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Abstract. Ever since Keccak won the SHA3 competition, sponge-based
constructions are being suggested for many different applications, in-
cluding pseudo-random number generators (PRNGs). Sponges are very
desirable, being well studied, increasingly efficient to implement and sim-
plistic in their design. The initial construction of a sponge-based PRNG
(Bertoni et al. CHES 2010) based its security on the well known sponge
indifferentiability proof in the random permutation model and provided
no forward security.

Since then, another improved sponge-based PRNG has been put forward
by Gaži and Tessaro (Eurocrypt 2016) who point out the necessity for a
public seed to prevent an adversarial sampler from gaining non-negligible
advantage. The authors further update the security model of Dodis et
al. (CCS 2013) to accommodate a public random permutation, modelled
in the ideal cipher model, and how this affects the notions of security.

In this paper we introduce Reverie, an improved and practical, sponge-
like pseudo-random number generator together with a formal security
analysis in the PRNG with input security model of Dodis et al. with the
modifications of the Gaži and Tessaro paper.

We prove that Reverie is robust when used with a public random per-
mutation; robustness is the strongest notion of security in the chosen
security model. Robustness is proved by establishing two weaker notions
of security, preserving and recovering security, which together, can be
shown to imply the robustness result. The proofs utilise the H-coefficient
technique that has found recent popularity in this area; providing a very
useful tool for proving the generator meets the necessary security notions.

Keywords: sponge; pseudo-random number generator (PRNG); Patarin’s H-
coefficient technique; robustness; Keccak; SHA-3; ideal permutation model

1 Introduction

Randomness is an essential ingredient in almost every area of cryptography; yet
in the literature, randomness is often sampled uniformly at random with little
thought on how quickly this amount of “good” randomness can be generated in
practice. The need for high quality randomness delivered quickly has spawned



work on the various key aspects of a PRNG, such as the ability to produce ran-
domness at a fast and reliable rate, and protection against adversaries who may
be able to compromise parts of the generator’s state or the environment in which
it draws entropy. In practice, many generators in active use have not received
valid security analysis, and, on the opposite side of the fence, many designs are
created in a theoretical setting without the full scope of desirable properties for
a PRNG in mind and as result, are impractical for active use.

Sponges The sponge design is very simple and yet very powerful; it benefits
from a large amount of analysis due to the success of Keccak [6] in the SHA3
competition in 2012. The design requires an n-bit state with a rate r and capacity
c such that n = r + c; the r bits of the state s are known as the outer state,
written s while the c bits are known as the inner state ŝ. The design initialises
with an initial state of the zero state, and a random permutation π. The sponge
has two algorithms; Absorb and Squeeze.

Previous constructions The sponge-based PRNG construction first suggested
by Bertoni, Daemen, et al. in [8] utilises a random permutation and relies on the
sponge indifferentiability proof of [7] for security. This analysis, though useful,
does not consider security in terms of a security model for PRNGs. More recently,
work by Gaži and Tessaro has improved upon this design and security claims,
but still requires multiple additional calls to the permutation to ensure forward
security, along with several additional strings to give a seeded design.

Ideal permutation model We prove all of our security claims in the ideal
permutation model where π is a public, random permutation picked at the be-
ginning of any game. Any party has access to the permutation and may make
forward and backward queries. We denote by Aπ an adversary with oracle access

to π
$← Pn with Pn being the space of all permutations on n-bit strings. We say

that Aπ is a qπ-query adversary if it makes at most qπ queries π.

PRNG security models The development of security models for PRNGs has
been slow due to a complex combination of security goals and the difficulty
in accurately capturing the environment both the PRNG and the associated
adversary are working in. Security models for PRNGs include work by Barak
and Halevi [2], from 2005, a brilliantly simple model that introduced a very
strong notion of Robustness.

This model was later improved upon in successive work by Dodis et al. [10], which
initially aims to address the situation where a PRNG accumulates entropy at
a slow rate, and is at risk of “prematurely” being called before enough entropy
has been gathered.

The model was then further improved in [11], which introduced the idea of a
scheduler, inspired by the design of the Fortuna PRNG [12] which aimed at a
design to improve the recovery time of a compromised PRNG. We will not be
considering a scheduler in this paper and will keep to the definitions of [10];
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however, the idea of a scheduler is an interesting prospect in terms of possibly
replacing the need for seed described below.

Seedless design More recently, work done concurrently to the first draft of this
paper, by Gaži and Tessaro [13], concentrates on the importance of a “seeded”
design when using a public ideal permutation. The authors argue that a publicly
available permutation allows an adversary to generate PRNG inputs dependent
on the permutation. These “bad” distributions can output high entropy inputs
but result in a predictable bit of the state, and thus result in a non-negligible
advantage for the adversary. The authors of this work ensure their implementa-
tion is seeded by requiring a small number (s = 2 or 3) of r-bit strings that are
used as additional inputs to prevent this attack.

We note that this adds to the initial entropy requirements of the PRNG, which
can already be one of the most restrictive and problematic situations for a PRNG.
Another addition is the need for a counter to be kept; this is absorbed into the
refresh procedure but should be an additional part of the state. Fortunately due
to work in [15], this would not affect security. Alternatively, this could merely
be an identifier of the system on which the PRNG is implemented, along with
the current time of the system clock, which could be hashed to provide the seed,
though in the security games the seed is chosen uniformly at random. Our design
is aimed at being practical and efficient; in a practical scenario the distribution
sampler or entropy accumulation mechanism is not so easily influenced and dis-
covering these “bad” distributions is very difficult when good, studied entropy
sources are used.

