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Abstract—In this paper, we propose a parallel implementation
of LDSieve, a recently published sieving algorithm for the SVP,
which achieves the best theoretical complexity to this day, on
parallel shared-memory systems. In particular, we propose a
scalable parallel variant of LDSieve that is probabilistically
lock-free and relaxes the properties of the algorithm to favour
parallelism. We use our parallel variant of LDSieve to answer a
number of important questions pertaining to the algorithm. In
particular, we show that LDSieve scales fairly well on shared-
memory systems and uses much less memory than HashSieve on
random lattices, for the same or even less execution time.

I. INTRODUCTION

In the late 90s, the news broke that classical public-key
cryptosystems (usually referred to as schemes) such as RSA
are vulnerable against attacks conducted with quantum com-
puters. Although there are no full purpose quantum computers
at this point in time, the cryptography community has been
devoting substantial efforts to the development of quantum
resistant (usually referred to as post-quantum) cryptosystems.
Very recently, NSA has also announced preliminary plans to
transition to quantum-resistant schemes1. The security of post-
quantum cryptosystems is being investigated in parallel, as that
is essential to create confidence on the cryptosystems.

Lattices are discrete subgroups of the n-dimensional Eu-
clidean space Rn, with a strong periodicity property. A lattice
L generated by a basis B, a set of linearly independent vectors
b1,...,bn in Rn, is denoted by:

L(B) = {x ∈ Rn : x =

n∑
i=1

uibi, u ∈ Zn}. (1)

The security of these systems is, as in classical cryptosys-
tems, based on hard math problems. The Shortest Vector
Problem (SVP) is a pivotal problem in this context, as many
lattice-based cryptosystems base their security on (i) this
problem, (ii) variations of this problem and/or (iii) problems
that can be reduced to the SVP. The SVP consists in finding the
non-zero vector v of a given lattice L, whose Euclidean norm
‖v‖ is the smallest among the norms of all non-zero vectors
in the lattice L. Its norm is denoted by λ1(L). We refer to an
algorithm that solves this problem as an SVP-solver.

1https://www.nsa.gov/ia/programs/suiteb cryptography/

It is essential to estimate the actual computational hardness
of these problems in practice, as the parameters of cryp-
tosystems are chosen based upon this hardness. Both over-
and underestimating this hardness (i.e. estimating that the
problem is harder or easier than what in reality it is) is
problematic. Overestimations compel cryptographers to set
overly strong parameters, which decreases the efficiency of
the scheme and may ultimately render it impractical. On
the other hand, underestimating this complexity misguides
cryptographers in selecting parameters, ultimately rendering
the schemes insecure. Usually, the only way to estimate the
actual hardness of these problems is to develop and assess
highly optimized, parallel solvers (i.e. attacks) in practice.

There are a few classes of SVP-solvers, one of which
is sieving. In the last years, sieving algorithms have been
enhanced to become more efficient in practice. Very recently,
a new sieving algorithm, LDSieve, was proposed [1]. The first
and perhaps most relevant question concerning LDSieve, is
whether it can beat HashSieve, the best sieving algorithm for
the SVP to date, in practice [5], [8]. In particular, it is relevant
to assess this claim (1) with sequential implementations of
the algorithms, (2) that are equally optimized, (3) verifying
if LDSieve lends itself to parallelism and finally (4) if so,
whether a parallel implementation of LDSieve compares well
to a parallel version of HashSieve, which is known to scale
well on shared-memory systems [8].

Our contributions. In this paper, we propose a parallel
variant of LDSieve, which scales fairly well on shared-memory
systems, and we answer the four aforementioned questions.
To this end, we conduct various benchmarks with our parallel
implementation and the original implementation of LDSieve
(cf. [1]). In addition, we provide insight on the selection of
parameters of the algorithm such as the codesize and memory
consumption.

II. LDSIEVE

The recent paper [1] introduced a novel way to find nearby
vectors in a large set of vectors in Euclidean space, and
showed how this affects the performance of lattice sieving.
Similar to HashSieve [5], this technique can be applied to
GaussSieve [11] to speed up the algorithm, at the cost of more
space. Figure 1 shows the asymptotic tradeoffs for different



Fig. 1: Theoretical time and space complexities of different
sieving algorithms.

