
Algebraic Security Analysis of Key Generation
with Physical Unclonable Functions

Matthias Hiller1, Michael Pehl1, Gerhard Kramer2 and Georg Sigl1,3

1 Chair of Security in Information Technology
2 Chair of Communications Engineering

Technical University of Munich
3 Fraunhofer AISEC

{matthias.hiller, m.pehl, gerhard.kramer, sigl}@tum.de

Abstract. Physical Unclonable Functions (PUFs) provide cryptographic
keys for embedded systems without secure non-volatile key storage. Sev-
eral error correction schemes for key generation with PUFs were intro-
duced, analyzed and implemented over the last years. This work abstracts
from the typical algorithmic level and provides an algebraic view to re-
veal fundamental similarities and differences in the security of these error
correction schemes.

An algebraic core is introduced for key generation with Physical Unclon-
able Functions (PUFs). It computes the secret key through the helper
data from the input PUF response and an optional random number. For
nearly uniformly distributed PUF responses, the leakage of the secret
key and the helper data can be brought to zero if and only if the rank of
the algebraic core is equal to the sum of the ranks of the key generating
part and the rank of the helper data generating part. This rank criterion
has the practical advantage that a security check can be performed for
linear codes at an early design stage of an algorithm. The criterion is
applied to state-of-the-art approaches to show that fuzzy commitment
and systematic low leakage coding are the only analyzed schemes that
achieve zero leakage.

Keywords: Physical Unclonable Functions (PUFs), Fuzzy Extractor, Coding
Theory.

1 Introduction

Physical circuit properties such as the exact individual switching delays of tran-
sistors vary for each manufactured chip. While conventional circuits suffer from
this variation, silicon Physical Unclonable Functions (PUFs) take advantage of
them: they capture randomness in the manufacturing process and transform the
analog physical variations into digital numbers which can be interpreted as out-
come of a random variable. These results can be used to embed a key into a
device and only reproduce it on demand [1].

Since silicon PUFs are constructed from transistors, or even from standard
cells, their implementation fits in seamlessly with the standard digital design flow
and manufacturing process. Therefore, PUFs can be easily added to a standard
integrated circuit and bridge the gap between the increasing demand for security
and the restriction of a low additional cost overhead.

In this work, we focus on the key storage application of PUFs where the PUF
provides a sequence of bits, called the PUF response, which is derived by sam-
pling and quantizing the analog circuit behavior. The circuit can be implemented
e.g. through ring oscillators [2], SRAM cells [3], or configurable delay lines with
an arbiter [4]. Once the PUF is manufactured and the variations are fixed to
a specific value, a noisy version of the initial PUF response can be reproduced
whenever needed.

To overcome the noise in the PUF response and generate sufficiently reliable
keys, with error probabilities in the range of 10−6 down to 10−9, error correc-
tion is required. The building blocks in Figure 1 show the processing steps for
secret key storage with PUFs during enrollment which is carried out in a secure
environment. Later, the secret key is reproduced again in the field.

Algebraic Core A

SYN

ENC Helper

 Data W

ECC

ENC

Random

Input R

PUF

Response X

Secret

S

Fig. 1: Secret Key and Helper Data Generation with a PUF during enrollment

Error correction is enabled by mapping the initial PUF response to a code-
word of an Error-Correcting Code (ECC) during enrollment. First, a random
number is encoded to a codeword. Then, the syndrome encoder creates the se-
cret and side-information, called helper data, from the PUF response and the
codeword. The helper data is stored for error correction later during reproduc-
tion. Later in this work, we will merge the ECC and syndrome encoder and treat
both together as algebraic core highlighted in gray in Figure 1.

