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Abstract. Division property is a generalized integral property proposed
by Todo at EUROCRYPT 2015, and very recently, Todo et al. proposed
bit-based division property and applied to SIMON32 at FSE 2016. How-
ever, this technique can only be applied to block ciphers with block size
no larger than 32 due to its high time and memory complexity. In this
paper, we extend Mixed Integer Linear Programming (MILP) method,
which is used to search differential characteristics and linear trails of
block ciphers, to search integral distinguishers of block ciphers based on
division property with block size larger than 32.
Firstly, we study how to model division property propagations of three
basic operations (copy, bitwise AND, XOR) and an Sbox operation by
linear inequalities, based on which we are able to construct a linear in-
equality system which can accurately describe the division property prop-
agations of a block cipher given an initial division property. Secondly,
by choosing an appropriate objective function, we convert a search al-
gorithm under Todo’s framework into an MILP problem, and we use
this MILP problem appropriately to search integral distinguishers. As
an application of our technique, we have searched integral distinguishers
for SIMON, SIMECK, PRESENT, RECTANGLE, LBlock and TWINE.
Our results show that we can find 14-, 16-, 18-, 22- and 26-round integral
distinguishers for SIMON32, 48, 64, 96 and 128 respectively. Moreover,
for two SP-network lightweight block ciphers PRESENT and RECTAN-
GLE, we found 9-round integral distinguishers for both ciphers which
are two more rounds than the best integral distinguishers in the liter-
ature [22][29]. For LBlock and TWINE, our results are consistent with
the best known ones with respect to the longest distinguishers.

Key words: MILP, division property, integral cryptanalysis, SIMON,
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1 Introduction

Programming problem is a mathematical optimization which aims to achieve the
minimal or maximal value of an objective function under certain constraints, and



it has a wide range of applications from industry to academic community. Mixed
Integer Linear Programming (MILP) is a kind of programming problem whose
objective function and constraints are linear, and all or some of the variables
involved in the problem are restricted to be integers. In recent years, MILP
has found its applications in cryptographic community. Mouha et al. [11] and
Wu et al. [21] applied MILP method to automatically count differential and
linear active Sboxes for word-based block ciphers, which can be used to evalu-
ate the resistance of block ciphers against differential and linear attacks. Later
Sun et al. [13] extended this technique to count active Sboxes of SP-network
block ciphers whose linear layer is a bit permutation.

Recently, this technique was improved [15] to search differential character-
istics and linear trails with a minimal number of active Sboxes. They con-
structed the MILP model by a small number of linear inequalities chosen from
the H-Representation of the convex hull of a set of points which are derived from
the difference distribution (resp. linear approximation) table of Sbox. However,
this method may result in invalid differential characteristics (resp. linear trails).
Moreover, differential characteristic (resp. linear trail) with a minimal number
of active Sboxes does not alway result in differential characteristic (resp. linear
trail) with highest probability. To solve these problems, Sun et al. [14] encoded
the probability of differentials (resp. linear approximations) of Sbox into the
MILP model and they proved that it is always feasible to choose a set L of lin-
ear inequalities from the H-Representation of the convex hull of a set of points A,
such that the feasible solutions of L are exactly the points in A. Thus, by adding
L into the model and setting the probability as objective function, the MILP
optimizer will always return (if the MILP problem can be solved in limited time)
a valid differential characteristic (resp. linear trail) with highest probability.

Division property is a generalized integral property introduced by Todo [18]
at EUROCRYPT 2015 to search integral distinguishers of block cipher structures
which is the core part of integral cryptanalysis [4,7,8,10]. Todo studied propa-
gation rules of division property through different block cipher operations and
presented generalized algorithms to search integral distinguishers which only ex-
ploits the algebraic degree of nonlinear components of the block cipher. By using
division property, Todo presented 10-, 12-, 12-, 14- and 14-round3 integral dis-
tinguishers for SIMON32, 48, 64, 96 and 128 respectively. For PRESENT cipher
a 6-round integral distinguisher was found. Later at CRYPTO 2015 Todo [17]
proposed a full-round integral attack of MISTY1 based on a 6-round integral
distinguisher. Sun et al. [12] revisited division property, and they studied the
property of a set (multiset) satisfying certain division property. At CRYPTO
2016, Boura and Canteaut [6] proposed a new notion which they called par-
ity set to study division property, based on which they found better integral
distinguisher for PRESENT cipher.

3 Since the round key is Xored into the state after the round function, we can easily
extend one more round before the distinguisher by using the technique proposed in
[20].
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Very recently, Todo et al. [19] introduced bit-based division property at FSE
2016 which treats each bit independently in order to find better integral distin-
guishers. They applied this technique to SIMON32, and as a result a 14-round
integral distinguisher for SIMON32 was found. However, as pointed out in [19],
searching integral distinguisher by bit-based division property required much
more time and memory. For a block cipher with block size n, the time and mem-
ory complexity is upper bounded by 2n. Thus, bit-based division property can
only apply to block ciphers with block size at most 32. For block ciphers with
a much larger block size, searching integral distinguisher by bit-based division
property under Todo et al.’s framework would be computationally infeasible.
Thus, Xiang et al. [24] proposed a state partition to get a tradeoff between
the time-memory complexity and the accuracy of the integral distinguisher, and
they improved distinguishers of SIMON48 and SIMON64 by one round for both
variants.

1.1 Our Contributions

In this paper, we present a novel technique to search integral distinguishers
based on bit-based division property by using MILP method. First we propose
a new notion that we call division trail to illustrate division property propaga-
tion. We show that each division property propagation can be represented by
division trails, furthermore, we have proved that it is sufficient to check the last
vectors of all division trails in order to estimate whether a useful distinguisher
exists. Based on this observation we construct a linear inequality system for a
given block cipher such that all feasible solutions of this linear inequality sys-
tem are exactly all the division trails. Thus, the constructed linear inequality
system is sufficient to describe the division property propagations. Then, we
study the stopping rule in division property propagation. The stopping rule de-
termines whether the resulting division property can be propagated further to
find a longer integral distinguisher. It is observed that for a division property
propagation, if the resulting vectors for the first time contain all the vectors of
Hamming weight one after propagating r+ 1 rounds, the propagation procedure
should terminate and an r-round distinguisher can be derived. Hence, we set the
sum of the coordinates of the last vector of r-round division trail as objective
function. By combining this objective function and the linear inequality system
derived from the division trails, we construct an MILP problem and present an
algorithm to estimate whether r-round distinguisher exists given some initial
division property. To illustrate our new technique, we run experiments (all the
MILP problems in our experiments are solved by the openly available software
Gurobi [1]) on SIMON, SIMECK, PRESENT, RECTANGLE, TWINE, LBlock:

1. For SIMON [3] family block ciphers, we first model division property propa-
gations through Copy, And and Xor operations by linear inequalities, since
those operations are the basic operations in SIMON family. By using these
inequalities we construct an MILP problem and serve it in our search algo-
rithm. As a result we found 14-, 16-, 18-, 22- and 26-round integral distin-
guishers for SIMON32, 48, 64, 96 and 128 respectively. For SIMON48, 64, 96
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and 128, our results are 2, 1, 1 and 1 more rounds than the previous results
in [27]. SIMECK [25] is a family of lightweight block ciphers whose round
function is very similar to SIMON except the rotation constants. We ap-
plied our search technique to SIMECK and we found 15-, 18- and 21-round
distinguishers for SIMECK32, 48 and 64 respectively.

2. PRESENT [5] and RECTANGLE [28] are two SP-network lightweight block
ciphers whose linear layers are bit permutations. Unlike SIMON, these two
ciphers are Sbox-based block ciphers. In [17,18], Sbox is treated as a whole,
that is for an n-bit Sbox the input value to the Sbox is viewed as a value
of Fn2 . In this paper we study bit-based division property propagation of
Sbox, and we present an algorithm to compute division trails of Sbox. We
observed that, considering bit-based division property could preserve more
integral property along with division property propagation through Sbox.
By converting division trails of Sbox layer into a set of linear inequalities
we construct MILP models for PRESENT and RECTANGLE, as a result,
we found 9-round distinguishers for both ciphers which are two more rounds
than the best integral distinguishers in the literature.

3. TWINE [16] and LBlock [23] are two generalized Feistel structure block
ciphers. By modeling Sbox, Copy and Xor with linear inequalities, we apply
our technique to these two ciphers and we found 16-round distinguishers
which are in accordance with the results in [26].