GaussSieve-based sieving algorithms (GaussSieve, HashSieve,
CPSieve [3], LDSieve [1] and OverlatticeSieve [2]).

A. GaussSieve

Let us first recall the description of the GaussSieve al-
gorithm. To find shortest vectors, the algorithm iteratively
samples lattice vectors using a sampling algorithm, such as
Klein’s sampler [4]. Each time a new vector ~v is sampled,
it is reduced against the list of previously sampled/reduced
lattice vectors ~w as follows: if ~v ± ~w is shorter than ~v, then
we replace ~v by ~v ± ~w. Note that adding or subtracting two
lattice vectors always results in another lattice vector. This is
done until no vector in our list can reduce ~v anymore, in which
case we reduce the list of vectors with our new, short vector
~v. Vectors from the list which are reduced in norm are pushed
to a stack, for later consideration. At the end, the new vector
~v is added to the list, and we continue the same procedure
either with vectors from the stack or, if the stack is empty,
with new sampled vectors.

The main idea of this algorithm is to saturate the space of
short lattice vectors with our list. By keeping the list pairwise
reduced using the above procedure, it is guaranteed that the
list size will not exceed (4/3)n+o(n) ≈ 20.21n. As the list
will at some point reach a size of 20.21n, and a reduction is
done by checking the entire list of past vectors for reductions
with the target ~v, the time complexity is bounded from below
by 20.21n reductions of time 20.21n each. This leads to a
space complexity of 20.21n and a time complexity of 20.42n,
as indicated by the top-left point in Figure 1.2

B. Nearest-neighbor searching

To improve upon the GaussSieve algorithm, HashSieve and
LDSieve use a fine-grained nearest-neighbor search technique

2For further details why the number of reductions per vector is 2o(n),
where the space complexity bound comes from, and why collisions do not
often occur, we refer the reader to previous literature on the topic, e.g. [10].

to reduce the cost of reductions. The first observation is that
many of the comparisons of a target ~v with a list vector
~w do not lead to a reduction; in many cases ~v and ~w are
approximately orthogonal, and so ~v ± ~w is longer than ~v. In
GaussSieve, we therefore spend a lot of time on comparisons
that do not to lead to reductions.

The idea of nearest-neighbor searching is to use a buck-
eting approach as follows. Besides storing the list vectors
in memory, we also store many buckets with vectors which
satisfy a certain property. This property is chosen such that
vectors which are nearby in space are more likely to share
this property. Each time a new vector is stored in memory, it
is also stored in all buckets for which it satisfies this property.
Then, given a target vector ~v, we do not compare it to all list
vectors ~w, but only to those which are in the same bucket as
~v and are therefore nearby in space. This concept allows us
to do the search for reductions faster: instead of checking all
vectors ~w against ~v, we only compare ~v with a small subset
of vectors ~w which are in the same buckets. This comes at
the cost of a larger memory requirement (as buckets have to
be stored).

C. LDSieve

LDSieve differs from HashSieve and CPSieve in the way
the buckets are designed (i.e. the property defining when
a vector is to be added to a bucket), and in the method
for finding the right buckets. The design of the buckets is
quite straightforward: choose a random direction in space (by
e.g. sampling a vector ~c at random from the unit sphere),
and a vector is now added to this bucket if its normalized
inner product is larger than some constant α: 〈~v,~c〉

‖~v‖·‖~c‖ ≥ α.

Intuitively, if both 〈~v,~c〉
‖~v‖·‖~c‖ and 〈~w,~c〉

‖~w‖·‖~c‖ are large, then we also

expect 〈~v,~w〉
‖~v‖·‖~w‖ to be large, and so ~v− ~w is likely to be shorter

than ~v or ~w.
As using completely random, independent buckets (defined

by the vectors ~c) would lead to a large overhead of finding
the buckets that a vector is in (as many inner products have
to be performed), the decoding procedure and the way the
random vectors ~c are chosen is somewhat complicated. Instead
of using T random vectors ~c1, . . . ,~cT , we add some structure
to these vectors by choosing a random subcode S ⊂ Rn/m

of size T 1/m, and defining the code words C = {~c1, . . . ,~cT }
as the product code C = S × S × · · · × S = Sm. In other
words, a code word ~ci is formed by concatenating m code
words ~ci1 , . . . ,~cim ∈ S. By choosing m small (i.e. almost-
constant; say m = O(log n)), it is guaranteed that the product
code Sm is almost random as well [1, Theorem 5.1], while
taking m super-constant allows us to find the right buckets
corresponding to a vector with almost no overhead: if we have
t buckets in total and t0 � t buckets contain ~v, then the time
for finding these buckets is proportional to t0 rather than to t
(cf. [6] for a discussion on m). This efficient decodability is
crucial for obtaining an improved performance.

