390,
2016. http://eprint. iacr. org, 2016.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryptographic hard-
ness of finding a nash equilibrium. In Annual Cryptology Conference, pages 579–604. Springer,
2016.

[GR07] Shafi Goldwasser and Guy N Rothblum. On best-possible obfuscation. In Theory of Cryptography
Conference, pages 194–213. Springer, 2007.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryption with
polynomial loss. In Theory of Cryptography Conference, pages 419–442. Springer, 2016.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bound-
ed collusions via multi-party computation. In Advances in Cryptology–CRYPTO 2012, pages
162–179. Springer, 2012.

[HJO+15] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs.
Adaptively secure garbled circuits from one-way functions. Technical report, IACR Cryptology
ePrint Archive, 2015: 1250, 2015.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, pages 419–428. ACM, 2015.

[Lin16a] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 28–57. Springer, 2016.

[Lin16b] Huijia Lin. Indistinguishability obfuscation from ddh on 5-linear maps and locality-5 prgs.
Cryptology ePrint Archive, Report 2016/1096, 2016. http://eprint.iacr.org/2016/1096.

18

http://eprint.iacr.org/2016/317
http://eprint.iacr.org/2016/1096


[LM16a] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional encryption.
In Theory of Cryptography Conference, pages 443–468. Springer, 2016.

[LM16b] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional encryption.
Cryptology ePrint Archive, Report 2016/561, 2016. http://eprint.iacr.org/2016/561.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over ggh13. Technical report, Cryptology ePrint
Archive, Report 2016/147, 2016.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive,
2010:556, 2010.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In International Cryptology Conference, pages 500–517. Springer,
2014.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Proceedings of the 17th ACM conference on Computer and communications security,
pages 463–472. ACM, 2010.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages
475–484. ACM, 2014.

[Wat13] Brent Waters. Functional encryption: origins and recent developments. In Public-Key
Cryptography–PKC 2013, pages 51–54. Springer, 2013.

Appendices

Appendix A Preliminaries (Cont.)

A.1 Private-Key Functional Encryption

A private-key functional encryption scheme SKFE over a message spaceM = {Mλ}λ∈N and a function
space F = {Fλ}λ∈N is a tuple (SKFE.Setup,SKFE.KG,SKFE.Enc,SKFE.Dec) of PPT algorithms with the
following properties.

• SKFE.Setup(1λ): The setup algorithm takes as input the unary representation of the security parameter,
and outputs a master secret key MSK.

• SKFE.KG(MSK, f): The key generation algorithm takes as input a secret key MSK and a function
f ∈ Fλ and outputs a functional secret key SKf .

• SKFE.Enc(MSK,m): The encryption algorithm takes as input a master secret key MSK and a message
m ∈Mλ, and outputs a ciphertext CT.

• SKFE.Dec(SKf ,CT): The decryption algorithm takes as input a functional secret key SKf and a ci-
phertext CT, and outputs m ∈Mλ ∪ {⊥}
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We say a private-key functional encryption scheme is defined for a complexity class C if it supports all
the functions that can be implemented in C.

Correctness. We require that there exists a negligible function negl(·) such that for all sufficiently large
λ ∈ N, for every message m ∈Mλ, and for every function f ∈ Fλ we have

Pr[SKFE.Dec(SKFE.KG(MSK, f),SKFE.Enc(MSK,m)) = f(m)] ≥ 1− negl(λ)

where MSK← SKFE.Setup(1λ), and the probability is taken over the random choices of all algorithms.

Security. We consider the standard (weakly) selective indistinguishability-based notions for private-key
functional encryption as shown in the work of Brakerski and Segev [BS15]. Intuitively, these notions ask
that encryptions of any two messages, m0 and m1, should be computationally indistinguishable given access
to functional secret keys for any function f such that f(m0) = f(m1). In the case of selective security,
adversaries are required to specify the two messages in advance (i.e., before interacting with the system).

Definition A.1 (Weakly Selective Security). A private-key functional encryption scheme SKFE over a
function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is weak selective secure if for any PPT
adversary A there exists a negligible function negl(·) such that

AdvwSel
skfe,A(λ) =

∣∣∣Pr[ExpwSel
skfe,A(λ, 0) = 1]− Pr[ExpwSel

skfe,A(λ, 1) = 1]
∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment ExpwSel
skfe,A(λ, b), modeled as a game

between the adversary A and a challenger, is defined as follows:

1. Challenge Phase: The adversary A outputs two messages (m0,m1) such that |m0| = |m1| and a set
of functions f1, · · · , fq ∈ F to the challenger. The parameter q and the size of message vectors are
apriori-unbounded.