In this work, we are interested in the secrecy leakage between the secret
and the helper data and, thus, assume a good linear ECC as given. Over the
last years, several practical algorithms were introduced and implemented, e.g.
[5,6,7,8,9,10,11]. So far, the development of new error correction algorithms for
PUFs was driven more from a design perspective and new solutions were com-
pared to the state of the art by analyzing practical quantities such as error
probabilities, leakages and implementation sizes. The information theory com-
munity studied the more generic, but closely related, problem of key generation

from a correlated source [12,13,14], which led to capacity results and optimal
coding strategies based on random codes.

We introduce the algebraic core as a unified algebraic representation of the
process of secret and helper data generation which applies to most currently
available schemes. Our new unified description allows to discover similarities
and differences among most currently available schemes which is in line with
previous work [10,15]. Instead of aiming for a more precise analysis of the leakage,
we provide rather qualitative, but more constructive results. We provide a new
view on the problem which allows to identify the reason for the leakage already
during the design of the algorithm.

The ranks of different submatrices of the algebraic core allow to analyze
properties of state-of-the-art approaches and are a starting point for a systematic
exploration to develop better solutions.

Analyzing the state-of-the-art approaches reveals that only the cores of fuzzy
commitment [6] and systematic low leakage coding [16,10] fulfill our security cri-
terion while the other approaches have inevitable secrecy leakage that is already
caused on algorithmic level, which is in line with e.g. [10,15].

Our Contributions:

– Generic algebraic representation of syndrome and channel coding for PUFs
– Discussion of the algebraic cores of seven coding schemes
– Introduction of a practical security design criterion
– Algebraic security analyses of state-of-the-art approaches

Outline:
The notation used in this paper is provided in Section 2. Section 3 introduces our
new algebraic representation of helper data generation for PUFs. The algebraic
representations of several state-of-the-art schemes are given in Section 4. We
derive our security criterion in Section 5 and apply it in Section 6. Section 7
concludes this work.

2 Notation

Functions are denoted by small letters, e.g., f(·). Line vectors are denoted by
capital letters, e.g., X, where [X,Y] denotes the concatenation of vectors X and
Y to a new line vector. Matrices are provided in bold capital letters, e.g., A.
The dimension of a vector or matrix is denoted by dim(·) and evaluates, e.g.,
to dim(A) = 〈a× b〉, where the first entry (a) is the number of rows and the
second entry (b) is the number of columns. The rank of a matrix is computed by
the rank (·) operation, a diagonal matrix is created from a vector X by applying
diag (X).

The entropy can be evaluated to H(X), the joint entropy is given by H(XY).
I(X;Y) denotes the mutual information between.

I is the identity matrix. G defines the generator matrix of a code with the
special case G = [I P] for a linear code in systematic form. P is the part of

the generator matrix of a linear code in standard form which creates to the
redundancy while H is the parity check matrix of a code.

3 Unified Algebraic Description of Secret Key and
Helper Data Generation

Currently, most helper data generation schemes are presented in an algorithmic
way. This representation is closer to implementation but makes it harder to com-
pare their fundamental theoretical properties. Therefore, we introduce a unified
algebraic form which gives better insights on the underlying structure, why and
how much the helper data leaks for different coding schemes.

The PUF response X obviously is a mandatory input for all secret key storage
approaches for PUFs. Some approaches also have a random number R as second
input that is available only during helper data generation. It is either directly
used as the key or as a mask to protect the PUF response.

The helper data generation has two outputs. The secret S is either directly
used as key K or compressed by a hash function f (·) . In addition, helper data
W is stored to enable later key reproduction.

Helper data generation schemes for PUFs with an algebraic core A share the
form

[S W] = [R X] Mpre A Mpost (1)

In the first step, the random number R and PUF response X with dimensions
〈1× kin〉 and 〈1× lin〉 are multiplied with a preprocessing matrix Mpre. The
algebraic core A performs the fundamental encoding operations. The result is
multiplied with the postprocessing matrix Mpost. The outputs S and W have
dimensions 〈1× kout〉 and 〈1× lout〉.

