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Abstract. In this paper, we revisit fully homomorphic encryption
(FHE) based on GSW and its ring variants. We notice that the internal
product of GSW can be replaced by a simpler external product between
a GSW and an LWE ciphertext.
We show that the bootstrapping scheme FHEW of Ducas and Miccian-
cio [11] can be expressed only in terms of this external product. As a
result, we obtain a speed up from less than 1 second to less than 0.1
seconds. We also reduce the 1GB bootstrapping key size to 24MB, pre-
serving the same security levels, and we improve the noise propagation
overhead by replacing exact decomposition algorithms with approximate
ones.
Moreover, our external product allows to explain the unique asymmetry
in the noise propagation of GSW samples and makes it possible to eval-
uate deterministic automata homomorphically as in [13] in an efficient
way with a noise overhead only linear in the length of the tested word.
Finally, we provide an alternative practical analysis of LWE based
scheme, which directly relates the security parameter to the error rate
of LWE and the entropy of the LWE secret key.
Keywords: Fully Homomorphic Encryption, Bootstrapping, Lattices,
LWE, GSW

1 Introduction

Fully homomorphic encryption (FHE) allows to perform computations over en-
crypted data without decrypting them. This concept has long been regarded
as an open problem until the breakthrough paper of Gentry in 2009 [15] which
demonstrates the feasibility of computing any function on encrypted data. Since
then, many constructions have appeared involving new mathematical and algo-
rithmic concepts and improving efficiency.

In homomorphic encryption, messages are encrypted with a noise that grows
at each homomorphic evaluation of an elementary operation. In a somewhat en-
cryption scheme, the number of homomorphic operations is limited, but can be
made asymptotically large using bootstrapping [15]. This technical trick intro-
duced by Gentry allows to evaluate arbitrary circuits by essentially evaluating



the decryption function on encrypted secret keys. This step has remained very
costly until the recent paper of Ducas and Micciancio [11], which presented a
very fast bootstrapping procedure running in around 0.69 second, making an im-
portant step towards practical FHE for arbitrary NAND circuits. In this paper,
we further improve the bootstrapping procedure.

We first provide an intuitive formalization of LWE/RingLWE on numbers or
polynomials over the real torus, obtained by combining the Scale-Invariant-LWE
problem of [9] or the LWE normal form of [10] with the General-LWE problem of
Brakerski-Gentry-Vaikutanathan [5]. We call TLWE this unified representation
of LWE ciphertexts, which encode polynomials over the Torus. Its security relies
either on the hardness of general or ideal lattice reduction, depending on the
choice of dimensions. Using the same formalism, we extend the GSW/RingGSW
ciphertexts to TGSW, which is the combined analogue of Gentry-Sahai-Water’s
ciphertexts from [16, 3], and which can also instantiate the ring version used in
Ducas-Micciancio scheme [11] in the FHEW cryptosystem. Similarly, a TGSW
ciphertext encodes an integer polynomial message, and depending on the choice
of dimesions, its security is also based on (worst-case) generic or ideal lattice
reduction algorithms. TLWE and TGSW are basically dual to each other, and
the main idea of our efficiency result comes from the fact that these two schemes
can directly be combined together to map the external product of their two
messages into a TLWE sample. Since a TGSW sample is essentially a matrix
whose individual rows are TLWE samples, our external product TGSW times
TLWE is much quicker than the usual internal product TGSW times TGSW
used in previous work. This could mostly be understood as comparing the speed
of the computation of a matrix-vector product to a matrix-matrix product. As a
result, we obtain a significant improvement (12 times faster) of the most efficient
bootstrapping procedure [11]; it now runs in less than 0.052s.

We also analyze the case of leveled encryption. Using an external product
means that we lose some composability properties in the design of homomorphic
circuits. This corresponds to circuits where boolean gates have different kinds of
wires that cannot be freely interconnected. Still, we show that we maintain the
expressiveness of the whole binary decision diagram and automata-based logic,
which was introduced in [13] with the GSW-GSW internal product, and we
tighten the analysis. Indeed, while it was impractical (10 transitions per second
in the ring case, and impractical in the non-ring case), we show that the TGSW-
TLWE external product enables to evaluate up to 5000 transitions per second, in
a leveled homomorphic manner. We also refine the mapping between automata
and homomorphic gates, and reduce the number of homomorphic operations to
test a word with a deterministic automata. This allows to compile and evaluate
constant-time algorithms (i.e. with data-independent control flow) in a leveled
homomorphic manner, with only sub-linear noise overhead in the running time.

We also propose a new security analysis where the security parameter is
directly expressed as a function of the entropy of the secret and the error rate.
For the parameters that we propose in our implementation, we predict 188-bits
of security for both the bootstrapping key and the keyswitching key.
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Roadmap. In Section 2, we give mathematical definitions and a quick overview
of the classical version of LWE-based schemes. In Section 3, we generalize LWE
and GSW schemes using a torus representation of the samples. We also review
the arithmetic operations over the torus and introduce our main theorem char-
acterizing the new morphism between TLWE and TGSW. As a proof of concept,
we present two main applications in Section 4 where we explain our fast boot-
strapping procedure, and in Section 5, we present efficient leveled evaluation of
deterministic automata, and apply it on a constant-time algorithm with loga-
rithmic memory. Finally, we provide a practical security analysis in Section 6.

2 Background

Notation. In the rest of the paper we will use the following notations. The
security parameter will be denoted as λ. The set {0, 1} (without any structure)
will be written B. The real Torus R/Z, called T set of real numbers modulo 1. R
denotes the ring of polynomials Z[X]/(XN + 1). TN [X] denotes R[X]/(XN + 1)
mod 1. Finally, we note by Mp,q(E) the set of matrices p× q with entries in E.

This section combines some algebra theory, namely abelian groups, commu-
tative rings, R-modules, and on some metrics of the continuous field R.

Definition 2.1 (R-module). Let (R,+,×) be a commutative ring. We say that
a set M is a R-module when (M,+) is an abelian group, and when there exists an
external operation · which is bi-distributive and homogeneous. Namely, ∀r, s ∈ R
and x, y ∈M , 1R · x = x, (r + s) · x = r · x+ s · x, r · (x+ y) = r · x+ r · y, and
(r × s) · x = r · (s · x).

Any abelian group is by construction a Z-module for the iteration (or ex-
ponentiation) of its own law. In this paper, one of the most important abelian
group we use is the real torus T, composed of all reals modulo 1 (R mod 1).
The torus is not a ring, since the real internal product is not compatible with
the modulo 1 projection (expressions like 0× 1

2 are undefined). But as an addi-
tive group, it is a Z-module, and the external product · from Z×T to T, like in
0 · 12 = 0, is well defined. More importantly, we recall that for all positive integers
N and k, (TN [X]k,+, •) is a R-module.

A R-module M shares many arithmetic operations and constructions with
vector spaces: vectors Mn or matrices Mn,m(M) are also R-modules, and their
left dot product with a vector in Rn or left matrix product inMk,n(R) are both
well defined.

Gaussian Distributions Let σ ∈ R+ be a parameter and k ≥ 1 the dimension.
For all x, c ∈ Rk, we note ρ

σ,c(x) = exp(−π ‖x− c‖2 /σ2). If c is omitted,
then it is implicitly 0. Let S be a subset of Rk, ρσ,c(S) denotes

∑
x∈S

ρ
σ,c(x)

or
∫
x∈S

ρσ,c(x).dx. For all closed (continuous or discrete) additive subgroup

M ⊆ Rk, then ρσ,c(M) is finite, and defines a (restricted) Gaussian Distribution

of parameter σ, standard deviation
√

2/πσ and center c over M , with the density
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function DM,σ,c(x) = ρ
σ,c(x)/ρσ,c(M). Let L be a discrete subgroup of M , then

the Modular Gaussian distribution over M/L exists and is defined by the density
DM/L,σ,c(x) = DM,σ,c(x + L). Furthermore, when span(M) = span(L), then
M/L admits a uniform distribution of constant density UM/L. In this case, the
smoothing parameter η

M,ε(L) of L in M is defined as the smallest σ ∈ R such
that supx∈M |DM/L,σ,c(x) − UM/L| ≤ ε · UM/L. If M is omitted, it implicitely

means Rk.

Subgaussian Distributions A distribution X over R is σ-subgaussian iff it
satisfies the Laplace-transformation bound: ∀t ∈ R,E(exp(tX)) ≤ exp(σ2t2/2).
By Markov’s inequality, this implies that the tails of X are bounded by the Gaus-
sian function of standard deviation σ: ∀x > 0,P(|X| ≥ x) ≤ 2 exp(−x2/2σ2). As
an example, the Gaussian distribution of standard deviation σ (i.e. parameter√
π/2σ), the equi-distribution on {−σ, σ}, and the uniform distribution over

[−
√

3σ,
√

3σ], which all have standard deviation σ, are σ-subgaussian5. If X and
X ′ are two independent σ and σ′-subgaussian variables, then for all α, β ∈ R,
αX + βX ′ is

√
α2σ2 + β2σ′2-subgaussian.

Distance and Norms We use the standard ‖·‖p and ‖·‖∞ norms for scalars and
vectors over the real field or over the integers. By extension, the norm ‖P (X)‖p
of a real or integer polynomial P ∈ R[X] is the norm of its coefficient vector. If
the polynomial is modulo XN + 1, we take the norm of its unique representative
of degree ≤ N − 1.

By abuse of notation, we write ‖x‖p = minu∈x+Zk(‖u‖p) for all x ∈ Tk. It is

the p-norm of the representative of x with all coefficients in ]− 1
2 ,

1
2 ]. Although

it satisfies the separation and the triangular inequalities, this notation is not
a norm, because it lacks homogeneity6, and Tk is not a vector space either.
But we have ∀m ∈ Z, ‖m · x‖p ≤ |m| ‖x‖p. By extension, we define ‖a‖p for a
polynomial a ∈ TN [X] as the p- norm of its unique representative in R[X] of
degree ≤ N − 1 and with coefficients in ]− 1

2 ,
1
2 ].