We include the option of a seed so that robustness can be achieved, but we
question the necessity of the seed in a practical scenario; this can be likened to
many PRNGs made for practical use having the option of a “personalisation”
string [16], but note that this is often not used or even implemented. In practical
implementations the PRNG does not have direct access to a noise source, but
rather an entropy source that has been studied and provides a minimum entropy
estimate, along with post processing and health checking [3,4].

Notation In this paper we denote by si the ith n−bit state of a generator.
In the context of sponges we work with an n−bit state si which is split into an
inner state of c-bits, denoted by ŝi. The rest of the state is called the outer state,
of r-bits and is denoted si. Thus, the state can be given as si = (si‖ŝi) where
‖ is the usual concatenation of strings. The construction defined in this paper
utilises a public, random permutation π from the set Pn of all permutations on

n-bits. We use x
$← X to denote an element x of a set X chosen uniformly at

random. We denote by Ii the ith r-bit input string, used to refresh the state of
a generator. We denote by ri the ith output of a generator. These counters are
in fact dependent on the state counter, so rather than the i-th output, we refer
to the output associated with state i.

Contributions We put forward an improved sponge-like PRNG design which
we prove is robust in the updated security model. The recent work by Gaži and
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Tessaro updated the security of the sponge-based PRNG design of Bertoni et al.
but did not seek to improve the design of the next procedure. We improve the
design of the next function to ensure our design is more efficient, making a single
call to the permutation π, compared with 1 + t calls; resulting in a design better
suited for practical application, especially those that restrict the number of calls
to π. Since the p.forget procedure of the previous generator calls the permutation
1 + t times, with zeroing, it presents the problem of increased collisions in the
state, something that is avoided by our design and thus our bound is mainly
limited by the collision factor associated with the refresh procedure. This poten-
tially makes our generator comparatively more secure when first initialised on
a random initial state and before any refreshes have been made. Below are the
two main components of the new design Reverie.

– Reverie.refreshπ(si, I, seed, j) = π((si⊕I⊕seedj)‖ŝi) = si+1, j = j+1 mod s,

– Reverie.nextπ(si) = (π(si)⊕ (0r‖ŝi), si) = (si+1, ri+1).

The security notion of interest in this paper is the strongest security notion,
“robustness” which, informally, refers to an adversary working in time t, with
access to a distribution sampler D that outputs refresh material used to update
the state of the generator.

The adversary is allowed up to qD outputs from the distribution sampler D,
these strings are required to have a minimum entropy when being used to re-
fresh the generator from a compromised state. The adversary also has access to
two algorithms get-next and next-ror which give the adversary output from the
generator or random. The adversary is allowed up to qR queries between these
two algorithms.

Lastly, the adversary has up to qS queries to set-state and get-state which give the
adversary the current state of the generator and in the case of the former, allow
it to set the state. In addition, the generator is said to be “uncompromised”
if the current state has minimum entropy ≥ γ∗ for some value γ∗. We say a
generator is ((t, qD, qR, qS), γ∗, ε) robust where ε is the maximum advantage of
any adversary playing the robustness game.

The design can be seen in Figure 2 for further clarity. Although this design
departs slightly from the sponge design, it can still be captured by the more
generalised structure of the parazoa as defined in [1], and, given access to the
underlying permutation function, easily implemented.

Organisation This paper is organised into preliminaries in Sections 2 and 3, fol-
lowed by the description of the new generator in Section 4, the security analysis of
the generator in Section 5 and finally a discussion of results in Section 6.
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2 Preliminary Definitions

This section aims to provide a background on all the necessities of pseudo-
random number generators (PRNG), the ideal permutation model, along with
an introduction to Patarin’s H-coefficient technique.

2.1 Probabilities and Further Notation

Definition 1. The statistical distance between two discrete random variables X
and Y over the set X is denoted

SD(X,Y ) =
1

2

∑
x∈X
|Pr [X = x]− Pr [Y = x]| .

Definition 2. The minimum entropy of a random variable X is defined as
H∞(X) = min

x
$←X
{− log(Pr [X = x])}.

Definition 3. For the purposes used in this paper, a source Sπ is defined as an
input-less randomised oracle which makes queries to π and outputs a string. The
range of the source is denoted [S] and is the set of all values the source outputs
with positive probability, taken over the choice of π and the internal randomness
of S.

We use the usual game-based formalism from [5]; for a game G, G(A) ⇒ 1
denotes the event that an adversary A playing the game G, results in the game
outputting 1, while G(A)→ 1 denotes the event that the A playing the game G
outputs 1.

2.2 PRGs and PRNGs

In this document a PRG will refer to a pseudo-random number generator without
input, while PRNG will refer to a pseudo-random number generator with input
and in the form described in Definition 4.

Definition 4 (PRNG from [10]). A PRNG with input is a triple of algorithms
G = (setup, refresh, next) and a triple (n, `, p) ∈ N3 where: n is the state length,
` is the output length, p is the input length of G and

– setup: is a probabilistic algorithm that outputs some public parameters seed
for the generator.