Some schemes read in reliability information on the PUF response bits and
select the most stable ones [17] during preprocessing, or apply postprocessing
steps that take the reliability into account, such as [8,9]. These algorithmic steps
can be represented in the preprocessing matrix Mpre or postprocessing matrix
Mpost. We require that there is no interaction between R and X in Mpre and also
no interaction between the preliminary versions of S and W in Mpost. If there
is interaction, we have to consider the processing step as part of the algebraic
core.

Some approaches can be attacked by manipulating the helper data [18,19].
A hash function f (·) can prevent these attacks by combining the helper data
and the secret via K = f (S,W) [18]. The helper data leaks information about
the reproduced secret for some approaches. If this is the case, a hash function is
required to compress the remaining entropyH(S|W) to a smaller length to create
a high-quality cryptographic key K = f (S) [7]. According to [7], information
theoretic security can be achieved by using a universal hash function. However,
the hash loss [20] must be taken into account which has to be compensated by
a larger secret S. Ideally, we try to avoid using a hash function so that no hash
loss occurs and also to reduce the implementation complexity.

In this work, we focus on the properties of the algebraic core and remove Mpre

and Mpost, which can be set to I for reliable PUFs. Therefore, (1) simplifies to

[S W] = [R X] A (2)

The algebraic core A has a left part AL that computes the secret S and a right
part AR that computes the helper data W . The four sub-matrices of interest
are given by

A = [AL AR] =

[
AUL AUR

ALL ALR

]
(3)

Inserting (3) in (2) shows that R is multiplied with the upper part [AUL AUR]
of A while input X is multiplied with the lower part [ALL ALR].

4 Algebraic Representation of the State of the Art

This section describes the algebraic cores for five linear key generation ap-
proaches with PUFs discussed in [15] as a reference set. The analysis of the
leakage of the different approaches follows in Section 5.

4.1 Fuzzy Commitment

For fuzzy commitment [6] using a linear ECC, a random input vector R is stored
with the help of the PUF and is used as the secret S. By multiplying R with
the generator matrix G of an ECC, R is encoded to a codeword S = C = R G.
Then, it is masked with the PUF response X and the result is stored as public
helper data W , i.e., W = (R G)⊕X. Note that fuzzy commitment and the
code-offset fuzzy extractor can also operate on non-linear ECCs. However, all
published implementations in the PUF context use linear ECCs.

Let decode(·) be the decoding operation of the ECC. The resulting equations
in matrix form are

[S W] = [R X]

(
G G
0 I

)
(4)

K = decode(S) = R (5)

There also exists a slightly modified version with K = S = R, presented in [21].
Here, AUL = G is replaced by I, resulting in

[S W] = [R X]

(
I G
0 I

)
(6)

Note that [6] returns the entire codeword that also contains redundancy while
[21] only outputs the encoded information.

4.2 Code-Offset Fuzzy Extractor

The code-offset fuzzy extractor [7] has several parallels to fuzzy commitment.
The main difference is that the PUF response X defines the secret S instead of
deriving it from the random number R. This difference causes leakage so that
a hash function must be added. For a code-offset fuzzy extractor using a linear
ECC, the helper data W is computed as the XOR of a random codeword R G
and the PUF response X. Since the PUF response is used as the secret now, i.e.
S = X, we have

[S W] = [R X]

(
0 G
I I

)
(7)

K =f (S) (8)

4.3 Fuzzy Extractor with Syndrome Construction

A second construction introduced in [7] stores the syndrome of the PUF response
as helper data so that no extra input random number R is required. Note that
for ECCs, the syndrome is precisely defined, e.g. for block codes with parity
check matrix H it is given by H XT . In the general PUF context, we interpret
the word syndrome as information that facilitates error correction since it also
contains information on the error pattern in the PUF response. Here, we use
syndrome construction to refer to the channel coding definition.

We compute the syndrome by multiplying the PUF response X with HT .
Again, a hash function K = f (S) compresses the PUF output to create a uni-
form cryptographic key.

