Blockchain-Free Cryptocurrencies:
A Framework for Truly Decentralised Fast Transactions

Xavier Boyen Christopher Carr Thomas Haines
QUT NTNU & QUT QUT

Abstract. The “blockchain” distributed ledger pioneered by Bitcoin is effective at
preventing double-spending, but inherently attracts (1) “user cartels” and (2) in-
compressible delays, as a result of linear verification and a winner-takes-all incentive
lottery.

We propose to forgo the “blocks” and “chain” entirely, and build a truly dis-
tributed ledger system based on a lean graph of cross-verifying transactions, which
now become the main and only objects in the system. A fully distributed consen-
sus mechanism, based on progressive proofs of work with predictable incentives,
ensures rapid convergence even across a large network of unequal participants, who
all get rewards working at their own pace. Graph-based affirmation fosters snappy
response through automatic scaling, while application-agnostic design supports all
modern cryptocurrency features such as multiple denominations, swaps, securitisa-
tion, scripting, smart contracts, etc.

We prove theoretically, and experimentally verify, our proposal to show it
achieves a crucial “convergence” property — meaning that any valid transaction
entering the system will quickly become enshrined into the ancestry upon which all
future transactions will rest.

1 Introduction

Before Bitcoin, earlier cryptographic digital cash schemes relied on trusted
authorities [8]. Bitcoin reformed this classical view of a cryptocurrency,
trading centralised clearing for a distributed ledger, secured by the majority
rule without pre-ordained authority. Quite remarkably, it did so using only
standard cryptographic primitives such as signatures and hash functions.

Although other cryptocurrencies such as Bit-gold [4] and B-money [1]
have been credited [28] with anteriority amongst authority-free cryptocur-
rencies, Bitcoin is the first to see widespread adoption. Various factors may
account for Bitcoin’s success, though there is little question that the decen-
tralised design and perceived immunity to government interference played a
significant part in its uptake. There is now a surge of academic and layman
interest in distributed crypto-cash, and, more specifically in “Blockchain
technology”, hailed as one key innovation of Bitcoin (the other being trans-
action scripting, paving the way for “smart contracts” [20]).

Alas, the lack of any imposed authority did not prevent the emergence
of oligopolies, or “mining pools”, which would have consolidated into an un-
shakable monopoly if not for ostensible self-restraint to maintain user confi-
dence within the system. Moreover, with the influx of new users, and older
users seeking to consolidate their grip on the system, it did not take long
for problems to emerge, leading to arguments questioning the fundamental
design and pressing for changes.

Some problems unfortunately cannot be fixed without a complete re-
design [2, 6, 14, 21, 23, 24, 36]. The range of proposals goes from mere
tweaks, or altcoins [10, 22], to infrastructure redesigns, often with in-built
centralisation [32] or even sovereign escrow [7] as “solutions” to the per-
ceived problems. Less controversial proposals focused on better anonymity
[3, 24] and multi-denomination smart contracts [12, 35].

The bigger issues that remain include the ineluctable consolidation of
coin “min(t)ing” into mining pools, and incompressibly long verification de-
lays. We argue that both problems are inherent to blockchain technology
itself, as a side-effect of it not being truly decentralised.

Mining Pools and Centralization. The lack of scalability observed
within Bitcoin is an artefact of the Blockchain consolidation principle itself,
which makes it very hard to distribute rewards to the myriad of partici-
pants that contribute (or would be contributing) their computing power to
the verification effort. On the linear Blockchain, the rewards are few and
far between, and the only fair and secure method of distributing them is in
essence a lottery.

Risk-averse participants coalesce into mining pools to reduce the vari-
ance, at the cost of abdicating their individual oversight duty. This col-
lectively makes the network more brittle to a variety of attacks, not only
the well-known 51% attack [27], but also the “selfish miner” or 33% attack
[13], which in some special cases can become a 25% attack. Proposals have
been made to mitigate this issue, by incentivizing participants to defect
from pools [26], but they do not eliminate the Blockchain’s core problem of
low-odds high-variance rewards.

Mining pools come with the fundamental problem that they are them-
selves becoming monopolies within the system, defeating the principle of
decentralisation. As Bitcoin developed, mining pools took a more and more
significant position. Mining pools now make up more than 99% of the (con-
siderable) hashpower in the Bitcoin system. A single one of these monoliths
temporarily held absolute majority of the computing power on the network
[16]. At the time of writing, those mining pools are mostly based in a single
country (China), with just four of these pools controlling over 50% of the
hashpower of the network.!

! Accurate per blockchain.info at 10 February 2017.

This move away from decentralisation is a widely recognised problem,
and is one that has come under scrutiny in the past [21, 26]. Tackling
this issue has seen some lines of inquiry seek to give more power to central
authorities in an attempt to address power wastage and scalability [9].

Inherent Verification Waiting Times. Bitcoin uses a feedback-loop
mechanism on the puzzle solving time, altering the difficulty to ensure that
new blocks are created every 10 minutes on expectation. Unfortunately, 10-
minute expected delays are troublesome, especially coming from a stateless,
high-variance, Poisson process. For miners, this is barely enough to ensure
that they quickly learn of new blocks to avoid wasting work (and perversely
encourages them to delay the propagation of new blocks other than their
own). For users, a long and unpredictable verification delay hinders Bitcoin
for any significant real-time payments. Ironically, commercial Bitcoin users
now mitigate the blockchain delays by entrusting third parties as “payment
processors”, the very thing that Bitcoin sought to avoid.

Further compounding these inherent delays, Bitcoin presently caps the
block size, which creates contention within the community and may increase
delays: a problem that miners have no incentive to address. Incidentally,
block sizes have been raised once already, from 4KB to 1MB, and is presently
the object of a fork, with heated debate within the community.

In short, contention and consolidation are inherent to the Blockchain
reward structure, making it unsuitable to cater for a large population of
miners and users.

1.1 Owur Approach

Our Blockchain-free proposal shifts onto the transactions themselves the
task of affirming prior transactions. Verification no longer results in a chain
of transactions blocks, but in a lean graph comprised only of transactions.

A Graph of Cross-Verifying Transactions. When a transaction is
posted, in addition to any actual “cryptocurrency” payload, it will refer
to two previous transactions deemed to be valid, bundled with some proof
of work. This induces a growing “hash-graph” of verifications, where each
transaction verifies two “parents”. Growth of the graph is steered using a
very fine-grained incentive system that encourages affirming recent transac-
tions while equitably rewarding all transactions, even when they share the
same parents (up to some limit). Implicit rather than explicit collaboration
is rewarded, encouraging users to work alone instead of forming pools, while
reducing the waste of verification effort.

Figure 1 illustrates how transactions refer to each other. The arrows
point from a parent to a child transaction. Figure 2 shows the same image,

Figure 1: Transactions Graph. Figure 2: Counting Ancestors.

highlighting the ancestor transactions of the new (dashed arrow line) trans-
action on the far right. The crosshatched nodes (in red), represented trans-
actions that are common ancestors of both the right and left parent nodes.
The diagonally shaded (blue and green) transactions, represent transactions
from one parent but not both. Eventually every valid transaction ends up
being verified, directly or indirectly, by all new valid transactions, making
the transactions as immutable as in a linear block-chain. We refer to this
as convergence, and say that a set of transactions have converged if they all
share a common descendant in the graph.

The crucial part of the framework is the realisation of the security and
consensus mechanisms. In order to achieve a distributed consensus, it is nec-
essary to calculate the combined proof-of-work contributed on each transac-
tion by itself and its descendant transactions. In order to accurately com-
bine proofs-of-work, one must be able to count descendant and any ancestor
transactions without double-counting overlapping contributions of compu-
tational effort. This process is necessary for efficient verification.

