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Abstract. Distance Bounding (DB) is designed to mitigate relay at-
tacks. This paper provides a complete study of the DB protocol of Kle-
ber et al. based on Physical Unclonable Functions (PUFs). We contradict
the claim that it resists to Terrorist Fraud (TF). We propose some slight
modifications to increase the security of the protocol and formally prove
TF-resistance, as well as resistance to Distance Fraud (DF), and Man-
In-the-Middle attacks (MiM) which include relay attacks.

1 Introduction

Wireless devices are subject to relay attacks. It is problematic because
these devices are at the basis for authentication in many domains like pay-
ment with credit cards, building access control, or biometric passports. To
ensure the security of wireless devices against relay attacks, Brands and
Chaum [5] introduced the notion of Distance Bounding (DB) protocols in
1993. The idea is that a prover P must prove that he is close to a verifier
V. Several attack models exist to make the verifier accept with a prover
too far away from the verifier. The attacks described in the literature are:
1. Distance Fraud attacks (DF) [5]: A far away prover P tries to make V
accept. No participant is close to V . 2. Mafia Fraud attacks (MF) [6]: A
malicious actor A who does not hold the secret tries to make V accept
using an honest but far away prover P. 3. Terrorist Fraud (TF) [6]: A
malicious actor A who does not hold the secret tries to make V accept
by colluding with a malicious far away prover P who holds the secret.

We use the formal security model which was proposed by Boureanu
et al. [1]. Most of the proposed protocols are vulnerable to TF attacks
but a few protocols provide security against all types of threats. However,
all these proofs are made on the assumption that in TF, the prover does
not want to give his credential to the adversary for further application.
This assumption is weak and does not correspond to reality. None of the
DB protocols in the plain model can provide TF security without this as-
sumption, so, we should consider alternate models. DF and TF security



are easier to provide using tamper resistant hardware on the prover side
because the prover cannot access his secret. Kılınç and Vaudenay [11] pro-
vide a new model for distance bounding protocols with secure hardware.
In this model, the game consists of several verifier instances including a
distinguished one V, hardware with their instances, instances of provers
and actors. There is one distinguished hardware h with instances far away
from V. The winning condition of this game is that V accepts.

– The DB protocol is DF-secure if the winning probability is negligible
whenever there is no instance close to V.

– The DB protocol is MiM-secure if the winning probability is negligible
whenever an honest prover is holding h.

– The DB protocol is TF-secure if the winning probability is negligible.

PUFs are tamper resistant hardware used in counterfeiting detection and
authentication protocols. A PUF is a physical component which maps a
challenge to a response. By definition, a PUF, as it is described in [13],
has the following properties: non clonable, non emulable, a response Ri

gives negligible information on a response Rj with Ri 6= Rj and a PUF
cannot be distinguished from a random oracle. For simplicity reasons, we
will treat PUFs as random oracles with access limited to their holder.
The aim of our work is to provide a provably secure protocol using PUF
in DB protocols. A TF-secure DB protocol based on PUF was proposed
in [10]. Nevertheless, this protocol assumes that provers implement their
protocol while using a PUF. In the model of Kleber et al. [12], the prover
can implement any malicious protocol while accessing to the PUF, the
protocol in [10] is trivially TF-insecure in this stronger model.1 Kleber et
al. design a protocol in [12] which is claimed to be secure in their model.
However we contradict that fact in this paper and propose to modify it
in order to improve the security.

Our contribution in this paper is as follows: 1. We show that the
protocol proposed by Kleber et al. [12] is not secure against Terrorist
Fraud which contradicts the claims from their authors; 2. We provide
some slight modifications of this protocol which we call pufDB to improve
its security; 3. We provide proofs of security for this pufDB protocol
for the following attacks: Distance Fraud and Mafia Fraud ; 4. We prove
the security of pufDB protocol against Terrorist Fraud when the prover
is limited in the amount of bits per round he can send. The security
strengthens when the distance from the prover to the verifier increases.

1 In this protocol, the PUF is not used during the fast phase, so the malicious prover
can give whatever is needed to complete the protocol to a close-by adversary.
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To the best of our knowledge, pufDB is the first protocol which provides
TF security even when the prover is allowed to leak his secret.

Due to limited space, proofs of our results are deferred to the full
version of this paper [9]. The full version also includes the analysis for
two other threat models: impersonation fraud and distance hijacking.

2 The Kleber et al. Protocol

2.1 Details of the Protocol

The verifier is called V and the prover P. The main idea of the protocol
proposed by Kleber et al. [12] is to replace the PRF in P of conventional
Distance Bounding protocols by a PUF. In this protocol, it is possible to
use both Challenge-response PUF or PublicPUF.2 The protocol is made
of two distinct phases: the preparation phase and the time critical phase.