Definition 2.2 (Infinity norm over Mp,q(TN [X])). Let A ∈ Mp,q(TN [X]).
We define the infinity norm of A as

‖A‖∞ = max
i∈[[1,p]]
j∈[[1,q]]

‖ai,j‖∞ .

Concentrated distribution on the Torus, Expectation and Variance
A distribution X on the torus is concentrated iff. its support is included in a

5 For the first two distributions, it is tight, but the uniform distribution over
[−
√

3σ,
√

3σ] is even 0.78σ-subgaussian
6 Mathematically speaking, a more accurate notion would be distp(x,y) = ‖x− y‖p,

which is a distance. However, the norm symbol is clearer for almost all practical
purposes.
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ball of radius 1
4 of T, except for negligible probability. In this case, we define

the variance Var(X ) and the expectation E(X ) of X as respectively Var(X ) =
minx̄∈T

∑
p(x)|x − x̄|2 and E(X ) as the position x̄ ∈ T which minimizes this

expression. By extension, we say that a distribution X ′ over Tn or TN [X]k is
concentrated iff. each coefficient has an independent concentrated distribution
on the torus. Then the expectation E(X ′) is the vector of expectations of each
coefficient, and Var(X ′) denotes the maximum of each coefficient’s Variance.

These expectation and variance over T follow the same linearity rules than
their classical equivalent over the reals.

Fact 2.3. Let X1,X2 be two independent concentrated distributions on either
T,Tn or TN [X]k, and e1, e2 ∈ Z such that X = e1 · X1 + e2 · X2 remains concen-
trated, then E(X ) = e1 ·E(X1)+e2 ·E(X2) and Var(X ) ≤ e2

1 ·Var(X1)+e2
2 ·Var(X2).

Also, subgaussian distributions with small enough parameters are necessarily
concentrated:

Fact 2.4. Every distribution X on either T,Tn or TN [X]k where each coefficient
is σ-subgaussian where σ ≤ 1/

√
32 log(2)(λ+ 1) is a concentrated distribution:

a fraction 1− 2−λ of its mass is in the interval [− 1
4 ,

1
4 ].

2.1 Learning With Error problem

The Learning With Errors (LWE) problem was introduced by Regev in 2005 [21].
The Ring variant, called RingLWE, was introduced by Lyubashevsky, Peikert
and Regev in 2010 [19]. Both variants are nowadays extensively used for the
construction of lattice-based Homomorphic Encryption schemes. In the original
definition [21], a LWE sample has its right member on the torus and is defined
using continuous Gaussian distributions. Here, we will work entirely on the real
torus, employing the same formalism as the Scale Invariant LWE (SILWE) scheme
in [9], or LWE scale-invariant normal form in [10]. Without loss of generality, we
refer to it as LWE.

Definition 2.5 ((Homogeneous) LWE). Let n ≥ 1 be an integer, α ∈ R+ be
a noise parameter and s be a uniformly distributed secret in some bounded set
S ∈ Zn. Denote by DLWE

s,α the distribution over Tn × T obtained by sampling a
couple (a, b), where the left member a ∈ Tn is chosen uniformly random and the
right member b = a · s+ e. The error e is a sample from a gaussian distribution
with parameter α.

– Search problem: given access to polynomially many LWE samples, find s ∈ S.
– Decision problem: distinguish between LWE samples and uniformly random

samples from Tn × T.

Both the LWE search or decision problems are reducible to each other, and
their average case is asymptotically as hard as worst-case lattice problems. In
practice, both problems are also intractable, and their hardness increases with
the the entropy of the key set S (i.e. n if keys are binary) and α ∈]0, ηε(Z)[.
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Regev’s encryption scheme [21] is the following: Given a discrete message
space M ∈ T, for instance {0, 1

2}, a message µ ∈ M is encrypted by summing
up the trivial LWE sample (0, µ) of µ to a Homogeneous LWE sample (a, b) ∈
Tn+1 with respect to a secret key s ∈ Bn and a noise parameter α ∈ R+. The
semantic security of the scheme is equivalent to the LWE decisional problem. The
decryption of a sample c = (a, b) consists in computing this quantity ϕs(a, b) =
b− s · a, which we call the phase of c, and to round it to the nearest element in
M. Decryption is correct with overwhelming probability 1− 2−p provided that
the parameter α is O(R/

√
p) where R is the packing radius of M.

3 Generalization

In this section we extend this presentation to rings, following the generalization
of [5], and also to GSW [16].

3.1 TLWE

We first define TLWE samples, together with the search and decision problems.
In the following, ciphertexts are viewed as normal samples.

Definition 3.1 (TLWE samples). Let k ≥ 1 be an integer, N a power of 2,
and α ≥ 0 be a noise parameter. A TLWE secret key s ∈ BN [X]k is a vector of k
polynomials ∈ R = Z[X]/XN +1 with binary coefficients. For security purposes,
we assume that private keys are uniformly chosen, and that they actually contain
n ≈ Nk bits of entropy. The message space of TLWE samples is TN [X]. A fresh
TLWE sample of a message µ ∈ TN [X] with noise parameter α under the key
s is an element (a, b) ∈ TN [X]k × TN [X], b ∈ TN [X] has Gaussian distribution
DTN [X],α,s•a+µ around µ+s ·a. The sample is random iff its left member a (also

called mask) is uniformly random ∈ TN [X]k (or a sufficiently dense submodule
7 ), trivial if a is fixed to 0, noiseless if α = 0, and homogeneous iff its message
µ is 0.

– Search problem: given access to polynomially many fresh random homoge-
neous TLWE samples, find their key s ∈ BN [X]k.

– Decision problem: distinguish between fresh random homogeneous TLWE
samples from uniformly random samples from TN [X]k+1.

This definition is the analogue on the torus of the Gereral-LWE problem of [5].
It allows to consider both LWE and RingLWE as a single problem. Choosing
N large and k = 1 corresponds to the classical (bin)RingLWE (over cyclotomic

7 A submodule G is sufficiently dense if there exists an intermediate submodule H
such that G ⊆ H ⊆ Tn, the relative smoothing parameter ηH,ε(G) is ≤ α, and
H is the orthogonal in Tn of at most n − 1 vectors of Zn. This definition allows
to convert any (Ring)-LWE with non-binary secret to a TLWE instance via binary
decomposition.
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rings, and up to a scaling factor q). When N = 1 and k large, then R and
TN [X] respectively collapses to Z and T, and TLWE is simply bin-LWE (up to
the same scaling factor q). Other choices of N, k give some continuum between
the two extremes, with a security that varies between worst-case ideal lattices
to worst-case regular lattices.

Thanks to the underlying R-module structure, we can sum TLWE samples,
or we can make integer linear or polynomial combinations of samples with coef-
ficients in R. However, each of these combinations increases the noise inside the
samples. They are therefore limited to small coefficients.

We additionally define a function called the phase of a TLWE sample, that
will be used many times. The phase computation is the first step of the classical
decryption algorithm, and uses the secret key.

Definition 3.2 (Phase). Let c = (a, b) ∈ TN [X]k × TN [X] and s ∈ BN [X]k,
we define the phase of the sample as ϕs(c) = b− s • a.
The phase is linear over TN [X]k+1 and is (kN + 1)-lipschitzian for the `∞ dis-
tance: ∀x,y ∈ TN [X]k+1, ‖ϕs(x)− ϕs(y)‖∞ ≤ (kN + 1) ‖x− y‖∞.

Note that a TLWE sample contains noise, that its semantic is only function of
its phase, and that the phase has the nice property to be lipschitzian. Together,
these properties have many interesting implications. In particular, we can always
work with approximations, since two samples at a short distance on TN [X]k+1

share the same properties: they encode the same message, and they can in general
be swapped. This fact explains why we can work and describe our algorithms on
the infinite Torus.

Given a finite message space M ⊆ TN [X], the (classical) decryption algo-
rithm computes the phase ϕs(c) of the sample, and returns the closest µ ∈ M.
It is easy to see that if c is a fresh TLWE sample of µ ∈M with gaussian noise
parameter α, the decryption of c over M is equal to µ as soon as α is Θ(

√
λ)

times smaller than the packing radius of M. However decryption is harder to
define for non-fresh samples. In this case, correctness of the decryption proce-
dure involves a recurrence formula between the decryption of the sum and the
sum of the decryption of the inputs conditioned by the noise parameters. In ad-
dition, message spaces of the input samples can be in different subgroups of T.
To raise the limitations of the decryption function, we will instead use a math-
ematical definition of message and error by reasoning directly on the following
Ω-probability space.

Definition 3.3 (The Ω-probability space). Since samples are either inde-
pendent (random, noiseless, or trivial) fresh c← TLWEs,α(µ), or linear combi-
nation c̃ =

∑p
i=1 ei ·ci of other samples, the probability space Ω is the product of

the probability spaces of each individual fresh samples c with the TLWE distribu-
tions defined in definitions 3.1, and of the probability spaces of all the coefficients
(e1, . . . , ep) ∈ Rp or Zp that are obtained with randomized algorithm.

In other words, instead of viewing a TLWE sample as a fixed value which is
the result of one particular event in Ω, we will consider all the possible values
at once, and make statistics on them.
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We now define functions on TLWE samples: message, error, noise variance,
and noise norm. These functions are well defined mathematically, and can be
used in the analysis of various algorithms. However, they cannot be directly
computed or approximated in practice.

Definition 3.4. Let c be a random variable ∈ TN [X]k+1, which we’ll interpret
as a TLWE sample. All probabilities are on the Ω-space. We say that c is a
valid TLWE sample iff there exists a key s ∈ BN [X]k such that the distribution
of the phase ϕs(c) is concentrated. If c is trivial, all keys s are equivalent, else
the mask of c is uniformly random, so s is unique. We then define:

– the message of c, denoted as msg(c) ∈ TN [X] is the expectation of ϕs(c);
– the error, denoted Err(c), is equal to ϕs(c)−msg(c);
– Var(Err(c)) denotes the variance of Err(c), which is by definition also equal

to the variance of ϕs(c);
– finally, ‖Err(c)‖∞ denotes the maximum amplitude of Err(c) (possibly with

overwhelming probability).