In Section 3, we prove that convergence does occur, and further in Ap-
pendix A, we experimentally verify that convergence occurs rapidly, which
is essential for securing and scaling up the system. To our knowledge, this
work is the first to propose an entirely block-free graph-based cryptographic
ledger which is robust against attacks and suitable for cryptocurrencies.

Proofs-of~-Work (PoW). The proof-of-work concept was initially devel-
oped by Dwork and Naor [11] to fight spam. Other applications include
client puzzles [18, 34], but the most famous one to date remains the Bitcoin
blockchain itself [27].

Proofs-of-work are utilised as a majority-voting mechanism to enforce
the ledger’s integrity, achieve global consensus, and provide immunity to
minority byzantine attacks, by letting the honest majority “out-work” the
faulty transactions.

Despite its importance, the difficulty of realising a proof-of-work scheme
with better characteristics than the Blockchain is a central problem in cryp-
tocurrency design. Narayanan et al. [28] summarize it in these terms:

“The holy grail would be to design a consensus protocol with is ‘naturally’
low-variance by rewarding miners a small amount for lower-difficulty puz-
zles [...] It remains an open question if there is an alternative version
of the consensus protocol which would enable mining puzzles without near-
instantaneous broadcast of all solutions.”

Here we demonstrate an alternative proof-of-work strcuture which is im-
plicitly collaborative, rather than competitive, and addresses all of the above
challenges with considerable advantages over prior schemes. We give a proof-
of-work scheme that: (1) Is fully decentralised without “block consolida-
tion”. (2) Works in an open model, empowering individuals. (3) Promotes
cooperation over competition. (4) Ensures rapid transaction confirmations.
(5) Gives commensurate rewards for differing efforts. (6) Naturally scales
with fluctuating activity.

Our framework altogether removes the need for a blockchain, and allows
for a lighter system of transaction verifications arranged into a directed
graph: The parallelism between different branches of this graph, or partial
orders, allows multiple miners to do useful work and get rewarded for verify-
ing the same transactions. This simultaneously removes the “global clock”
constraint of the blockchain, as it allows miners to work at unequal speeds
with unequal resources, while still obtaining rewards for their efforts, and
all the while, contributing to the overall system strength.

Transactions as First-class Objects. Without blocks, transactions are
promoted to first-class status, with a dual function: transactional and struc-
tural. Accordingly, our transactions consist of:

— Transactional/monetary component, representing the user-facing
aspect of the transaction—or payload— for example; cash, currencies,
securities, contracts, etc. Our framework is oblivious to this compo-
nent, other than for a minimal ability to carry a value for the fee and
reward mechanism.

— Verification/mining component, representing the systemic aspect of
the transaction—its metadata. Our framework relies on this compo-
nent to build a globally consistent verification graph using proofs-of-
work, incentives, and other mechanisms.

Fees and Incentives. Each transaction must post a transaction fee (e.g.,
proportional to its size): an offering for collection by future transactions
that will verify it. Conversely, each transaction must refer to two prior
transactions called parents, which must be valid and have fees available
for collection. Referencing the parents indicates verification and causes the
verifier to collect a certain amount of available fee from them and their
ancestors.

Fees are collected from the two parents’ oldest ancestors, with fee re-
maining, first, by walking the directed acyclic graph of those ancestors and
selecting any available fee that remains up to a prescribed total amount of
fee, based on the amount of work performed, as a function of the transac-
tion’s PoW effort compared to its ancestors’ total PoW effort.

1. Verification is directed toward recent transactions, since direct vali-
dations of older transactions will be forbidden once their fees are ex-
hausted.

2. Higher fee transactions can attract parallel verifiers for rapid affirma-
tion.

3. Non-zero, but low-fee transactions will eventually get included by
smaller miners, with the risk of competition decreasing gradually as
time moves on, albeit for lower rewards.

4. Any transaction, once collected into the verification graph, will at some
point become connected to the ancestor tree of every future transaction
in the graph, eventually providing maximum validation regardless of
fee — a point we refer to as convergence.

5. Invalid transactions, for reasons such as double spending, stale fees,
misformatting, and so on, will be weeded out by majority vote of the
miners, who are incentivised to refuse to extend the transaction graph
from the fault, else risk their transaction not being included.

Our approach greatly simplifies the central difficulty of maintaining global
consistency of a partial order by exploiting the economic incentives available
within a cryptocurrency. We incentivise miners to work from the top of the
graph (to keep it lean) by requiring that parents still have enough available
fee left to make eligible parents. Note that the overhead of embedding the
verification process within each transaction is minimal in comparison to the
transactional data.

General Benefits. Because our graph-based validation and coopera-
tive proof-of-work framework is mostly independent of the “payload” of
the transaction itself—other than a way to collect fees, pay fees, and mint
coin— we envision that it should be very straightforward to instantiate it
with any cryptocurrency functionality of choice. Transforming any exist-
ing blockchain-based cryptocurrency into the “same” cryptocurrency with
graph-based verification, gives much better scalability and decentralisation
by giving everyone an opportunity to profit from their individual participa-
tion toward securing the network.

1.2 Related Work

Various problems with Bitcoin’s model have previously been studied. Karame
et al. [19] evaluate the problem of payment verification speed. Miller et
al. [25] look at replacing the proof-of-work in Bitcoin with proofs-of-retrievability,
in order to mitigate the waste of computational resources, similar to Park
et al. [29] who present a proof-of-space alternative and retrieve decentralisa-
tion by making mining available, and reducing the wastage of computational
effort in the system. Gervais et al. [15] critically analyse the claims of de-
centralisation in Bitcoin, while Johnson et al. [17] review the incentives for
mining pools to engage in underhanded strategies to achieve a competitive
advantage. Pass et al. [30] analyse the Bitcoin Blockchain under an asyn-
chronous setting, where users can join and leave the system as required, and
scalability improvements are the focal point of work by Sompolinsky and
Zohar [33].

In addition to these works, Miller at al. [26] propose puzzles designed
specifically so that they cannot be outsourced, thus removing their utility
within mining pools. Further, Lewenberg et al. [21] give a scheme that
allows for multiple blockchains to emerge at once, in order to capture more
transactions using somewhat overlapping proofs-of-work. These latter two
proposals are most closely related to our work, in that they attempt to
resolve almost identical issues to us by also proposing alternatives to the
standard blockchain structure. Whilst interesting ideas, our work takes a
different approach in order to incentivise solo work, and removes the “block”
construct altogether, which we feel is the natural destination of this line of
enquiry.

In the applied space, IOTA [31] also propose a blockchain free, graph
based, structure and Ethereum [12] currently implements the GHOST pro-
tocol, which allows for fast (10 second) block creation times, and mitigates
the problem of orphan blocks — which they call uncles — by allowing them
to be referenced by newly created blocks. It incentivizes this behaviour by
increasing the reward for the miner of the new block. Our proposal differs
considerably from both these approaches, by attempting to offer a secure
framework for which it is possible to build block-free decentralised cryp-
tocurrencies.

2 Block-Free Ledger Protocol

We describe the ground rules for a transaction-based fully decentralised
ledger. It relies on collaborative proofs-of-work and derived incentives to
achieve global consensus, convergence, and timely verification of new trans-
actions.

Definition 1 (Proof-of-Work Scheme, Difficulty and Work) A Proof-
of-Work Scheme is characterised by a function S taking arbitrary strings a,
along with some solution string b, where S(a,b) returns either true or false.
We say that S has computational difficulty d, and write S = Sg if no p.p.t.
entity, given white-box access to S, and allowed to evaluate it on k inputs,
outputs a solution b’ such that

PrS(a,b') = true] = k- d~* + negl(a),

form some negligible function negl. Furthermore, we say that the work of
returning a value b such that S(a,b) returns true is equal to d, and write

Work(S) = d.