– refresh: is a deterministic algorithm that, given seed, a state si ∈ {0, 1}n and
an input I ∈ {0, 1}p, outputs a new state si+1 := refresh(si, I, seed)

– next: is a deterministic algorithm that, given seed and a state si ∈ {0, 1}n,
outputs a pair (si+1, ri+1) = next(seed, si), where si+1 is the new state and
ri+1 ∈ {0, 1}` is the output. We write next(si) and omit seed for clarity.
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Definition 5 (Originally of [10] but as amended in [13]). A Q-distribution
sampler is a randomised stateful oracle algorithm D which operates as follows:

– It takes a state σi, with initial state σ0 =⊥.

– Dπ(σi) outputs a tuple (σi,Si, γi, zi), where

• σi is the new state of Dπ.

• Si is a source with range [Si] ⊆ {0, 1}`i for some `i ≥ 1.

• γi is an entropy estimation for Si which will be discussed further below.

• zi is the leakage and/or auxiliary information about Si.

– When run qD times, the number of queries to the permutation π made by
Dπ and S1, . . . ,SqD is at most Q(qD).

For simplicity, (σi, Ii, γi, ri)
$← Dπ(σi−1) is written as the overall process of

running D and the generated source Si. Next, we note the requirement for some
restriction on distribution samplers, namely we require the following:

Definition 6. A distribution sampler D as defined above in Definition 5 is
(qD, qπ)-legitimate, if, for every adversary A making qπ queries, every i∗ ∈ [qD],
and for any possible values (Ij)j 6=i∗ , (γ1, z1), . . . , (γqD , zqD ), VA , QD potentially

output by the game GLEGqD,i∗(A,D) with positive probability,

Pr
[
Ii∗ = x | (Ij)j 6=i∗ , (γ1, z1), . . . , (γqD , zqD ), VA , QD

]
≤ 2−γi∗ ,

for all x ∈ {0, 1}`i∗ , where the probability is conditioned on these particular
values being output by the game. The game GLEGqD,i∗(A,D), is defined in full
in [13, Definition 3, page 10] and presented in Appendix A, but informally, the
challenger samples a permutation π, Dπ is run qD times and the adversary A
is run on all of the output from Dπ, apart from that of Si and its associated
queries. VA is the adversary’s final output, while QD is the input-output pairs
of permutation queries made by D.
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2.3 The Ideal Permutation Model (IPM)

An implementation of a sponge-based PRNG would involve a publicly available
permutation; hence, our analysis is done in the ideal permutation model. For-

mally, each party has oracle access to a public, random permutation π
$← Pn,

chosen by the challenger at the beginning of a game. The permutation can be
queried as both π and π−1 but for simplicity, we write that an algorithm or
entity, such as an adversary A, has access to π by Aπ. We make use of the
following, which denotes the advantage of an adversary A with oracle access to
π in distinguishing between the distributions D0, D1 that also have access to
π:

AdvdistA (D0, D1) =
∣∣∣Pr
[
X

$← Dπ
0 : Aπ(X)⇒ 1

]
− Pr

[
X

$← Dπ
1 : Aπ(X)⇒ 1

]∣∣∣ ,
with A being called a qπ-query adversary if it asks at most qπ queries to π.

2.4 Patarin’s H-Coefficient Technique

This section gives a brief introduction to Patarin’s H-coefficient technique with
a focus on functionality. Influenced by [9] and initially defined in [14], the H-
coefficient technique is applied by splitting the “transcripts” of a game into
two or more distinct sets; calculating the probability of the real or ideal world
outputting transcripts in a particular set yields a close bound for the statistical
distance of the real and ideal world.

A high level overview is that of a q-query information theoretic adversary A
which can be assumed to be deterministic, making no redundant queries without
loss of generality, interacting with an oracle ω representing either the real world
or ideal world. The interaction A has with this oracle ω is represented in a
transcript τ which includes a list of queries and their answers given by ω.

Let ω be an oracle that serves as the way the adversary A interacts with the chal-
lenger in the chosen world. Let ΩX refer to the probability space of all real world
oracles with the uniform probability distribution, and similarly ΩY is the proba-
bility space of all ideal world oracles again with the uniform distribution.

Let T be the set of all transcripts, with τ ∈ T an individual transcript that
describes, in full, the interactions and final output between the adversary A and
the oracle she interacts with.

Further, the random variables X and Y are defined over the probability spaces
respectively, where X(ω) = τ refers to running A on oracle ω for ω ∈ ΩX , which
in turn produces the transcript τ .

For simplicity we will only consider two sets; good and bad transcripts, which
are denoted TG and TB respectively. Defining this split is integral to the proof
since the H-coefficient technique allows bounding the statistical distance of the
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random variables X and Y in the following way: suppose ∃ε ∈ [0, 1], such that
∀τ ∈ TG, with Pr [Y = τ ] > 0,

Pr [X = τ ]

Pr [Y = τ ]
≥ 1− ε.

Finally,

Theorem 1 (H-coefficient). Let X,Y, TG, TB , τ, ε be as above, then,

SD(X,Y ) ≤ ε+ Pr [Y ∈ TB ] .

3 Security Notions

This section defines the notion of robustness originally from [10], but augmented
as in [13] to allow for the publicly available random permutation. Robustness is
the strongest security notion of the security model. We also include definitions of
two weaker notions of security; preserving and recovering security, which together
imply that a PRNG fulfils the requirements of robustness.

As per the definitions of [10], a minimal “fresh” entropy in the PRNG system
when security should be expected. Minimising γ∗ corresponds to a stronger se-
curity guarantee.