Unlike the classical decryption algorithm, the message function can be viewed
as an ideal black box decryption function, which works with infinite precision
even if the message space is continuous. Provided that the noise amplitude re-
mains smaller than 1

4 , the message function is perfectly linear. Using these intu-
itive and intrinsic functions will considerably ease the analysis of all algorithms
in this paper. In particular, we have:

Fact 3.5. Given p valid and independent TLWE samples c1, . . . , cp under the
same key s, and p integer polynomials e1, . . . , ep ∈ R, if the linear combination
c =

∑p
i=1 ei • ci is a valid TLWE sample, it satisfies: msg(c) =

∑p
i=1 ei •msg(ci),

with variance Var(Err(c)) ≤ ∑p
i=1 ‖ei‖22 · Var(Err(ci)) and noise amplitude

‖Err(c)‖∞ ≤
∑p
i=1 ‖ei‖1 · ‖Err(ci)‖∞. If the last bound is < 1

4 , then c is neces-
sarily a valid TLWE sample (under the same key s).

In order to characterize the average case behaviour of our homomorphic
operations, we shall rely on the heuristic assumption of independence below.
This heuristic will only be used for practical average-case bounds. Our worst-
case theorems and lemma based on the infinite norm do not use it at all.

Assumption 3.6 (Independence Heuristic). All the coefficients of the error
of TLWE or TGSW samples that occur in all the linear combinations we consider
are independent and concentrated. More precisely, they are σ-subgaussian where
σ is the square-root of their variance.

This assumption allows us to bound the variance of the noise instead of
its norm, and to provide realistic average-case bounds which often correspond
to the square root of the worst-case ones. The error can easily be proved sub-
gaussian, since each coefficients are always obtained by convolving Gaussians
or zero-centered bounded uniform distributions. But the independence assump-
tion between all the coefficients remains heuristic. Dependencies between coef-
ficients may affect the variance of their combinations in both directions. The
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independence of coefficients can be obtained by adding enough entropy in all
our decomposition algorithms and by increasing some parameters accordingly,
but as noticed in [11], this work-around seems more as a proof artefact, and
is experimentally not needed. Since average case corollaries should reflect prac-
tical results, we leave the independence of subgaussian samples as a heuristic
assumption.

3.2 TGSW

In this section we present a generalized scale invariant version of the FHE scheme
GSW [16], that we call TGSW. GSW was proposed Gentry, Sahai and Waters
in 2013 [16], and improved in [3] and its security is based on the LWE problem.
The scheme relies on a gadget decomposition function, which we also extend to
polynomials, but most importantly, the novelty is that our function is an approx-
imate decomposition, up to some precision parameter. This allows to improve
running time and memory requirements for a small amount of additional noise.

Definition 3.7 (Approximate Gadget Decomposition). Let h ∈
Mp,k+1(TN [X]) as in (1). We say that Dech,β,ε(v) is a decomposition algorithm
on the gadget h with quality β and precision ε if and only if for any TLWE sam-
ple v ∈ TN [X]k+1, it efficiently and publicly outputs a small vector u ∈ R(k+1)`

such that ‖u‖∞ ≤ β and ‖u · h− v‖∞ ≤ ε. Furthermore, the expectation of
u · h− v must to be 0 when v is uniformly distributed in TN [X]k+1

Definition 3.7 is generic, but in the rest of the paper, we will only use this
fixed gadget:

h =



1/Bg . . . 0
...

. . .
...

1/B`g . . . 0
...

. . .
...

0 . . . 1/Bg
...

. . .
...

0 . . . 1/B`g


∈Mp,k+1(TN [X]). (1)

The matrix h consists in a diagonal of columns, each containing a super-
increasing sequence of constant polynomials in T. Algorithm 1 represents an
efficient decomposition of TLWE samples on h, and the following lemma proves
its correctness. In theory, decomposition algorithms should be randomized to
guarantee that the distribution of all error coefficients remain independent. In
practice, we already rely on Heuristic 3.6. We just need that the expectation of
the small errors induced by the approximations remains null, so that the message
is not changed.

Lemma 3.8. Let ` ∈ N and Bg ∈ N. Then for β = Bg/2 and ε = 1/2B`g,
Algorithm 1 is a valid Dech,β,ε.
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Algorithm 1 Gadget Decomposition of a TLWE sample

Input: A TLWE sample (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k × TN [X]
Output: A combination [e1,1, . . . , ek+1,`] ∈ R(k+1)`

1: For each ai choose the unique representative
∑N−1
j=0 ai,jX

j , with ai,j ∈ T, and set

āi,j the closest multiple of 1
B`

g
to ai,j

2: Decompose each āi,j uniquely as
∑`
p=1 āi,j,p

1
B

p
g

where each āi,j,p ∈ [[−Bg/2, Bg/2[[

3: for i = 1 to k + 1
4: for p = 1 to `
5: ei,p =

∑N−1
j=0 āi,j,pX

j ∈ R
6: Return (ei,p)i,p

Proof. Let v = (a, b) = (a1, . . . , ak, b = ak+1) ∈ TN [X]k+1 be a TLWE sample,
given as input to Algorithm 1. Let u = [e1,1, . . . , ek+1,`] ∈ R(k+1)` be the corre-
sponding output by construction ‖u‖∞ ≤ Bg/2 = β.
Let εdec = u · h − v. For all i ∈ [[1, k + 1]] and j ∈ [[1, `]], we have by con-

struction εdeci,j =
∑`
p=0 ei,p •

1
Bp

g
− ai,j = āi,j − ai,j . Since āi,j is defined as

the nearest multiple of 1
B`

g
on the torus, we have |āi,j − ai,j | ≤ 1/2B`g = ε. εdec

has therefore a concentrated distribution when v is uniform. We now verify that
it is zero-centered. Finally, if we call f the function from T to T which rounds
an element x to its closest multiple of 1

B`
g

and the funtion g the symmetry de-

fined by g(x) = 2f(x) − x on the torus; we easily verify that the E(εdeci,j)
is equal to E(ai,j − f(ai,j)) when ai,j has uniform distribution, which is equal
to E(g(ai,j) − f(g(ai,j))) when g(ai,j) has uniform distribution also equal to
E(f(ai,j)− ai,j) = −E(εdeci,j). Thus, the expectation of εdec is 0. ut

We are now ready to define TGSW samples, and to extend the notions of
phase of valid sample, message and error of the samples.

Definition 3.9 (TGSW samples). Let ` and k ≥ 1 be two integers, α ≥ 0 be
a noise parameter and h the gadget defined in Equation (1). Let s ∈ BN [X]k

be a RingLWE key, we say that C ∈ M(k+1)`,k+1(TN [X]) is a fresh TGSW

sample of µ ∈ R/h⊥ with noise parameter α iff C = Z + µ • h where
each row of Z ∈ M(k+1)`,k+1(TN [X]) is an Homogeneous TLWE sample (of
0) with Gaussian noise parameter α. Reciprocally, we say that an element
C ∈ M(k+1)`,k+1(TN [X]) is a valid TGSW sample iff there exists a unique

polynomial µ ∈ R/h⊥ and a unique key s such that each row of C − µ • h is a
valid TLWE sample of 0 for the key s. We call the polynomial µ the message of
C, and we denote it by msg(C).

Definition 3.10 (Phase, Error). Let A =∈M(k+1)`,k+1(TN [X]) be a TGSW

sample for a secret key s ∈ BN [X]k and noise parameter α ≥ 0.
We define the phase of A, denoted as ϕs(A) ∈ (TN [X])(k+1)`, as the list of the
(k + 1)` TLWE phases of each line of A. In the same way, we define the error
of A, denoted Err(A), as the list of the (k + 1)` TLWE errors of each line of A.

10



Since TGSW samples are essentially vectors of TLWE samples, they are nat-
urally compatible with linear operations. And both phase and message functions
remain linear.

Fact 3.11. Given p valid TGSW samples C1, . . . , Cp of messages µ1, . . . , µp un-
der the same key, and with independent error coefficients, and given p integer
polynomials e1, . . . , ep, the linear combination C =

∑p
i=1 ei • Ci is a sample of

µ =
∑p
i=1 ei · µi, with variance Var(C) =

(∑p
i=1 ‖ei‖22 · Var(Ci)

)1/2
and noise

infinity norm ‖Err(C)‖∞ =
∑p
i=1 ‖ei‖1 · ‖Err(C)‖∞.

Also, the phase remains 1 + kN lipschitzian for the infinity norm.

Fact 3.12. For all A ∈Mp,k+1(TN [X]), ‖ϕs(A)‖∞ ≤ (Nk + 1) ‖A‖∞.

We finally define the homomorphic product between TGSW and TLWE sam-
ples, whose corresponding message is simply the product of the two messages of
the initial samples. Since the left member encodes an integer polynomial, and
the right one a torus polynomial, this operator performs a homomorphic evalua-
tion of their external product. Theorem 3.14 (resp. Theorem 3.15) analyzes the
worst-case (resp. average-case) noise propagation of this product. Then, corol-
lary 3.16 relates this new morphism to the classical internal product between
TGSW samples.

Definition 3.13 (External product). We define the product � as

� : TGSW × TLWE −→ TLWE

(A, b) 7−→ A� b = Dech,β,ε(b) ·A.

The formula is almost identical to the classical product defined in the original
GSW scheme in [16], except that only one vector needs to be decomposed. For
this reason, we get almost the same noise propagation formula, with an additional
term that comes from the approximations in the decomposition.

Theorem 3.14 (Worst-case External Product). Let A be a valid TGSW
sample of message µA and let b be a valid TLWE sample of message µb.
Then A � b is a TLWE sample of message µA · µb and ‖Err(A� b)‖∞ ≤
(k + 1)`Nβ ‖Err(A)‖∞ + ‖µA‖1 (1 + kN)ε + ‖µA‖1 ‖Err(b)‖∞ (worst case),
where β and ε are the parameters used in the decomposition Dech,β,ε(b). If
‖Err(A� b)‖∞ ≤ 1/4 we are guaranteed that A� b is a valid TLWE sample.