Since no random number R is used, the two upper sub-matrices of A are
set to zero. It can be seen that all PUF response bits contribute to the helper
data and also to the key. The unified algebraic representation of the syndrome
construction is given by

[S W] = [0 X]

(
0 0
I HT

)
(9)

K =f (S) (10)

4.4 Parity Construction

Instead of storing the syndrome, the construction in [5] stores the parity of the
PUF response. The entire PUF response is interpreted as information to be
encoded by an ECC with systematic encoding with G = (I P), including the
parity part P. As for the syndrome construction, the secret and the helper data
are computed from the PUF response while no external secret is used. Therefore,
AUL and AUR are both set to zero again. The unified mathematical description
is

[S W] = [0 X]

(
0 0
I P

)
(11)

K =f (S) (12)

It was shown in [15] that the error correction capability of the parity construction
is significantly weaker than the other discussed approaches.

4.5 Systematic Low Leakage Coding

Systematic low leakage coding (SLLC) [16,10] is the newest approach in this
comparison and is also based on codes with systematic encoding. SLLC also
computes redundancy from PUF response bits.

Similar to the two previous approaches, SLLC has an algebraic core in the
form

[S W] = [0 X]

(
0 0

ALL ALR

)
(13)

In contrast to the parity approach, the parity is not stored directly. Instead, it
is masked with fresh PUF bits and then output as helper data. Therefore, we
split the PUF response X into a first part K = S = Xkout

1 that is used as secret
and a second part X lin

kout+1 for masking. ALL and ALR in (13) are given by

ALL =

(
I
0

)
, ALR =

(
P
I

)
(14)

Inserting (14) in (13) and removing the all zero row gives

[S W] =
[
Xkout

1 X lin
kout+1

](
I P
0 I

)
(15)

Note the similarity to (6), where A is also an upper triangular matrix.

5 Security Criterion for the Algebraic Core

We next discuss the secrecy leakage that is quantified by the mutual information
I(S;W). Our goal is to make this leakage close to zero, in which case S and W are
independent. We show that this can be achieved only if the rank of the algebraic
core A is equal to the sum of the ranks of AL and AR. For the analysis, we will
define the rank loss as the difference between the maximum possible rank of a
matrix and its actual rank.

For two sequences Y ∈ Fn
2 and Z ∈ Fm

2 and a matrix A with dim(A) =
〈n×m〉 and q = rank (A), we compute Z as Z = Y ·A. This can be interpreted
as mapping Y ∈ Fn

2 into a subspace Q ⊆ Fm
2 with |Q| = 2q points. H(Z) = q if

all points in Q occur with the same probability and H (Z) < q, otherwise. The
entropy of Z is at most the rank of A.

URA

LRALLA

ULA

outk outl

ink

inl

Fig. 2: Dimensions of the Sub-matrices of the Algebraic Core

Let R be the set of all input random vectors R and X be the set of all
PUF responses X. Further let S contain all secrets S and W all helper data
W . The algebraic core A maps elements of the input set R×X = F

kin+lin
2

to elements of the output spaces S ×W ⊆ Fkout+lout
2 where log2 |S ×W| is at

most the rank of A. If elements in R×X occur with probability zero, then
log2 |S ×W| < rank (A). Note that the rank is the maximum number of base
vectors spanning the output space. Figure 2 shows the dimensions of the sub-
matrices of A.