The function parameter d allows us to vary Sy to target a desired diffi-
culty. In practice, the most common proof-of-work schemes used in decen-
tralised cryptocurrencies are based on hash functions, where the difficulty
is easily tunable, verification is quick, and inputs can be arbitrary. We pur-
posefully leave this definition loose so as to allow for maximum flexibility in
implementation, so long as we can capture how challenging it is to form a
certain proof-of-work.

Transactions. Transactions perform all roles in our framework: they
mint cash, redistribute value, spend money, add fees and—crucially—confirm
the legitimacy of previous transactions. To create a transaction, certain in-
formation is provided: payment information, a reference to two previous
transactions xj, x,, the difficulty being solved ¢, the fee f, the mint m, and
a solution value s,

x; = [Payments;, x;,, zy,, ¢, fi, mi, Si. (1)

The two parents z; and x, are mandatory references to two distinct prior
transactions whose validity the present transaction is vouching for (and by
transitivity, the validity of all of those two transactions’ ancestors also).
Provided that the new transaction is itself valid, the PoW attached to the
new transaction will add onto the cumulative proof of work associated with
both of the parent transactions, and likewise strengthen all of their ancestors.

Formally, we can express an ordering relation on the elements, namely
the transactions, with respect to a proof-of-work scheme.

Definition 2 (Transaction Ordering) Let P be a set of elements called
transactions. For t and t', two distinct elements in the set, we write t < t'
if and only if t' contains t within the Proof-of-Work Scheme, and vice-versa
fort = t'. We call the set P equipped with its (partial) ordering relation <,
a Transactional Partially Ordered Set, or T-POSET.

Definition 3 (Transaction Weight) Let P be a T-POSET and let x € P
be a transaction or element therein. Let P' = {y; : y; = x} be the set of
all the descendants of x. The weight of x is defined as the sum of the
proof-of-work difficulty contributed by every one of the y;,

1P|
Weight(z) = _ Work(y;). (2)
=0

Although this notion of weight is well defined given a T-POSET, it is dy-
namic in the sense that as the T-POSET grows with new transactions, the
weight of any existing transaction can grow unboundedly as it gains new
descendants.

2.1 Fees and Rewards

Every transaction x posts a fee, such that Fee(z) > 0, in order to offset the
distributed cost of conveying and verifying the transaction.

Fees are not designed to be immediately passed on to the next claiming
transaction, but rather fees increase the total prize value of the transaction,
available for partial collection by a number of descendants.

Collection. We require that every transaction z, linking to a pair of
earlier transactions z; and zs, collects a positive and well defined amount of
fees, from the union of z1, z5 and all of 21 and z3’s ancestors. Specifically, for
the new transaction = to be valid, it must meet the following two conditions:

1. The fee that x will collect must be available in full from the fees that
remain in the union of all of x’s ancestors.

2. Neither prize of z; nor the prize of z9 may be zero.

Those constraints are important later on, in ensuring that new unverified
transactions are validated in priority, and that all valid transactions quickly
converge to sharing a common descendant.

The amount of fee that a new transaction z is required to collect is
fully determined by = and its local context (i.e., the smallest subset P’ C P
containing = and its ancestors). The collected fee increases monotonically
with the difficulty of z’s proof-of-work contribution, or even proportionally
with an automatic proportion factor 3; see Equation 6 and 7.

Prize. Intuitively, the prize of a transaction z w.r.t. P, is the total fee
that is still available, from z and all of x’s ancestors, for all of x’s future
descendants (not yet in P). Prize is a dynamic notion: it is highest when z
is new and has no descendant, and monotonically decreases as the graph P

10

grows and the fees from x and its ancestors are picked up by z’s descendants.
(The prize of z is a well-defined quantity given the current state of P.)

Prizep(z) is a very important quantity for a verifier to keep track of,
because that is the most fee that a new transaction choosing to verify x will
be able to collect from x and its ancestors.

In this context, we call pass-through the contribution to the prize of a
new transaction, that is “passing through” from the prizes of its combined
parents. A hypothetical transaction x that neither paid nor collected any
fee would thus have a prize equal to that of its parents, consisting entirely
of pass-through. Prize tends to increase from ancestors to descendants, an
important property for us.

Depletion. As fees deplete, we need to calculate from which ancestors
a new transaction will collect its fees, and how the collection will be appor-
tioned.

The method we employ is to deplete the oldest eligible nodes first. This
has two desirable purposes: (1) verifiers will be further compelled to work on
newer rather than older transactions, lest their effort risk being for naught;
(2) the verification algorithm will be more streamlined, since the sooner the
prize of a node reaches zero, the sooner it and all of its ancestors can be
pruned from the dynamic data structure that each verifier must maintain to
keep track of the amounts still available for collection.

To define the depletion ordering unambiguously, we shall say that z is
older than y if and only if Weight(xz) < Weight(y). This relation induces
a total order that is compatible with the partial order of the T-POSET.
Ties will be highly unlikely, and can be decided in any fixed deterministic
manner.

Thus, when a new transaction comes in, the fees that it collects will
be garnered from the oldest of its ancestors that still have fees available to
collect, moving forward as those oldest transactions become depleted. In
this context, Prize(z) of a transaction x is simply the total amount that can
still be collected from = and all of its ancestors y;, and clearly for all such
ancestors we have Prize(y;) < Prize(z).

Gross and Net. To formalise these notions, we first need the related
notion of gross fee of a transaction. The gross fee or just “fee” is the amount
paid by a transaction, that will be available for future collection by any
descendants. We also define the net cost or just “cost” of a transaction,
incurred by the transactor, as the gross fee minus any ancestor fees collected
and new coins minted (see below).

The “drain” of a transaction x, then, is the current portion of the fee
of x that has already been collected by the descendants of z. Clearly,
Drainp(x) = 0 for a transaction without descendants, and approaches Drainp(z) =

11

Fee(z) as = acquires descendants that deplete it. Because Drainp(z) is a dy-
namic notion, it depends on the current state of the T-POSET P in the view

of a particular verifier at a given time, which we indicate by the subscript
P.

Definition 4 (Drain) Let P be a T-POSET, containing n transactions,
form some n. Let x € P have m < n decedents {y1,y2,...,ym} be the
descendant transactions of x, and for each y;, define &; to be the fee taken
by y; from x. Then for each transaction, the drain of x is defined by:

m

Drainp(z) = Zd’i (3)

=1

The “prize” of a transaction z is then the total fees brought by z and
its ancestors, minus by the total drain from its descendants. Likewise, prize
is a dynamic notion that depends on the current T-POSET P, hence the
subscript P.

Definition 5 (Prize) Let P be a T-POSET, containing n ordered trans-
actions, form some n. Let x € P be a transaction, and let m < n be the
ancestors {z1,22,...,2m} in P of x. The prize of a transaction x with re-
spect to P is defined as the sum, over x and all its ancestors, of the fee
minus the drain:

m

Prizep(z) = (Fee(x) — Drainp(z)) + Z (Fee(z;) — Drainp(z;)) (4)
i=1

We define the prize of a set of transactions, X C P as,

Prizep(X) = Z Prizep(x) (5)

Automatic Drain Rate Adjustment. Consider the total prize avail-
able across all the current transactions in the system, given by Prizep(P).
Macroscopically, we can control the time it will take for the combined verifi-
cation effort to deplete this prize completely (and substitute for it a renewed
prize made of the new fees posted with the new transactions). This time is
the expected “useful” lifetime of a transaction in the T-POSET, before it
can no longer be the direct ancestor of a future transaction.