Our results are listed in Table 1. All the ciphers explored above except SI-
MON32 have a block size larger than 32, and searching integral distinguishers
by bit-based division property under Todo’s framework is computationally in-
feasible for those ciphers. Note that all our experiments are conducted on a
desktop and the consuming time varies from seconds to minutes which is very
efficient, the details are listed in Table 1. Moreover, by converting the search
algorithm into MILP problems, we can find better integral distinguishers for
SIMON48/64/96/128, SIMECK48/64, PRESENT and RECTANGLE.

The rest of the paper is organized as follows: In Section 2 we introduce some
basic background which will be used later. Section 3 studies how to model some
basic operations and components used in block cipher, and to construct a linear
inequality system to accurately describe the division property propagations. Sec-
tion 4 studies the stopping rule and a search algorithm will be presented in this
section. Section 5 shows some applications of the technique, and we conclude in
Section 6.

2 Preliminaries

2.1 Notations

Let F2 denote the finite field with only two elements and Fn2 denote the n-bit
string over F2. let Z and Zn denote the integer ring and the set of all vectors
whose coordinates are integers respectively. For any a ∈ Fn2 , let a[i] denote the
i-th bit of a, and the Hamming weight of a is calculated as

∑n−1
i=0 a[i]. For any

4



Table 1. Results on Some Block Ciphers.

Cipher Block size Round
(Previous)

Round
(Sect. 5)

Data Balanced
bits

time

SIMON32 32 15 [19] 14 31 16 4.1s
SIMON48 48 14 [27] 16 47 24 48.2s
SIMON64 64 17 [27] 18 63 22 6.7m
SIMON96 96 21 [27] 22 95 5 17.4m
SIMON128 128 25 [27] 26 127 3 58.4m
SIMECK32 32 15 [19] 15 31 7 6.5s
SIMECK48 48 12 [18] 18 47 5 56.6s
SIMECK64 64 12 [18] 21 63 5 3.0m
PRESENT 64 7 [22] 9 60 1 3.4m

RECTANGLE 64 7 [28] 9 60 16 4.1m
LBlock 64 16 [26] 16 63 32 4.9m
TWINE 64 16 [26] 16 63 32 2.6m

For SIMON and SIMECK family block ciphers, since the round key is Xored into the
state after the round function, we can add one more round before the distinguishers
using the technique in [20]. The results presented in the third and fourth columns
have been added by one round.

a = (a0, · · · , am−1) ∈ Fn0
2 × · · · × F

nm−1

2 , the vectorial Hamming weight of a is
defined as W (a) = (w(a0), · · · , w(am−1)) where w(ai) is the Hamming weight
of ai. Let k = (k0, k1, · · · , km−1) and k∗ = (k∗0 , k

∗
1 , · · · , k∗m−1) be two vectors in

Zm. Define k � k∗ if ki ≥ k∗i holds for all i = 0, 1, · · · ,m − 1. Otherwise we
write k � k∗.

Bit Product Function πu(x) and πu(x): For any u ∈ Fn2 , let πu(x) be a
function from Fn2 to F2. For any x ∈ Fn2 , define πu(x) as follows:

πu(x) =

n−1∏
i=0

x[i]u[i]

Let πu(x) be a function from (Fn0
2 ×Fn1

2 ×· · ·×F
nm−1

2 ) to F2 for all u ∈ (Fn0
2 ×

Fn1
2 ×, · · · ,×F

nm−1

2 ). For any u = (u0, u1, · · · , um−1),x = (x0, x1, · · · , xm−1) ∈
(Fn0

2 × Fn1
2 ×, · · · ,×F

nm−1

2 ), define πu(x) as follows:

πu(x) =

m−1∏
i=0

πui
(xi)

2.2 Division Property

Division property [18] is a generalized integral property which can exploit the
properties hidden between traditional integral properties A and B. Thus, by
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propagating division property we desire to get some better distinguishers. In
the following we will introduce division property and present some propagation
rules.

Definition 1 (Division Property [17]). Let X be a multiset whose elements
take a value of (Fn2 )m, and k be an m-dimensional vector whose coordinates
take values between 0 and n. When the multiset X has the division property
Dn,m

k(0),k(1),··· ,k(q−1) , it fulfills the following conditions: The parity of πu(x) over
all x ∈ X is always even when

u ∈
{

(u0, u1, · · · , um−1) ∈ (Fn2 )m|W (u) � k(0), · · · ,W (u) � k(q−1)
}

Proposition 1 (Copy [17]). Denote X an input multiset whose elements be-
long to Fn2 , and let x ∈ X. The copy function creates (y0, y1) from x where
y0 = x, y1 = x. Assuming the input multiset has division property Dn

k , let Y be the
corresponding output multiset, then Y has division property Dn,2

(0,k),(1,k−1),··· ,(k,0).

Proposition 2 (Compression by And [24]). Denote X an input multiset
whose elements belong to Fn2 × Fn2 , let (x0, x1) ∈ X be an input to the com-
pression function and denote the ouput value by y where y = x0&x1. Let Y be
the corresponding output multiset. If input multiset X has division property Dn,2

k

where k = (k0, k1), then the division property of Y is Dn
k where k = max{k0, k1}.

Proposition 3 (Compression by Xor [17]). Denote X an input multiset
whose elements belong to Fn2×Fn2 , let (x0, x1) ∈ X be an input to the compression
function and denote the ouput value by y where y = x0 ⊕ x1. Let Y be the
corresponding output multiset. If input multiset X has division property Dn,2

k

where k = (k0, k1), then the division property of Y is Dn
k0+k1

.

Proposition 4 (Substitution [17]). Denote X an input multiset whose ele-
ments belong to Fn1

2 , let F be a substitution function (Sbox) with algebraic degree
d and F maps an element in Fn1

2 to an element in Fn2
2 , denote Y the correspond-

ing output multiset F (X). Assuming the input multiset has division property Dn1

k ,
then the output multiset has division property Dn2

d k
de. Moreover, if n1 = n2 and

the substitution function is bijective, assuming the input multiset has division
property Dn1

n1
, then the output multiset has division property Dn1

n1

For more details regarding division property we refer the readers to [17,18,19].

2.3 Modeling a Subset in {0, 1}n by Linear Inequalities

Convex Hull and H-Representation: The convex hull of a set A of points is
the smallest convex set that contains A, and the H-Representation of a convex
set is a set of linear inequalities L corresponding to the intersection of some
halfspaces such that the feasible solutions of L are exactly the convex set.

In [14,15] Sun et al. treat a differential (xu−1, · · · , x0) → (yv−1, · · · , y0) of
an u × v Sbox as an (u + v)-dimensional vector (xu−1, · · · , x0, yv−1, · · · , y0).
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By computing the H-Representation of the convex hull of all possible input-
output differential pairs of an Sbox, a set of linear inequalities will be returned to
characterize the differential propagation. Moreover, they proved that for a given
subset A of {0, 1}n, it is always feasible to choose a set of linear inequalities L
from the H-Representation of the convex hull of A, such that A represents all
feasible solutions of L restricted in {0, 1}n.

Theorem 1 ([14]). Let A be a subset of {0, 1}n, and denote Conv(A) the convex
hull of A. For any x ∈ {0, 1}n, x ∈ Conv(A) if and only if x ∈ A.

Thus, they first computed a set of vectors A which is composed of all differential
pairs of a given Sbox, and then calculated the H-Representation of the convex
hull of A by using the inequality_generator() function in the Sage [2] software,
and this will return a set of linear inequalities L which are the H-presentation of
Conv(A). According to Theorem 1, L is an accurate description of the difference
propagations of the given Sbox, that is, all feasible solutions of L restricted
in {0, 1}n are exactly A. Since L is the H-Representation of Conv(A), each
possible differential characteristic corresponds to a point in A, thus, each possible
differential characteristic satisfies the linear inequalities in L. On the other hand,
for any impossible differential characteristic id, there always exists at least one
linear inequality in L such that id does not satisfy this inequality. Otherwise, if
id satisfies all the inequalities in L which indicates id belongs to Conv(A), and
this is equivalent to id ∈ A.