Spaces S and W have bases formed by rows AL,i and AR,i of AL and AR,
respectively. By definition, the vectors in each index set I are linearly indepen-
dent such that any linear combination of base vectors can be zero only if all
coefficients λi are zero. The corresponding index sets contain the indices of the
base vectors such that

IL =

{
i ∈ {1, ..., kin + lin}

∣∣∣∣∣∑
i

λiAL,i = 0⇔ ∀i : λi = 0

}

IR =

{
i ∈ {1, ..., kin + lin}

∣∣∣∣∣∑
i

λiAR,i = 0⇔ ∀i : λi = 0

}

with |IL| ≤ rank (AL) and |IR| ≤ rank (AR). Accordingly, we get for the full
algebraic core A

I =

{
i ∈ {1, ..., kin + lin}

∣∣∣∣∣∑
i

λiAi = 0⇔ ∀i : λi = 0

}

with |I| ≤ rank (A).
In the following, we will use the difference between the maximum rank of a
matrix and its actual rank to analyze the relation between the overall core A
and its components AL and AR. We define the rank losses as

∆L = min{kin + lin, kout} − rank (AL) (16)

∆R = min{kin + lin, lout} − rank (AR) (17)

∆ = min{kin + lin, kout + lout} − rank (A) (18)

In addition, we define the minimum rank loss gmin (kin + lin, kout, lout) of A as

gmin (kin + lin, kout, lout) = min{kin + lin, kout} (19)

+ min{kin + lin, lout}
−min{kin + lin, kout + lout}

Only if there are rows of AL and AR that form bases of two complementary
vector spaces with dimensions rank (AL) and rank (AR), i.e., the indices of the
rows selected for the bases from AL and AR are different, the secrecy leakage
can be brought to zero. Only then, S and W can become independent. The two
vector spaces together form the vector space built by a basis formed by rows of
A. The difference between the minimum rank loss and the actual rank loss, i.e.,

gmin (kin + lin, kout, lout) − (∆L +∆R −∆)
= rank (AL) + rank (AR)− rank (A)

(20)

determines the mutual information I (S;W) between the secret and helper data.
Our goal is to bound this mutual information by some small ε0 which depends
on the entropy of the input PUF data H(X) and the entropy of the random
number H(R).

For this purpose, we select from all possible index sets all those which describe
a maximum set of linearly independent rows. This is fulfilled if index sets are
selected, for which

|IL|+ |IR| = rank (AL) + rank (AR) (21)

The selected index sets can be used to construct index sets for A.

I = IL ∪ IR (22)

All these sets are searched for a set I which is built from non-overlapping sets
IL,IR. This is ensured iff (21), (22) and

|I| = |IL|+ |IR| (23)

hold. If such a set I exists,i.e.,

∃
I,IL,IR

(I = IL ∪ IR)

∧ (|I| = |IL|+ |IR| = rank (AL) + rank (AR))
(24)

it is ensured, that no information leaks due to the structure of the syndrome
coding approach. However, if (24) cannot be fulfilled, information is leaked. Thus,
we claim that (24) is a necessary and sufficient condition to ensure I (S;W) ≤ ε0.
As soon as there is any overlap in the index sets, S andW cannot be independent.
The difference ∆L +∆R −∆ is increased by one for each overlapping index so
that the leakage of the algebraic core is increased by one accordingly. The mutual
information I(S;W) is the quantity of interest and is given by

I(S;W) = H (S) +H (W)−H (S W) (25)

Based on the observations regarding the rank loss, we compute the mutual in-
formation of secret and helper data using the entropy of the inputs and the rank
of the algebraic core. Let ε, εL, εR > 0, sufficiently large. Then we can rewrite
the components of (25) as

H (S) =H ([R X] AL) (26)

=rank (AL)− εL
= min{kin + lin, kout} −∆L − εL

H (W) =H ([R X] AR) (27)

=rank (AR)− εR
= min{kin + lin, lout} −∆R − εR

H (S W) =H ([R X] A) (28)

=rank (A)− ε
= min{kin + lin, kout + lout} −∆− ε

We define the overall loss ε0 as ε0 = ε− εL − εR. Sources with high entropy have
H(R) = kin − εin,1 and H(X) = lin − εin,2 with small εin,1, εin,2 > 0. As worst
case assumption, we can take ε = εin,1 + εin,2 and εL = εR = 0 such that
ε0 = εin,1 + εin,2. This value depends only on the PUF implementation so that
it is the responsibility of the PUF designer to provide high-quality PUF data
and bring ε0 down. In practice, ε0 values close to zero are achievable for PUF
implementations with responses which are distributed closely to uniform [22].