Prior to the protocol, it is assumed that V can query the PUF and
store a number of challenge-response pairs (CRP ), at a round i such that
ri = PUF (Ci). A CRP is defined as (Ci, ri), 0 ≤ i < n with n the number
of rounds. There is always a set of CRPs corresponding to PC to complete
the run. A set of CRPs shall not be used in protocols more than once.

In the time critical phase, only one bit can be sent from V to P
in a round. However the PUF needs a big space of challenges to be se-
cure. Therefore V transmits a pre-challenge PC to P during the prepa-
ration phase. Then, in the time critical phase, the pre-challenge is com-
bined with the challenges ci received by P to generate a challenge Ci =
PC0...PCn−2−i||c0c1 . . . ci for the PUF. It is assumed that the hardware
is such that the PUF can precompute Ci and when the prover receives
the last bit of Ci he can return the response ri in almost no time. The
time critical phase consists of n transmission rounds. The verifier V starts
the clock when he sends a challenge ci and stops the clock when he re-
ceives the response ri. In the paper, Tmax and Emax are defined. Tmax is
the maximal number of responses which can arrive too late. Emax is the
maximal number of errors admitted in the responses. A response which
arrives late is not checked.

2 Normally, a PUF is non emulable so the verifier should first borrow the PUF to get
input-output pairs. To avoid it, we can use Public-PUF also called SIMPL system
(SIMulation Possible but Laborious). SIMPL systems guarantee that the response
to a challenge cannot be computed faster with a simulator of the PUF than with
the real PUF. Anyone can compute the right response but it takes much more time
with the simulator of the PUF.
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We note that if one ci is incorrectly received by P , then all subse-
quent PUF computations will produce random outputs, independently
from the expected ri. This is an important problem in this protocol: it is
not tolerant to reception errors by P .

The protocol is claimed to be provably secure for all types of Fraud
by Kleber et al. [12]. They prove the security of their protocol using the
model of Dürholz et al. [7]. They only give a proof of security against
Terrorist Fraud attacks. In fact, in the model defined by Kılınç et al. [11],
when the protocol uses hardware, the proof that the protocol is secure
against Terrorist Fraud attacks gives a proof of security against all the
other types of attacks. However, when there is no additional restriction
in the protocol, this protocol is insecure against Terrorist Fraud attack as
we show in the section 2.2. To prove the security against Terrorist Fraud,
Kleber et al. assume that the probability for the adversary to win the

game is equal to
(
1
2

)n−Emax−Tmax . We contradict this assumption.

2.2 A Terrorist Fraud Attack

Notations. dV P is the distance between V and the far away prover P, tV P

is the signal propagation time between V and P (it is assume that dV P
tV P

is a constant such as the speed of light); Similarly, dAP is the distance
between A and the far away prover P, tAP is the signal propagation time
between A and P ; B is the maximal distance allowed by the protocol, tB
is the maximal signal propagation time over the distance B; Finally, T is
the time between sending two consecutive challenges ci and ci+1.

In this scenario a malicious far away prover colludes with an adversary
close to the verifier. In the protocol of Kleber et al. the adversary receives
PC from the verifier. He can send it to the malicious prover who holds
the PUF. There is no information concerning the distance dAP between P
and A nor about the time T in between rounds. A forwards every message
from V to P . To answer a challenge ci on time, P is missing m bits. He
computes 2m PUF values and sends them to A so that A will always be
able to respond on time. For instance, if tm denotes the time it takes for
P to compute the 2m values and to transmit them to A (without time of
flight), the attack works if

tAP + tV A ≤ tB +
(mT − tm)

2
(1)

More concretely, we assume m = 1, B = 3m and tB = 10ns. We
consider V running at 1GHz and have one clock cycle between rounds,
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so T = 1µs. We consider a faster malicious prover P running at 10GHz
so that he can evaluate two challenges with the PUF (corresponding to
the possible challenges for m =1) in tm = 200ns. With dV A = B, the
attack succeeds for tAP = 400ns i.e dV P = 120m. The attack is possible
because there is a huge amount of time between the reception of ri and
the emission of ci+1, but our figures show this is a quite realistic scenario.