Summarizing, the LDSieve starts by generating a random
subcode S in dimension n/m = O(n/ log n) of size t1/m,



which defines the concatenated product code C = Sm of size
t in dimension n. Then, given a target ~v, we first compute the
partial inner products of its m subvectors of dimension n/m
with the entire code C, and store these in partial inner product
lists L1, ..., Lm. The efficient decoding algorithm described in
[1] then continues with sorting each of these lists based on the
sizes of the inner products, and uses a depth-first search in a
lattice enumeration-like tree to find all buckets corresponding
to vectors ~c in C such that the normalized inner product
between ~v and ~c is larger than α. These buckets in memory
are then checked for reductions. Note that the overhead of
this decoding procedure is theoretically subexponential in the
lattice dimension n, which justifies the use of the words
”efficient decoding”; however, as we will see later, in practice
the generation of these partial inner product lists (and sorting
these lists) is quite time-consuming.

After the reductions are completed, the new vector is also
added to these buckets in memory, and a new vector is popped
from the stack or generated using the sampler. Note that we
have not yet defined m, T , α; these are parameters which are
to be optimized later.

III. A PARALLEL VARIANT OF LDSIEVE

In this section, we introduce a parallel variant of LDSieve
and its assessment. Our variant is parallel at a coarse-grained
level, where each thread executes the sequential sieving kernel,
i.e., generation of a sample (either from scratch or popped
from the stack), reduction against existing samples, and storing
in memory (e.g. in a global list, as in GaussSieve or in hash
tables, as in HashSieve). This scheme is suited for shared-
memory systems, where memory is visible to all running
threads, which implies that concurrent accesses are explicitly
handled.

A. Concurrency in LDSieve

In HashSieve (cf. [8]), concurrency happens at two distinct
points: (1) when concurrently inserting or removing vectors
from each bucket, and (2) when concurrently accessing a
vector stored in the buckets to reduce it and use it to reduce
other vectors. It is important to note that while (1) happens
only when two or more threads access the same hash table (and
the same bucket), (2) can happen even if different threads are
working on different hash tables, as vectors are pointed to by
all hash tables in the system.

When it comes to concurrency, LDSieve is similar to
HashSieve: the concurrent operations are additions/removals
of vectors from the same buckets, and the concurrent use
(with at least one thread writing it) of vectors. In addition,
different tables for the inner products between samples and
codes have to be used by different threads. Although LDSieve
uses a single hash table, in contrast to HashSieve, the problem
remains as different threads can access the same buckets and
the same vectors simultaneously. In particular, in LDSieve
the number of pointers to each vector is governed by, ap-
proximately, 20.09n (i.e. for a lattice in dimension n = 80,
there should be approximately 150 pointers to each vector).

In HashSieve, each vector is pointed to by all the hash tables
once, and the number of hash tables is governed roughly by
20.129n (i.e. for a lattice in dimension n = 80, there should
be approximately 1300 pointers to each vector), which means
that there are fewer pointers to vectors in LDSieve than in
HashSieve, hence a lower likelihood of concurrency in parallel
versions.

B. Variant’s workflow

Our variant is, similarly to the implementation in [8], based
on the concept of probable lock-freeness. The underlying idea
of this model is that efficient locks are employed per bucket
and vector, but as contention is very low, executions will run
without actually using locks, hence becoming lock-free code.
Contention is increased with increased numbers of threads and
lower numbers of buckets. However, the number of buckets in
LDSieve is big enough, for a reasonably high dimension (cf.
T in Table I), so locks are never used.

In addition, some vectors are ignored during the reduction
process if they are locked by another thread. It was empirically
shown before that disregarding vectors at some specific points
of the reduction process (in contrast to disregarding them
from a specific point on) does not affect the convergence
rate, because the vast majority of vectors is not eligible for
reduction anyway [10], [9], [5].