With the given entropies and (25), the secrecy leakage given by the mutual
information of S and W is computed as

I (S;W) = H(S) +H(W)−H(S W) (29)

= rank (AR) + rank (AL)− rank (A) + ε0 (30)

= gmin (kin + lin, kout, lout)− (∆L +∆R −∆) + ε0 (31)

Observe that the mutual information in (30) can only be close to zero if (24)
holds.

The state-of-the-art approaches output either R or X as S. Therefore, either
AUL = I or ALL = I, while the second sub-matrix of AL is set to zero. After-
wards, S is either directly output as key or fed into a hash function. The hash
function is necessary for compression if kout > H(S) + δ for some small δ > 0,
or to mitigate leakage if secret information is leaked through the helper data as
discussed in (31).

6 Security Analysis of the State of the Art

In this section, we apply our rank criterion to the algebraic cores discussed in
Section 4.

6.1 Fuzzy Commitment

The core of fuzzy commitment in (6) is an upper triangular matrix with full
rank such that (24) is fulfilled by design. Therefore, the secrecy leakage of the
algorithm depends only on the joint entropy of the PUF response X and of the
random number R. If it is sufficiently high, the secret S can directly be used as a
key K. Otherwise S can be compressed to a smaller key K with a hash function
to achieve a sufficiently high entropy per bit in K. The helper data has a fixed
size lin which is larger than necessary as discussed in [10].

6.2 Code-Offset Fuzzy Extractor

The left and right parts of the core A in (7) both have full rank such that ∆L = 0
and ∆R = 0 according to (26). However, their index sets overlap. Assigning the
lower lin rows to the left side leaves only kin indices for the right side. As a
consequence, ∆ = lin − kin and up to lin − kin bits leak, which is consistent
with the findings in [23]. I.e., if an attacker knows the helper data, the entropy
of an lin-bit long secret is reduced to kin. As a consequence the hash function in
(7) must be designed so that the remaining kin bits of entropy are distributed
equally to the bits of a kin bit long key.

Note that for fuzzy commitment, the codeword is masked with the PUF
response such that it forms a secure one time pad. For the fuzzy extractor the
PUF response is masked with the codeword resulting in an imperfect one time
pad because by definition, not all bits in the codeword are independent. This
small design difference leads to a different secrecy leakage.

6.3 Fuzzy Extractor with Syndrome Construction

For PUF size lin and a code size of kout, this approach uses only lin − kout
bits of helper data which is the lowest possible number for a given ECC and
thus the best possible solution. In (9), we have rank (ALL) = lin and, accord-
ingly, rank (AUR) = lin − kout. However, the index sets overlap fully such that
∆ = lin − kout. Therefore, the maximum leakage is the same as for the code-
offset fuzzy extractor and again a hash function is required.

Key generation ∆ I(S;W)
Scheme (nearly perfect PUF)

Fuzzy Commitm. 0 < ε0
Code-Offset lin − kout < lin − kout + ε0
Syndrome Constr. lin − kout lin − kout
Parity Constr. lin − kout 2kout − lin
SLLC 0 < ε0

Table 1: Mutual information between S and W of the state-of-the-art syndrome
coding approaches for PUFs

6.4 Parity Construction

In (11), the rank of I is equal to the length of the secret, so rank (I) = kout.
P has rank min{kout, lin − kout}. As for the previous scheme, the index sets
fully overlap such that rank (A) = kout. The mutual information is given by
I (S;W) = min{kout, lin − kout}+ ε0 and again, lin − kout bits leak such that a
hash function is required.

Note that in (11) only max{0, kout − (lin − kout)} secret bits remain so that
this approach is only suitable for ECCs with small redundancies lin − kout such
that 2kout − lin > 0 still holds and any secret can be extracted.