An adversary is modelled using a pair (A,D) where A is the actual qπ-query
adversary and D is a (qD, qπ)-legitimate distribution sampler. The adversary A’s
goal is to determine a challenge bit b picked during the initialise procedure, this
procedure also returns seed to the adversary.

Definition 7. A PRNG with input G, is called ((qπ, qD, qR, qS), γ∗, εrob)-robust

(ROBγ
∗

G ) if for any adversary A making at most qπ queries to π±, making at
most qD calls to D-refresh, qR calls to Next-ror/Get-next and qS calls to Get-
state/Set-state and any legitimate distribution sampler D, the advantage of any
adversary in the robustness game is at most εrob which is defined below.

The adversary A has access to a subset of the following oracles, dependent on

the security game that it’s playing; the full set is available in ROBγ
∗

G (A,D). We
say that an adversarial pair (A,D) playing the robustness game as described
below in Section 3 for a PRNG G have advantage

Advγ
∗−ROB

G (A,D) :=
∣∣∣2Pr

[
ROBγ

∗

G (A,D)⇒ 1
]
− 1
∣∣∣ ≤ εrob.
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Proc. Initialise

π
$← Pn

seed
$← setupπ

s0
$← {0, 1}n

σ ←⊥
corrupt ← false
e← n
b

$← {0, 1}
return seed

Proc. Next-ror

(si+1, r0)← nextπ(si, seed)

r1
$← {0, 1}l

if corrupt = true then
e← 0
return r0

else
return rb

end if

Proc. Get-state

e← 0
corrupt ← true
return si

Proc. Set-state(s∗)

e← 0
corrupt ← true
si ← s∗

Proc. Finalise(b∗)

if b = b∗ then
return 1

else
return 0

end if

Proc. Get-next

(si+1, ri)← nextπ(si, seed)
if corrupt = true then

e← 0
end if
return ri

Proc. D-refresh

(σ, I, γ, z)
$← Dπ(σ)

si+1 ← refreshπ(si, I, seed)
e← e+ γ
if e ≥ γ∗ then

corrupt ← false
end if
return (γ, z)

Proc. π(x)

return π(x)

Proc. π−1(x)

return π−1(x)

Fig. 1: ROBγ
∗

G (A,D)

Next, we define two further security notions: preserving security and recovering
security. If a PRNG satisfies both these notions, then by Theorem 1 of [10] (with
updated version from [13]) the generator in question satisfies the robustness
security notion under the corresponding parameters. Next we define preserving
and recovering security.

3.1 Preserving Security

Informally, preserving security states that if the state of a generator starts un-
compromised, is refreshed using compromised input, then the next output and
resulting state are still indistinguishable from random.

Definition 8. A PRNG with input is said to have (qπ, εpres)-preserving security
if the advantage of any adversary A making at most qπ queries to π± in the
following game is at most εpres, where the advantage is defined to be

AdvPRESG (A) := |2Pr [PRESG(A)⇒ 1]− 1| ≤ εpres.
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PRESG(A)

π
$← Pn, seed

$← setupπ(), b
$← {0, 1}, s0

$← {0, 1}n

(I1, . . . , Id)← Aπ(seed)

for j = 1, . . . , d do

sj ← refreshπ(sj−1, Ij , seed) if b = 0 then (S, T )← nextπ(sd, seed)

else (S, T )
$← {0, 1}n × {0, 1}r

b∗ ← Aπ((S, T ))

return b == b∗

3.2 Recovering Security

Informally, recovering security implies that if a PRNG is compromised, inserting
enough random entropy to refresh the internal state will ensure that the next
output and state will be indistinguishable from random.

Definition 9. A PRNG with input has (qπ, qD, γ
∗, εrec)-recovering security if the

advantage of any adversary A making at most qD queries to π± and distribution
sampler D, making at most Q(qD) queries to π±, in the following game with
γ∗ > 0 is at most εrec where advantage is defined as

Adv
(γ∗,qD)−rec
G (A,D) :=

∣∣∣2Pr
[
REC

(γ∗,qD)
G ⇒ 1

]
− 1
∣∣∣ ≤ εrec.

REC
(γ∗,qπ)
G (A,D)

π
$← Pn, seed

$← setupπ(), b
$← {0, 1}, σ0 ←⊥

for k = 1, . . . , qD do

(σk, Ik, γk, zk)← Dπ(σk−1)

k ← 0

(s0, d)← Aπ,get-refresh()(γ1, . . . , γqD , z1, . . . , zqD , seed)

if k + d > qD then return ⊥
else

if

k+d∑
j=k+1

γj < γ∗ then return ⊥

else

for j = 1, . . . , d do

sj ← refreshπ(sj−1, Ik+j , seed)

if b = 0 then (S, T )← nextπ(seed, sd)

else (S, T )
$← {0, 1}n × {0, 1}r

b∗ ← Aπ((S, T ), Ik+d+1, . . . , IqD )

return b == b∗

Oracle get-refresh()

k ← k + 1

return Ik
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4 Improved Construction

The following algorithms describe Reverie, a sponge-like PRNG with forward
security that does not require additional calls to the underlying public permu-

tation. Let s, r, c ≥ 1 and c := n − r, ` = p = r, together with π
$← Pn, then

Revπs,n,r := (Reverie.setupπ,Reverie.refreshπ,Reverie.nextπ) for:

Proc. .setupπ()

for i = 0, . . . , s−1 do

seedi
$← {0, 1}r

end for
seed←
(seed0, . . . , seeds−1)
j ← 1

Proc. .refreshπ(si, I, seed)

si+1 ← π((si⊕ I⊕ seedj)‖ŝi)
j ← j + 1 mod s
return si+1

Proc. .nextπ(si, seed)

ri+1 ← si
si+1 ←
(π(si)⊕ (0r‖ŝi))
return (si+1, ri+1)

s0 S

Iseedj

π

r2

π

Fig. 2: Reverie.