We employ one efficient lock per vector and bucket, which
threads use when accessing these structures. Threads spin
when they cannot acquire the locks of the buckets. If the
vectors are locked, they are disregarded and the reduction
process moves onto the next candidate vector. As mentioned
above, the likelihood of successful vector reductions is low,
and if one vector is disregarded, the bucket can still contain
other vectors to proceed with the reduction process.

Performance Optimizations. Based on the results of [7],
we optimized our implementation, written in C, with the
following techniques (which resulted in similar speedups as
those reported in [7]).

First, we hand-vectorized (1) the inner products to test
vector reductions, (2) the vector addition when a reduction is
successful, and (3) the bucket calculation, to which end many
partial inner products between the vector and the generator
vectors are performed. We used SSE4.1, and we store 8
coordinates per SSE register as all these structures are arrays
of shorts. We aligned data to 16 bytes for vectors, and we
use unaligned loads/stores for partial inner products.

We use a pool of vectors, private per thread, to store
samples as the algorithm creates them, whose benefit is two-
fold. First, it minimizes the number of malloc calls. Second,
it improves spacial locality, since vectors are consecutively
stored in memory. We also use ltcmalloc, as it accelerates
parallel memory allocation.

To hide latency of memory requests, we used software-
based prefetching, with hand-inserted prefetch directives. For
example, when a candidate vector (stored in the hash table)
is reduced against one sample during the reduction process,
one calculates the set of buckets that the candidate vector



belongs to, then removes it from the buckets, one by one.
Here, we prefetch the bucket of iteration i+1 when removing
the candidate vector from one bucket in iteration i. As such, in
iteration i+1, the data will already be in cache (or the latency
will be smaller, since data is requested beforehand).

C. Assessment

The original paper about LDSieve reported on experiments
with an implementation of the algorithm3, which we refer
to as the baseline implementation from here on. We carried
out an extensive assessment of our implementation, mea-
suring the performance against the baseline implementation,
its scalability and other relevant factors, such as the best
codesize in practice. Although many other tests could have
been conducted, these are absolutely core to provide insight
about LDSieve and its behavior in practice. We used several
random lattices, generated with Goldstein-Mayer bases, in
multiple dimensions, available on the SVP-challenge4 website
(all of which of seed 0). The test platform has two Intel E5-
2698v3 chips, at 2300 MHz, each of which has 16 cores plus
hiper-threading. The machine as 756 GBs of RAM.

The code was compiled with Intel icpc 13.1.3. We compiled
the code with the -O2 optimization flag, since it was slightly
better than -O3. The elapsed time of the reduction of the
lattice basis is not included in the reported timings and we
used the target norm, except when said otherwise, as this
eases comparisons against the baseline implementation (since
the experiments reported in the original paper were conducted
with the target norm as well).

We deactivated the Turbo Mode, which allows cores to
run faster than the marked frequency, and the Enhanced
Intel Speedstep Technology (EIST), which dynamically adjusts
the frequency and voltage based on performance and power
requirements, in order to mitigate noise in benchmarking.
Despite our precautions, the variations in most experiments
(especially those with the parallel version) account for as much
as 30%. To correct this, except when impractical, we repeated
each experiment five times for the parallel implementation and
three times for the sequential implementation, and we report
the average of those runs.

1) Comparison against the baseline: We compare the per-
formance of our LDSieve variant, for a single thread (as
the baseline is not parallel), in terms of Time To Solution
(TTS) and vectors to reach convergence, with that of the
original paper. It is important to note that, with a single thread,
our implementation behaves as the original algorithm as no
reductions are missed. A prime point of a fair comparison is
to use parameters that do not favour either of the implemen-
tations. The implementations use different numbers of vectors
to reach convergence, as they use different samplers and other
implementation details that lead to different convergence rates.
To carry out a fair comparison, we conducted preliminary ex-
periments to determine what parameters of our implementation

3https://github.com/lducas/LDSieve/
4www.latticechallenge.org/svp-challenge/

led on to an identical workload and the closest possible number
of vectors of the baseline implementation. In particular, we
tested a number of values for the sampler parameter d (cf. [8]
for a detailed explanation) that provides a trade-off between
sampling quality and sampling execution time, up to dimen-
sion 60, and reported the execution that delivered the closest
number of vectors to the baseline implementation. It should
be noted that a lower number of vectors does not necessarily
lead to better performance, even for the same implementation,
because the convergence rate of sieving algorithms is not
uniquely determined by the number of vectors used.