2. The challenger generates MSK ← SKFE.Setup(1λ) and generates the challenger ciphertext CT ←
SKFE.Enc(MSK,mb). The challenger also computes SKf,i ← SKFE.KG(MSK, fi) for all i ∈ [q]. It then
sends CT and {SKf,i}i∈[q] to the adversary A.

3. If A makes a query fj for some j ∈ [q] to functional secret key generation oracle such that fj(m0) 6=
fj(m1), the output of the experiment is ⊥. Otherwise the output is b′ which is the output of A

Remark. We say that the functional encryption scheme SKFE is single-key, weakly selective secure if the
adversary A in ExpwSel

skfe,A(λ, b) is allowed to obtain the functional secret key for a single function f .

Definition A.2 (Selective Security). A private-key functional encryption scheme SKFE over a function space
F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is selectively secure if for any PPT adversary A there
exists a negligible function negl(·) such that

AdvSel
skfe,A(λ) =

∣∣∣Pr[ExpSel
skfe,A(λ, 0) = 1]− Pr[ExpSel

skfe,A(λ, 1) = 1]
∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment ExpSel
skfe,A(λ, b), modeled as a game

between the adversary A and a challenger, is defined as follows:

1. Setup Phase: The challenger samples MSK← SKFE.Setup(1λ).

2. Message Queries: On input 1λ the adversary submits (m
(0)
1 , · · · ,m(0)

p ), (m
(1)
1 , · · · ,m(1)

p ) for some
polynomial p = p(λ). The challenger replies with (c1, · · · , cp), where ci ← SKFE.Enc(MSK,m

(b)
i ) for

every i ∈ [p].
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3. Function Queries: The adversary adaptively queries the challenger with any function f ∈ Fλ such
that f(m(0)

i ) = f(m
(1)
i ) for every i ∈ [p]. For each such query, the challenger replies with SKf ←

SKFE.KG(MSK, f).

4. Output Phase: The adversary outputs a bit b′ which is defined as the output of the experiment.

Efficiency. We now define the efficiency requirements of a SKFE scheme.

Definition A.3 (Fully Compact). A private-key functional encryption scheme SKFE is said to be fully
compact if for all security parameter λ ∈ N and for all message m ∈ {0, 1}∗ the running time of the
encryption algorithm SKFE.Enc is poly(λ, |m|).

Definition A.4 (Weakly Compact). A private-key functional encryption scheme SKFE is said to be weakly
compact if for all security parameter λ ∈ N and for all messagem ∈ {0, 1}∗ the running time of the encryption
algorithm SKFE.Enc is sγ ·poly(λ, |m|), where γ < 1 is a constant and s = maxf∈F |Cf |, where Cf is a circuit
implementing the function f .

A private-key functional encryption scheme is said to be non-compact if the running time of the encryp-
tion algorithm can depend arbitrarily on the maximum circuit size of the function family.

Appendix B Transformation in the Private-Key Setting

In this section we describe the transformation from weakly selective security to selective security in
the private-key functional encryption scheme. The only difference from the public-key setting described
in the section 5 is that there is only one master key MSKwSel which acts as either an encryption key
or a master secret key. Note that we will use the same notation as described in the section 5, except
that pSel = (pSel.Setup, pSel.KG, pSel.Enc, pSel.Dec) represents a selectively-secure private-key functional
encryption scheme and wSel = (wSel.Setup,wSel.KG,wSel.Enc,wSel.Dec) represents a weakly selectively-
secure private-key functional encryption scheme.

B.1 Construction

We construct the private-key functional encryption scheme pSel = (pSel.Setup, pSel.KG, pSel.Enc, pSel.Dec)
as follows.

Setup pSel.Setup(1λ): On input a security parameter λ in unary, it executes the algorithm wSel.Setup(1λ)
to obtain the master secret key MSKwSel. The algorithm outputs the master secret key MSKpSel = MSKwSel.

Key Generation pSel.KG(MSKpSel, f): Takes as input a master secret key MSKpSel and a function f , it
first executes sSel.Setup(1λ) to obtain the master secret key MSKsSel. Then it samples a random ciphertext
CE ← {0, 1}`1(λ) and a random tag τ ← {0, 1}`2(λ). It constructs a circuit G = G[MSKsSel, CE , τ ] as
described in the figure 1 and then generates a functional secret key SKG ← wSel.KG(G,MSKwSel) and a
functional secret key SK′f ← sSel.KG(MSKsSel, f). Finally it outputs SKf = (SK′f ,SKG) as the functional
secret key.