Since L is an accurate description of A, adding all the linear inequalities
in L into the MILP problem when searching differential characteristics of a
block cipher, it will always return valid differential characteristics. However, the
number of linear inequalities in the H-Representation of Conv(A) is often very
large such that adding all the inequalities into the MILP model will make the
problem computationally infeasible. Thus, Sun et al. [14] proposed a greedy
algorithm (See Algorithm 1) to select a subset of L whose feasible solutions
restricted in {0, 1}n are exactly A. This algorithm can greatly reduce the number
of inequalities required to accurately describe A.

In order to illustrate the procedure of this section, we present a toy example
in Appendix A.

3 Modeling Division Property Propagations of Basic
Operations and Sbox by Linear Inequalities

In [18] Todo introduced division property by using some vectors in Zm, and the
propagation of division property through a round function of the block cipher
is actually a transition of the vectors. Given an initial division property Dn,m

k ,
let fr denote the round function of a block cipher, the division property of the
state after one round fr can be computed from Dn,m

k by the rules introduced
in [17,18], and denote the division property after one round fr by Dn,m

K where
K is a set of vectors in Zm. Thus, the division property propagation through
fr is actually the transition from k to the vectors in K. Traditionally, if two
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Algorithm 1: Select a subset of linear inequalities from L
Input : L: the set of all inequalities in the H-Representation of Conv(A) with

A a subset of {0, 1}n
Output: A subset L∗ of L whose feasible solutions restricted in {0, 1}n are A

1 begin
2 L∗ = ∅
3 B = {0, 1}n \A
4 L̄ = L
5 while B 6= ∅ do
6 l← The inequality in L̄ which maximizes the number of points in B

that do not satisfy this inequality (choose the first one if there are
multiple such inequalities).

7 B∗ ← The points in B that do not satisfy l.
8 L∗ = L∗ ∪ {l}
9 L̄ = L̄ \ {l}

10 B = B \B∗

11 end
12 return L∗

13 end

vectors k1 and k2 in K satisfying that k1 � k2, then k1 is redundant and will
be removed from K. However, since the redundant vectors do not influence the
division property, in this paper we do not remove redundant vectors in K, that
is for any vector derived from k by using the propagation rules we add this
vector into K. Moreover, for any vector k̄ in K, we call that k can propagate to
k̄ through fr.

Definition 2 (Division Trail). Let fr denote the round function of an it-
erated block cipher. Assume the input multiset to the block cipher has initial
division property Dn,m

k , and denote the division property after i-round propaga-
tion through fr by Dn,m

Ki
. Thus, we have the following chain of division property

propagations:
{k} def

= K0
fr−→ K1

fr−→ K2
fr−→ · · ·

Moreover, for any vector k∗i in Ki (i ≥ 1), there must exist an vector k∗i−1 in
Ki−1 such that k∗i−1 can propagate to k∗i by division property propagation rules.
Furthermore, for (k0,k1, · · · ,kr) ∈ K0×K1× · · ·×Kr, if ki−1 can propagate to
ki for all i ∈ {1, 2, · · · , r}, we call (k0,k1, · · · ,kr) an r-round division trail.

Proposition 5. Denote the division property of input multiset to an iterated
block cipher by Dn,m

k , let fr be the round function. Denote

{k} def
= K0

fr−→ K1
fr−→ K2

fr−→ · · · fr−→ Kr

the r-round division property propagation. Thus, the set of the last vectors of all
r-round division trails which start with k is equal to Kr.
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Generally, given an initial division property Dn,m
k , and if one would like to

check whether there exists useful integral property after r-round encryption, we
have to propagate the initial division property for r rounds to get Dn,m

Kr
and

check all the vectors in Kr. According to Proposition 5, it is equivalent to find
all r-round division trails which start with k, and check the last vectors in the
division trails to judge if any exploitable distinguisher can be extracted. Based
on this observation, in the following we focus on how to accurately describe all
division trails.

A linear inequality system will be adopted to describe division property prop-
agations, that is we will construct a linear inequality system such that the feasible
solutions represent all division trails. Since division property propagation is a
deterministic procedure, the constructed linear inequality system must satisfy:

– For each division trail, it must satisfy all linear inequalities in the linear in-
equality system. That is each division trail corresponds to a feasible solution
of the linear inequality system.

– Each feasible solution of the linear inequality system corresponds to a divi-
sion trail. That is all feasible solutions of the linear inequality system do not
contain any impossible division trail.

A linear inequality system satisfying the above two conditions is an accurate
description of division property propagation. In the rest of the paper, we only
consider bit-based division property. We start by modeling bit-based division
property propagation of some basic operations and Sbox in block ciphers.

3.1 Modeling Copy, And and Xor

In this subsection, we show how to model bit-wise Copy, And and Xor operations
by linear inequalities.

Modeling Copy. Copy operation is the basic operation used in Feistel block
cipher. The left half of the input is copied into two equal parts, one of which
is fed to the round function. Since we consider bit-based division property, the
division property propagation of each bit is independent of each other. Thus, we
consider only a single bit.

Let X be an input multiset whose elements take a value of F2. The copy
function creates y = (y0, y1) from x ∈ X where y0 = x and y1 = x. Assuming the
input multiset has division property D1

k, then the corresponding output multiset
has division property D1

(0,k),··· ,(k,0) from Proposition 1. Since we consider bit-
based division property, the input multiset division property D1

k must satisfy
k ≤ 1. If k = 0, the output multiset has division property D1

(0,0), otherwise if

k = 1, the output multiset has division property D1
(0,1),(1,0). Thus, (0)

copy−→ (0, 0)

is the only division trail given the initial division property D1
0, and (1)

copy−→ (0, 1),
(1)

copy−→ (1, 0) are the two division trails given the initial division property D1
1 .
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Now we are ready to give a linear inequality description of these division
trails. Denote (a)

copy−→ (b0, b1) a division trail of Copy function, the following
inequality4 is sufficient to describe the division propagation of Copy.{

a− b0 − b1 = 0

a, b0, b1 are binaries
(1)

Apparently, all feasible solutions of the inequalities in (1) corresponding to
(a, b0, b1) are (0, 0, 0), (1, 0, 1) and (1, 1, 0), which are exactly the three division
trails of Copy function described above.

Modeling And. Bit-wise And operation is a basic nonlinear function, it is the
only nonlinear operation for SIMON family. Similar to the modeling procedure
of Copy function, we can express its division property propagation as a set of
linear inequalities.

Let X be an input multiset whose elements take a value of F2 × F2. The
And function creates y = x0&x1 from x = (x0, x1) ∈ X. Assuming the input
multiset has division property D1,2

k where k = (k0, k1), the division property of
the corresponding output multiset is D1

k where k = max{k0, k1} according to
Proposition 2. Since we consider bit-based division property here, k = (k0, k1)
must satisfy 0 ≤ k0, k1 ≤ 1. Thus, there are four division trails for And function
which are (0, 0)

Xor−→ (0), (0, 1)
Xor−→ (1), (1, 0)

Xor−→ (1) and (1, 1)
Xor−→ (1). Denote

(a0, a1)
and−→ (b) a division trail of And function, the following linear inequalities

are sufficient to describe this propagation features.
b− a0 ≥ 0

b− a1 ≥ 0

b− a0 − a1 ≤ 0

a0, a1, b are binaries

(2)

It is easy to check that all feasible solutions of the inequalities in (2) cor-
responding to (a0, a1, b) are (0, 0, 0), (0, 1, 1), (1, 0, 1) and (1, 1, 1), which are
exactly the four division trails of And function described above.

Modeling Xor. Bit-wise Xor is another basic operation used in block ciphers.
Similarly, a linear inequality system can be constructed to describe the division
property propagation through Xor function.

Let X denote an input multiset whose elements take a value of F2 × F2. The
Xor function creates y = x0 ⊕ x1 from x = (x0, x1) ∈ X. Assuming the input
multiset X has division property D1,2

k where k = (k0, k1), thus, the corresponding
output multiset Y has division property D1

k0+k1
. Since we consider bit-based

4 In this paper we do not make a distinction between equality and inequality, since
the MILP problem use both equalities and inequalities as constraints.
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division property here, k = (k0, k1) must satisfy 0 ≤ k0, k1 ≤ 1. Moreover, the
element of Y takes a value in F2, the division property D1

k0+k1
of Y must satisfy

k0 + k1 ≤ 1. That is, if (k0, k1) = (1, 1), the division property propagation will
abort. Thus, there are three valid division trails: (0, 0)

Xor−→ (0), (0, 1)
Xor−→ (1) and

(1, 0)
Xor−→ (1). Let (a0, a1)

Xor−→ (b) denote a division trail through Xor function,
the following inequality can describe the division trail through Xor function.{

a0 + a1 − b = 0

a0, a1, b are binaries
(3)

We can check that all the feasible solutions of inequality (3) corresponding to
(a0, a1, b) are (0, 0, 0), (0, 1, 1) and (1, 0, 1), which are exactly the division trails
described above.