We control this lifetime by adjusting the rate at which a transaction x
can drain the fees from its ancestors, in proportion to the difficulty of the
proof of work posted by x. Specifically, assuming for a moment that the
combined “proving power” of the whole system is constant, then the drain
time as a fraction of the system’s age, can be estimated using the ratio of

12

the total available prize (converted to difficulty units) over the total work
or difficulty of all the proofs since the system’s inception, i.e.,

Time-to-drain (sec.)
Age-of-system (sec.)

Prizep(P)
5 ver Work(y)

Here, $ (in number of computations per unit of prize) is an exchange rate
parameter indicating how much fee is to be collected from its ancestors by a
transaction that posts a proof-of-work of unit difficulty. Time-to-drain must
be chosen as a global system constant, and selected large enough to give
even to the slower clients an opportunity to solve useful puzzles in their own
time, e.g., 1 day (see below for a longer discussion).

We can now adjust the parameter 5 almost endogenously by solving for
B in the above equation every so often, say by forcing recomputation of 8 in
every transaction x whose number of ancestors |{y; < x}| = 2", a power of
2. At all other times, new transactions x are required to use the most recent
value of 8 from any ancestor of the transactions it references—where most
recent refers to the total order induced by the notion of Weight, as defined
earlier.

Unfortunately, 5 determined from the above equation will be technically
ill-defined unless all the verifiers share the exact same view of P at the
time it is determined. To avoid this problem, we are going to solve for
in a slightly different equation which uses only well-defined inputs. Letting
P’ C P be the uniquely defined set of x’s ancestors, we use:

=3

(6)

Time-to-drain (sec.) _ 5 Prizep/ (P’) 7)
Age-of-x (sec.) >yepr Work(y;)

This leads to well-defined recomputations of 8 that are easy to verify.

There is still one aspect of this determination of § that requires an
external input: Age-of-z, which needs a clock. Since absolute precision is
not paramount to determine 3, we propose to let whichever client whose
onus it is to recompute 5 use its own clock, and to require that the verifiers
accept it unless the clock skew is very substantial, such as more than one
hour.

2.1.1 Minting

Minting is the process whereby new “coins” are created with every valid
transaction, as an extra reward. More critically, minting is the process
whereby the money supply is gradually inflated from its initial supply of
zero. Minted coins go directly to the user independently of fees.

Coins are minted when creating a transaction. A user selects a challenge
and pays to themself a value. This value is determined from available data

13

before closing the transaction, and calculated as either,

Mint(z) = f(Work(z)/Weight(z)) - Z Mint(y;) (8)
Yi =T

for some monotone function f, for example f(z) = a - x for some constant
system parameter o.

While our intention is to describe the function f in such a way that
it remains as flexible as possible, realistically, for an f that is compatible
with the design goals of our framework, we must insist of some decentralised
feedback adjustment mechanism for f, similar to that of the value 8 (Equa-
tion 6 and 7). We expand further on the selection of reward function f in
Appendix, Section C.4.

2.1.2 Verification

The transaction verification process is intentionally similar to blockchain-
based cryptocurrencies, but with a few twists.

All users normally participate in the verification process, meaning that
all participants must collect the transactions issued by other nodes, and
record the ones that pass the verification procedure. Users also keep a
record of valid transactions that can be later given to new participants who
wish to join.

Users verify transactions as they receive them. Upon receiving notice
of a transaction z, the client first checks that the two previous transactions
included within x are acceptable transactions. The next step of validation is
to check that the transaction has the correct proof-of-work attached. A final
part for verification is to check that the transaction z itself is valid, which
requires that it be both intrinsically correct or well-formed, and extrinsically
admissible or valid in the current ledger context. The former condition is a
(static) determination whether the transaction could be valid in the smallest
possible ledger context that contains it and its ancestors; if that fails it is
forever marked as ill-formed. The latter condition means that we have to
check for double spending (and a few other conditions such as availability
of fees).

In order to check double spending and resolve conflicts, we use a greedy
approach that will ensure consensus. Nodes simply take as valid the (well-
formed) transaction that (in their view) has the largest amount of work
attached to it and its ancestors: a notion we call height. This means that all
the ancestors must be well-formed and then accepted as valid as well. This
rule is then repeated on the remaining well-formed transactions to accept
the one of greatest height (and its ancestors), and so on.

In a normal situation (e.g., barring a powerful attack), conflicts will be
shallow and confined to the upper fringe of the growing graph. Clearly,
the shallower the conflict, the smaller and faster the local revision needed

14

to resolve it. When an intrinsically correct transaction x is marked invalid
because of an extrinsic conflict with a previously accepted transaction y,
the rejected transaction z may become valid again if a majority of the net-
work favours z over y.This very same situation occurs in Bitcoin when two
competing but otherwise valid blocks share the same prior block.

In order to check that a transaction is inherently well-formed, the crite-
rion is simply that it be valid in at least one POSET, namely the smallest
possible POSET that contains that transaction together with all the trans-
actions it references and their ancestors. What makes intrinsic correctness
important is that it is a permanent, static notion.

Conflicts and Resolution. Verifiers will normally develop slightly dif-
fering views of the current state of the system as it evolves, which can be
formalised as saying that they will hold different real views P;, P, ..., of
some hypothetical true T-POSET P. This is due to transactions taking
some time to propagate through the network, and will resolve by itself as
long as no conflict arises.

A conflict arises when two or more transactions x1 € P;, 9 € Py, etc.,
are published, such that there can be no single P that contains them all.
This normally would require a deliberate attack, such as double spending;
but this can also happen by accident, for example, when z; and x2 both
refer to almost-depleted parents, so that when the first transaction comes
in, the second can no longer claim its fee and is therefore rejected. Due
to propagation delays on the network, different users may end up resolving
conflicts differently in their own view of the system.

Maintaining a consensus across multiple verifiers in our framework re-
quires the formal notion of the height of a transaction. For a transaction z,
Height(x) is the total proof-of-work difficulty expended by all the ancestors
of x.

Definition 6 (Height) Let P be a T-POSET and let x € P be a transac-
tion or element therein. Let z1,..., 2, be elements in P all ancestors of x,
then the height of x is the sum of the proof-of-work difficulty contributed by
every one of x’s ancestors, plus x itself, given by,

m
Height(z) = Work(z) +) _ Work(z;). (9)
i=1
Algorithm for Consensus. The rule for conflict resolution is simply

stated: The tallest well-formed transaction prevails (breaking ties determin-
istically). A new verifier that comes online can share the network’s consen-
sus view of the current T-POSET P of valid transactions by applying the
following algorithm:

15

1. Collect all transactions ever posted, flagging all the ill-formed trans-
actions as permanently ignorable.?

2. As long as there remain well-formed transactions that have neither
been deemed valid or invalid:

(a) Select the maximum-height or “tallest” well-formed transaction
not yet classified, and classify it as wvalid as well as all of its
ancestors.

(b) While doing do, mark as invalid any other transaction that con-
flicts with any of the newly validated ones.

In Section 2.2 we present a consensus mechanism algorithm that runs
in a bounded number of steps, showing that any two honest verifiers A and
B that apply it on the same published transaction data sets Sy and Sp,
regardless of collection order, will independently reach the same T-POSET
view P4 = Pp, where additionally:

— Small conflicts only cause small revisions, in the sense that status
swapping between valid and invalid can only occur between conflicting
transactions and their ancestors up to the point when they share a
common ancestor.

