
Succinct Predicate and Online-Offline Multi-Input Inner
Product Encryptions under Standard Static Assumptions

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. This paper presents expressive predicate encryption (PE) systems, namely non-zero
inner-product-predicate encryption (NIPPE) and attribute-based encryption (ABE) supporting mono-
tone span programs achieving best known parameters among existing similar schemes under well-
studied static complexity assumptions. Both the constructions are built in composite order bilinear
group setting and involve only 2 group elements in the ciphertexts. More interestingly, our NIPPE
scheme, which additionally features only 1 group element in the decryption keys, is the first to
attain succinct ciphertexts and decryption keys simultaneously. For proving selective security of
these constructions under the Subgroup Decision assumptions, which are the most standard static
assumptions in composite order bilinear group setting, we apply the extended version of the elegant
Déjà Q framework, which was originally proposed as a general technique for reducing the q-type
complexity assumptions to their static counter parts. Our work thus demonstrates the power of this
framework in overcoming the need of q-type assumptions, which are vulnerable to serious practical
attacks, for deriving security of highly expressive PE systems with compact parameters. We further
introduce the concept of online-offline multi-input functional encryption (OO-MIFE), which is a
crucial advancement towards realizing this highly promising but computationally intensive cryp-
tographic primitive in resource bounded and power constrained devices. We also instantiate our
notion of OO-MIFE by constructing such a scheme for the multi-input analog of the inner product
functionality, which has a wide range of application in practice. Our OO-MIFE scheme for multi-
input inner products is built in asymmetric bilinear groups of prime order and is proven selectively
secure under the well-studied k-Linear (k-LIN) assumption.

Keywords: inner-product-predicate encryption, attribute-based encryption, Déjà Q, online-offline
multi-input functional encryption

1 Introduction
FE: Functional encryption (FE) [BSW11, O’N10] is a new vision of modern cryptography that aims
to overcome the potential limitation of the traditional encryption schemes, namely, the all or nothing
control over decryption capabilities. FE supports restricted decryption keys which enable a decrypter to
learn specific functions of encrypted messages, and nothing more. More precisely, an FE scheme for a
function family F involves a setup authority which holds a master secret key and publishes public system
parameters. An encrypter uses the public parameters (along with a secret encryption key provided by the
setup authority in case of a private key scheme) to encrypt its message M belonging to some supported
message space M creating a ciphertext ct(M). A decrypter may obtain a private decryption key sk(F)
corresponding to some F ∈ F from the setup authority provided that the authority deems that the
decrypter is entitled for that key. Such a decryption key sk(F) can be used to decrypt ct(M) to recover
F (M). The standard security notion for FE is collusion resistance, i.e., an arbitrary number of decrypters
cannot jointly retrieve any more information about an encrypted message beyond the union of what they
each can learn individually.

PE: An important subclass of FE is predicate encryption (PE) with public index. Consider a predicate
family P = {PY : X → {0, 1} | Y ∈ Y}, where X and Y are index sets. In a PE scheme for the
predicate family P, the associated message space M is of the form X×W, where W contains the actual
payloads. The functionality FPY associated with a predicate PY ∈ P is defined as FPY (X ,W) = W ,
if PY (X) = 1, and the empty string ⊥, otherwise, for all (X ,W) ∈ M = X ×W. In the public index
setting, a PE ciphertext ct(M) encrypting some message M = (X ,W) includes the index X in the
clear.

2 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Starting with identity-based encryption (IBE) [BF01,Wat05], which corresponds to the equality pred-
icate, PE has progressively evolved through a sequence of distinguished works to support more and more
expressive predicate families. At the same time, achieving compact parameters and security in the stan-
dard model under static assumptions has been a persisting research direction in PE. In this work we
consider public-index PE for two specific class of predicates, namely, the non-zero inner-product predicate
and attribute-based access policies.