5 Security of Reverie

This section consists of the security proofs of Reverie; the approach is to analyse
the security of the next function, and then focus on the preserving and recovering
security games, making use of the previous result.

Theorem 2. For Reverie = Revπs,n,r as defined above, let γ∗ > 0, let D be a
(qD, qπ)-legitimate distribution sampler, let qπ := qπ +Q(qD) and q̂ := qπ + qR+
qDd. Then Revπs,n,r is ((qπ, qD, qR, qS), γ∗, εrob)-robust, for εrob as below:

Advγ
∗−rob

Revπs,n,r
(A,D) ≤ qR ·

(
qπ + 1

2γ∗
+
Q(qD)

2sr
+

7(q̂2 + 1) + 29q̂

2c−1

+
(2d2 + 3)q̂ + d(3d+ 2d)

2n

)
.
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Proof. The theorem is the result of the preserving and recovering security bounds
in Lemmas 2 and 3 respectively, combined by [13, Theorem 4].

Lemma 1 (Security of the next function). Let Ux is the uniform distribu-

tion over x-bit strings, let next be as defined in Section 4, let s0
$← {0, 1}n, then

for any qπ-query adversary A,

εnext(qπ) := AdvdistA (next(Un), (Un, Ur)) ≤
(

2− 1

2r

)
qπ

2c−1
+

3qπ
2c−1

=

(
5− 1

2r

)
qπ

2c−1
.

Proof outline Distinguishing between next(s0) and random output (S, T )
$←

{0, 1}n×{0, 1}r naively, it seems like the adversary’s only option is to guess the
inner state of the secret initial state, by either a direct forward query to π or
by an indirect guess that would reveal a candidate for this inner state through
a query to π−1.

The proof, given in Appendix B proves that this is in fact the optimal strategy.
Since there are two parts to the challenge, the logical approach is to split the
proof into first proving that one part of the challenge can be replaced with
random, before approaching the remaining part of the challenge.

We note that unlike [13], the next function requires a uniformly random state;
the difference is made up for in a game jump in the proof, but allows us to avoid
an additional call to π, as is required in [13]. This step can be reinstated at the
cost of a single additional call to π.

5.1 Preserving Security

Now that we have this tool, we can prove the following:

Lemma 2. Given Reverie as defined in Section 4, and with εnext as above, then
for every qπ-query adversary A playing the preserving security game defined in
Definition 8 with d adversarial refresh inputs, we have

AdvpresA (Reverie[π]) ≤ εnext(qπ) +
q′π + d

2n
+

(d+ 1)(2q′π + d)

2n

≤ 5qπ
2c−1

+
(2d+ 3)qπ + d(d+ 2)

2n
.

Proof outline The proof relies on proving that for a random secret initial state
s0, the resulting state sd will look random and thus, by our previous analysis
of the next function, the challenge output will also be random. The full proof is
located in Appendix C.

12



5.2 Recovering Security

Thanks to the impressive result of [13] the proof of recovering security can be
expressed as an adaptation of their result; using the sponge as an extractor, and
the security of the next function. To formalise this:

Lemma 3. Let qπ, qπ := qπ + Q(qD), r, s, c be as in Section 4. Let εext(qπ, qD)
be as described in [13, Section 5.3] and similarly let εnext(qπ) be the bound as
in Lemma 1 as a function of qπ; both with n, r, c as previously described. Given
Reverie, also as in Section 4, γ∗ > 0, qD ≥ 0,A, a qπ-query adversary against
recovering security, and D, a (qD, qπ)-legitimate distribution sampler as defined
in Definition 5. Then,

Adv
(γ∗,qπ)−rec
Revπs,n,r

(A,D) ≤ εext(qπ + 1, qD) + 2εnext(qπ) +
qπ

2n−1

≤ qπ + 1

2γ∗
+
Q(qD)

2sr
+

7(q2π + 1) + 24qπ
2c−1

+
(qπ + 1)d+ d2 + qπ − 2qπ

2n−1
.

Proof outline The strategy of the proof is to use the extractor properties of
the sponge to replace the resulting state with a random state; following this the
output of next will be random by the arguments of Lemma 1. The full proof is
located in Appendix D.

6 Conclusion

We have presented an updated construction, Reverie, for a sponge-like PRNG.
The construction incorporates an effective and efficient forward-security mech-
anism and we have provided proofs of both preserving and recovering security
in the chosen security model. Our design makes a single call to the permutation
on every invocation of Reverie.next, while the comparable generators make 1 + t
calls. Our design choice ensures the underlying permutation is called far fewer
times. Thus, the loss of security from collisions is reduced when compared to the
relevant bounds of other designs.

The main limiting factor of the bound relates to the recovering security bound;
and more precisely the extraction bound. This begs the question: can this bound
be improved? This is briefly discussed in [13] in the present setting, but we would
also like to consider other, possibly similar mechanisms that may present a better
security bound; for instance, would a full state refresh yield a better bound? A
full state refresh however, enables in practise an adversary to more easily affect
or even set the state of the generator.
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A GLEGqD,i∗(A,D)

Below the full game GLEGqD,i∗(A,D) is given, as in [13, Definition 3, page 10]
and following on from Definition 6:

Let D be a distribution sampler, A an adversary and fix an i∗ ∈ [qD]. Let QD
be the set of all input-output pairs of permutation queries made by D and by
all Sj for j ∈ [qD]/{i∗}.