— The conflict-resolution rule is fully incentive-compatible with the fee-
based mechanism previously described, and indeed provides an addi-
tional incentive to build new transactions upward from the current
“summit” of the graph: any (correct) transaction that builds up from
the current summit will become the new summit and thus necessarily
valid, in addition to offering the highest prize amongst its ancestors.

— Verifiers who have been accepting the non-consensus branch of a con-
flict will soon reconcile with the majority consensus, since the majority
will extend the graph from the consensus branch at a faster rate than
the dissenters, which guarantees that the summit does (or will) belong
to the consensus branch. At that point, all the verifiers will have to
accept it.

In practice, an implementation of this consensus strategy will of course
have to process additions and conflicts incrementally, which can be done
very efficiently for shallow conflicts. Other implementation considerations
are the possibility of heuristically delaying “reversal”-causing updates (i.e.,
the switching of a well-formed transaction from valid to invalid status, or

2Permanently ignorable transactions are those that could never become valid, e.g.,
because they carry an invalid signature, have two or more ancestors that mutually conflict,
or carry an illegal transaction payload.

16

vice versa), in order to amortise their costs, as long as the delay does not
stymie the consensus rule.

This conflict resolution mechanism is a POSET-based generalisation of
the linear conflict resolution mechanism introduced in the Bitcoin Blockchain.

2.2 Efficient Consensus

Maintaining consensus requires incrementally computing the height of every
transaction. For an n-node annotated directed acyclic graph, the trivial al-
gorithm to compute the height of a node runs in O(n) time, requiring O(n?)
time to do the same for every node in the graph. Unfortunately, O(n?) soon
becomes far too large for a network with a constantly expanding set of trans-
action nodes. In order to maintain efficiency we present, in Appendix A, an
algorithm which runs in time O(n?) where n is the number of transactions,
on a strict subset of the total number of transactions. Specifically, on a set
that has not yet reached a convergence — a property described in Theorem
3.

2.3 Transaction Payload

The framework we present is essentially agnostic as to what comes into the
transactions. For example, we could use single-denomination transactions
that endorse transfers between public keys, and powered by a scripting lan-
guage ¢ la Bitcoin. Alternatively, one could use Ethereum-like transactions
with a richer scripting language.The only difference is that, instead of a hash
chain system, transactions would be cross-verifying in a T-POSET structure.

Our only requirement is that transactions provide a peer-to-peer ledger-
based wvalue creation and transfer mechanism based on digital signatures,
that our underlying framework can access in order to implement minting
and fees.

3 Security and Properties

We now delve into analysing the system security. First, we need to make
some assumptions on the participants, in keeping with the decentralised
cryptocurrencies. The proof of all theorems are given in the appendices.

3.1 Rational Players

We assume that a majority of participants act rationally, and that this ma-
jority adheres to the correctness rules of the protocol. Incorrect, or invalid,
transactions will be weeded out by the honest participants, which ensures
integrity among them as long as they are the majority. Equally important
is the assumption of rational participants (whether they are cheating or

17

not), rather, we assume that the majority of the computing power is held
by rational players.

Assumption 1 (Rational Players: Miners and Transactors) A miner
acts rationally if they seek to maximise the value of their reward (from mint-
ing and fee collection alike) for any given amount of expended effort. A
transactor acts rationally if they seek to ensure the acceptance of transac-
tions in which they are the payer or payee. A rational player takes on both
aspects.

3.2 System Properties

Double-Spending Resistance. A key priority is to ensure that a
broadcast transaction quickly becomes agreed on by the majority of nodes,
and cannot later be nullified in some way. Depending on its importance,
once the transaction has gained enough weight, from the total of its descen-
dants’ work, it can be deemed impassible: it will no longer be feasible or
economical for an adversary to try to displace it.

For any two transactions x and y, we say that x conflicts with y if for any
honest party U accounting for incoming transactions, U can accept either
x or y but not both. There are a few ways for conflicts to occur, with the
most obvious ones being of two transactions attempting to make payments
from the same source, and of a transaction attempting to extract too much
value from an insufficient source. We refer to both as instances of double
spending.

Theorem 1 shows that the weight, or total verification work accumulated
on a transaction by it and its descendants, directly translates to its level of
security.

Theorem 1 (Double-Spending Resistance) Let P be a T-POSET, let
x be a transaction element in P, and x the total weight of x in the context
of P. Let A be a p.p.t. challenger attempting to include a transaction y
that conflicts with x. Suppose that the total number of computational steps
performed by A, is k. Then the probability that A can cause y to displace x
in the majority consensus, is non-negligibly no greater than k- c¢='.

Leading-Edge Preference. The scheme as envisaged provides an in-
centive to work on the latest transactions—the leading edge—which is im-
portant both for fast verification and for convergence. We show this by
appeal to rationality.

Theorem 2 (Leading-Edge Preference) Let P be a T-POSET, and let
x1 € P be a legitimate transaction forming a proof-of-work on two other
distinct transactions xo and x3, both in P. The optimal strategy for any ra-
tional player is to include x1 within the proof-of-work of its next transaction,
over x9 and 3.

18

Convergence. We now analyse the time it would take for transactions
published at a given time to all coincide with a common ancestor. Con-
vergence, in this sense, means that at some point there will be a future
transaction, x, which will be a common descendent of all the presently pub-
lished transactions, provided of course that the transactions of interest are
acceptable, valid and non-conflicting. We show that, with rational players,
all such transactions will at some point share a common ancestor.

Theorem 3 (Convergence) Let P be a T-POSET and let there be n
published transactions such that all transactions are valid, altogether non-
conflicting in P. Assuming rational players with varying computational abil-
ities, after some period t, all n transactions will share a common descendant.

Strong Convergence. Not only is it the case that any given set of
suitable transactions will soon share at least one common descendant, we
can also prove that, at some later point, any further transaction will always
be a descendant of the entire initial set.

Theorem 4 (Strong Convergence) Let P be a T-POSET and let Q C P
be a subset of n transactions in P, all valid, non-conflicting, and with no
descendants in P. Assuming rational players, for any large enough superset
P’ > P, then any future transaction that can be added to P’ must be a
descendant of all the transactions in Q.

This shows that the verification graph soon behaves for all practical pur-
poses just as a consolidated blockchain: every new proof of work reaffirming
every sufficiently old transaction.

Overview of Attacks. To help unpack the implications of the above
theorems, we detail in Appendix C how several common attacks are pre-
vented, as well as detailing the expected stability of the system.

3.3 Implementation

We have created an implementation of our proposal and tested it with trans-
action rates and delays equivalent to bitcoin. Even without optimisation,
our implementation was easily able to handle the throughput. Details can
be found in Appendix B.

4 Conclusion

The primary objective of this paper was to establish an alternative way
of creating a distributed cryptocurrency that avoids the bottlenecks and
centralisation issues that come packaged with blockchain implementations.

19

We achieved this by redesigning the base layer, in favour of a naturally
self-regulating and completely decentralised verification process. We have
demonstrated that this process still ensures that all new verification effort
secures every previous transaction, after a brief period of convergence for
each transaction. We believe this novel design for distributed digital cur-
rencies is a valuable improvement for this field of research. By creating a
currency in this way, it allows us to get closer to the moral of a decentralised
system which is still found wanting in current implementations.