3.2 Modeling Sbox

Sbox is an important component of block ciphers, for a lot of block ciphers it is
the only non-linear part. In [17,18], the Sbox is treated as a whole and the divi-
sion property is considered while the element in the input multiset taking a value
in Fn2 for an n-bit Sbox. In [19] Todo et al. introduced bit-based division prop-
erty, but they only applied their technique to non-Sbox based ciphers SIMON
and SIMECK. In this section, we study bit-based division property propagation
through Sbox.

Assume we are dealing with an n-bit Sbox, the input and output of the Sbox
are elements in (F2)n. Suppose that the input multiset X has division property
D1,n

k where k = (k0, k1, · · · , kn−1), that is for any u ∈ (F2)n the parity of πu(x)
over X is even only if W (u) � k. Note that for bit-based division property it
holds W (u) = u, thus, we do not make a distinction between W (u) and u in
the following. To compute the division property of the output multiset Y, we
first consider a naive approach.

Previous Approach. First by Concatenation function, each element in X can
be converted into an element in Fn2 . Denote output multiset of Concatenation
function as X∗, thus, the division property of X∗ is Dn

k0+k1+···+kn−1
accord-

ing to Rule 5 in [17]. Secondly, we pass each element in X∗ to the Substi-
tution function Sbox, and denote the output multiset by Y∗ whose elements
take a value of Fn2 . According to Proposition 4, the division property of Y∗ is
Dn⌈

k0+k1+···+kn−1
d

⌉ where d is the algebraic degree of the Sbox. At last, for any

value y∗ = y0||y1|| · · · ||yn−1 in Y∗, a Split function creates y = (y0, y1, · · · , yn−1)
from y∗. Apparently, the output multiset of Split function equals to Y. Ac-
cording to Rule 4 in [17], the division property of Y is D1,n

k0,k1,··· where k
i =

(ki0, k
i
1, · · · , kin−1) (i ≥ 0) denote all solutions of x0+x1+· · · , xn−1 =

⌈
k0+k1+···+kn−1

d

⌉
.

Example: Take the Sbox used in PRESENT as an example. The PRESENT
Sbox is a 4×4 Sbox with algebraic degree three. Assume that the input multiset
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to the Sbox has division property D1,4
(0,1,1,1). To compute the output multiset

division property, we can proceed in three steps as described above: First by
a concatenation function we convert the input multiset into another multiset
X∗ whose elements take a value in F42, thus the division property of X∗ is D4

3.
Secondly, make each value in X∗ pass through the Sbox operation and this will
result in a multiset Y∗ with division property D4

d 3
3e = D4

1. Finally, we split each

value in Y∗ into a value in (F2)4, and we will get a multiset Y with division
property D1,4

(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0). Thus, we have obtained four division

trails of Sbox: (0, 1, 1, 1)
Sbox−→ (0, 0, 0, 1), (0, 1, 1, 1)

Sbox−→ (0, 0, 1, 0), (0, 1, 1, 1)
Sbox−→

(0, 1, 0, 0) and (0, 1, 1, 1)
Sbox−→ (1, 0, 0, 0).

Note that only the algebraic degree is exploited to calculate the division
trails of Sbox in this naive approach. From the example illustrated above, if the
input multiset to the Sbox has division property D1,4

(0,1,1,1), the corresponding
output multiset does not balance on any of the four output bits. However, this is
not actually true. Denote the input to PRESENT Sbox as x = (x3, x2, x1, x0),
and the corresponding output as y = (y3, y2, y1, y0), the algebraic normal form
(ANF) of PRESENT Sbox is listed as follows:

y3 = 1⊕ x0 ⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3
y2 = 1⊕ x2 ⊕ x3 ⊕ x0x1 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3
y1 = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3
y0 = x0 ⊕ x2 ⊕ x3 ⊕ x1x2

(4)

Thus,
π(0,0,0,1)((y3, y2, y1, y0)) = y0

and ⊕
x∈X

π(0,0,0,1)((y3, y2, y1, y0))

=
⊕
x∈X

y0

=
⊕
x∈X

(x0 ⊕ x2 ⊕ x3 ⊕ x1x2)

=
⊕
x∈X

π(0,0,0,1)(x)⊕
⊕
x∈X

π(0,1,0,0)(x)⊕
⊕
x∈X

π(1,0,0,0)(x)⊕
⊕
x∈X

π(0,1,1,0)(x)

=0 + 0 + 0 + 0

=0

As illustrated above, the least significant bit y0 of the output y is balanced.
Similarly, we can check that y2 and y0y2 are all balanced. Furthermore, it can
be observed that the expressions of y1 and y3 all contain monomial x0x1x2
whose parity over X is undetermined according to the initial division property
D1,4

(0,1,1,1), thus y1 and y3 are not balanced. Based on these observations, the
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division property of Y should be D1,4
(0,0,1,0),(1,0,0,0). In this case we obtain two

division trails of PRESENT Sbox, and what is more important is that y0, y2 and
y0y2 are all balanced under this approach.

Our Improved Approach. Now we present a generalized algorithm to cal-
culate division trails of an Sbox based on bit-based division property. In Al-
gorithm 2, x = (xn−1, · · · , x0) and y = (yn−1, · · · , y0) denote the input and
output to an n-bit Sbox respectively, and yi is expressed as a boolean function
of (xn−1, · · · , x0).

Algorithm 2: Calculating division trails of an Sbox
Input : The input division property of an n-bit Sbox D1,n

k where
k = (kn−1, · · · , k0)

Output: A set K of vectors such that the output multiset has division
property D1,n

K
1 begin
2 S̄ = {k̄ | k̄ � k}
3 F (X) = {πk̄(x) | k̄ ∈ S̄}
4 K̄ = ∅
5 for u ∈ (F2)n do
6 if πu(y) contains any monomial in F (X) then
7 K̄ = K̄ ∪ {u}
8 end
9 end

10 K = SizeReduce(K̄)
11 return K
12 end

We explain Algorithm 2 line by line:

Line 2-3 According to input division property D1,n
k , the parity of monomial

πk̄(x) with k̄ � k over X is undetermined, and we store these monomials in
F (X). Thus, the parity of any monomial that does not belong to F (X) is
zero.

Line 4 Initialize K as an empty set.
Line 5-9 For any possible u, if boolean function πu(y) contains any monomial

in F (X), the parity of πu(y) over X is undetermined, and we store all these
vectors in K̄.

Line 10 SizeReduce() function removes all redundant vectors in K̄. Since we
are interested in finding a set K such that for any u ∈ {u|u � k for all k ∈
K}, the parity of πu(y) is zero. Note that for any vector u ∈ (F2)n\K̄,
the parity of πu(y) is zero, thus, we must have {u | u � k for all k ∈
K} ⊂ (F2)n\K̄, and if we let K= SizeReduce(K̄) it will meet this condition.
Otherwise, if there exists a vector u ∈ {u | u � k for all k ∈ K} such that
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u /∈ (F2)n\K̄, thus, we have u ∈ K̄, which meants either u ∈ K or there
exists a vector u∗ ∈ K such that u � u∗ since K = SizeReduce(K̄). In
either case it won’t happen u ∈ {u | u � k for all k ∈ K}, which leads to a
contradiction. Therefore, K is sufficient to characterize the division property
of output multiset.

Line 11 Return K as output.

Given an Sbox and an initial division property D1,n
k , Algorithm 2 returns the

output division property D1,n
K . Thus for any vector k∗ ∈ K, (k,k∗) is a division

trail of the Sbox. If we try all the 2n possible input multiset division property, we
will get a full list of division trails. Table 4 in Appendix B presents a complete
list of all the 47 division trails of PRESENT Sbox.

Note that bit-based division property of an Sbox is closely related with Boura
and Canteaut’s work [6]. However, Boura and Canteaut’s work is established on
parity set, while our results are directly deduced from bit-based division property.