Proof. As A = TGSW(µA), then by definition it is equal to A = ZA + µA · h,
where ZA is a TGSW encryption of 0 and h is the gadget matrix. In the same
way, as b = TLWE(µb), then by definition it is equal to b = zb + (0, µb), where
zb is a TLWE encryption of 0. Let{

‖Err(A)‖∞ = ‖ϕs(ZA)‖∞ = ηA

‖Err(b)‖∞ = ‖ϕs(zb)‖∞ = ηb.

11



Let u = Dech,β,ε(b) ∈ R(k+1)`. By definition A� b is equal to

A� b = u ·A
= u · ZA + µA · (u · h).

From definition 3.7, we have that u · h = b + εdec, where ‖εdec‖∞ =
‖u · h− b‖∞ ≤ ε. So

A� b = u · ZA + µA · (b+ εdec)

= u · ZA + µA · εdec + µA · zb + (0, µA · µb).

Then the phase (linear function) of A� b is

ϕs(A� b) = u · Err(A) + µA · ϕs(εdec) + µA · Err(b) + µAµb.

Taking the expectation, we get that msg(A � b) = 0 + 0 + 0 + µAµb, and so
Err(A� b) = ϕs(A� b)− µAµb. Then thanks to lemma 3.12, we have

‖Err(A� b)‖∞ ≤ ‖u · Err(A)‖∞ + ‖µA · ϕ(εdec)‖∞ + ‖µA · Err(b)‖∞
≤ (k + 1)`NβηA + ‖µA‖1 (1 + kN) ‖εdec‖∞ + ‖µA‖1 ηb.

The result follows. ut

We similarly obtain the more realistic average-case noise propagation, based
on the independence heuristic, by bounding the Gaussian variance instead of the
amplitude.

Corollary 3.15 (Average-case External Product). Under the same con-
ditions of theorem 3.14 and by assuming the heuristic 3.6, we have that
Var(Err(A�b)) ≤ (k+1)`Nβ2Var(Err(A))+(1+kN) ‖µA‖22 ε2+‖µA‖22 Var(Err(b)).

Proof. Let ϑA = Var(Err(A)) = Var(ϕs(ZA)) and ϑb = Var(Err(b)) =
Var(ϕs(zb)). By using the same notations as in the proof of theorem 3.14 we
have that the error of A�b is Err(A�b) = u ·Err(A)+µA ·ϕs(εdec)+µA ·Err(b)
and thanks to assumption 3.6 and lemma 3.12, we have :

Var(Err(A� b)) ≤ Var(u · Err(A))) + Var(µA · ϕ(εdec)) + Var(µA · Err(b))
≤ (k + 1)`Nβ2ϑA + (1 + kN) ‖µA‖22 ε2 + ‖µA‖22 ϑb.

ut

The last corollary describes exactly the classical internal product between
two TGSW samples, already presented in [16, 3, 13, 11] with adapted notations.
As we mentionned before, it is much slower to evaluate, because it consists in
(k + 1)` independent computations of the � product, which we illustrate now.
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Corollary 3.16 (Internal Product). Let the product

� : TGSW × TGSW −→ TGSW

(A,B) 7−→ A�B =

 A� b1
...

A� b(k+1)`

 =

 Dech,β,ε(b1) ·A
...

Dech,β,ε(b(k+1)`) ·A

 ,
with A and B two valid TGSW samples of messages µA and µB respectively
and bi corresponding to the i-th line of B. Then A � B is a TGSW sample of
message µA·µB and ‖Err(A�B)‖∞ ≤ (k+1)`Nβ ‖Err(A)‖∞+‖µA‖1 (1+kN)ε+
‖µA‖1 ‖Err(B)‖∞ (worst case). If ‖Err(A�B)‖∞ ≤ 1/4 we are guaranteed that
A�B is a valid TGSW sample.
Furthermore, by assuming the heuristic 3.6, we have that Var(Err(A � B)) ≤
(k + 1)`Nβ2Var(Err(A)) + (1 + kN)(µAε)

2 + µ2
AVar(Err(b)) (average case).

Proof. Let A and B be two TGSW samples, and µA and µB their message. By
definition, the i-th row of B encodes µB • hi, so the i-th row of A � B encodes
(µAµB) • hi. This proves that A�B encodes µAµB . Since the internal product
A�B consists in (k+ 1)` independent runs of the external products A� bi, the
noise propagation formula directly follows from Thm. 3.14 and Cor. 3.15. ut

The last corollaries describe exactly the internal products already presented
in [16], [3], [13] and [11] with adapted notations. In the next section, we show
that all internal products in the bootstrapping procedure can be replaced with
the external one. Consequently, we expect a speed-up of a factor at least (k+1)`.

4 Application: Single gate Bootstrapping in less than 0.1
seconds

In this section, we show how to use Theorem 3.14 to speed-up the bootstrap-
ping presented in [11]. With additional optimizations, we drastically reduce the
bootstrapping key size, and also reduce a bit the noise overhead. To bootstrap a
LWE sample (a, b) ∈ Tn+1, which is rescaled as (ā, b̄) mod 2N , using relevant
encryptions of its secret key s ∈ Bn, the overall idea is the following. We start
from a fixed polynomial testv ∈ TN [X], which is our phase detector: its i-th coef-
ficient is set to the value that the bootstrapping should return if ϕs(a, b) = i/2N .
testv is first encoded in a trivial LWE sample. Then, we iteratively rotate its co-
efficients, using external multiplications with TGSW encryptions of the hidden
monomials X−siāi . By doing so, the original testv gets rotated by the (hidden)
phase of (a, b), and in the end, we simply extract the constant term as a LWE
sample.

4.1 TLWE to LWE extraction

Like in previous work, extracting a LWE sample from a TLWE sample simply
means rewriting polynomials into their list of coefficients, and discarding the
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N − 1 last coefficients of b. This yields a LWE encryption of the constant term
of the initial polynomial message.

Definition 4.1 (TLWE Extraction). Let (a′′, b′′) be a TLWEs′′(µ) sam-
ple with key s′′ ∈ Rk, We call KeyExtract(s′′) the integer vector s′ =
(coefs(s′′1(X), . . . , coefs(s′′k(X)) ∈ ZkN and SampleExtract(a′′, b′′) the LWE sam-
ple (a′, b′) ∈ TkN+1 where a′ = (coefs(a′′1(1/X), . . . , coefs(a′′k(1/X)) and b′ = b′′0
the constant term of b′′. Then ϕs′(a

′, b′) (resp. msg(a′, b′)) is equal to the con-
stant term of ϕs′′(a

′′, b′′) (resp. to the constant term of µ = msg(a′′, b′′)). And
‖Err(a′, b′)‖∞ ≤ ‖Err(a′′, b′′)‖∞ and Var(Err(a′, b′)) ≤ Var(Err(a′′, b′′)).

4.2 LWE to LWE Key-Switching Procedure

Given a LWEs′ sample of a message µ ∈ T , the key switching procedure initially
proposed in [7, 5] outputs a LWEs sample of the same µ without increasing
the noise too much. Contrary to previous exact keyswitch procedures, here we
tolerate approximations.

Definition 4.2. Let s′ ∈ {0, 1}n′ , s ∈ {0, 1}n, a noise parameter γ ∈ R and a
precision parameter t ∈ N, we call key switching secret KSs′→s,γ,t a sequence of
fresh LWE samples KSi,j ∈ LWEs,γ(s′i · 2−j) for i ∈ [1, n′] and j ∈ [1, t].

Lemma 4.3 (Key switching). Given (a′, b′) ∈ LWEs′(µ) where s′ ∈ {0, 1}n′
with noise η′ = ‖Err(a′, b′)‖∞ and a keyswitching key KSs′→s,γ,t, where s ∈
{0, 1}n, the key switching procedure outputs a LWE sample (a, b) ∈ LWEsn

(µ)
where ‖Err(a, b)‖∞ ≤ η′ + n′tγ + n′2−(t+1).

Proof. We have

ϕs(a, b) = ϕs(0, b′)−
n′∑
i=1

t∑
j=1

ai,jϕs(KSi,j)

= b′ −
n′∑
i=1

t∑
j=1

ai,j

(
2−js′i + Err(KSi,j)

)
= b′ −

n′∑
i=1

ā′is
′
i −

n′∑
i=1

t∑
j=1

ai,jErr(KSi,j)

= b′ −
n′∑
i=1

a′is
′
i −

n′∑
i=1

t∑
j=1

ai,jErr(KSi,j) +

n′∑
i=1

(a′i − ā′i)s′i

= ϕs′(a
′, b′)−

n′∑
i=1

t∑
j=1

ai,jErr(KSi,j) +

n′∑
i=1

(a′i − ā′i)s′i.

The expectation of the left side of the equality is equal to msg(a, b). For the
right side, each ai,j is uniformly distributed in {0, 1} and (a′i− ā′i) is a 0-centered
variable so the expectation of the sum is 0. Thus, msg(a, b) = msg(a′, b′). We
obtain ‖ϕs(a, b)−msg(a, b)‖∞ ≤ η′ + n′ · t · γ + n′2−(t+1). ut
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Algorithm 2 KeySwitch procedure

Input: A LWE sample (a′ = (a′1, . . . , a
′
n′), b

′) ∈ LWEs′(µ), a switching key KSs′→s

where s′ ∈ {0, 1}n
′
, s ∈ {0, 1}n and t ∈ N a precision parameter

Output: A LWE sample LWEs(µ)
1: Let ā′i be the closest multiple of 1

2t to a′i, thus |ā′i − a′i| < 2−(t+1)

2: Binary decompose each āi =
∑`
j=1 ai,j · 2

−j where ai,j ∈ {0, 1}

3: Return (0, b′)−
n′∑
i=1

t∑
j=1

ai,j · KSi,j

Corollary 4.4. Let t be an integer parameter. Under Assumption 3.6 Given
(a′, b′) ∈ LWEs′(µ) with noise variance η′ = Var(Err(a′, b′)) and a key switching
key KSs′→s,γ,`, the key switching procedure outputs an LWE sample (a′, b′) ∈
LWEs(µ) where Var(Err(a, b)) ≤ η′ + n′ · t · γ2 + n′2−2(t+1).