In Table I, we present and compare the performance of
both implementations. A few results in these measurements
deserve particular attention. First, the type of lattice reduction
used before LDSieve has considerable more impact on our
implementation than on the baseline implementation. The
execution time even decreases when we change the reduc-
tion, from LLL to BKZ-30, despite we solve the SVP on
a high dimension. We surmise this happens as the baseline
implementation does not include the basis vectors in the
algorithm, while ours does. Second, the number of vectors our
implementation requires to converge is roughly the same until
dimension 48. For higher dimensions, the implementations use
different numbers of vectors, but the difference is bounded by
a factor of 2.5x. Again, a lower number of vectors does not
necessarily lead to better performance, so this is not a reason
for better performance. Third, the difference of performance
of both implementations grows with the lattice dimension. For
instance, our implementation is 16x faster for the lattice in
dimension 64, but 27x and 50x faster for dimensions 68 and
72, respectively.

2) Scalability: The measurements with parallel executions
were considerably less stable than those with a single thread,
with variations of as much as 30% between different runs. This
is because the convergence rate depends upon the scheduling
of threads, and even small variations in the rate at which short
vectors are found have considerable impact on the overall
progress of the algorithm. To mitigate noise, we run five
samples per data point, and we chose the best of the runs.
Figure 2 shows the scalability of our implementation, for
lattices in dimensions 72, 76 and 80 (parameters defined as
in Table I). We ran our implementation with 1-64 threads
(64 threads makes use of SMT), with different thread/core
affinities. No specific thread affinity scheme delivered better
results consistently, although the interleave scheme, which we
chose for the benchmarks with numactl, was slightly better
for more than 16 threads. We do not report further on the
differences between the schemes, as studying the effect of
different thread affinities is out of the scope of our work.

The scalability of the implementation is fairly good for
all numbers of threads. We obtain linear speedups up to
16 threads, and slightly lower speedups for 32/64 threads,
presumably due to additional overhead of inter socket com-
munication. Superlinear speedups were achieved in specific
instances because thread scheduling can result in different,
potentially faster reduction processes. We extrapolate that



Baseline implementation Our implementation

N Reduction Solution TTS (s) Vectors TTS (s) Vectors Speedup d C T

40 LLL-0.99
√
2898385 9.61 832 3.70 731 2.6x 21 40 404

44 LLL-0.99
√
2825372 15.18 1220 6.38 1240 2.4x 22 40 404

48 LLL-0.99
√
3222704 32.71 2288 10.77 2498 3x 25 40 404

52 LLL-0.99
√
3633604 66.13 3866 14.66 5481 4.5x 27 40 404

56 LLL-0.99
√
3894744 140.04 7158 32.83 13774 2.4x 30 40 404

60 BKZ-30
√
3776807 355.18 14538 13.34 20298 26.6x 40 40 404

64 BKZ-30
√
4423362 1294.16 30866 80.72 73457 16x 40 46 464

68 BKZ-30
√
4585399 4656.58 53886 169.24 116147 27.5x 40 52 524

72 BKZ-30
√
4749371 21002.40 104083 418.31 239811 50.2x 50 58 584

76 BKZ-30
√
5020176 intractable 1851.46 571753 - 60 64 644

80 BKZ-34
√
5162837 intractable 4320.90 1083952 - 70 70 704

TABLE I: Comparison between the baseline implementation and our implementation, running with one thread. M is set to 4.
C is the size of the subcodes, so that CM = T.
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Fig. 2: Scalability of our implementation of LDSieve on the
32 core machine, for 1-64 threads (64 threads implies use of
SMT).

higher dimensions will result in identical scalability levels,
as no further negative cache effects are expected to happen,
since cache is already exhausted for these dimensions. Lower
dimensions might result in weaker scalability, due to lack of
enough work to overcome the overhead of thread creation and
scheduling, but those are of lesser interest.