6.5 Systematic Low Leakage Coding

Similar to the fuzzy commitment, A in (15) is an upper triangular matrix.
The left and right part of the algebraic core as well as the concatenation of
both all have full rank which gives ∆ = 0. As a result, the mutual information
I (S;W) < ε0, i.e., no information leaks due to the structure of the algebraic
core. Therefore, SLLC combines the advantage of zero secrecy leakage with the
advantage of a minimal helper data size of the syndrome construction.

6.6 Summary on State-of-the-Art Syndrome Decoders

We have shown that most state-of-the-art helper data generation schemes can be
brought into a unified algebraic form which allows a comparison of the individual
properties.

Wrapping up the results of this section, Table 1 provides an overview over
the discussed approaches. Only fuzzy commitment and SLLC have a rank loss
∆ of zero while all other approaches have ∆ = lin − kout.

We also discuss leakages for a nearly perfect PUF with H(X) = lin + ε0
and perfect random number R with H(R) = kout that show the optimal case.
Preprocessing can support to achieve such high entropies. The right column
shows results according to (31).

The right column on leakage clearly shows that the approaches which have
algebraic cores with full rank do not leak significant secret information.

Our rank criterion allows to evaluate solutions at an early design stage and
determine whether an algorithm can achieve zero leakage or not. The rank loss
difference gives an upper bound for the secrecy leakage and therefore specifies
the minimum requirements for a subsequent hash function.

We provide a generic property that allows to analyze new, more complex
and potentially more efficient, practical structures with less obvious leakages in
future work. Especially, the currently very regular matrix structures with many
identity matrices can be extended to other constructions under the constraint of
keeping the rank loss close to zero.

7 Conclusions

Several algorithms for secret key generation with PUFs were proposed to enable
error correction by storing helper data and using ECCs. We have brought most
state-of-the-art approaches into a generic algebraic representation that reveals
security properties on a high level of abstraction.

We have shown that the rank of the algebraic core plays a key role for the
security of linear schemes. Only if the left and right parts of the core have
independent index sets, the secrecy leakage between key and helper data can be
brought to zero. Fuzzy commitment and systematic low leakage coding were the
only approaches which fulfill that criterion.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful feedback.
This work was partly funded by the German Federal Ministry of Education and
Research (BMBF) in the project SIBASE through grant number 01IS13020A and
the German Research Foundation (DFG) through grant number KR3517/6-1.

References

1. C. Herder, M. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable functions
and applications: A tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1126–
1141, 2014.

2. G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication
and secret key generation,” in ACM/IEEE Design Automation Conference (DAC),
2007, pp. 9–14.

3. J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs
and their use for IP protection,” in Workshop on Cryptographic Hardware and
Embedded Systems (CHES), ser. LNCS, P. Paillier and I. Verbauwhede, Eds., vol.
4727. Springer Berlin / Heidelberg, 2007, pp. 63–80.

4. B. Gassend, D. Clarke, M. v. Dijk, and S. Devadas, “Delay-based circuit authenti-
cation and applications,” in ACM Symposium on Applied Computing (SAC), 2003,
pp. 294–301.

5. G. I. Davida, Y. Frankel, and B. J. Matt, “On enabling secure applications through
off-line biometric identification,” in IEEE Symposium on Security and Privacy
(S&P), 1998, pp. 148–157.

6. A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in ACM Conference
on Computer and Communications Security (CCS), 1999, pp. 28–36.

7. Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data,” in Advances in Cryptology (EUROCRYPT),
ser. LNCS, C. Cachin and J. L. Camenisch, Eds., vol. 3027. Springer Berlin /
Heidelberg, 2004, pp. 523–540.

8. M. Yu and S. Devadas, “Secure and robust error correction for physical unclonable
functions,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 48–65, 2010.