4.3 Bootstrapping Procedure

Given a LWE sample LWEs(µ) = (a, b), the bootstrapping procedure constructs
an encryption of µ under the same key s but with a fixed amount of noise. As
in [11], we will use TLWE as an intermediate encryption scheme to perform a
homomorphic evaluation of the phase but here we will use its external product
from theorem 3.14 with a TGSW encryption of the key s.

Definition 4.5. Let s ∈ Bn, s′′ ∈ BN [X]k and α be a noise parameter. We
define the bootstrapping key BKs→s′′,α as the sequence of n TGSW samples
where BKi ∈ TGSWs′′,α(si).

Algorithm 3 Bootstrapping procedure

Input: A LWE sample (a, b) ∈ LWEs,η(µ), a bootstrapping key BKs→s′′,α, a keyswitch
key KSs

′→s,γ where s′ = KeyExtract(s′′), two fixed messages µ0, µ1 ∈ T

Output: A LWE sample LWEs,ν

(
µ0 if ϕs(a, b) ∈

]
− 1

4
, 1

4

[
;µ1 else

)
1: Let µ̄ = µ1+µ0

2
and µ̄′ = µ0 − µ̄

2: Let b̄ = b2Nbe and āi = b2Naie for each i ∈ [1, n]

3: Let testv := (1+X+ . . .+XN−1)×X−
2N
4 • µ̄′ ∈ TN [X]

4: ACC←
(
X b̄ • (0, testv)

)
∈ TN [X]k+1

5: for i = 1 to n
6: ACC←

[
h+ (X−āi − 1) • BKi

]
� ACC

7: Let u := (0, µ̄) + SampleExtract(ACC)
8: Return KeySwitchKS(u)

We first provide a comparison between the bootstrapping of Algorithm 3
and [11, Algorithm 1,2] proposal.
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– Like [11], we rescale the computation of the phase of the input LWE sample
so that it is modulo 2N (line 2) and we map all the corresponding operations
in the multiplicative cyclic group {1, X, . . . ,X2N−1}. Since our LWE samples
are described over the real torus, the rescaling is done explicitly in line 2.
This rescaling may induce a cumulated rounding error of amplitude at most
δ ≈ √n/4N in the average case and δ ≤ (n + 1)/4N in the worst case. In
the best case, this amplitude can decrease to zero (δ = 0) if in the actual
representation of LWE samples, all the coefficients are restricted to multiple
of 1

2N , which would be the analogue of [11]’s setting.
– As in [11], messages are encoded as roots of unity in R. Our accumulator

is a TLWE sample instead of a TGSW sample in [11]. Also accumulator
operations use the external product from Theorem 3.14 instead of the slower
classical internal product. The test vector (1+X+ . . .+XN−1) is embedded
in the accumulator from the very start, when the accumulator is still noiseless
while in [11], it is added at the very end. This removes a factor

√
N to the

final noise overhead.
– All the TGSW ciphertexts of X−āisi required to update the accumulator

internal value are computed dynamically as a very small polynomial combi-
nation of BKi in the for loop (line 5). This completely removes the need to
decompose each āi on an additional base Br, and to precompute all possibil-
ities in the bootstrapping key. In other words, this makes our bootstrapping
key 46 times smaller than in [11], for the exact same noise overhead. Besides,
due to this squashing technique, two accumulator operations were performed
per iteration instead of one in our case. This gives us an additional 2X speed
up.

Theorem 4.6 (Bootstrapping Theorem). Let h ∈ M`(k+1),k+1(TN [X]) be
the gadget defined in Equation 1 and let Dech,ε,β be the associated vector gadget
decomposition function.

Let s ∈ Bn, s′′ ∈ BN [X]k and α, γ be noise amplitudes. Let BK = BKs→s′′,α

be a bootstrapping key, let s′ = KeyExtract(s′′) ∈ BkN and KS = KSs′→s,γ,t be a
keyswitching secret.

Given (a, b) ∈ LWEs(µ) for µ ∈ T, two fixed messages µ0, µ1, Algorithm 3
outputs a sample in LWEs(µ′) s.t. µ′ = µ0 if |ϕs(a, b)| < −1/4− δ and µ′ = µ1

if |ϕs(a, b)| > 1/4 + δ where δ is the cumulated rounding error equal to n+1
4N in

the worst case and δ = 0 if the all coefficients of (a, b) are multiple of 1
2N . Let

v be the output of Algorithm 3. Then ‖Err(v)‖∞ ≤ 2n(k + 1)`βNα + kNtγ +
n(1 + kN)ε+ kN2−(t+1).

Proof. Line 1: the division by two over torus gives two possible values for (µ̄, µ̄′).
In both cases, µ̄+ µ̄′ = µ0 and µ̄− µ̄′ = µ1.

Line 2: let ϕ̄
def
= b̄−∑n

i=1 āisi mod 2N . We have∣∣∣ϕ− ϕ̄

2N

∣∣∣ = b− b2Nbe
2N

+

n∑
i=1

(
ai −

b2Naie
2N

)
si ≤

1

4N
+

n∑
i=1

1

4N
≤ n+ 1

4N
. (2)

And if the coefficients (a, b) ∈ 1
2NZ/Z, then ϕ = ϕ̄

2N . In all cases, |ϕ− ϕ̄
2N | < δ.
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At line 3, the test vector testv := (1+X+ . . .+XN−1) ·X− 2N
4 • µ̄′ is defined

such that for all p ∈ [0, 2N ], the constant term of Xp • testv is either µ̄′ if
p ∈]]− N

2 ,
N
2 [[ and −µ̄′ else.

In the loop for (from line 5 to 6), we will prove the following invariant: At the
beginning of iteration i+1 ∈ [1, n+1] (i.e. at the end of iteration i), msg(ACCi) =

Xb−
∑i

j=1 ājsj • testv and ‖Err(ACCi)‖∞ ≤
∑i
j=1

(
2(k + 1)`Nβ ‖Err(BKj)‖∞ +

(1 + kN)ε
)

.

At the beginning of iteration i = 1, the accumulator contains a trivial ci-

phertext msg(ACC1) =
(
X b̄ • testv

)
, so ‖Err(ACC1)‖∞ = 0.

During iteration i, Ai = h+ (X−āi − 1) •BKi is a TGSW sample of message
X−āisi (this can be seen by replacing si with its two possible values 0 and 1) and
of noise ‖Err(Ai)‖∞ ≤ 2 ‖Err(BKi)‖∞. This inequality holds from lemma 3.11.
Then, we have:

msg(ACCi) = msg
(
Ai �ACCi−1

)
= msg

(
Ai

)
•msg(ACCi−1) (from Theorem 3.14)

= X−āisi · (Xb−
∑i−1

j=1 ājsj • testv)

and from the norm inequality of Theorem 3.14,

‖Err(ACCi)‖∞ ≤ (k + 1)`Nβ ‖Err(Ai)‖∞ + ‖msg(Ai)‖1 (1 + kN)ε+

+ ‖msg(Ai)‖1 ‖Err(ACCi−1)‖∞
≤ (k + 1)`Nβ2 ‖Err(BKi)‖∞ + (1 + kN)ε+ ‖Err(ACCi−1)‖∞ .

This proves the invariant by induction on i.

After SampleExtract (line 7), the message of u is equal to the constant
term of the message of ACCn, i.e. Xϕ̄ • testv where ϕ̄ = b̄ − ∑n

i=1 āisi. If
ϕ̄ ∈ [[−N/2, N/2[[, the constant term is equal to µ̄′ and −µ̄′ otherwise.

In other words, |ϕs(a, b)| < 1/4− δ, then ϕs(a, b) < 1/4− δ and ϕs(a, b) ≥
−1/4+δ and thus using Equation (2), we obtain that ϕ̄ ∈]]− N

2 ,
N
2 [[ and thus, the

message of u is equal to µ̄′. And if |ϕs(a, b)| > 1/4 + δ then ϕs(a, b) > 1/4 + δ
or ϕs(a, b) < −1/4 − δ and using Equation (2), we obtain the message of u is
equal to −µ̄′.

Since SampleExtract does not add extra noise, ‖Err(u)‖∞ ≤ ‖Err(ACCn)‖.
Since the KeySwitch procedure preserves the message, the message of v =
KeySwitchKS(u) is equal to the message of u. And ‖Err(v)‖∞ ≤ ‖Err(u)‖∞ +
kNtγ + kN2−(t+1). ut
Corollary 4.7. Let ϑBK = Var(Err(BKi)) = 2/π ·α2 and VKS = Var(Err(KSi)) =
2/π · γ2. Under the same conditions of Theorem 4.6, and assuming Assump-
tion 3.6, then the Variance of the output v of Algorithm 3 satisfies Var(Err(v)) ≤
2Nn(k + 1)`β2ϑBK + kNtVKS + n(1 + kN)ε2 + kN2−2(t+1).
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Proof. The proof is the same as for the proof of the bound on ‖Err(v)‖∞ replacing
all ‖‖∞ inequalities by Var() inequalities. ut

4.4 Application to circuits

In [11], the homomorphic evaluation of a NAND gate between LWE samples
is achieved with 2 additions (one with a noiseless trivial sample) and a boot-
strapping. Let BK = BKs→s′′,α be a bootstrapping key and KS = KSs′→s,γ,t

be a keyswitching secret defined as in thm. 4.6 such that 2n(k + 1)`βNα +
kNtγ + n(1 + kN)ε + kN2−(t+1) < 1

16 , We denote as Bootstrap (c) the out-
put of the bootstrapping procedure described in Algorithm 3 applied to c with
µ0 = 0 and µ1 = 1

4 . Let consider two LWE samples c1 and c2, with mes-
sage space {0, 1/4} and ‖Err(c1)‖∞ , ‖Err(c2)‖∞ ≤ 1

16 . The result is obtained
by computing c̃ = (0, 5

8 )-c1-c2, plus a bootstrapping. Indeed the possible val-
ues for the messages of c̃ are 5

8 ,
3
8 if either c1 or c2 encode 0, and 1

8 if both
encode 1

4 . Since the noise amplitude ‖Err(c̃)‖∞ is < 1
8 , then |ϕs(c̃)| > 1

4 iff.
NAND(msg(c1),msg(c2)) = 1. This explains why it suffices to bootstrap c̃ with
parameters (µ1, µ0) = ( 1

4 , 0) to get the answer. By using a similar approach, it
is possible to directly evaluate with a single bootstrapping all the basic gates:

– HomNOT(c) = (0, 1
4 )-c (no bootstrapping is needed);

– HomAND(c1, c2) = Bootstrap
(
(0,− 1

8 )+c1+c2
)
;

– HomNAND(c1, c2) = Bootstrap
(
(0, 5

8 )-c1-c2
)
;

– HomOR(c1, c2) = Bootstrap
(
(0, 1

8 )+c1+c2
)
;

– HomXOR(c1, c2) = Bootstrap (2 · (c1-c2)).