3) Codesize in practice: In theory, the ideal codesize is T =
20.292n+O(n), where the O(n) term is less relevant in practice,
but may greatly influence the performance of the algorithm in
practice. In this subsection, we show the effect of different
codesizes on the execution time of the algorithm, for different
lattices, to determine the best parameters in practice. Figure
3(a) shows the execution time of our implementation, running
with 64 threads, on lattices in dimensions 76, 80, 84 and 88.
Note the zoom-in into the range of N between 40 and 80 on the
right side of the figure. The curves of the execution time for
different lattice dimensions have the form of a parabola, i.e.
the execution time decreases with increased codesize, but starts
to increase after some point. In particular, all curves have a

well defined minimum (60 for dimension 76, 70 for dimension
80 and 90 for dimensions 84 and 88). The difference in the
execution time between the best codesize and the second best
varies between 10 and 30%.

The codesize influences the number of vectors that the al-
gorithm uses. However, the codesize that renders LDSieve the
faster is not necessarily the codesize that leads to fewer vec-
tors. Figure 3(b) shows the number of vectors (in thousands)
used by our implementation as a function of the codesize. For
instance, for the lattice in dimension 84, the implementation
uses approximately 4.4, 2.6, 1.7 and 1.3 million vectors for
codesizes 70, 80, 90 and 100, respectively. Although codesize
100 results in 30% fewer vectors than codesize 90, it is
the latter that provides the best execution time. There are
two fundamental reasons for this: (1) higher codesizes render
the algorithm increasingly selective in the bucket selection,
which means that fewer reductions are missed (smaller list
size) but also more buckets must be checked for reductions,
and (2) increasing codesize renders the partial inner product
lists bigger, which in turn leads to more cache misses and
more requests to higher levels of the memory hierarchy. For
high codesizes, the inner product lists become a dominant
factor in memory usage. In particular, the memory usage
grows substantially with the codesize, in all dimensions. For
instance, for a lattice in dimension 88, the implementation
spends approximately 52.7 GBs of memory with codesize 80,
and over 122 GBs for codesize 110.

IV. LDSIEVE VS HASHSIEVE

The main motivation for implementing and appraising the
practicability of LDSieve is that both theoretical analyses and
preliminary experiments suggest that LDSieve can outperform
the best sieving SVP algorithm in practice, HashSieve, for a
sufficiently large lattice dimension. Preliminary experiments
with LDSieve (cf. [1]) suggest that, for sequential imple-
mentations, LDSieve outperforms HashSieve for lattices in
dimension 72 and onwards. An important goal of this paper
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Fig. 3: (a) Execution time for different codesizes in LDSieve, for lattices in dimensions 76, 80, 84 and 88. (b) Vectors (in
thousands) for different codesizes in LDSieve, for lattices in dimensions 76, 80, 84, 88 and 92. 64 threads. BKZ-34 and M =
4.

is to verify this claim when highly (but equally) optimized,
parallel versions of LDSieve and HashSieve are compared
against each other.

To carry out this comparison, we used the HashSieve
implementation by Mariano et al. (cf. [8] and Section III-A),
as it is the best known parallel implementation of HashSieve
(and sieving algorithms) at present. We report on (i) the impact
of the codesize in LDSieve’s performance, (ii) the execution
time of both implementations, (iii) the number of vectors used
and (iv) memory consumption. We conducted the comparison
for high dimensions (80 and onwards) as high dimensions are
of particular interest.

An important caveat in the performance of LDSieve is the
codesize. We conducted preliminary tests to find out what
was the best codesize in practice, before comparing LDSieve
to HashSieve. In some cases, bad codesizes rendered our
variant impractical, so providing insight on the selection of
good codesizes is essential to run LDSieve. We point out
that we used good codesizes in LDSieve, but they demand
preliminary tests in order to be found. As for HashSieve, we
chose the so-called optimal parameters K = b0.2209ne and
T = b20.1290ne (i.e., the leading theoretical terms rounded to
the nearest integer).

Codesizes: To analyse LDSieve in high dimensions, we ran
our implementation with 64 threads, with different codesizes
in intervals of 10 units, for lattices in dimensions 81, 84,
87, 88, 90 and 92, thus extending the experiments in Section
III-C3, and we picked that with the lowest execution time.
We do not report on the variation in the execution time
and vectors as functions of the codesize due to lack of
space. Extending these tests for higher dimensions, to find
the best codesizes for our implementation, is impractical, as
we run our implementation five times for each combination of
parameters (codesize and dimension), due to noise introduced
by the machine, as said before. For instance, for the lattice
in dimension 92, we tested our implementation with four
codesizes (90, 100, 110 and 120). With an average of about 2
hours per run, the experiments for dimension 92 took about 40

hours. For dimension 96, these would take around 100 hours
and for dimension 100 about 400 hours.