2.3 Slight Modifications of the Protocol

We choose to slightly modify the protocol of Kleber et al. [12] to improve
its security. We call pufDB the new protocol. First, we impose a regular
rhythm for sending the challenges, second, the (n−1) bits of PC are sent
with the same rhythm as if there were challenges in the time critical phase
but expecting no answer. The prover begins to send responses when he
receives the first bit of challenge c0. With this slight change, we make
sure there is no more time left for attacks in between the transmission of
PC and c0 than there is in between the transmission of each ci and this
time is bounded. Moreover, we assume that P cannot accept consecutive
challenges separated by time lower than T

2 , so, we cannot speed up P
by sending challenges too fast.3 Finally, another modification is that we
concatenate PC with the challenges without dropping any bit. So, Ci =
PC||c0...ci is of n + i bits. This guarantees domain separation for the
functions computing the responses. So, to summarize, we use the three
following requirements: 1. The elapsed time between sending each bit of
PC||c0...cn−1 by V is exactly T ; 2. The elapsed time in between receiving
two consecutive bits by P is at least T

2 ; 3. PC is concatenated to c0...ci
without dropping any bit.

We denote by t0 the time when the verifier sends c0 to the prover. So
ci is sent at time t0 + iT and PCi is sent at time t0 + (i− n+ 1)T .

Lemma 1 (Number of missing bits). For each round i, the number
of challenges which did not arrive yet to the far away prover P when it
becomes critical to send the response ri is m = d2( tV P−tB

T )e. The number
of possible Ci is 2m.

3 Distance Fraud Analysis of pufDB

To prove resistance against Distance Fraud attacks, it is necessary to
prove that a far away prover P who holds the PUF has a negligible prob-
ability to win the game presented in section 2. The idea of a Distance

3 We allow challenges to arrive faster than a period T to capture the Doppler effect
when P moves towards V . With T

2
as a limit, P can move at the light speed!???check
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Fraud attack is to find a way for the far away prover P to send ri such
that it arrives on time to V. To arrive on time, the response ri should
be sent before receiving the challenge ci. So, there are chances for the
response to be wrong.

Theorem 1. We use m from Lemma 1. We define qm =
∏m

l=1 pl
1
m for

pl = 1
2 + 1

2 ×
1

22l

(
2l

2l−1

)
, in a DF-attack, we have that

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
qm

n

For 2(Emax + Tmax) ≤ n any DF-attack is bounded by

Pr(win the game) ≤ e−n×
(
2( 1

2
−Emax+Tmax

n )
2−ln(2qm)

)
= boundDF

If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn and α+β < 0.049
then, boundDF is negligible.

Here is the table of the first values of qm:

m 1 2 3 4 5 6 7 8 9

qm 0.75 0.7181 0.6899 0.6657 0.6454 0.6283 0.6141 0.6022 0.5921

So depending onm, qm smoothly goes from 3
4 to 1

2 asm grows. pl decreases
and tends towards 1

2 , so qm decreases and tends towards 1
2 as well.

For m ≥ 2n − 1, we can have a better bound. The adversary has no
bit to compute the PUF (not even the bits of PC), so we can redo the
analysis and obtain

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
pn

n ≤ e−n×
(
2( 1

2
−Emax+Tmax

n )
2−ln(2pn)

)

These results are unchanged when using a public PUF.

4 Mafia Fraud Analysis of pufDB

To prove resistance against Mafia Fraud attacks it is necessary to prove
that if an honest far away prover P holds the PUF, an adversary close to
V has a negligible probability to win the game presented in section 2.

We prove security against Man-in-the-Middle (MiM) attacks. We first
informally describe what is the best possible attack. A is a malicious actor.
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Before receiving a challenge ci from the verifier V, he sends a guessed
challenge c′i to a far away prover P. He receives r′i from the prover. If c′i =
ci then the adversary sends r′i to the verifier. In this case, the adversary
wins the round with probability 1.

Pre-asking gives an extra chance to pass a round. But if one ci is
incorrectly guessed, any subsequent pre-asking request will return some
useless random bits. So the best strategy is to start pre-asking until there
exists a round i such that c′i 6= ci, then to continue with the impersonation
attack strategy.

We have not considered replay attacks because A has no time to begin
any other instance of the protocol if P does not answer at frequency larger
than T

2 . Actually, let V be the distinguisher verifier in a MiM attack and
PC the value that he sends. As the PUF is held by a single participant,
there are no concurrent sessions for P . Sending ci to P takes at least
(n+1)T

2 time but during this time, the session for V terminates. So, only
one session of P receives ci, for each i.

Theorem 2. In any MiM attack, we have

Pr(win the game) ≤
(

1

2

)n+1−Tmax

×
Emax+1∑

i=0

(
n+ 1− Tmax

i

)

This is bounded by e
−2(n+1−Tmax)×

(
1
2
− Emax+1

n+1−Tmax

)2

when 2Emax + Tmax ≤
n+ 1. For Emax ≤ αn, Tmax ≤ βn, and 2α+ β < 1, this is negligible.

Using a public PUF just adds a negligible term in the bound.