The HomXOR(c1, c2) gate can be achieved also by performing
Bootstrap (2 · (c1+c2)).

4.5 Parameters Implementation and Timings

In this section, we review our implementation parameters and provide a com-
parison with previous works.

Samples. From a theoretical point of view, our scale invariant scheme is defined
over the real torus T, where all the operations are modulo 1. In practice, since
we can work with approximations, we chose to rescale the elements over T by a
factor 232, and to map them to 32-bit integers. Thus, we take advantage of the
native and automatic mod 232 operations, including for the external multipli-
cation with integers. Except for some FFT operations, this seems more stable
and efficient than working with floating point numbers and reducing modulo 1
regularly. Polynomials mod XN + 1 are either represented as the classical list of
the N coefficients, either using the Lagrange half-complex representation, which
consists in the complex (2 · 64bits) evaluations of the polynomial over the roots
of unity exp(i(2j + 1)π/N) for j ∈ [[0, N2 [[. Indeed, the N

2 other evaluations are
the conjugates of the first ones, and do not need to be stored. The conversion
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between both representations is done via Fast Fourier Transform (FFT) (using
the library FFTW [12], also used by [11]). Note that the direct FFT transform is√

2N lipschitzian, so the lagrange half-complex representation tolerates approx-
imations, and 53bits of precision is indeed more than enough, provided that the
real representative remains small. However, the modulo 1 that can reduce the
coefficients of Torus polynomials cannot be applied from the Lagrange repre-
sentation: we need to perform regular transformations to and from the classical
representation. Luckily, it does not represent an overhead, since these conversions
are needed anyway, at each iteration of the bootstrapping in order to decompose
the accumulator in base h.

Parameters. We take the same or even stronger security parameters as [11], but
we adapt them to our notations. We used n = 500, N = 1024, k = 1.

– LWE samples: 32 · (n+ 1) bits ≈ 2 KBytes.
The mask of all LWE samples (initial and KeySwitch) are clamped to multi-
ples of 1

2048 . Therefore, the phase computation in the bootstrapping is exact
(δ = 0).

– TLWE samples: (k + 1) ·N · 32 bits ≈ 8 KBytes.
– TGSW samples: (k + 1) · ` TLWE samples ≈ 48 KBytes.

To define h and Dech,β,ε, we used ` = 3, Bg = 1024, so β = 512 and ε = 2−31.
– Bootstrapping Key: n TGSW samples ≈ 23.4 MBytes.

We used α = 9.0 ·10−9. Since we have a lower noise overhead, our parameter
is higher than the parameter ≈ 3.25 ·10−10 of [11], (i.e. ours is more secure),
but in counterpart, our TLWE key is binary. See Section 6 for more details
on the security analysis.

– Key Switching Key: k ·N · t LWE samples ≈ 29.2 MBytes.
we used γ = 3.05 · 10−5, t = 15 (The decomposition in the key switching has
an precision 2−16).

– Correctness: The final error variance after bootstrapping is 9.24.10−6, by
Corollary 4.7. It corresponds to a standard deviation of σ = 0.00961.
In [11], the final standard deviation is larger 0.01076. In other words, the
noise amplitude after our bootstrapping is < 1

16 with very high probability

erf(1/16
√

2σ) ≥ 1 − 2−33.56 (this is comparable to probability ≥ 1 − 2−32

in [11]).

Note that the size of the key switching key can be reduced by a factor
n + 1 = 501 if all the masks are the output of a pseudo random function;
we may for instance just give the seed. The same technique can be applied to
the bootstrapping key, on which the size is only reduced by a factor k + 1 = 2.

Implementation tools and Source Code. The source code of our implementation is
available on github https://github.com/tfhe/tfhe. We implemented the FHE
scheme in C/C++, and run the bootstrapping algorithm on a 64-bit single core
(i7-4930MX) at 3.00GHz. This seems to correspond to the machine used in [11].
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We implemented a version with classical representation for polynomials, and a
version in Lagrange half-complex representation. The following table compares
the number of multiplications or FFT that are required to complete one external
product and the full bootstrapping.

#(Classical products) #(FFT + Lagrange repr.)
External product 12 8

Bootstrapping 6000 4006

Bootstrapping in [11] (72000) 48000

In practice, we obtained a running time of 52ms per bootstrapping using
the Lagrange half-complex representation. It is coherent with the 12x speed-up
predicted by the table. Profiling the execution shows that the FFTs and complex
multiplications are still taking more than 90% of the total time. Other operations
like keyswitch have a negligible running time compared to the main loop of the
bootstrapping.

5 Leveled Homomorphic encryption

In the previous section, we showed how to accelerate the bootstrapping com-
putation in FHE. In this section, we focus on the improvement of Leveled Ho-
momorphic encryption schemes. We present an efficient way to evaluate any
deterministic automata homomorphically.

5.1 Boolean circuits interpretation

In order to express our external product in a circuit, we consider two kinds
of wires: control wires which encode either a small integer or a small integer
polynomial. They will be represented by a TGSW sample; and data wires which
encode either a sample in T or in TN [X]. They will be represented by a TLWE
sample. The gates we present contain three kinds of slots: control input, data
input and data output. In this following section, the rule to build valid circuits
is that all control wires are freshly generated by the user, and the data input
ports of our gates can be either freshly generated or connected to a data output
or to another gate.

We now give an interpretation of our leveled scheme, to simulate boolean
circuits only. In this case, the message space of the input TLWE samples will be
restricted to {0, 1

2}, and the message space of control gates to {0, 1}.

– The constant source Cst(µ) for µ ∈ {0, 1
2} is defined with a single data

output equal to (0, µ).
– The negation gate Not(d) takes a single data input d and outputs (0, 1

2 )−d.
– The controlled And gate CAnd(C,d) takes one control input C and one data

input d, and outputs C � d.
– The controlled Mux gate CMux(C,d1,d0) takes one control input C and two

data inputs d1,d0 and returns C � (d1 − d0) + d0.
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Unlike classical circuits, these gates have to be composed with each other
depending on the type of inputs/outputs. In our applications, the TGSW en-
cryptions are always fresh ciphertexts.

µ
T-LWE (trivial)µ

0 0

µd
1
2 − µd

T-LWET-LWE
η η

µC

T-LWE

T-GSW

µd

µC · µd

T-LWE

ηC

ηd

ηd +O(ηC)

µC

T-LWE

T-GSW

µd0

µC · (µd1 − µd0) + µd0

T-LWE

µd1

T-LWE 1

0

ηC

ηd1

ηd0

max(ηd1 , ηd0) +O(ηC)

Theorem 5.1 (Correctness). Let µ ∈ {0, 1
2}, d,d1,d0 ∈ TLWEs({0, 1

2}) and
C ∈ TGSWs({0, 1}).

– msg(Cst(µ)) = µ
– msg(Not(d)) = 1

2 − µ = not µ
– msg(CAnd(C,d)) = msg(C) ·msg(d)
– msg(CMux(C,d1,d0)) = msg(C)?msg(d1):msg(d0)

Theorem 5.2 (Worst-case noise). In the conditions of thm 5.1, we have

– ‖Err(Cst(µ))‖∞ = 0
– ‖Err(Not(d))‖∞ = ‖Err(d)‖∞
– ‖Err(CAnd(C,d))‖∞ ≤ ‖Err(d)‖∞ + η(C)
– ‖Err(CMux(C,d1,d0))‖∞ ≤ max(‖Err(d0)‖∞ , ‖Err(d1)‖∞) + η(C),

where η(C) = (k + 1)`Nβ ‖Err(C)‖∞ + (kN + 1)ε.

Proof. The noise is indeed null for constant gates, and negated for the Not gate,
which preserves the norm. The noise bound for the CAnd gate is exactly the one
from Theorem 3.14, however, we need to explain why there is a max in the CMux
formula instead of the sum we would obtain by blindly applying thm 3.14. Let
d = d1 − d0, recall that in the proof of Theorem 3.14, the expression of C � d
is Dech,β,ε(d) • zC + µCεdec + µCzd + (0, µC · µd), where C = zC + µC · h and
d = zd + µd, zC and zd are respectively TGSW and TLWE samples of 0, and
‖εdec‖∞ ≤ ε. Thus, CMux(C,d1,d0) is the sum of four terms:

– Dech,β,ε(d) • zC of norm ≤ (k + 1)`NβηC ;
– µCεdec of norm ≤ (kN + 1)ε;
– zd0 +µC(zd1 − zd0), which is either zd1 or zd0 , depending on the value of µC ;
– µd0 + µC · (µd1 − µd0), which is the output message µC?µd1 :µd0 , and is not

part of the noise.