NIPPE: In case of the non-zero inner-product-predicate encryption (NIPPE) the index sets X = Y = Z`n,
for some n, ` ∈ N. A predicate P→

y
: Z`n → {0, 1} associated with some vector →

y ∈ Z`n is defined for
all →

x ∈ Z`n as P→
y
(→x) = 1, if the inner product 〈→x, →y〉 6= 0, and 0, otherwise. NIPPE is known to imply

identity-based revocation (IBR) [AL10], which itself is an important cryptographic primitive for efficiently
and securely handling dynamic content distribution systems and group communication systems.

The first NIPPE scheme was proposed by Attrapadung and Libert [AL10] in prime order bilinear
group setting with security in the co-selective model under the Decisional Linear (DLIN) and the Decisional
Bilinear Diffie-Hellman (DBDH) assumptions. Their NIPPE scheme has 9 group elements in the ciphertext
headers, i.e., except the group element masking the payload, while O(`) group elements in the decryption
keys and the public parameters, where ` is the length of the vectors. In subsequent works, Attrapadung et
al. [ALDP11] and Yamada et al. [YAHK14] further reduced the NIPPE ciphertext header size to include
only 2 group elements, however, the decryption keys and the public parameters continued to involve O(`)
group elements. These NIPPE constructions are also built in prime order bilinear groups and are proven
secure, the former [ALDP11] in the co-selective model while the latter [YAHK14] in the selective model,
under the Decisional Bilinear Diffie-Hellman Exponent (DBDHE) assumption parameterized by `. The
number of ciphertext header components achieved by these two NIPPE constructions is the smallest in
the literature so far.

However, as demonstrated by Cheon [Che06], the q-type complexity assumptions such as DBDHE and
thus the cryptosystems built on them are vulnerable to a serious attack. Specifically, Cheon developed
an algorithm which recovers the secret involved in a q-type assumption in time inversely proportional to
q. Later, Sakeme et al. [SHI+12] showed that the attack of Cheon can be a real threat to cryptosystems
based on q-type assumptions by executing a successful experiment. Hence, it is clear that the parameters
of q-type-assumption-based cryptographic constructions must scale with q in order to maintain a constant
security level.

Adaptively secure NIPPE constructions with constant number of group elements in the ciphertext
headers were proposed in the works by Okamoto and Takashima [OT15], and by Chen et al. [CGW15] in
prime order bilinear groups under the DLIN and k-linear (k-LIN) assumptions respectively. The construc-
tion of [CGW15] meets the least number so far, i.e., 2 group elements in the ciphertext headers. However,
decryption keys and public parameters consist of O(`) group elements in each of the two constructions.
In summary, to the best of our knowledge, currently there is no NIPPE scheme available in the literature
that features constant number of group elements simultaneously in the ciphertext headers and in the
decryption keys.

ABE: An even more expressive form of public-index PE is attribute-based encryption (ABE). The recent
advances in cloud technology has triggered an emerging trend among individuals and organizations to
outsource potentially sensitive private informations to external untrusted servers and later share various
segments of the outsourced data with legitimate entities. ABE is an indispensable cryptographic tool for
preserving data confidentiality in such cloud computing platforms. ABE comes in two flavors, namely,
key-policy and ciphertext-policy. In a key-policy ABE system over an attribute universe U, the index set
X consists of all non-empty subsets of U and the index set Y is comprised of certain access structures over
U. A predicate PA : X→ {0, 1} associated with some access structure A ∈ Y is defined for all attribute
sets Γ ∈ X as PA (Γ) = 1, if the access structure A accepts the attribute set Γ , and 0, otherwise. The
ciphertext-policy variant interchanges the roles of attribute sets and access structures. In this work, we
concentrate on key-policy ABE.

The notion of ABE was introduced by Sahai and Waters [SW05] for threshold access structures. Over
time the class of access structures realizable by ABE systems has been gradually expanded by several
researchers [GPSW06, OSW07, Wat11] culminating into the recent state of the art constructions which
can now support access structures represented by arbitrary polynomial-size circuits [GGH+13, GVW15]
and even Turing machines [GKP+13]. However, in view of the current progress in computing technology,
it appears that the most expressive form of access structures supported by computationally practical

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 3

ABE systems are span programs. Besides the expressiveness of supported access structures, succinctness
of ciphertext headers has been an important concern towards practicality of ABE schemes.