9. M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS: Application spe-
cific error correction for PUFs,” in IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 2012, pp. 1–6.

10. M. Hiller, M. Yu, and M. Pehl, “Systematic low leakage coding for physical un-
clonable functions,” in ACM Symposium on Information, Computer and Commu-
nications Security (ASIACCS), 2015, pp. 155–166.

11. M. Yu, M. Hiller, and S. Devadas, “Maximum likelihood decoding of device-specific
multi-bit symbols for reliable key generation,” in IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), 2015, pp. 38–43.

12. R. Ahlswede and I. Csiszar, “Common randomness in information theory and
cryptography - part I: Secret sharing,” IEEE Transations on Information The-
ory, vol. 39, no. 4, pp. 1121–1132, 1993.

13. U. Maurer, “Secret key agreement by public discussion from common information,”
IEEE Transactions on Information Theory, vol. 39, pp. 733–742, 1993.

14. H. Boche and R. F. Wyrembelski, “Secret key generation using compound sources
- optimal key-rates and communication costs,” in International ITG Conference
on Systems, Communications and Coding (SCC). IEEE, 2013.

15. J. Delvaux, D. Gu, I. Verbauwhede, M. Hiller, and M. Yu, “Efficient fuzzy extrac-
tion of PUF-induced secrets: Theory and applications,” in Conference on Cryp-
tographic Hardware and Embedded Systems (CHES), ser. LNCS, B. Gierlichs and
A. Poschmann, Eds. Springer Berlin / Heidelberg, 2016.

16. H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura, “Cryptographic
key generation from PUF data using efficient fuzzy extractors,” in International
Conference on Advanced Communication Technology (ICACT). IEEE, 2014, pp.
23–26.

17. F. Armknecht, R. Maes, A.-R. Sadeghi, B. Sunar, and P. Tuyls, “Memory leakage-
resilient encryption based on physically unclonable functions,” in Advances in
Cryptology (ASIACRYPT), ser. LNCS, M. Matsui, Ed., vol. 5912. Springer Berlin
/ Heidelberg, 2009, pp. 685–702.

18. M. Hiller, M. Weiner, L. Rodrigues Lima, M. Birkner, and G. Sigl, “Breaking
through fixed PUF block limitations with differential sequence coding and con-
volutional codes,” in International Workshop on Trustworthy Embedded Devices
(TrustED). ACM, 2013, pp. 43–54.

19. J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data algorithms
for PUF-based key generation: Overview and analysis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 6, pp.
889–902, 2015.

20. B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F.-X. Standaert, and
Y. Yu, “Leftover hash lemma, revisited,” in Advances in Cryptology (CRYPTO),
ser. LNCS, P. Rogaway, Ed., vol. 6841. Springer Berlin / Heidelberg, 2011, pp.
1–20.

21. P. Tuyls, A. H. M. Akkermans, T. A. M. Kevenaar, G.-J. Schrijen, A. M. Bazen, and
R. N. J. Veldhuis, “Practical biometric authentication with template protection,”
in Audio- and Video-Based Biometric Person Authentication (AVBPA), ser. LNCS,
T. Kanade, A. Jain, and N. Ratha, Eds., vol. 3546. Springer Berlin / Heidelberg,
2005, pp. 436–446.

22. S. Katzenbeisser, U. Kocabas, V. Rozic, A.-R. Sadeghi, I. Verbauwhede, and
C. Wachsmann, “PUFs: Myth, fact or busted? a security evaluation of physically
unclonable functions (PUFs) cast in silicon,” in Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES), ser. LNCS, E. Prouff and P. Schaumont,
Eds., vol. 7428. Springer Berlin / Heidelberg, 2012, pp. 283–301.

23. T. Ignatenko and F. M. J. Willems, “Biometric security from an information-
theoretical perspective,” Foundations and Trends in Communications and Infor-
mation Theory, vol. 7, no. 2-3, pp. 135–316, 2012.