Thus, summing the three terms concludes the proof. ut

Corollary 5.3 (Average noise of boolean gates). In the conditions of
thm 5.1, and in the conditions of Assumption 3.6, we have:
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– Var(Err(Cst(µ))) = 0;
– Var(Err(Not(d))) = Var(Err(d));
– Var(Err(CAnd(C,d))) ≤ Var(Err(d)) + ϑ(C);
– Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1))) + ϑ(C),

where ϑ(C) = (k + 1)`Nβ2Var(Err(C)) + (kN + 1)ε2.

Proof. Same as thm 5.2, replacing all norm inequalities by Variance inequalities.
ut

We now obtain theorems which are analogue to [13], with a bit less noise on
the mux gate, but with the additional restriction that CAnd and CMux have a
control wire, which must necessarily be a fresh TGSW ciphertext.

The next step is to understand the meaning of this additional restriction in
terms of expressiveness of the resulting homomorphic circuits.

It is clear that we cannot build a random boolean circuit, and just apply the
noise recurrence formula from theorem 5.2 or cor. 5.3 to get the output noise
level. Indeed, it is not allowed to connect a data wire to an control input.

In the following section, we will show that we can still obtain the two most
important circuits of [13], namely the deterministic automata circuits, which can
evaluate any permutation of regular languages with noise propagation sublinear
in the word length and the lookup table, which evaluates arbitrary functions
with sublinear noise propagation.

5.2 Deterministic automata

It is folklore that every deterministic program which reads its input bit-by-bit
in a pre-determined order, uses less than B bits of memory, and produces a
boolean answer, is equivalent to a deterministic automata of at most 2B states
(independently of the time complexity). This is in particular the case for every
boolean function of p variables, that can be trivially executed with p − 1 bits
of internal memory by reading and storing its input bit-by-bit before returning
the final answer. It is of particular interest for most arithmetic functions, like
addition, multiplication, or CRT operations, whose naive evaluation only requires
O(log(p)) bits of internal memory.

Let A = (Q, i, T0, T1, F ) be a deterministic automata (over the alphabet
{0, 1}, where Q is the set of states, i ∈ Q denotes the initial state, T0, T1

are the two transitions (deterministic) functions from Q to Q and F ⊂ Q is
the set of final states. Such automata is used to evaluate (rational) boolean
functions on words where the image of (w1, . . . , wp) ∈ Bp is equal to 1 iff.
Twp(Twp−1(. . . (Tw1(i)))) ∈ F , and 0 otherwise.

Following the construction of [13], we show that we are able to evaluate any
deterministic automata homomorphically using only constant and CMux gates
efficiently. The noise propagation remains linear in the length of the word w, but
compared to [13, Thm. 7.11], we reduce the number of evaluated CMux gates by
a factor |w| for a specific class of acyclic automata that are linked to fixed-time
algorithms.
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Theorem 5.4 (Evaluating Deterministic Automata). Let A =
(Q, i, T0, T1, F ) be a deterministic automata. Given p valid TGSW sam-
ples C1, . . . , Cp encrypting the bits of a word w ∈ Bp, with noise amplitude
η = maxi ‖Err(Ci)‖∞ and ϑ = maxi Var(Err(Ci)), by evaluating at most ≤ p#Q
Cmux gates, one can produce a TLWE sample d which encrypts 1

2 iff A accepts
w, and 0 otherwise such that ‖Err(d)‖∞ ≤ p · ((k + 1)`Nβη + (kN + 1)ε).
Assuming Heuristic 3.6, Var(Err(d)) ≤ p · ((k + 1)`Nβ2ϑ + (kN + 1)ε2).
Furthermore, the number of evaluated CMux can be decreased to ≤ #Q. if A
satisfies either one of the conditions:
(i) for all q ∈ Q (except KO states), all the words that connect i to q have the
same length;
(ii) A only accepts words of the same length.

Proof. We initialize #Q noiseless ciphertexts dq,p for q ∈ Q with dq,p = (0, 1
2 ) =

Cst( 1
2 ) if q ∈ F and dq,p = (0, 0) = Cst(0) otherwise. Then for each letter of

w, we map the transitions as follow for all q ∈ Q an j ∈ [[0, p − 1]]: dq,j−1 =
CMux(Cj ,dT1(q),j ,dT0(q),j). And we finally output di,0.

Indeed, with this construction, we have

msg(di,0) = msg(dTw1(i),1
) = . . . = msg(dTwp(Twp−1

...(Tw1(i))...),p
),

which encrypts 1
2 iff Twp

(Twp−1
. . . (Tw1

(i)) . . .) ∈ F , i.e. iff w1 . . . wp is accepted
by A. This proves correctness.

For the complexity, each dq,j for all q ∈ Q an j ∈ [[0, p− 1]] is computed with
a single CMux. By applying the noise propagation inequalities of Theorem 5.2
and Corollary 5.3, it follows by an immediate induction on j from p down to 0,
that for all j ∈ [[0, p]], ‖Err(dq,j)‖∞ ≤ (p − j) · ((k + 1)`Nβη + (kN + 1)ε) and
Var(Err(dq,j)) ≤ (p− j) · ((k + 1)`Nβ2ϑ+ (kN + 1)ε2).

Note that it is sufficient to evaluate only the dq,j when q is accessible by at
least one word of length j. Thus, if the A satisfies the additional condition (i),
then for each q ∈ Q, we only need to evaluate dq,j for at most one position j.
Thus, we evaluate less than #Q CMux gates in total.

Finally, if A satisfies (ii), then we first compute the minimal deterministic
automata of the same language (and removing the KO state if it is present),
then with an immediate proof by contradiction, this minimal automata satisfies
(i), and has less than #Q states. ut

For sake of completeness, since every boolean function with p variables can
be evaluated by an Automata (that accepting only words of length p), we obtain
the evaluation of arbitrary boolean function as an immediate corollary, which is
the leveled variant of [13, Cor 7.9].

Lemma 5.5 (Arbitrary Functions). Let f be any boolean function with p
inputs, and c1, . . . , cp be p TGSWs({0, 1}) ciphertexts of x1, . . . , xp ∈ {0, 1},
with noise ‖Err(ci)‖∞ ≤ η for all i ∈ [1, p]. Then the CMux-based Reduced
Binary Decision Diagram of f computes a TLWEs ciphertext d of 1

2f(x1, . . . , xp)
with noise ‖Err(d)‖∞ ≤ p((k + 1)`Nβη + (kN + 1)ε) by evaluating N (f) ≤ 2p
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CMux gates where N (f) is the number of distinct partial functions (xl, . . . , xp)→
f(x1, . . . , xp) for all l ∈ [[1, p+ 1]], (x1, . . . , xl−1) ∈ Bl−1.

Proof (sketch). A trivial automata which evaluates f consists in its full binary
decision tree, with the initial state i = q0,0 as the root, each state ql,j depth
l ∈ [[0, p−1]] and j ∈ [[0, 2l−1]] is connected with T0(ql,j) = ql+1,2j and T1(ql,j) =
ql+1,2j+1, and at depth p, qp,j ∈ F iff f(x1, . . . , xp) = 1 where j =

∑p
l=1 xl2

p−l.
The minimal version of this automaton has at most N (f) states, the rest follows
from Theorem 5.4. ut

Application: compilation for leveled homomorphic circuits We now give
an example of how we can map a problem to an automata in order to perform a
leveled homomorphic evaluation. We will illustrate this concept on the compu-
tation of the p-th bit of an integer product a× b where a and b are given in base
2. We do not claim that the automata approach is the fastest way to solve the
problem, arithmetic circuits based on bitDecomp/recomposition are likely to be
faster. But the goal is to clarify the generality and simplicity of the process. All
we need is a fixed-time algorithm that solves the problem using the least possible
memory. Among all algorithms that compute a product, the most naive ones are
in general the best: here, we choose the elementary-school multiplication algo-
rithm that computes the product bit-by-bit, starting from the LSB, and counting
the current carry with the fingers. The pseudocode of this algorithm is recalled
in Algorithm 4. The pseudo-code is almost given as a deterministic automata,
since each step reads a single input bit, and uses it to update its internal state
(x, y), that can be stored in only M = log2(4p) bits of memory. More precisely,
the states Q of the corresponding automata A would be all (j, (x, y)) where
j ∈ [[0, jmax]] is the step number (i.e. number of reads from the beginning) and
(x, y) ∈ B× [[0, 2p[[ are the 4p possible values of the internal memory. The initial
state is (0, 0, 0), the total number of reads jmax is ≤ p2, and the final states are
all (jmax, x, y) where y is odd. This automata satisfies condition (i), since a state
(j, x, y) can only be reached after reading j inputs, so by theorem Thm.5.4, the
output can be homomorphically computed by evaluating less than #Q ≤ 4p3

CMux gates, with some O(p) noise overhead. The number of Mux can decrease
by a factor 8 by minimizing the automata. Using the same parameters as the
bootstrapping key, for p = 32, evaluating one Mux gate takes about 0.0002s, so
the whole program (16384 Cmux) would be homomorphically evaluated in 3.2
seconds.

We mapped a problem from its high-level description to an algorithm using
very few bits of memory. Since low memory programs are in general more naive,
it should be easier to find them than obtaining a circuit with low multiplicative
depth that would be required for other schemes such as BGV, FHE over integers.
Once a suitable program is found, as in the previous example, compiling it to a
net-list of CMux gates is straightforward by our Theorem 5.4.
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Algorithm 4 elementary fixed time algorithm that computes the p-th bit of the
product of a and b

Input: a and b as little endian bits
Output: p-th bit of ab
1: Internal memory: x ∈ {0, 1}, y ∈ [[0, 2p[[
2: initialize x = 0, y = 0
3: for k = 0 to p− 1 do
4: for i = 0 to k − 1 do
5: read ai; x = ai
6: read bk−i; y = y + xbk−i
7: end for
8: read ak; x = ak
9: read b0; y = b(y + xb0)/2c

10: end for
11: for i = 0 to p do
12: read ai; x = ai
13: read bp−i; y = y + xbp−i
14: end for
15: accept if y == 1 mod 2

6 Practical security parameters

For an asymptotical security analysis, since the phase is lipschitzian, TLWE
samples can be equivalently mapped to their closest binLWE (or bin-RingLWE),
which in turn can be reduced to standard LWE/ringLWE with full secret using
the modulus-dimension reduction [6] or group-switching techniques [13]. It can
then be reduced to worst case BDD instances. It is also easy to write a direct
and tighter search-to-decision reductions for TLWE, or a direct worst-case to
average-case reductions from TLWE to Gap-SVP or BDD.