Emura et al. [EMN+09], Herranz et al. [HLR10], and Chen et al. [CCL+13] constructed ABE schemes
with constant number of components in the ciphertext headers. However, the access structures supported
by those constructions are very limited. Attrapadung et al. [ALDP11] were the first to develop a selec-
tively secure key-policy ABE construction supporting non-monotone span programs in prime order bilinear
groups featuring 3 group elements in the ciphertext headers based on the DBDHE assumption parameter-
ized by `, where ` is the maximum number of attributes per ciphertext. Later, Yamada et al. [YAHK14]
designed another selectively secure key-policy ABE scheme for non-monotone span programs in prime
order bilinear group setting that further reduced the number of ciphertext header components by 1 group
element. As per our knowledge, this construction involves the least number of ciphertext header compo-
nents among the computationally practical key-policy ABE systems currently available in the literature.
However, the underlying complexity assumption of this construction is again DBDHE parameterized by
`. Attrapadung [Att14, Att15] subsequently built adaptively secure key-policy ABE schemes for mono-
tone span programs with constant number of group elements in the ciphertext headers. The construction
of [Att14] is developed in composite order bilinear groups and it has 6 group elements in the ciphertext
headers, whereas, the scheme of [Att15] is constructed in prime order bilinear groups and its ciphertext
headers include 18 group elements. These constructions are also based on certain q-type assumptions
which are even stronger than the DBDHE assumption.

Clearly, the principal downside of all the four ABE constructions [ALDP11, YAHK14, Att14, Att15]
is that they suffer from Cheon’s attack [Che06] and require parameters that scale with the number of
attributes per ciphertext or in the attribute universe for preserving a fixed security level. This bottleneck
of using q-type complexity assumptions for building key-policy ABE systems with constant number of
ciphertext header components was first mitigated by Chen and Wee [CW14], who designed a key-policy
ABE scheme for monotone span programs in composite order bilinear group setting based on static as-
sumptions featuring the least number (only 2) of group elements in the ciphertext headers among existing
similar constructions. However, the static assumptions used in [CW14] are rather non-standard. More
recently, Takashima [Tak14] constructed a semi-adaptively secure key-policy ABE scheme supporting non-
monotone span programs in prime order bilinear groups under the well-studied static DLIN assumption
featuring 17 group elements in the ciphertext headers. In all the ABE constructions discussed above, the
number of group elements constituting the decryption keys and the public parameters are O(m`) and
O(`) respectively, where m is the maximum number of rows of the matrix representing the span program.

Online-Offline MIFE: Multi-input functional encryption (MIFE), introduced by Goldwasser et al.
[GGG+14] and subsequently studied in [GJN15, BKS15, BGJS15, BLR+15], is a generalization of FE
to the setting of multi-input functions. In an MIFE scheme for a family Fm of m-ary functions, a de-
cryption key sk(F) corresponding to some function F ∈ Fm can be used to decrypt m ciphertexts
ct(1)(M (1)), . . . ,ct(m)(M (m)), encrypting the messages M (1), . . . ,M (m) for the input slots 1, . . . ,m
respectively, to retrieve F (M (1), . . . ,M (m)). In such systems, other than generating the public system
parameters and master secret key, the setup authority also creates m encryption keys enk(1), . . . ,enk(m)

which are necessary for encrypting messages for the input slots 1, . . . ,m respectively. MIFE has a wide
range of practical applications such as running SQL (structured query language) queries on encrypted
databases, non-interactive differentially private data release, delegation of expensive computations to
external servers and many more.

The bounded-norm multi-input inner product functionality, which we consider in this paper, is an
extension of the usual single-input inner product function and has been explicitly defined by Abdalla
et al. [ARW16]. A multi-input inner product function F→

y
(1)
,...,

→
y

(m) over Zn is specified by an m-tuple of

vectors (→y(1)
, . . . ,

→

y
(m)), where for each j ∈ [m], →

y
(j) is a vector of length ` over Zn, for some m,n, ` ∈ N.