Representing the Division Trails of Sbox as Linear Inequalities. Each
division trail of an n-bit Sbox can be viewed as a 2n-dimensional vector in
{0, 1}2n ⊂ R2n where R is the real numbers field. Thus, all division trails form
a subset P of {0, 1}2n. Next, we compute the H-Representation of Conv(P ) by
using the inequality_generator() function in the Sage [2] software, and this will
return a set of linear inequalities L. However, L contains too many inequalities
which will make the size of corresponding MILP problem too large to solve. For-
tunately, we can select a subset L∗ of L by Algorithm 1 such that the feasible
solutions of L∗ restricted in {0, 1}2n are exactly P .

Example: PRESENT Sbox contains 47 division trails which forms a subset P of
{0, 1}8. By using the inequality_generator() function in the Sage software, a set
of 122 linear inequalities will be returned. Furthermore, this set can be reduced
by Algorithm 1 and we will get a set L∗ of only 11 inequalities. The 11 inequal-
ities for PRESENT Sbox are listed in Appendix C. In order to get the solutions
of L∗ restricted in {0, 1}8, we only need to specify that all variables can only
take values in {0, 1}.

So far, we have studied calculating and modeling division trails of basic op-
erations and Sbox, thus, for block ciphers based on these operations and (or)
Sbox, we can construct a set of linear inequalities which characterize one round
division property propagation. By repeating this procedure r times, we can get
a linear inequality system L such that all feasible solutions of L are all r-round
division trails.

3.3 Initial Division Property

Integral distinguisher search algorithm often has a given initial division property
D1,n

k . Even though L is able to describe all division trails, we are interested in
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division trails starting from the given initial division property. Thus, we have
to model the initial division property into the linear inequality system. Denote
(a0n−1, · · · , a00) → · · · → (arn−1, · · · , ar0) an r-round division trail, L is thus a
linear inequality system defined on variables aji (i = 0, · · · , n− 1. j = 0, · · · , r)
and some auxiliary variables. Let D1,n

k denote the initial input division property
with k = (kn−1, · · · , k0), we need to add a0i = ki (i = 0, · · ·n − 1) into L, and
thus all feasible solutions of L are division trails which start from vector k.

4 Stopping Rule and Search Algorithm

In this section we first study the stopping rule in the search of integral distin-
guishers based on division property, and then we convert this stopping rule into
an objective function of the MILP problem. At last, we propose an algorithm to
determine whether an r-round integral distinguisher exists.

In the division property propagation, we note that only zero vector can prop-
agate to zero vector. Thus if the given initial division property is D1,n

k with k a
non-zero vector, and we denote the division property after r-round propagation
by D1,n

Kr
, then it holds that Kr does not contain zero vector. In the following, we

always assume k 6= 0, since k = 0 does not imply any integral property on the
input multiset.

4.1 Stopping Rule

Let’s first consider a set X with division property D1,n
K . If X does not have any

useful integral property, that is the Xor-sum of X does not balance on any bit,
thus we have

⊕
x∈X πu(x) is unknown for any unit vector u ∈ (F2)n. Since X

has division property D1,n
K , there must exist a vector k ∈ K such that u � k.

Note that u is a unit vector, thus u = k, which means K contains all the n unit
vectors. On the other hand, if K contains all the n unit vectors, then for any
0 6= u ∈ (F2)n there must exist a unit vector e ∈ K such that u � e, that is⊕

x∈X πu(x) is unknown. Thus, X does not have any integral property.

Proposition 6 (Set without Integral Property). Assume X is a multiset
with division property D1,n

K , then X does not have integral property if and only
if K contains all the n unit vectors.

Denote the output division property after i-round encryption by D1,n
Ki

, and

the initial input division property by D1,n
k

def
= D1,n

K0
. If Kr+1 for the first time

contains all the n unit vectors, the division property propagation should stop
and an r-round distinguisher can be derived from D1,n

Kr
. In this case, Kr does

not contain all n unit vectors, thus we can always find a unit vector e such that
e /∈ Kr. Since e is a unit vector, it holds e � k for all k ∈ Kr. Therefore, the
parity of πe(x) over r-round outputs is even which is a zero-sum property, thus
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a balanced bit of the output is found. By repeating this process, all balanced
bits can be found.

Based on this observation, we only need to detect whether Kr contains all
unit vectors. According to Proposition 5, in order to check the vectors in Kr,
it is equivalent to check the last vectors of all r-round division trails. Denote
(a0n−1, · · · , a00) → · · · → (arn−1, · · · , ar0) an r-round division trail, and let L de-
note a linear inequality system whose feasible solutions are all division trails
which start with the given initial division property. It is clear that L is a linear
inequality system defined on variables aji (i = 0, · · · , n − 1. j = 0, · · · , r) and
some auxiliary variables. Thus, we can set the objective function as :

Obj : Min{ar0 + ar1 + · · · arn−1} (5)

Now we get a complete MILP problem by setting L as constraints and Obj
as objective function. Note that Ki does not contain zero vector, in this case, the
objective function will never take a value of zero, and the MILP problem will
return an objective value greater than zero (if the MILP problem has feasible
solutions). In the following we show how to determine whether r-round integral
distinguisher exists based on this MILP problem.

4.2 Search Algorithm

Denote L a linear inequality description of all r-round division trails with the
given initial input division property D1,n

k . Let the sum of the coordinates of the
last vector in the division trail be the objective function Obj as in Equation (5).
Denote M(L, Obj) the MILP problem composed of L and Obj. Algorithm 3 will
return whether r-round integral distinguisher exists.

Our MILP problems are solved by the openly available MILP optimizer
Gurobi [1], Algorithm 3 is presented with some Gurobi syntax. We denote the
set of last vectors of all division trails by Kr.

Line 2 Initialize S as all possible output bit positions.
Line 3-24 For an n-bit block cipher, check how many unit vectors there are in

Kr. Moreover, we remove the bit position marked by the unit vectors in Kr

from S, and return S as the output of the algorithm.
Line 4 Check whether the MILP problem has a feasible solution. Note that

the initial MILP problem always has feasible solutions. However, along
with the execution of the procedure, it will add some constraints (Line
13) in the model which will possibly make the MILP problem unsolvable.

Line 5 Optimize the MILP problem M by Gurobi.
Line 6-18 M.ObjV al is Gurobi syntax which returns the current value of

the objective function afterM has been optimized.M.ObjV al = 1 means
we have found a division trail which ends up with a unit vector e, thus
e ∈ Kr. M.getObjective() is a Gurobi function which returns the ob-
jective function of the model, which is ar0 + · · ·+ arn−1 in our case. The
functionality of Line 8-17 is to choose which variable of (ar0, · · · , arn−1)
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Algorithm 3: Return whether r-round distinguisher exists
Input : M = M(L, Obj).
Output: A set S of balanced bit positions.

1 begin
2 S = {ar

0, · · · , ar
n−1}

3 for i in range(0,n) do
4 if M has feasible solutions then
5 M.optimize()
6 if M.ObjV al = 1 then
7 obj = M.getObjective()
8 for i in range(0,n) do
9 var = obj.getV ar(i)

10 val = var.getAttr(′x′)
11 if val = 1 then
12 S \ {var}
13 M.addConstr(var = 0)
14 M.update()
15 break
16 end
17 end
18 else
19 return S
20 end
21 else
22 return S
23 end
24 end
25 return S
26 end

is equal to one in e and add a new constraint var = 0 into M , here var
denotes the variable taking a value of one. obj.getV ar(i) is used to return
the i-th variable of obj which is ari in this case. var.getAttr(′x′) retrieves
the value of var under the current solution. Line 12 removes var from S,
since we have found e ∈ Kr whose nonzero position is var which means
var can’t be a balanced bit position.M.addConstr(var = 0) adds a new
constraints var = 0 into M , and this is used to rule out e from Kr. Line
14 updates the model since we have added a new constraint.

Line 19 This step returns S, the execution of this step means the objective
value ofM is larger than one, that is we can no longer find a division trail
with the last vector being a unit vector. In this case, we have found all
unit vectors in Kr which represent undetermined bit positions, and thus
we have ruled out all unbalanced bits and get an integral distinguisher.

Line 22 M do not have any feasible solutions means we have ruled out all
units vectors of Kr and made Kr an empty set along with the execution.
In this case, we can return S as output since we have checked all vectors.
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Line 25 If the for loop do not make the procedure exit, return S as output.
Usually, in this case S is an empty set which means no distinguisher found.