In this section, we will rather focus on the practical hardness of LWE, and
express after all the security parameter λ directly as a function of the entropy
of the secret n and the error rate α.

Our analysis is based on the work described in [2]. This paper studies many
attacks against LWE, ranging from a direct BDD approach with standard lat-
tice reduction, sieving, or with a variant of BKW [4], resolution via man in the
middle attacks. Unfortunately, they found out that there is no single-best at-
tack. According to their results table [2, Section 8, Tables 7,8] for the range of
dimensions and noise used for FHE, it seems that the SIS-distinguisher attack
is often the best candidate (related to the Lindner-Peikert [17] model, and also
used in the parameter estimation of [11]). However, since q is not a parameter in
our definition of TLWE, we need to adapt their results. This section relies on the
following heuristics concerning the experimental behaviour of lattice reduction
algorithms. They have been extensively verified and used in practice.
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1. The fastest lattice reduction algorithms in practice are blockwise lattice al-
gorithms (like BKZ-2.0[8], D-BKZ [20], or the slide reduction with large
blocksize [14, 20]).

2. Practical blockwise lattice reduction algorithms have an intrinsic quality
δ > 1 (which depends on the blocksize), and given a m-dimensional real
basis B of volume V , they compute short vectors of norm δmV 1/m.

3. The running time of BKZ-2.0 (expressed in bit operations) as a function of
the quality parameter is: log2(tBKZ)(δ) = 0.009

log2(δ)2 − 27 (According to the

extrapolation by Albrecht et al [1] of Liu-Nguyen datasets [18]).

4. The coordinates of vectors produced by lattice reduction algorithms are bal-
anced. Namely, if the algorithm produces vectors of norm ‖v‖2, each coeffi-
cient has a marginal Gaussian distribution of standard deviation ‖v‖2 /

√
n.

Provided that the geometry of the lattice is not too skewed in particular
directions, this fact can sometimes be proved, especially if the reduction al-
gorithm samples vectors with Gaussian distribution over the input lattice.
This simple fact is at the heart of many attacks based on Coppersmith tech-
niques with lattices.

5. For mid-range dimensions and polynomially small noise, the SIS-
distinguisher plus lattice reduction algorithms combined with the search-
to-decision is the best attack against LWE; (but this point is less clear,
according to the analysis of [1], at least, this attack model tends to over-
estimate the power of the attacker, so it should produce more conservative
parameters).

6. Except for small polynomial speedups in the dimension, we don’t know better
algorithms to find short vectors in random anti-circulant lattices than generic
algorithms. This folklore assumption seems still up-to date at the time of
writing.

If one finds a small integer combination that cancels the mask of homogeneous
LWE samples, one may use it to distinguish them from uniformly chosen random
samples. If this distinguisher has small advantage ε, we repeat it about 1/ε2

times. Then, thanks to the search to decision reduction (which is particularly
tight with our TLWE formulation), each successful answer of the distinguisher
reveals one secret key bit. To handle the continuous torus, and since q is not
a parameter of TLWE either, we show how to extend the analysis of [2] to our
scheme.

Let (a1, b1), . . . , (am, bm) be either m LWE samples of parameter α or m uni-
formly random samples of Tn+1, we need to find a small combination v1, . . . , vm
of samples such that

∑
viai is small. This condition differs from most previous

models, were working on a discrete group, and required an exact solution. By al-
lowing approximations, we may find solutions for much smaller m than the usual
bound n log q, even m < n can be valid. Now, consider the (m+n)-dimensional
lattice, generated by the rows of the following basis B ∈Mn+m,n+m(R):
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B =



1 0

. . . 0
0 1

a1,1 · · · a1,n 1 0
...

. . .
...

. . .

am,1 · · · am,n 0 1


.

Our target is to find a short vector w = [x1, . . . , xn, v1, . . . , vm] in the lattice
of B, whose first n coordinates (x1, . . . , xn) =

∑m
i=1 viai mod 1 are shorter

than the second part (v1, . . . , vm). To take this skewness into account, we choose
a real parameter q > 1 (that will be optimized later), and apply the unitary
transformation fq to the lattice, which multiplies the first n coordinates by q
and the last m coordinates by 1/qn/m. Although this matrix looks like a classical
LWE matrix instance, the variable q is a real parameter, and it doesn’t need
to be an integer. It then suffices to find a regular short vector with balanced
coordinates in the transformed lattice, defined by this basis:

fq(B) =



q 0

. . . 0
0 q

qa1,1 · · · qa1,n
1

qn/m 0

...
. . .

...
. . .

qam,1 · · · qam,n 0 1

qn/m


, with q ∈ R > 1.

The direct approach is to apply the fastest algorithm (BKZ-2.0 or slide re-
duction) directly to fq(B), which outputs a vector fq(w) of standard deviation
δn+m/

√
n+m where δ ∈]1, 1.1] is the quality of the reduction.

Once we have a vector w, all we need is to analyse the term
∑m
i=1 vibi =∑m

i=1 vi(ais+ ei) = s ·∑m
i=1(viai) +

∑m
i=1 viei = s · x+ v · e.

It has Gaussian distribution of square parameter σ2 = δ2(m+n)π
2q2 · nS2

m+n +

q2n/mδ2(m+n)α2m
m+n = δ2(m+n)

(
πS2

2q2 · n
m+n + q2n/mα2 m

m+n

)
. Here S = ‖s‖√

n
≈ 1√

2
.

By definition of the smoothing parameter, it may be distinguished from the
uniform distribution with advantage ε as long as σ2 ≥ η2

ε(Z). To summarize, the
security parameter of LWE is (bounded by) the solution of the following system
of equations

λ(n, α) = log2(tattack) = min
0<ε<1

log2

( n
ε2
tBKZ(n, α, ε)

)
(3)

log2(tBKZ)(n, α, ε) =
0.009

log2(δ)2
− 27 (4)

ln(δ)(n, α, ε) = max
m>1
q>1

1

2(m+n)

(
ln(η2

ε(Z))− ln

(
πS2

2q2

n

m+n
+ q

2n
m α2 m

m+n

))
(5)
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ηε(Z) ≈
√

1

π
ln(

1

ε
). (6)

Here, Eq. (3) means that we need to run the distinguisher 1
ε2 times per

unknown key bit (by Chernoff’s bound), and we need to optimize the advantage
ε accordingly. Eq.(4) is the heuristic prediction of the running time of lattice
reduction. In Eq.(5) q and m need to be chosen in order to maximize the targeted
approximation factor of the lattice reduction step.

Differentiating Equation (5) in q, we find that its maximal value is

qbest =

(
πS2

2α2

) m
2(m+n)

.

Replacing this value and setting t = n
m+n , Equation (5) becomes:

ln(δ)(n, α, ε) = max
t>0

1

2n

(
t2`2 + t(1− t)`1

)
where

`1 = ln
(
η2ε(Z)
α2

)
`2 = ln

(
2η2ε(Z)
πS2

)
.

Finally, by differentiating this new expression in t, the maximum of δ is
reached for tbest = `1

2(`1−`2) , because `1 > `2, which gives the best choices of m

and q and δ. Finally, we optimize ε numerically in Eq.(3).

All previous results are summarized in Figure 6, which displays the security
parameter λ as a function of n, log2(α).

In particular, in the following table we precise the values for the keyswitching
key and the bootstrapping key (for our implementation and for the one in [11]).

n α λ εbest mbest qbest δbest

Switch key 500 2−15 136 2−12 444 125.7 1.0058
Boot. key 1024 9.0 · 10−9 194 2−10 968 7664. 1.0048

Boot.key, [11] 1024 3.25 · 10−10 141 2−7 993 44096 1.0055

The table shows that the strength of the lattice reduction is compatible
with the values announced in [11]. Our model predicts that the lattice reduction
phase is harder (δ = 1.0055 in our analysis and δ = 1.0064 in [11]), but the
value of ε is bigger in our case. Overall, the security of their parameters-set
is evaluated by our model to 136-bits of security, which is larger than the
≥ 100-bits of security announced in [11]. The main reason is that we take into
account the number of times we need to run the SIS-distinguisher to obtain
a non negligible advantage. Since our scheme has a smaller noise propagation
overhead, we were able to raise the input noise levels in order to strengthen
the system, so with the parameters we chose in our implementation, our model
predicts 194-bits of security for the bootstrapping key and 136-bits for the
keyswitching key (which remains the bottleneck).
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Fig. 1. Security parameter λ as a function of n and α for LWE samples
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This curve shows the security parameter levels λ (black levels) as a function of n = kN
(along the x-axis) and log2(1/α) (along the y-axis) for TLWE (also holds for bin-LWE),
considering both the attack of this section and the collision attack in time 2n/2.

7 Conclusion

In this paper, we presented a generalization of the LWE and GSW homomorphic
encryption schemes. We improved the execution timing of the bootstrapping
procedure and we reduced the size of the keys by keeping at least the same
security as in previous fast implementations. This result has been obtained by
simplifying the multiplication morphism, which is the main operation used in
the scheme we described. As a proof of concept we implemented the scheme
itself and we gave concrete parameters and timings. Furthermore, we extend the
applicability of the external product to leveled homomorphic encryption. We
finally gave a detailed security analysis. Now the main drawback to make our
scheme adapted for real life applications is the expansion factor of the ciphertexts
of around 400000 with fairly limited batching capabilities.
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