References

[1] B-money: www.weidai.com/bmoney.txt, [Acc: Feb 17]

[2] Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better - how to
make Bitcoin a better currency. In: Financial Cryptography and Data
Security — FC (2012)

[3] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, 1., Tromer,
E., Virza, M.: Zerocash: Decentralized anonymous payments from bit-
coin. In: IEEE S&P (2014)

[4] Bit-gold: unenumerated.blogspot.com.au/2005/12/bit-gold.html,
[Acc: Feb 17]

[5] BitcoinXT: https://bitcoinxt.software/, [Acc: Feb 17]

[6] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten,
E.W.: SoK: Research perspectives and challenges for Bitcoin and cryp-
tocurrencies. In: IEEE-S&P (2015)

[7] Chaum, D.: PrivaTegrity: online communication with strong privacy.
Presentation at Real-World Crypto 2016, Stanford

[8] Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In:
CRYPTO (1988)

[9] Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In:
NDSS (2016)

[10] Dogecoin: http://dogecoin.com/, [Acc: May 17]

[11] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail.

In: CRYPTO (1993)
[12] Ethereum: https://www.ethereum.org/, [Acc: Feb 17]

[13] Eyal, 1., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulner-
able. In: Financial Cryptography and Data Security - FC (2014)

20

[14] Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol:
Analysis and applications. In: EUROCRYPT (2015)

[15] Gervais, A., Karame, G.O., Capkun, V., Capkun, S.: Is Bitcoin a de-
centralized currency? IEEE S&P (2014)

[16] Goodin, D.: Ars Technica. http://arstechnica.com/security /2014 /06 /bitcoin-
security-guarantee-shattered-by-anonymous-miner-with-51-network-
power (2014), [Acc: Feb 17]

[17] Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-
theoretic analysis of DDoS attacks against bitcoin mining pools. In:
Financial Cryptography and Data Security - FC Workshops, BITCOIN
(2014)

[18] Juels, A., Brainard, J.G.: Client puzzles: A cryptographic countermea-
sure against connection depletion attacks. In: NDSS (1999)

[19] Karame, G., Androulaki, E., Capkun, S.: Double-spending fast pay-
ments in Bitcoin. In: ACM CCS (2012)

[20] Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In: IEEE S&P (2016)

[21] Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain pro-
tocols. In: Financial Cryptography and Data Security - FC (2015)

[22] Litecoin: https://litecoin.org/

[23] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D.,
Voelker, G.M., Savage, S.: A fistful of bitcoins: characterizing payments
among men with no names. Commun. ACM 59(4) (2016)

[24] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous
distributed E-cash from Bitcoin. In: IEEE S&P (2013)

[25] Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: Repur-
posing bitcoin work for data preservation. In: IEEE S&P (2014)

[26] Miller, A., Kosba, A.E., Katz, J., Shi, E.: Nonoutsourceable scratch-off
puzzles to discourage bitcoin mining coalitions. In: ACM CCS (2015)

[27] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf (2008)

[28] Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S., Clark,
J.: Bitcoin and cryptocurrency technologies, draft (2016)

[29]

[30]

31]

21

Park, S., Pietrzak, K., Kwon, A., Alwen, J., Fuchsbauer, G., Gazi, P.:
Spacemint: A cryptocurrency based on proofs of space. JACR ePrint
(2015)

Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol
in asynchronous networks. TACR ePrint (2016)

Popov, S.: IOTA: The tangle. http://iotatoken.com/IOTA_
Whitepaper.pdf (2016)

Ripple: https://ripple.com/, [Acc: Feb 17]

Sompolinsky, Y., Zohar, A.: Accelerating Bitcoin’s transaction process-
ing. fast money grows on trees, not chains. IACR ePrint (2013)

Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Nieto, J.M.G.:
Stronger difficulty notions for client puzzles and denial-of-service-
resistant protocols. In: RSA (2011)

Stellar: https://www.stellar.org/, [Acc: Feb 17]

Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: A technical sur-
vey on decentralized digital currencies. IEEE Communications Surveys
and Tutorials (2016)

APPENDIX

22

A Proposed Algorithm

The basic internal data structure of a transaction in our implementation has
the form,
x; = [Payments, x;, z, fi, fo, c|[h, d, p][a, d]. (10)

This includes the published transaction data: i.e., payment information, ref-
erences to two previous transactions zj, x.., in-fee f;, out-fee f, and difficulty
c.

The verifier also keeps extra variables for height h, depletion d and prize
p, which are not published and indeed evolve dynamically as new transac-
tions come it (except for the height h which depends only on the transaction
and its ancestors). Finally, the verifier keeps track of two sets with trans-
actions as elements: PrizeSet and DepletedSet, where PrizeSet is the set of
elements with prize remaining, and DepletedSet is the set of elements which
are depleted but not converged.

The add algorithm, below, is used to process new transactions. It
runs in time O(n 4+ m), where n is the number of transactions with prize
remaining and m is the number of depleted transactions not yet converged.
It is therefore possible to add [new transactions in time O(l * (n +m +1))
in the absolute worst case. (Each line of computation is annotated with its
complexity.)

/*
Each transaction in the local user’s current POSET view belongs to one
of:

PrizeSet < {...} > Implemented as a binary tree
DepletedSet «+ {...} > Implemented as a binary tree
ConvergedDepletedSet «+ {...} > Implemented as a vector

*/

Add(z; : {xy, zp, fi, fo,c}) > Let n < |PrizeSet| and m < |DepletedSet|

zi.a < r.aUzraU{x;} > O(n+m)
for z; € x;.a N PrizeSet do

zj.d < z;.dU{z;} > O(n+m)
end for
Ti-h = xph +Tic+ 300 co a\a Ti-C > O(n+m)
xip Eijxi.aajj.fo—xj.d > O(n 4+ m)
if {z;,x,} € PrizeSet and z;.p > x;.f; and otherwise valid then >
O(logn)

PrizeSet < PrizeSet U {X;} > O(logn)

temp < x;.f;

7+ 0

while temp > 0 do
feeClaimed « min(temp, x;.alj]. fo — z;.alj].d)

23

x;.aljl.d < x;.alj].d + feeClaimed
temp < temp — feeClaimed
for x4 € x;.a[j].d do

xq.p < xq.p — min(zq.p, feeClaimed) > O(n+m)

end for

if z;.a[j].p = 0 then
DepletedSet <— DepletedSet U {z;.a[j]} > O(logm)
PrizeSet < PrizeSet\{z;.a[j]} > O(logn)
x;.aljl.a < {}
x;.aljl.d « {}

end if

j< i+l

end while

else
If necessary reset local view based on greatest height.
end if

The clean algorithm, below, is periodically used to clean up the data
structures of all transactions that both have converged and are depleted,
and which therefore no longer need to be tracked individually. It runs in
time O(n(n + m)).

Clean()
converged N zja > O(n(n +m))
xjEPrizeSet
converged < converged N DepletedSet > O(n 4+ m)
for x; € converged do
DepletedSet < DepletedSet\{z;} > O(log(m))
ConvergedDepletedSet <— ConvergedDepletedSet U {z;} > O(1)
end for
for z; € PrizeSet do
xj.a < xj.a\converged > O(n(n +m))

end for

24

N: 99 P: 269 D: 0 Fo: 39 Fi: 37

N: 98 P: 230 D: 0 Fo: 29 Fi: 28

N: 95 P: 157 D: 0 Fo: 48 Fi: 46 N: 96 P: 125 D: 0 Fo: 16 Fi: 15
l N:

N: 92 P: 32 D: 11 Fo: 43 Fi: 40 94 P: 77 D: 0 Fo: 43 Fi: 39

N: 91 P: 0 D: 21 Fo: 21 Fi: 20 N: 93 P: 34 D: 0 Fo: 34 Fi: 32

N: 89 P: 0 D: 36 Fo: 36 Fi: 34

Figure 3: Top of the graph.

B Implementation and Simulation

We have implemented a network simulator in order to ascertain experi-
mentally that the above verification algorithms induce the right system be-
haviour. Our implementation is written in C++.