Algorithm 3 always returns a set S indicating balanced bit positions. For a
block cipher with a given initial division property D1,n

k , we can construct an r-
round linear description of division property propagations and use Algorithm 3
to check whether a distinguisher exists. If for the first time the (r + 1)-round
model returns an empty set, then the longest distinguisher for the given initial
division property is r-round.

5 Applications to SIMON, SIMECK, PRESENT,
RECTANGLE, LBlock and TWINE

In this section, we show some applications of our technique. All the source codes
are avaiable at https://github.com/xiangzejun/MILP_Division_Property.
We applied our algorithm to SIMON, SIMECK, PRESENT, RECTANGLE,
LBlock and TWINE block ciphers. The results are listed in Table 1. The Round
(Previous) column and Round (Sect. 5) column list the number of rounds of
the distinguishers of previous and our results. The Data column represents the
number of active bits of the input pattern of the integral distinguisher, the data
complexity of the distinguisher is determined by the initial input division prop-
erty. Balanced bits column represents the number of balanced bits of the distin-
guisher we found. Time presents the time used by Algorithm 3 for searching the
corresponding distinguishers, among which s is short for second and m is short
for minute. All the experiments are conducted on the following platform: Intel
Core i7-2600 CPU @3.40GHz, 8.00G RAM, 64-bit Windows 7 system. Moreover,
the distinguishes listed in Table 1 are presented in Appendix E. The table shows
that we get improved distinguishers for SIMON48/64/96/128, SIMECK48/64,
PRESENT and RECTANGLE. For SIMECK32, LBlock and TWINE our re-
sults are consistent with the previous best results. The result of SIMON32 is
one round less than the result in [19]. However, we only use bit-based division
property here, the 15-round distinguisher found in [19] for SIMON32 used bit-
based division property using three subset. If bit-based division property is the
only technique adopted, 14-round distinguisher is the longest distinguisher we
can find.

5.1 Applications to SIMON and SIMECK

SIMON [3] is a family of lightweight block ciphers published by the U.S. National
Security Agency (NSA) in 2013. SIMON adopts Fesitel structure and it has a
very compact round function which only involves bit-wise And, Xor and circular
shift operations. The structure of one round SIMON encryption is depicted in
Fig 1 where Si denotes left circular shift by i bits.

1-round Description of SIMON: Denote one round division trail of SIMON2n
by (ai0, · · · , ain−1, bi0, · · · , bin−1) → (ai+1

0 , · · · , ai+1
n−1, b

i+1
0 , · · · , bi+1

n−1). In order to
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Fig. 1. Feistel Structure of SIMON Round Function

get a linear description of all possible division trails of one round SIMON, we in-
troduce four vectors of auxiliary variables which are (ui0, · · · , uin−1), (vi0, · · · , vin−1),
(wi

0, · · · , wi
n−1) and (ti0, · · · , tin−1). We denote (ui0, · · · , uin−1) the input division

property of S1. Similarly, denote (vi0, · · · , vin−1) and (wi
0, · · · , wi

n−1) the input
division property of S8 and S2 respectively. Let (ti0, · · · , tin−1) denote the output
division property of bit-wise And operation. Subsection 3.1 has modeled Copy,
And and Xor functions. According to Equation (1), the following inequalities are
sufficient to model the Copy operation used in SIMON2n:

L1 : aij − uij − vij − wi
j − bi+1

j = 0 for j ∈ {0, 1, · · · , n− 1}

Since we consider bit-based division property, division property propagation
through circular shift is just a circular shift of the coordinates of the vector. Thus,
the division property of the output of S1 is (ui1, · · · , uin−1, ui0). Similarly, the divi-
sion property of the output of S8 and S2 are (vi8, · · · , vi6, vi7) and (wi

2, · · · , wi
0, w

i
1)

respectively. We can model bit-wise And operation used in SIMON by the fol-
lowing inequalities according to Equation (2):

L2 :


tij − uij+1 ≥ 0 for j ∈ {0, 1, · · · , n− 1}
tij − vij+8 ≥ 0 for j ∈ {0, 1, · · · , n− 1}
tij − uij+1 − vij+8 ≤ 0 for j ∈ {0, 1, · · · , n− 1}

At last, the Xor operations in SIMON2n can be modeled by the following in-
equalities according to Equation (3):

L3 : ai+1
j − bij − tij − wi

j+2 = 0 for j ∈ {0, 1, · · · , n− 1}

So far, we have modeled all operations used in SIMON, and get an accurate
description {L1,L2,L3} of 1-round division trails. By repeating this procedure
r times, we can get a linear inequality system L for r-round division property
propagation. Given some initial division property, we can add the corresponding
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constrains into L and estimate whether a useful distinguisher exists by Algo-
rithm 3. The results for SIMON family are listed in Table 1.

For SIMON48/64/96/128, we found the best distinguishers so far. Note that
by using bit-based division property under the framework of [19], it is compu-
tationally impractical to search distinguishers for these versions. Using Algo-
rithm 3, distinguishers can be searched in practical time.

SIMECK [25] is a family of lightweight block cipher proposed at CHES 2015.
The round function of SIMECK is very like SIMON except the rotation con-
stants. We applied our technique to SIMECK, and 15-, 18- and 21-round dis-
tinguishers are found for SIMECK32, SIMECK48 and SIMECK64 respectively,
which shows that SIMON has better security than SIMECK with respect to
division property based integral cryptanalysis.

We found that the 14-round distinguisher of SIMON32 we found is the same
as the 14-round distinguisher of SIMON32 in [19] based on bit-based division
property. Surprisingly, the 15-round distinguisher for SIMECK32 in [19] is found
by bit-based division property using three subsets, however, we also find the same
distinguisher for SIMECK32 by only using bit-based division property.

In [9], the authors investigated the differential and linear behavior of SIMON
family regarding rotation parameters, and they presented some interesting alter-
native parameters among which (1, 0, 2) is optimal for the differential and linear
characteristics with the restriction that the second rotation parameter is zero.
In this paper, we investigated the integral property of this parameter by our
technique. The results are listed in Table 2 (h in the time column represents
hour). The third column lists the rounds of the distinguishers we found. The
results show that (1, 0, 2) is a very bad choice with respect to division property
based integral cryptanalysis.

Table 2. Results on SIMON(1,0,2).

Cipher Block size Round Data Balanced
bits

time

SIMON32(1,0,2) 32 20 31 1 34.1s
SIMON48(1,0,2) 48 28 47 1 3.2m
SIMON64(1,0,2) 64 36 63 1 10.3m
SIMON96(1,0,2) 96 52 95 3 6.4h
SIMON128(1,0,2) 128 68 127 3 24h

5.2 Applications to PRESENT and RECTANGLE

PRESENT [5] and RECTANGLE [28] are two SP-network block ciphers, of
which the linear layers are bit permutations. Fig 2 illustrates one round encryp-
tion of PRESENT.
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Fig. 2. . The S/P network for present.

1. [k79k78 . . . k1k0] = [k18k17 . . . k20k19]
2. [k79k78k77k76] = S[k79k78k77k76]
3. [k19k18k17k16k15] = [k19k18k17k16k15]⊕ round_counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most
four bits are passed through the present S-box, and the round_counter value
i is exclusive-ored with bits k19k18k17k16k15 of K with the least significant bit of
round_counter on the right. The key schedule for 128-bit keys is presented in
an appendix.

4 Design Issues for present

Besides security and efficient implementation, the main goal when designing
present was simplicity. It is therefore not surprising that similar designs have
been considered in other contexts [21] and can even be used as a tutorial for
students [20]. In this section we justify the decisions we took during the design of
present. First, however, we describe the anticipated application requirements.

4.1 Goals and environment of use

In designing a block cipher suitable for extremely constrained environments, it is
important to recognise that we are not building a block cipher that is necessarily
suitable for wide-spread use; we already have the AES [35] for this. Instead, we
are targeting some very specific applications for which the AES is unsuitable.
These will generally conform to the following characteristics.

– The cipher is to be implemented in hardware.