Execution time of LDSieve and HashSieve: Figure 4 shows
the execution time of our parallel implementation of LDSieve,
with M=3 for lattices in dimension 81, 87 and 90 (which are
divisible by 3), and M=4 for lattices in dimension 80, 88 and
92 (which are divisible by 4), against HashSieve. The lattice in
dimension 84, which is divisible both by 3 and 4, was solved
with LDSieve set both with M=3 and M=4. We did not test
higher dimensions as HashSieve requires more memory than
that available in the system (e.g. in dimension 94, HashSieve
requires about 800GBs of memory). Although probing can be
used to reduce memory consumption, it increases the execution
time of the algorithm (cf. Section 5 of [5]), which would render
our comparison unfair, as LDSieve does not require or use
probing.

Our experiments support the claim that LDSieve overcomes
HashSieve for high dimensions. In particular, our LDSieve
variant performs similarly to HashSieve for the lattice in
dimension 81, but beats HashSieve for higher dimensions.
This holds for any of the tested lattice dimensions when
M=3. However, with M=4, interestingly, this is not true for all
dimensions. For instance, LDSieve with M set to 4 is better
than HashSieve for the lattice in dimension 88, but is slightly
worse for the lattice in dimension 92. We believe that this
happens because LDSieve is more efficient in practice with
M=3, for the lattice dimensions that we tested. Another result
suggesting this is that LDSieve is better than HashSieve for
the lattice in dimension 87 when M=3, but not when M=4.

Changing M has implications both in the algorithm and the
implementation. With regard to the impact in the algorithm,
increasing M has both positive and negative consequences. As
M is increased, the size CS of the subcode S decreases, and so
the overhead of computing blockwise inner products decreases
as fewer inner products have to be computed. This means that
finding the right buckets becomes cheaper. On the other hand,
increasing M makes the product code more structured and
therefore less random. As a result, the theoretical analysis
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Fig. 4: Comparison of our parallel implementation of LDSieve
against HashSieve, for lattices in dimensions 80-92, running
with 64 threads. Lattice bases are BKZ-34 reduced. M = 4 for
N = 80, 84, 88 and 92. M = 3 for N = 81, 84, 87 and 90.

of [1] starts to be less accurate, and there will be more
imbalances in the buckets: many buckets will be empty, and
a few buckets will contain many vectors. This means the
bucketing strategy becomes less effective, as ideally each
bucket has roughly the same number of vectors. Theoretically,
it is not quite clear which value M is optimal, and only further
extensive experiments can answer this question.

As for the implications in the implementation, a few
facts deserve attention. We store partial inner prod-
uct lists listEntry blockIpLists[M][CODESIZE],
where listEntry is a struct containing a long value and
an unsigned int index. This means that there are M rows
of CODESIZE length. Even for high dimensions, we chose
combinations of M and CODESIZE summing up to a maximum
of 1200 elements (when M was set to 3 and CODESIZE was
set to 400), which implies a size of 14KB and does not raise
concerns regarding size or cache locality.

Codes are stored in the form of NodeCS
codes[CODESIZE], where NodeCS is a struct with
an array of N/M elements. This data structure does not raise
size or cache locality issues either. For instance, for a lattice
in dimension 90, M set to 3 and CODESIZE set to 400, the
array will require 400 × 90/3 × 2 ' 25 KB, as shorts
are two bytes. These data structures are not problematic
concerning cache locality, for any dimension N where the
SVP is tractable.

Number of vectors used and memory: Although LDSieve
does not make use of large data structures, there are two other
details pertaining to its memory consumption that are relevant.

First, the HashSieve implementation we used throughout
the benchmarks does not replicate significant data structures
among the running threads. Our LDSieve variant, on the other
hand, does, as the data structures for the partial inner product
lists are replicated among threads. As we showed before, these
are small for tractable lattice dimensions, and thus this is
not problematic. Nevertheless, even with a thread count as
high as 64 threads, our implementation is considerably more

HashSieve LDSieve

N Mem. Vectors Mem. Vectors M CS
80 32 405 39 1114 4 70
81 35 451 40 752 3 300
84 48 615 45 1460 3 320
84 48 615 65 1697 4 90
87 120 1025 54 2472 3 360
88 135 1156 67 2947 4 90
90 310 1713 66 4422 3 400
92 379 2100 119 10122 4 110