Game GLEGqπ,i∗(A,D)

π
$← Pn

for j = 1, . . . , qD do

(σi, Si, γi, zi)
$← Dπ

Ii
$← Sπi

endfor

VA
$← A((γj , zj)j∈[qD ], (Ij)j∈[qD ]/i∗)

return ((I1, γ1, z1), . . . , (IqD , γqD , zqD ), VA , QD)

Then D is said to be a (qD, qπ)-legitimate distribution sampler if for every
adversary A making qπ queries and every i∗ ∈ [qD], all possible values of
(Ij)j∈[qD]/(i∗), (γ1, z1), . . . , (γqD , zqD ), VA , QD potentially output by the above game
with positive probability,

Pr
[
Ii∗ = x | (Ij)j 6=i∗ , (γ1, z1), . . . , (γqD , zqD ), VA , QD

]
≤ 2−γi∗ ,

for all x ∈ {0, 1}.

B Proof of next Security

Proof. Lemma 1

Algorithm 1 nextπ0 (s0)

s0
$← {0, 1}n

T ← s
t← π(s0)
S ← t⊕ (0r‖ŝ0)

Algorithm 2 nextπ1 (s0)

s0
$← {0, 1}n

T
$← {0, 1}r

t← π(s0)
S ← t⊕ (0r‖ŝ0)

Algorithm 3 next2(s0)

s0
$← {0, 1}n

T
$← {0, 1}r

S
$← {0, 1}n

These algorithms are set up so that on input s0
$← {0, 1}n, next0 is precisely

the next function on input s0 while next2 has the same distribution as (Un, Ur).
nextπ1 will be used as a hybrid game. Thus, by the triangle inequality,
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AdvdistA (next(s0), (Un, Ur)) ≤AdvdistA (nextπ0 (s0), nextπ1 (s0))

+AdvdistA (nextπ1 (s0), next2(s0)).

What follows is to prove the bound using the H-coefficient technique. As de-
scribed in Section 2.4, we assume that A is deterministic and makes qπ non-
repeating queries to the permutation π, denoted as

τA := (x1, y1, z1), . . . , (xqπ , yqπ , zqπ )

where ∀i ∈ [1, . . . , qπ],

yi = π(xi),

zi = yi ⊕ (0r‖x̂i).

In addition to the challenge, the adversary in this distinguishing game is also
given several other pieces of information at the end of the game, after all queries
to π have been made, but before the adversary must output her decision. For-
mally, A is given ŝ0 and t′ := (S‖(ŝ0 ⊕ Ŝ)) which it can compute for itself
but is given for clarity. This completes the definition of a transcript for these
experiments,

τ := ((x1, y1, z1), . . . , (xqπ , yqπ , zqπ ), ŝ0, t
′, (S, T )).

We say a transcript τ is compatible with nextπ0 (s0) if it can be output in the
experiment where A receives nextπ0 (s0). Since nextπ1 (s0) and next2(s0) differ only
by replacing real output with random, it’s clear that if a transcript is compatible
with nextπ0 (s0) then it is compatible with nextπ1 (s0) and next2(s0).

What follows is bounding the probability of different transcripts from each ex-
periment.

Lemma 4. For the experiments nextπ0 (s0), nextπ1 (s0) as described above,

AdvdistA (nextπ0 (s0), nextπ1 (s0)) ≤
(

2− 1

2r

)
qπ

2c−1
+ 0 =

(
2− 1

2r

)
qπ

2c−1
.

Proof. First we define the bad transcripts for this pair of experiments:

Definition 10 (Bad transcripts TB for (nextπ0 (s0)nextπ1 (s0))). A compatible
transcript as above, is called a bad transcript if any of the following occur:

State Collision (SC): ∃j ∈ [qπ] such that xj = (T‖ŝ0),

Image Collision (IC): ∃j ∈ [qπ] such that yj = t′,
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The set of bad transcripts is denoted TB .

Let X0, Y0 be the random variables outputting transcripts that describe when
A interacts with nextπ0 (s0) and nextπ1 (s0) respectively.

Lemma 5. For an adversary making no more than qπ ≤ 2c−1 queries to an
oracle in the experiment next1(s0),

Pr [Y0 ∈ TB ] ≤
(

2− 1

2r

)
qπ

2c−1
.

Proof. Note that if Y0 ∈ TB then SC ∨ IC must occur.

Pr [Y0 ∈ TB ] ≤ Pr [SC] + Pr [IC | ¬SC] ,

The first probability is relatively easy to bound,

Pr [SC] ≤ qπ
2c−1

. (B.1)

Since the adversary is given T at the start of the game and s0 is uniformly
distributed over all the 2c n-bit strings with outer bits equal to T , and recalling
that qπ ≤ 2c−1, the probability that A’s i-th query is of the form ((T‖ŝ0), yi, zi)
is 1

2c−i+1 . More formally, let Pr [wini] := Pr [xi = (T‖ŝ0)], then

Pr [win] ≤
qπ∑
i=1

Pr [wini] =

qπ∑
i=1

1

2c − i+ 1

≤
qπ∑
i=1

1

2c − 2c−1
=

qπ
2c−1

.