Fig. 2. One Round SP Structure of PRESENT

1-round Description of PRESENT: Denote one round division trail of PRES-
ENT by (ai63, · · · , ai0) → (ai+1

63 , · · · , ai+1
0 ). We first model the division property

propagation of Sbox layer. Denote the division property of the output of Sbox
by (bi63, · · · , bi0). Subsection 3.2 has studied how to calculate the division trails
of Sbox and model those trails by linear inequalities. Appendix C shows the 11
inequalities of PRESENT Sbox. For each of the 16 Sboxes of PRESENT, we in-
troduce 11 inequalities and thus the Sbox layer of PRESENT can be modeled by
11×16 = 176 inequalities which is denoted by L1. The linear layer of PRESENT
is a bit permutation, thus, the division property propagation through linear layer
is just a permutation of the coordinates of the vector, that is

L2 :

{
ai+1
16j mod 63 = bij j ∈ {0, 1, · · · , 62}
ai+1
j = bij j = 63

Note that L1 is a linear inequality system defined on variables (ai63, · · · , ai0) and
(bi63, · · · , bi0), we can use the equalities in L2 to replace the variables (bi63, · · · , bi0)
in L1 in order to save auxiliary variables.

Now we have get a linear inequality system to describe one round division
propagation of PRESENT. By repeating this procedure, an r-round linear in-
equality system can be constructed. For a given initial division property D1,64

k ,
we add this information into the linear inequality system and use Algorithm 3
to estimate whether there exists an integral distinguisher.

The result for PRESENT is listed in Table 1. We found a 9-round integral
distinguisher for PRESENT which is two more rounds than the previous best
results in [22].

The modeling procedure of RECTANGLE is very like to PRESENT, we
only list the result here in Table 1. The previous longest integral distinguisher of
RECTANGLE is found by the designers, and they gave a 7-round distinguisher.
In this paper we find a 9-round distinguisher which is two more rounds.

5.3 Applications to LBlock and TWINE

This subsection applies our technique to two generalized Feistel block cipher
LBlock and TWINE. The round function of these two ciphers are alike, and the
round function composed of Copy, Sbox and Xor operations. We have showed
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how to model Copy and Xor operations in SIMON and Sbox in PRESENT, thus,
we omit the details for these two ciphers due to the limit of space. The number of
division trails and linear inequalities required to describe those division trails of
LBlock and TWINE Sboxes are presented in Table 3. The ]{D.C} column rep-
resents the number of division trails of the corresponding Sbox, and the ]{Ine}
column represents the number of linear inequalities we found to accurately de-
scribe the division trails. Note that we chose the first inequality in the sixth line
of Algorithm 1, however, other choice rather than the first one may result in
different set of inequlities.

Table 3. Sbox Properties Regrading Division Trails.

Sbox ]{D.C} ]{Ine}
PRESENT Sbox 47 11

RECTANGLE Sbox 49 17
LBlock S0 44 11
LBlock S1 44 12
Lblock S2 44 12
LBlock S3 44 11
LBlock S4 44 13
LBlock S5 44 10
LBlock S6 44 12
LBlock S7 44 12

TWINE Sbox 47 11

Our experimental results regarding LBlock and TWINE are listed in Table 1.
The distinguishers found in this paper are the same as the distinguishers found
for these two ciphers in [26].

Experiments. To illustrate the validity of the technique proposed in this pa-
per, we presented some integral distinguishers found by our technique with a
small number of active bits, and we run experiments on these distinguishers.
The experiments are presented at Appendix D. Our experiments showed that
the distinguishers found by our technique are sound. Moreover, the results on
PRESENT and RECTANGLE illustrate that our technique can find quite accu-
rate distinguishers, that is the balanced bits found by Algorithm 3 are exactly in
accordance with experimental results. For PRESENT cipher, we retrieved and
improved the 5-round distinguisher found in [22], our technique found all the
four balanced bits of the outputs of the fifth round given the same input pattern
as in [22], while Wu et al. could only prove the balancedness of only one bit.
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6 Summary and Discussion

In this paper we introduced a new technique to search integral distinguishers
based on bit-based division property. We first proposed a new notion division
trail and used this new notion to characterize the division property propagation,
then we showed that it is sufficient to check the last vectors of all r-round division
trails in order to estimate whether an r-round distinguisher exists.

Based on the observations on division trails, we proposed to construct a
linear inequality system to characterize the division property propagations. We
first studied how to model division property propagations of Copy, And and
Xor operations by linear inequalities. For another basic component Sbox used
in block ciphers, we studied the bit-based division property propagations for
the first time, and we proposed an algorithm to compute the division trails
of an Sbox. Moreover, we used those division trails to derive a set of linear
inequalities whose feasible solutions are exactly all division trails. Thus, for a
block cipher we can construct a linear inequality system whose solutions are all
r-round division trails of the cipher, and we used this linear inequality system
as constraints of the MILP problem. Then, the stopping rule in the search of
integral distinguisher were studied and we converted it into an objective function
of an MILP problem. To be specific, we set the sum of the coordinates of the
last vector in an r-round division trail as objective function. Thus, we can get a
complete MILP problem, based on which we presented an algorithm to estimate
whether an r-round integral distinguisher exists by checking how many unit
vectors are contained in the last vectors of all division trails.

We applied our technique to SIMON, SIMECK, PRESENT, RECTANGLE,
LBlock and TWINE. For SIMON48/64/96/128, SIMECK48/64, PRESENT and
RECTANGLE, we get much longer distinguishers than previous results based
on division property in the open literature. Moreover, our results on PRESENT
and RECTANGLE show that we can get better integral distinguishers by us-
ing the algebraic normal form of the Sboxes. Our results show that, by using
our technique, we can search integral distinguishers based on bit-based division
property in practical time for block ciphers with block size larger than 32, which
is impractical under the traditional framework.

In [19], Todo et al. also introduced bit-based division property using three
subsets, and they found 15-round distinguisher for SIMON32. However, we have
not found a way to model this framework by an MILP problem at present. A
surprising result is, by using our technique we also derived the 15-round dis-
tinguisher of SIMECK32 which are constructed by bit-based division property
using three subsets [19]. We also used our technique on some Sbox-based block
ciphers such as PRESENT and RECTANGLE, note that their linear layers are
all bit permutations. However, this technique can be easily extended to arbitrary
linear layers as pointed out by the reviewers, since any linear layer can be viewed
as bit-level linear layer which can be treated as bit-wise copy and Xor.
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A An Example

Let’s consider a simple example in this section. Suppose thatA = {(0, 1), (1, 0), (1, 1)}
is a subset of {0, 1}2 with three points, and we would like to get a linear inequality
system L such that all feasible solutions of L restricted in {0, 1}2 are A.

We proceed by using inequality_generator() function in the Sage software to
compute the H-Representation of Conv(A). The following is the source code.

Points = [ [ 0 , 1 ] , [ 1 , 0 ] , [ 1 , 1 ] ]
t r i a n g l e = Polyhedron ( v e r t i c e s = Points )
for l in t r i a n g l e . i n equa l i ty_gene ra to r ( ) :

print l

As a result, Sage returns three inequalities:

L =


x+ y − 1 ≥ 0

−y + 1 ≥ 0

−x+ 1 ≥ 0

(6)

It is easy to check that the feasible solutions of L form a triangle with A being
its three vertices, and the set of all feasible solutions of L restricted in {0, 1}2 is
exactly A. Thus, Equation 6 is a description of A.

However, we can use Algorithm 1 to reduce the number of inequalities re-
quired. We apply Algorithm 1 to this example and we find that only one in-
equality is sufficient to accurately describe A:

L∗ = {x+ y − 1 ≥ 0} (7)

It is easy to check that all solutions of L∗ restricted in {0, 1}2 are (0, 1) ,(1, 0)
and (1, 1) as expected.

B Division trails of PRESENT and RECTANGLE Sbox

Table 4 and Table 5 present the division trails of PRESENT and RECTANGLE
Sboxes respectively.