One interesting observation is that the whole converges very quickly
even if, whenever new simulated transactions are created, their parents are
chosen randomly (amongst the valid choices) instead of game-theoretically
to maximise the likelihood of collecting a fee. (The reason we first tried this
in the simulation in the first place, is to be able to simulate larger network
given the available computing resources.)

Figure 3 and Figure 4 show examples of the resulting transaction graph
for a (tiny) 100-transaction example. The nodes in red are those still with
a remaining non-zero available prize; the nodes in green are the nodes that
have depleted; and the nodes in black are those that have depleted and also
converged, meaning that they will necessarily be ancestors of any and all
new valid transaction added to this graph.

Table 1 collects statistics from the simulations. Of particularly interest
are the last two rows (data rows 6 and 7) where the simulation has been
tuned to have an equivalent transaction rate as the current Bitcoin network?,
adjusted for simulation length in order to achieve the same median network
delay®. The upshot is that our simulation, running on a single i7-4770 CPU
(with no optimisation) was easily able to match the transaction rate of the
current Bitcoin network and verify all those transactions as they came in.

30ur reference transaction rate is peak Bitcoin rate of 260,000 transactions/day on
Mon 2016/11/07. http://www.coindesk.com/data/bitcoin-daily-transactions
“Median delay on 2016,/03/07 per http://bitcoinstats.com/network/propagation

25

Table 1: Simulation statistics for several simulation runs, indicating for
each: the simulated time length of the execution, the final number of nodes,
the average transaction arrival rate, the incurred delay, the average time
to live until a transaction becomes depleted, the average time until conver-
gence, and the real CPU time taken by the simulation. All times are in the
simulation clock, except for the CPU time which is in real seconds.

’ Length ‘ Nodes ‘ Node Rate(avg) ‘ Net. Delay | Time To Live | Converge | Execution Time

10hr 5000 0.14 per s 10s 691s 7s 11s
10hr 10000 0.28 per s 10s 626s 511s 11s
10hr | 20000 0.56 per s 10s 752s 3348s 58s
10hr 30000 0.83 per s 9s 48s 162s 87s
10hr | 40000 1.11 per s 58 126s 7265 260s
lhr 10833 3 per s 6.2s 582s 1608s 13s
2hr 21666 3 pers 6.2s 1063s 3154s 63s

C Discussion and

and Frequently Asked Question

We devote this section to a discussion of the proper-
ties of our system, highlighting the differences with
Bitcoin (and generally all Blockchain-based cryp-
tocurrencies).

Some of our system’s properties are “soft” prop-
erties, e.g., from our incentive structures, which will
apply is the participants behave rationally.

Other properties are “hard” properties, which
are strictly enforced by the rules of validity; they
will always apply.

C.1 Properties.

Stability. As the system progresses, conflict-
ing subgraphs may have appeared and branched
out from the main graph. These subgraphs should
eventually be discarded to avoid overloading the
memory of the verifiers; however, they must persist
for some period of time until it has become clear
that the network consensus is indeed that those
conflicting transactions should be discarded (rather
than the transactions they are conflicting with).

For example, if two conflicting transactions are
relayed to different nodes, both nodes may later re-
ceive the other conflicting transaction. After some
period, additional transactions will be broadcast
predominantly confirming either one or the other
of the conflicting transactions. Eventually, one
transaction will pull ahead of the other in terms
of weight, and as the difference increases the veri-
fiers will switch to the winner’s side, to reach global
consensus. (And more forcefully, at some point the
summit of the graph will be a descendent of either
one of the conflicting transactions, at which point
all verifiers will be forced to accept it if they haven’t
already done so.)

Liveness. An immediate consequence of our in-

26

Figure 4: A tiny
graph.

centive structure, is that the system will exhibit a liveness property, meaning

27

that no, otherwise valid and compelling, transaction will stay unverified and
thus orphaned for long, before being incorporated into the mesh of converged
transactions.

An orphaned transaction is one that has not been verified yet, so by
definition its available prize must be strictly positive. As time lapses and
no verifiers show up to pick up this transaction, a Laplacian probability
argument ° will induce rational verifiers to conclude that it is increasingly
unlikely that a competing verifier will suddenly show up to snatch the prize,
thus making verification of the orphaned transaction an increasingly ap-
pealing proposition. It suffices that one such verifier step up to bring the
orphaned transaction into the fold, which is thus a near certainty.

The foregoing argument however excludes orphaned transactions that
verifiers may deem mnon-compelling, for example because they have an in-
finitesimal (yet non-zero) prize, or are too old still to be deemed acceptable.

C.2 Attacks.

One salient difference between the Blockchain and our Transaction Graph
verification approach, is the short-term vulnerability to attacks.

Casual attacks are simple and easy, such as someone trying to steal
back a payment just made, using double spending.

Bitcoin transactions are defenceless against such attacks, until they get
picked up onto the Blockchain (taking > 10 minutes in theory, and hours
in reality due to congestion, which is only mitigated by paying a large fee).
Even the commercial services that, for a fee, offer to guarantee not-yet-
verified Bitcoin transactions, do no such thing; they merely offer an indem-
nification warranty to the recipient in case a conflicting transactions gets
picked up instead.

Our framework closes this opportunity for casual attacks very quickly,
because yet-unverified but fee-laden transactions act as a magnet for their
immediate parallel verification by multiple users.

Concerted attacks are focused attempts to dislodge a specific trans-
action, using substantial computing power.

The vulnerability profile of a Bitcoin transaction against concerted at-
tacks is essentially the same as a casual attack: defenceless for a significant
period until consolidated, then sharing the strength of the block that picked
it up, which then increases as the chain predictably extends from there.

In our system, vulnerability decreases right away as verifications pour
in. Partially verified transactions retain temporary exposure to a concerted

Laplace estimated the probability that the Sun would rise tomorrow to be nearly
one, based on the fact that it has done so for a great many days already, using a generic
Bayesian argument without any physics or other specific domain knowledge.

28

attack, since a powerful attacker may have the temporary local ability to
overpower the honest majority by focusing all of its efforts against one spe-
cific target. On the contrary, once a transaction nears or reaches conver-
gence, it will be as strongly affirmed as it would be in a Blockchain system
of equivalent total verification power.

We note that there is little rational value in using much energy to remove
a previous transaction beyond its spend value (e.g., in a double-spending sce-
nario; see Theorem 1), outside of attacks that seek to displace a transaction
for ulterior motives.

Disruption and Denial of Service (DoS) are attacks where attackers
seek to wreck as much havoc to the system as possible, for example, by
flooding the network with multiple small transactions with mutual conflicts,
in an attempt to confuse verifiers and clog the network.

Verifiers can employ simple heuristics based on the age and offered prize
of a transaction to determine if it holds any value before seeking to determine
or revise their validity. This is in fact precisely what out incentive structure
recommends. By doing so, the system remains unclogged by flooding, unless
the attackers are willing to put in an effort equivalent to a 51% attack.

In Bitcoin, by contrast, the bounded size of the blocks combined with
their fixed 10-minute renewal creates a DoS vulnerability not present in
our system: it is possible to cause the blocks to fill up by sending many
small valid transactions, at the only cost of their transaction fee, to clog up
legitimate transactions.

Example Attack 1 — the Fork
Attack: Fork the the POSET below some victim transaction by broadcasting
a transaction of greater height in a different branch.

Defence: Provided that the first transaction is received by honest clients,
who use it as an ancestor of their future transactions, it will be protected
not by its own height but the height of its highest descendant. Once the
transaction becomes converged (see Theorem 3) all future transactions will
strengthen it, and the effort to displace it will have to exceed the total
verification power of the entire network from then on.

Example Attack 2 — the Poison
Attack: Create a transaction that points to two conflicting ancestors, or is
somehow intrinsically bogus in some way.