The second, since SC has not occurred, must be where the adversary is interact-
ing with nextπ1 (s0) where T was chosen uniformly at random from r-bit strings,
and as such, was not used to produce S. There is the situation that the randomly
chosen T matches the real value of s0 which is reflected in the factor of

(
1− 1

2r

)
.

The second probability is similar, in that the adversary has knowledge of S,
with (S‖(ŝ0 ⊕ Ŝ)) uniformly distributed over all the 2c n-bit strings with outer
bits equal to S. It is also assumed that a SC has not occurred, meaning nothing
beyond ŝ0 is known about s0, then similarly to above,

Pr [IC | ¬SC] ≤
(

1− 1

2r

)
qπ

2c−1
. (B.2)

Equation (B.2), together with Equation (B.1) complete the lemma.

Lemma 6. For all compatible transcripts τ ∈ TG,

Pr [X0 = τ ] = Pr [Y0 = τ ] .
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Proof. For all τ ∈ TG (and for π
$← Pn),

Pr [X0 = τ ] =

Pr [∀i ∈ [qπ], π(xi) = yi] · Pr
[
π(s0) =

(
S‖(ŝ0 ⊕ Ŝ)

)
| ¬SC ∨ ¬IC

]
=

1

2r
2r

(2n − qπ − 1)!

2n!
= Pr [Y1 = τ ] .

Putting Lemmas 5 and 6 together yields the result.

Next, we prove the following:

Lemma 7. For the experiments nextπ1 (s0), next2(s0) as described above and by
Theorem 1,

AdvdistA (nextπ1 (s0), next2(s0)) ≤ 3qπ
2c−1

+ 0 =
3qπ
2c−1

.

Proof. This time, the transcript is slightly different, in that the adversary is
given the entire s0 at the end of her queries to π, so

τ := ((x1, y1, z1), . . . , (xqπ , yqπ , zqπ ), s0, t
′, (S, T )).

Comparing the distributions of these two experiments yields one more bad event,
along with a modified state collision and unchanged image collision:

Definition 11 (Bad transcripts TB for (nextπ1 (s0),next2(s0))). A compatible
transcript as above, is called a bad transcript if any of the following occur:

State Collision (SC): ∃j ∈ [qπ] such that xj = s0,

Image Collision (IC): ∃j ∈ [qπ] such that yj = t′,

Inversion (IN): ∃j ∈ [qπ] such that zj = S.

The set of bad transcripts is denoted TB .

Let X1, Y1 be the random variables outputting transcripts that describe when
A interacts with nextπ1 (s0) and next2(s0) respectively.

Lemma 8. For an adversary making no more than qπ ≤ 2c−1 queries to an
oracle in the experiment next2(s0),

Pr [Y1 ∈ TB ] ≤ qπ
2n−1

+

(
2− 1

2r

)
qπ

2c−1
=

2qπ
2c−1

.
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Proof. Note that if Y1 ∈ TB then SC ∨ IC ∨ IN must occur.

Pr [Y1 ∈ TB ] ≤ Pr [SC] + Pr [IC | SC] + Pr [IN | ¬SC ∧ ¬IC] ,

The first probability is similar to before, but this time the adversary knows that
S (with high probability) was not queried to π to produce the challenge. This
results in the following:

Pr [SC] ≤ qπ
2n−1

.

The second probability is similar to the case where an IC occurs in a transcript
in either nextp0(s0) or nextπ1 (s0). Once again since ŝ0 is uniformly distributed
over {0, 1}c, the probability that any of the adversary’s queries (xi) = yi or

π−1(yi) = xi is such that yi = (S‖Ŝ ⊕ ŝ0) is at most 1
2c−i+1 resulting in the

bound qπ
2c−1 . It is also assumed that a SC has not occurred, meaning nothing

beyond ŝ0 is known about s0. Thus,

Pr [IC | ¬SC] ≤
(

1− 1

2r

)
qπ

2c−1
.

Lastly, if neither a SC or IC has occurred, the probability of an IN can be
expressed as

Pr
[
π−1(S‖ŷi) =

(
x̂i‖(ŷi ⊕ Ŝ)

)]
,

which again is bounded by qπ
2c−1 and together with the other events, yields the

desired bound.

Lemma 9. For all compatible transcripts τ ∈ TG,

Pr [X1 = τ ] = Pr [Y1 = τ ] .

For all τ ∈ TG (and for π
$← Pn),

Proof.

Pr [X1 = τ ] = Pr [∀i ∈ [qπ], π(xi) = yi] · Pr
[
π(s0) =

(
S‖(ŝ0 ⊕ Ŝ)

)
| ¬SC ∨ ¬IC ∨ ¬IN

]
=

(2n − qπ − 1)!

2n!
=

(2n − qπ)!

2n
· 1

2n − qπ
= Pr [Y1 = τ ] .

Putting Lemmas 8 and 9 together yields the result.

Finally, these two lemmas complete the proof of the security of next. ut
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C Proof of Preserving Security

Proof. Lemma 2 Formally, we adapt the preserving security game, so that the
intermediate state sd is chosen uniformly at random rather than calculated using
the adversarial inputs.

Let A be the adversary playing in the preserving security game, τ ′A be as above;
the set of adversarial queries but restricted to those made in the first part of
the game, before the adversary has submitted her inputs and such that ‖τ ′A‖ =
q′π ≤ qπ. Let I1, . . . , Id be the r-bit adversarial refresh inputs.