C Linear inequalities description of PRESENT and
RECTANGLE Sbox

The following inequalities are the 11 inequalities used to describe PRESENT
Sbox whose feasible solutions are exactly the 47 division trails of PRESENT
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Table 4. Division trails of PRESENT Sbox

Input D1,4
k Output D1,4

K
(0,0,0,0) (0,0,0,0)
(0,0,0,1) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(0,0,1,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(0,0,1,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(0,1,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(0,1,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(0,1,1,0) (0,0,0,1) (0,0,1,0) (1,0,0,0)
(0,1,1,1) (0,0,1,0) (1,0,0,0)
(1,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(1,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(1,0,1,0) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(1,0,1,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(1,1,0,0) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(1,1,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(1,1,1,0) (0,1,0,1) (1,0,1,1) (1,1,1,0)
(1,1,1,1) (1,1,1,1)

Table 5. Division trails of RECTANGLE Sbox

Input D1,4
k Output D1,4

K
(0,0,0,0) (0,0,0,0)
(0,0,0,1) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(0,0,1,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(0,0,1,1) (0,0,0,1) (0,1,0,0) (1,0,1,0)
(0,1,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(0,1,0,1) (0,0,1,1) (0,1,0,0) (1,0,0,0)
(0,1,1,0) (0,0,1,1) (0,1,0,0) (1,0,0,0)
(0,1,1,1) (0,0,1,1) (0,1,0,0) (1,0,0,1)
(1,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)
(1,0,0,1) (0,0,1,1) (0,1,0,1) (0,1,1,0) (1,0,0,0)
(1,0,1,0) (0,0,1,0) (0,1,0,1) (1,0,0,0)
(1,0,1,1) (0,1,1,0) (1,0,1,1) (1,1,0,1)
(1,1,0,0) (0,0,1,1) (0,1,0,0) (1,0,0,0)
(1,1,0,1) (0,1,1,0) (1,0,1,0) (1,1,0,1)
(1,1,1,0) (0,0,1,1) (0,1,0,1) (1,0,0,0)
(1,1,1,1) (1,1,1,1)
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Sbox where (a3, a2, a1, a0) −→ (b3, b2, b1, b0) denotes a division trail.

L∗ =



a3 + a2 + a1 + a0 − b3 − b2 − b1 − b0 ≥ 0

−a2 − a1 − 2a0 + b3 + b1 − b0 + 3 ≥ 0

−a2 − a1 − 2a0 + 4b3 + 3b2 + 4b1 + 2b0 ≥ 0

−2a3 − a2 − a1 + 2b3 + 2b2 + 2b1 + b0 + 1 ≥ 0

−2a3 − a2 − a1 + 3b3 + 3b2 + 3b1 + 2b0 ≥ 0

−b3 + b2 − b1 + b0 + 1 ≥ 0

−2a3 − 2a2 − 2a1 − 4a0 + b3 + 4b2 + b1 − 3b0 + 7 ≥ 0

a3 + a2 + a1 + a0 − 2b3 − 2b2 + b1 − 2b0 + 1 ≥ 0

−4a2 − 4a1 − 2a0 + b3 − 3b2 + b1 + 2b0 + 9 ≥ 0

−2a0 − b3 − b2 − b1 + 2b0 + 3 ≥ 0

a0 + b3 − b2 − 2b1 − b0 + 2 ≥ 0

a3, a2, a1, a0, b3, b2, b1, b0 are binaries

(8)

The following inequalities are the 17 inequalities used to describe RECTAN-
GLE Sbox whose feasible solutions are exactly the 49 division trails of RECT-
ANGLE Sbox where (a3, a2, a1, a0) −→ (b3, b2, b1, b0) denotes a division trail.

L∗ =



−a3 − a2 − 2a1 − 3a0 − 2b3 + b1 + 2b0 + 6 ≥ 0

−b3 − b2 + b0 + 1 ≥ 0

a3 + a2 + a1 + a0 − b3 − b2 − b1 − b0 ≥ 0

3a3 + a2 − b3 − 2b2 − b1 − 2b0 + 2 ≥ 0

a2 + a0 − b2 − 2b1 − b0 + 2 ≥ 0

−a2 − a1 − a0 + b3 + 2b2 + 2b0 + 1 ≥ 0

−2a3 − a1 − a0 + b3 + 2b1 + b0 + 2 ≥ 0

−3a3 − a2 − a1 − 2a0 + b3 + 2b2 + 2b1 − b0 + 4 ≥ 0

−a2 − a1 + b3 + b2 + b1 + 1 ≥ 0

−3a3 − a2 − a1 − 2a0 + 3b3 + 2b2 + 2b1 + b0 + 2 ≥ 0

2a2 + 3a1 − 3b3 − b2 − 2b1 − b0 + 3 ≥ 0

−a3 − a2 − a0 + 2b3 + 2b2 + b1 + b0 ≥ 0

−2a2 − a1 − a0 + 3b3 + 4b2 + 2b1 + 2b0 ≥ 0

a3 + a2 + a1 + a0 − 2b3 − 2b0 + 1 ≥ 0

2a0 − b3 − b2 − b1 + 1 ≥ 0

3a3 − 4a2 − a1 − a0 − 2b3 − b2 − 3b1 + 2b0 + 7 ≥ 0

a3 + a1 + a0 + b3 − 3b2 − 2b1 − 2b0 + 3 ≥ 0

a3, a2, a1, a0, b3, b2, b1, b0 are binaries

(9)
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D Experiments on PRESENT and RECTANGLE

For SIMON family block ciphers, we found a 14-round distinguisher of SIMON32
which is in accordance with the distinguisher presented in [19]. For Lblock and
TWINE the distinguisher found in this paper are in accordance with the dis-
tinguishers presented in [26]. Thus, we believe that the distinguishers found for
SIMON, SIMECK, Lblock and TWINE are sound. In the following we only con-
duct some experiments on PRESENT and RECTANGLE.

PRESENT : We found the following 5-round distinguisher for PRESENT. If we
fix the left most 60 bits as random constant and vary the right most 4 bits, then
after five round encryption, the four right most bits of the state are balanced.

Input:(ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccaaaa)

Output:(????????????????????????????????????????????????????????????bbbb)

c: constant bit, a: active bit, ?: unknown bit, b: balanced bit

We run experiment on this distinguisher 212 times. The experimental result
returns the four right most bits as balanced bits which is in accordance with our
theoretical result.

Note that in [22] Wu el at. found a 5-round distinguisher for PRESENT which
has the same input pattern with the distinguisher presented here. However, they
only proved that the right most bit is balanced. By using our technique, we can
find all the four balanced bits.

RECTANGLE : We found the following 6-round distinguisher for RECTANGLE.
The input of the distinguisher has 23 active bits, that is the right most six bits
of the first, third and fourth rows, and the five right most bits of the second row
are active. The output of six rounds encryption will be balanced on 40 bits, that
is the first two rows, the two right most bits of the third row and the six left
most bits of the last row.

Input :


ccccccccccaaaaaa
cccccccccccaaaaa
ccccccccccaaaaaa
ccccccccccaaaaaa

 −→ Output :


bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb
??????????????bb
bbbbbb??????????


We run experiment on this distinguisher 210 times. The experimental result
returns 40 balanced bits which is in accordance with our theoretical result.

E Integral Distinguishers listed in Table 1

For SIMON and SIMECK family block ciphers, all distinguisher can be extended
one more round by the technique in [20].
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E.1 SIMON32’s 13-round Distinguisher

Input:(caaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaa)

Output:(????????????????,bbbbbbbbbbbbbbbb)

E.2 SIMON48’s 15-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaa)

Output:(????????????????????????,bbbbbbbbbbbbbbbbbbbbbbbb)

E.3 SIMON64’s 17-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output:(????????????????????????????????,bbbbbbbbbbb?????b?????bbbbbbbbbb)

E.4 SIMON96’s 21-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output:(????????????????????????????????????????????????,
b?b????b?????????????????????????????????b????b?)

E.5 SIMON128’s 25-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output:(????????????????????????????????????????????????????????????????,
b?b???????????????????????????????????????????????????????????b?)

E.6 SIMECK32’s 14-round Distinguisher

Input:(caaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaa)

Output:(????????????????,bb???bb???bb???b)

E.7 SIMECK48’s 17-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaa)

Output:(????????????????????????,b???bb?????????????bb???)

E.8 SIMECK64’s 20-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output:(????????????????????????????????,bb???b?????????????????????b???b)
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E.9 PRESENT’s 9-round Distinguisher

Input:(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacccc)

Output:(???????????????????????????????????????????????????????????????b)

E.10 RECTANGLE’s 9-round Distinguisher

Input :


caaaaaaaaaaaaaaa
caaaaaaaaaaaaaaa
caaaaaaaaaaaaaaa
caaaaaaaaaaaaaaa

 −→ Output :


bbb?b?bbbbbbbbbb
?????????????b?b
????????????????
????????????????


E.11 LBlock’s 16-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output:(????????????????????????????????,bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb)

E.12 TWINE’s 16-round Distinguisher

Input:(caaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)

Output:(????bbbb????bbbb????bbbb????bbbb,????bbbb????bbbb????bbbb????bbbb)
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