Defence: Any such transaction will be found to be permanently ig-
norable and marked as such by all verifiers. (The consensus algorithm
states: “Permanently ignorable transactions are those that could never be-
come valid, e.g., because they carry an invalid signature, have two or more
ancestors that mutually conflict, or carry an illegal transaction payload”;
and the algorithm given to identify such transactions will identify them all,
regardless of the nature of the poison.)

29

C.3 Practical Matters

Transaction Size and Cost. We envisage that any implementation
would expect or even require that the cost or fee to be posted by a new
transaction, directly reflect the total bit-size of the transaction.

Aside from making the transactor defray the cost of larger transactions,
this measure has the added benefit of making it slightly more costly for a
transaction to pick parents at considerably different levels (because of the
way the parents are encoded relative to each other; see condition 3 under
Section 2.2). In turn, this fee differential espouses the fact that it will take
longer to verify transactions where the discrepancy between the levels of the
immediate ancestors is high.

Choosing whether such a rule should be hard-coded in the system, or
softly expected by the verifiers as a natural consequence of the game theo-
retic incentives, remains an implementation decision.

Bootstrapping and Early Adoption. In order to instantiate the sys-
tem, it will be necessary to create at a pair of origin transactions, which
can come loaded with an initial prize for collection. It will also be necessary
to select a minting function, which will determine the rate of inflation and
hence the inherent incentives, or disincentives, to early adopters. We do not
make any recommendation on the choice of minting function, or parameters
set for initilization.

Referring to Two Previous Transactions. We have presented a sys-
tem where transactions are formed with a proof-of-work which refers to two
previous transactions. In fact, this may seem a bit rigid, and may not be
the ideal solution in certain scenarios.

While we believe that this strikes a balance between burden on the net-
work, such as traffic and verification demand, whilst simultaneously allowing
for the building of a proof-of-work system, it can be relaxed if necessary:
there is nothing in principle that prevents a design where transactions re-
fer to more than two parent transactions. However, such flexibility seems
intuitively unnecessarily costly.

Post-Dated Transactions. By enforcing a notion of verification fresh-
ness, our framework disallows post-dating (and ante-dating) by default, un-
like Bitcoin. We view this as a useful feature, but note that the permissive
behaviour of allowing the specification of “validity dates” can be restored
at the transaction payload level, for instance if the payload supports smart
contracts.

Scalable Throughput and Responsiveness. Unlike Bitcoin and all
other blockchained cryptocurrencies, we place no cap on the number of trans-

30

actions verifiable in any period of time.

Better yet, since transactions verify each other (in a ratio of 2-to-1), a
surge in transactions broadcast will be instantly met with an equal surge in
verification response.

We note that Bitcoin is mired in a debate concerning the total size of
transactions that can appear in a single block [5], an exclusively Blockchain-
model problem.

C.4 Inflationary Measures

Our system is designed to be agnostic to the choice of monetary policy,
embodied by the minting function f, the parameter «, and their evolution.

It can be either inflationary or deflationary, and rigidly fixed or ad-
justable by consensus or using any desired external mechanism. We merely
note the following:

— As long as the reward function f is not super-linear, there is no in-
centive at all for verifiers to join forces and form Bitcoin-style mining
pools.

— Sub-linear choices for f would disproportionately reward smaller proofs-
of-work, and also further discourage the pooling of effort.

— If the function f or the proportionality parameter « is kept constant
throughout the life of the system, then the coin supply will grow as the
total verification work, i.e., the time-integral of the total verification
power.

— Thus, for constant (unchanging) f and a:

— if the total work stays constant, e.g., after reaching an adoption
plateau, inflation will be linear;

— if the total work follows Moore’s law, then inflation will follow
the same exponential growth.

— It is easy to target a different—and almost arbitrary—inflation sched-
ule, by bringing up the system with a decentralised feedback adjust-
ment mechanism for f.

D Theorems

Theorem 1 (Double-Spending Resistance—Restated) Let P be a T-
POSET, let x be a transaction element in P, and denote by x the total
weight of © in the context of P. Let A be a p.p.t. challenger attempting to
include a transaction y that conflicts with x. Suppose that the total number
of computational steps performed by A, is k. Then the probability that A can

31

cause y to displace x in the majority consensus, is non-negligibly no greater
than k- c¢—1.

From the verification procedure, in order to replace transaction x, A
needs to imbue transaction y with a greater total weight than z, as described
in Definition 3. From Definition 1 it follows that for k steps, the probability
of succeeding is k - ¢! + negl(k) as required, where negl(k) is a negligible
function.

Theorem 2 (Leading-Edge Preference—Restated) Let P be a T-POSET,
and let x1 € P be a legitimate transaction forming a proof-of-work on two
other distinct transactions xo and x3, both in P. The optimal strategy for
any rational player is to include x1 within the proof-of-work of its next trans-
action, over xo and T3.

Let v1, v9 and v3 represent the total prize of each transaction x1, z9 and
x3. Then by definition v; > v9 4+ vg in any T-POSET P that is a superset
of x1 and x1’s ancestors (including zo and z3). If 21 includes a fee then v;
is strictly greater than vy + vs.

In the first case, a rational player will prefer to reference x1 over xo or
x3, as it maximises the prize available for collection, thus offering greater
expected reward for the amount of effort.

For the second case, the act of referencing just the one transaction x
provides the same total prize as xo and x3 combined, whilst allowing for an
extra reference.

Theorem 3 (Convergence—Restated) Let P be a T-POSET and let
there be n published transactions such that all transactions are valid, alto-
gether non-conflicting in P. Assuming honest rational players with varying
computational abilities, after some period t, all n transactions will share a
common descendant.

For all n transactions, if there is one transaction such that all other
transactions are the ancestors of it, then we are done. Otherwise, list all
transactions that do not have any descendants. Without loss of generality,
assume that there are m distinct transactions of this type. Immediately, no
transaction in m can be the descendant of another transaction in m.

Now, compare the potential reward of combining each two distinct trans-
actions. By Theorem 2 we know the optimal selection for a rational par-
ticipant creating a new transaction is to select two transactions for the m
transactions such that the total prize is greatest. Now the list of ancestor-
less transactions has decreased by m — 1. By repeating the same argument,
eventually all transactions will be combined, in at most n — 1 steps. Which
is a worst case bound on the maximum steps to convergence. At this point
all transactions from the original set of n transactions will share a common
descendant.

32

Theorem 4 (Strong Convergence—Restated) Let P be a T-POSET
and let Q C P be a subset of n transactions in P, all valid, non-conflicting,
and with no descendants in P. Assuming rational players, for any large
enough superset P D P, then any future transaction that can be added to
P’ must be a descendant of all the transactions in Q.

By Theorem 3, all transactions in) will eventually have a common de-
scendant. At this point, this descendant transaction, along with all other
descendant-less transactions will be candidates for inclusion by a following
transaction, w.l.o.g, let there be n’ of these transactions. Now as in the
strategy for proof from Theorem 3, all of these transactions will eventu-
ally converge. Hence, after at most (|Q| — 1) + (n’ — 1) steps there will be
one transaction that is a descendant of all previous, including all of (). By
Theorem 2, any new transaction will be incentivised to include this leading
transaction, we call this leading transaction xg. Now, after more transac-
tions are added, zg will eventually have no claimable prize remaining, thus
all rational players will be forced to construct transactions on the descen-
dants of xg, containing all of @) as required.

This property shows that, after a while, our T-POSET-based verification
graph is as strong as a Bitcoin-style consolidated Blockchain: every new
proof-of-work reaffirming every sufficiently old transaction.