Encryption pSel.Enc(m,MSKpSel): Takes as input the message m and the master secret key MSKpSel,
which is parsed as MSKwSel. It samples a PRF key Kp ← K and outputs the ciphertext CTpSel ←
wSel.Enc

(
MSKwSel, (m,Kp, 0

λ, 0)
)
.

Decryption pSel.Dec(SKf ,CTpSel): On input a functional secret key SKf = (SK′f ,SKG) and the ciphertext
CTpSel, it computes CTsSel ← wSel.Dec(CTpSel,SKG) and outputs f(m)← sSel.Dec(CTsSel,SKf ).
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G[MSKsSel, CE , τ ](m,Kp,KE , β)

1. If β = 1, outputs SKE.Dec(KE , CE).

2. Otherwise outputs CTsSel ← sSel.Enc
(
(MSKsSel,m);PRFKp(τ)

)
.

Figure 3: The circuit G[MSKsSel, CE , τ ]

The correctness of the above scheme easily follows from the underlying building blocks, and in the
remainder of this section we prove the following theorem:

Theorem B.1. Assuming that (1) fully compact, single-key, weakly selectively secure private-key functional
encryption scheme, (2) one-ciphertext selectively secure private-key functional encryption scheme, (3) sym-
metric encryption with pseudorandom ciphertext and (4) a pseudorandom function family, then there exists
a fully compact, bounded-key(≥ 1 key queries), selectively-secure private-key functional encryption scheme.

Proof. The proof in the private-key setting is essentially the same as that in the public-key setting. Therefore
we will omit the proof details and just give the description of each hybrid arguments.

For security , we only give a proof sketch by listing the transformations in each hybrid arguments.

Hyb1.b: This corresponds to the real experiment where the challenger encrypts the message mb, that is,
CTpSel is obtained by executing wSel.Enc

(
MSKwSel, (mb,Kp, 0

λ, 0)
)
.

Hyb2.b: For every functional query f , the challenger replaces CE with a symmetric encryption SKE.Enc(KE ,CTsSel),
where CTsSel ← sSel.Enc

(
(MSK∗sSel,mb);PRFK∗

p
(τ)
)
(note that each functional secret key has its own dif-

ferent CE), and K∗p is a PRF key sampled from the key space K. The symmetric encryption is computed
with respect to K∗E where K∗E is the output of SKE.Setup(1λ) and τ is the random tag associated to the
functional secret key of f . The same K∗E and K∗p are used while generating all the functional secret keys,
and K∗p is used generating the challenge ciphertext CT∗pSel = wSel.Enc

(
MSK∗wSel, (m,K

∗
p , 0

λ, 0)
)
. The rest

of hybrid is the same as the previous hybrid Hyb1.b. Note that the symmetric key K∗E is not used for any
purpose other than generating the values CE .

Therefore, the pseudorandom ciphertexts property of the symmetric encryption scheme implies that
Hyb2.b and Hyb1.b are indistinguishable.

Hyb3.b: This is the same asHyb2.b, except that the challenge ciphertext will be an encryption of (mb, 0,KE , 1)
instead of (mb,Kp, 0

λ, 0). Note that the functionality of the functional secret keys generated for the function
f is not modified while modifying the challenger ciphertext CTpSel. Therefore, we prove that the weakly
selective security implies that Hyb3.b is indistinguishable from the hybrid Hyb2.b.

Hyb4.b: For every function query f made by the adversary, the challenger generates CE in all the functional
secret keys with SKE.Enc(K∗E ,CTsSel), where CTsSel is the output of sSel.Enc ((MSK∗sSel, xb);R), where R is
picked at random. The rest of the hybrid is the same as the previous hybrid. Note that the PRF key K∗p is
not explicitly needed in the previous hybrid.

Therefore the pseudorandomness of F implies that Hyb4.b is indistinguishable from Hyb3.b.

Finally we can prove that Hyb4.0 is computationally indistinguishable from Hyb4.1 based on the se-
lective security of the one-ciphertext private key functional encryption scheme. This finishes the security
proof.

For efficiency , we prove that our transformation is compact-preserving. Namely, the resulting scheme is
also fully compact. We note that the encryption algorithm of the resulting scheme is the encryption using
algorithm wSel.Enc, therefore the compactness of the resulting scheme only depends on the compactness
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of the underlying weakly selectively secure private-key FE scheme wSel. Therefore, if the scheme wSel is
compact, then the resulting scheme pSel is also compact. More specifically, we denote the size of a circuit C
in a family of circuits {Cλ}λ∈N as |C|, and then we have

|pSel.Enc| = |wSel.Enc|
= poly(λ,

∣∣(m,Kp, 0
λ, 0)

∣∣)
= poly(λ, |m|)

which proves that our transformation is compact-preserving.
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