5 Terrorist Fraud Analysis of pufDB

In Terrorist Fraud attacks, an adversary A colludes with a far away ma-
licious prover P to make V accept. Without any limitation on the power
of the verifier the protocol is insecure against TF. In our model, the
prover is limited on the communication complexity. With this limitation,
the prover can compute all the challenges but he has a limitation on the
amount of bits he can send to A. He can compress the 2m bits of the ta-
ble of responses for each round into s bits and send to A the compressed
version. From the s bits received and the challenge sent by V , A can try
to recover the response.
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Lemma 2. Let s and l be two positive integers and N = 2l. We define
pl,s = 1− 1

NE(minC d(f, C)) where f is a random boolean function of l-bit
input and the minimum is over sets C of up to 2s elements. We define

p∗l,s = 1− 1

2N

R+1∑
i=0

i

N
N ′i , p̄l,s =

1

2
+

1√
N
×

(√
s ln 2

2
+

√
2

2s
+

1

N

)
+

1

N

where R is the maximum value such that
∑R

i=0 2s
(
N
i

)
≤ 2N and N ′i =

2s
(
N
i

)
for 0 ≤ i ≤ R, N ′i = 0 for i > R+1, and N ′R+1 = 2N−2s

∑R
i=0

(
N
i

)
.

We have pl,s ≤ p∗l,s. For s ≤ 2l

2 , we also have p∗l,s ≤ p̄l,s.

Theorem 3. We use m as defined in Lemma 1. We assume that the
malicious prover is limited to s bits of transmission per round to the
adversary in a TF-attack. We use qm,s =

∏m
l=1 pl,s

1
m and we have

Pr(win the game) ≤
Emax+Tmax∑

i=0

(
n

i

)
qm,s

n

where pl,s is defined in Lemma 2. For 2(Emax + Tmax) ≤ n a TF-attack
has a success probability bounded by

Pr(win the game) ≤ e−n×
(
2( 1

2
−Emax+Tmax

n )
2−ln(2qm,s)

)
= boundTF

If there exist α, β ∈ R such that Emax ≤ αn, Tmax ≤ βn then the protocol

is secure when α+ β < 1
2 −

√
ln(2qm)

2 .

Using a public PUF just adds a negligible term in the bound.
We have the following relation:

Packet transmission time =
Packet size

Bit rate

The adversary succeeds to send s bits when dAP
c + s

Bit rate ≤ T with dAP
c

the packet traveling time is in ns, this is negligible compared to T in µs.
So, we get the relation s ≤ Bit rate×T . For wireless communication, the
maximal bit rate is of order 1Gbps and we define T = 1µs. So the prover
can send maximum s = 1000 bits to the adversary. So the maximal s is
s = 210.

For a noisy communication such that Emax = 5%n and Tmax = 0 with
s = 210, if the prover is close to the verifier (m ≤ 18), pufDB cannot be
proven secure against TF-attacks.
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If the prover is close to the verifier then he can help the adversary
in doing the authentication himself or in giving directly the device to
the adversary. So, we can assume that the prover is quite far from the
adversary proportionally to the distance allowed. For instance, if we con-
sider that dV P = 3000m, B = 3m, T = 1µs and the speed of the light
c = 3.108m.s−1 we get tB = 10ns and m = 20. For s = 210, we obtain
qm,s = 0.7917 so the protocol achieves a security level of 2−10 in 110
rounds, and 2−20 in 307 rounds.

If we can lower T to T = 100ns and tB = 10ns then the prover can
send at most s = 27 bits to the adversary and we have security for a
noisy communication with Emax = 5%n and Tmax = 0 for m ≥ 15 which
corresponds to tV P > 71tB.

6 Conclusion

Until pufDB, none of the existing protocol has provided Terrorist Fraud
resistance in the plain model without assuming that the adversary would
not share his secret, which is not a realistic assumption. The protocol of
Kleber et al. is not secure against Terrorist Fraud attacks. pufDB is an
improvement of this protocol. We prove security against Distance Fraud
and Mafia Fraud. We further prove the security against TF using a
reasonable limitations on the number of transmission per round.

We compare with other distance bounding protocols. The parameters
in pufDB, SKI [2, 3], FO [8, 14] and DBopt [4] are taken such that the
protocols achieve 99% completeness with a noise of 5% as it is described
in [4]. If we take the worst case for pufDB (i.e. m = 1), pufDB needs
more rounds than the previous protocols to achieve the same security
level. However, for m large, pufBD is more efficient than SKI and FO to
achieve security against DF and MF and it almost reaches the optimal
bounds of DBopt.

Protocol n (security level of 2−10) n (security level of 2−20)

SKI 48 91

FO 84 151

DBopt (DB2,DB3) 24 43

pufDB (m = 1) 345 474

pufDB (m > 2n− 1) 26 45

Table 1: Efficiency of the protocols against DFand MF for completeness
99% under noise 5% (Tmax = 0)
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