Let PresRevπ be the real world preserving security game as defined in Definition 8
with the defined algorithms of Reverie and chosen permutation π. Let Pres′Revπ

be identical to PresRevπ except sd is replaced with sd
$← {0, 1}n.

We now aim to prove, in two parts that in the real world case, the first two
games act the same with a small bound, while in the ideal world case they
are identical. Following this, what remains is to prove that the advantage of
an adversary in distinguishing the ideal world from the real world in Pres′ is
precisely the security bound of the next function from Lemma 1. For clarity, we
say that PresRevπ (A) =⇒ 1 means the adversary outputs 1 as her guess of b.

First,

Lemma 10. For Game 0 and Game 1 as described above,∣∣∣Pr
[
PresARevπ =⇒ 1 | b = 0

]
− Pr

[
Pres′ARevπ =⇒ 1 | b = 0

]∣∣∣
≤ q′π + d

2n
+

(d+ 1)(2q′π + d)

2n
.

Proof. To begin, we note that s0
$← {0, 1}n, and is not revealed to the adversary.

With this in mind, using lazy sampling of the permutation π, we have

Pr [∃i ∈ [q′π]s.t.xi = s0 ⊕ ((I1 ⊕ seed1)‖0c)] ≤ q′π
2n−1

.

Provided that this does not happen, the first intermediary state of the adversarial
refreshes will be an unassigned value s1 which will be uniformly chosen over the
remaining 2n− q′π unassigned values of π and thus the probability that the next

call to π will be on an already assigned value will be
q′π+1
2n−1 . Iterating this method

and we obtain:

q′π
2n−1

+
q′π + 1

2n−1
+ · · ·+ q′π + d

2n−1
=
d(2q′π + (d+ 1))

2n
.

So with probability 1− q′π
2n−1 +

d(2q′π+(d+1)
2n = 1− (d+1)(2q′π+d)

2n , the resulting state
sd after the adversarial refreshes will be the result of π called on an unassigned
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state. Then sd will be chosen uniformly from the remaining 2n−q′π−d unassigned
values.

Finally, this implies the statistical distance between sd in PresRevπ and sd in

Pres′Revπ is at most
q′π+d
2n , which together with the previous probability, yields

the result.

Next, construct an adversary A′ that runs A and simulates the Pres′ game while
inserting its own challenge and outputting the same bit as A, which yields∣∣∣Pr

[
PresARevπ =⇒ 1 | b = 0

]
− Pr

[
Pres′ARevπ =⇒ 1 | b = 1

]∣∣∣
≤ AdvdistA′ (nextπ(Un), (Un, Ur)).

This, together with Lemma 10 completes the proof. ut

D Proof of Recovering Security

Proof. Lemma 3 To formalise this, we require the construction of two adversaries,
A1,A2 with the former being a (qπ + 1)-adversary in for the extraction lemma
of [13] and the latter, a qπ-adversary in the next distinguishing game. Then we
have,

Adv
(γ∗,qπ)−rec
Revπs,n,r

(A,D) ≤ Adv
(γ∗,qD)−ext
Spn,r,s

(A1) +AdvdistA2
(nextπ(Un), (Un, Ur)). (D.1)

Let A be the normal recovering security adversary, then A1 is built by running
A on seed, γ1, . . . , γqD , z1, . . . , zqD received from the challenger, A1 forwards any
π± queries from A to the π oracle, along with any get− refresh oracle queries
to the associated oracle. Once this has been done, A will output it’s chosen pair
(s0, d), which A1 will again forward to the challenger as its chosen pair. The
challenger will then return the challenge s′d and the remaining Ik+d+1, . . . , IqD
to A1, which forwards the latter straight to A along with the output of next(s′d)
which it computes. A1 continues to forward any π± queries that A makes, before
A it’s guess b∗ which A1 forwards to the challenger as its own guess. Since A1

only forwards the queries A makes to π± together with calling next(s′d), the
query complexity of A1 is qπ + 1. It’s easy to see that for b = 0, this simulates
precisely the recovering security game, while b = 1 corresponds to A receiving

(S, T ) ← next(Un) as opposed to the correct challenge (S, T )
$← (Un, Ur). This

is considered in the second term of Equation (D.1). A2 is now constructed by
simulating the b = 1 version of the extraction game, while running A1 and using
the distinguishing challenge.

Finally, all that is left is to upper bound these advantages; [13, Lemma 6] yields

Adv
(γ∗,qD)−ext
Spn,r,s

(A1) ≤ εext(qπ + 1, qD) + Adv
(γ∗,qD)−hit
D,n (A1),
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where the latter value is precisely the probability that A1 queries π−1(sd) in the
ideal case. Since A1 is only making queries to π that A makes, this is in fact the
probability that A queries π−1(sd) and since A would either have to guess this
value with probability qπ

2n−1 or have to invert the next challenge to have made
this query, this is in fact the advantage of A2 playing the distinguishing game on
the next function, albeit with qπ queries, due to the queries by the distribution
sampler.

Thus, by Lemma 1 we have

εnext(qπ) ≤
(

5− 1

2r

)
qπ

2c−1
,

and

εext(qπ + 1) ≤ qπ
2γ∗

+
Q(qD)

2sr
+

7(q2π + 2qπ + 1)

2c
+

(qπ + 1)qD + q2D
2n−1

,

which completes the proof. ut
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