TABLE II: Memory (in GBs) and number of vectors used
for HashSieve and LDSieve for lattices in dimensions 80-92,
running with 64 threads. LDSieve set with M=3 and M=4,
multiple codesizes.

energy efficient than HashSieve after dimension 84, both when
M is set to 3 and 4, as shown in Table II. For instance,
our LDSieve variant uses as much as 5 times less memory
than HashSieve (e.g. in dimension 90). LDSieve has thus a
significant edge over HashSieve as it mitigates the key problem
of HashSieve, its memory consumption. It also suggests that
if high dimensions are to be solved with sieving algorithms,
LDSieve would be a natural choice due to a much smaller
memory consumption rate, in comparison to HashSieve.

Second, although our LDSieve variant requires much less
memory than HashSieve, it uses substantially higher numbers
of vectors than HashSieve to reach convergence, as also shown
in Table II. For instance, in dimension 92, our LDSieve
implementation uses 5 times more vectors than HashSieve,
but the execution time of both implementations is identical, as
shown in Figure 4. It is important to point out that the number
of vectors stored in memory is not the main contributor to the
overall memory comsumption (of either implementation). In
both implementations, most of the used memory is used to
store the (various) hash table(s) and respective buckets.

Finally, good choices of the codesize and M are essential to
achieve both low memory consumption levels and satisfactory
numbers of used vectors (as we showed in Subsection III-C3).
It is hard to infer from theory good values for these parameters,
as they depend on many factors and implementation details.

V. CONCLUSIONS

Lattice-based cryptosystems can be broken when specific
(hard) lattice problems can be solved in a timely manner. The
SVP is a central problem in this context. There are many
algorithms to address this problem, and sieving algorithms
have been attracting increasing attention due to their room
for improvement and unique ability to leverage specific types
of lattices, such as ideal lattices. In particular, the last two
years have witnessed considerable advances in this regard,
with the introduction of HashSieve and, more recently, LD-
Sieve. HashSieve represented a notable advance in sieving
algorithms, as it lends itself very well to parallelism and is
practical even in high dimensions. The recent introduction



of LDSieve raised important questions such as whether it is
suitable to parallel architectures and is superior to HashSieve
in high lattice dimensions.

This paper addresses fundamental questions pertaining to
the practicability of LDSieve. We present a very efficient
parallel variant of the algorithm, which we used as a fun-
damental tool to address these questions, and which achieves
speedup factors of 50x over the original implementation of
LDSieve. The first and perhaps most relevant question con-
cerning LDSieve, is whether it can beat HashSieve, the most
practical sieving SVP-solver to date. In particular, it is relevant
to assess this claim (1) with equally optimized sequential
implementations of both algorithms, (2) verifying if LDSieve
lends itself to parallelism and finally (3) whether a parallel
implementation of LDSieve compares well to a parallel version
of HashSieve, which is known to scale well on shared-memory
systems.

To verify this, we conducted a thorough analysis of the be-
havior of our parallel implementation LDSieve, in comparison
to HashSieve. We conclude that our LDSieve variant scales
linearly on shared-memory systems (at least up to 16 threads)
and is better than a state of the art HashSieve implementation,
when M=3, for dimensions 81-90, being competitive when
M=4. In addition, we conclude that there are both pros and
cons of LDSieve over HashSieve. An advantage of LDSieve
is that it spends considerably less memory for very high
dimensions (>92), and if memory becomes a limitation in the
system, LDSieve is preferable over HashSieve. On the other
hand, a disadvantage of LDSieve is that multiple parameters
have to be selected to get optimal performance. In partic-
ular, a wrong codesize selection may render the algorithm
impractical. Unfortunately, the best codesize in practice can
only be found through empirical benchmarks, which are time-
consuming. In addition, if a new lattice dimension is to be
solved, there is no point in running preliminary benchmarks
to find out the best codesize, as one would already have the
solution after running the preliminary benchmarks. In this
paper, we provided insight, for the first time, on the selection
of codesizes as a function of the lattice dimension.

In the future, we plan on porting our implementation of
LDSieve to distributed-memory systems and adapt it to ideal
lattices, to assess the hardness of the SVP on ideal lattices,
which is of prime importance for lattice-based cryptography.
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