The function F→
y

(1)
,...,

→
y

(m) takes as input m vectors →

x
(1)
, . . . ,

→

x
(m), where for each j ∈ [m], →

x
(j) is again a

vector of length ` over Zn, and outputs the sum of inner product values
P
j∈[m]

〈→x(j)
,
→

y
(j)〉. In the bounded

norm setting, it is required that the norm of each component inner product 〈→x(j)
,
→

y
(j)〉 be bounded by

some fixed B ∈ N. Inner product and hence its multi-input variant is an extremely useful functionality
in the context of descriptive statistics, e.g., for computing the weighted mean of a collection of values.
It also enables the computations of conjunctions, disjunctions, and polynomial expressions, as well as
determination of exact thresholds.

4 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

In recent years, as computation is moving on to resource bounded and power constrained devices such
as mobile phones, there has been a growing demand for online-offline cryptography. The basic idea of the
online-offline model is to provision for an expensive preparation or offline phase, where the majority of
computation is performed before the actual data become available. This is followed by an efficient online
phase, which is executed when the data become known.

One vital limitation of FE is that the rich functionalities often come at the expense of a serious com-
putational load compared to traditional encryption schemes. Specifically, the decryption key generation
time depends on the complexity of the functions, while the encryption time scales with the length of
the message and sometime even with the complexity of the function family. The situation is evidently
more severe in the context of MIFE as multi-input functionalities have much larger complexity compared
to the single input ones. In fact, an exacerbating issue is that the cost for operations may vary widely
between each ciphertext and decryption key, thus forcing a system to provision for a load that matches
a worst case scenario. In the field of single-input FE, online-offline versions have already been considered
for IBE [GMC08, LZ09], ABE [HW14], and very recently for general purpose FE supporting arbitrary
polynomial-size circuits in the bounded collusion setting [AR16]. However, MIFE is not yet investigated
in the online-offline model.

Our Contributions: Our goal in this work is to develop NIPPE and ABE schemes with optimal pa-
rameters under well-studied static complexity assumptions. Specifically, we present the following two
interesting results:

– Firstly, we construct an NIPPE scheme with 2 group elements in the ciphertexts and, at the same time,
only 1 group element in the decryption keys. To the best of our knowledge, our NIPPE construction
is the first to achieve succinct ciphertexts and decryption keys simultaneously. The proposed NIPPE
scheme is built in composite order bilinear group setting and is proven selectively secure under the
standard Subgroup Decision assumptions, which are static in nature. However, the number of group
elements forming our NIPPE public parameters remains the same as earlier constructions, i.e., O(`),
where ` is the length of the vectors.

– Our second construction is a selectively secure key-policy ABE scheme supporting monotone span
programs in composite order bilinear groups with only 2 group elements in the ciphertexts. The
security is also proven under the well-studied static subgroup decision assumptions. Even when com-
pared in terms of bit length with the only existing standard static assumption-based key-policy ABE
scheme [Tak14] which achieves constant number of components in ciphertext headers in prime or-
der bilinear group setting, our ABE ciphertext size turns out to be much shorter. For instance, it is
known that [Fre10] for achieving an equivalent security level of a 160 bit prime order bilinear group, a
composite order bilinear group requires the group order of 1024 bits. Thus, at this security level, the
ciphertext bit-length of [Tak14] would be 17× 160, whereas, that of ours would be 2× 1024, which is
roughly 25% smaller. Our ABE decryption keys and public parameters involve respectively O(m`) and
O(`) group elements which are the same as all previously known key-policy ABE construction with
short ciphertexts. Here, m and ` respectively denotes the maximum number of rows in the matrix
representing the supported span programs and the maximum number of attributes per ciphertext.

We work in the key encapsulation mechanism setting, where the PE ciphertexts hide a symmetric session
key that can be used to symmetrically encrypt the actual payload of arbitrary length. For proving security
of our PE constructions, we employ the recent extended Déjà Q framework presented by Wee [Wee16]. The
Déjà Q framework was originally proposed by Chase et al. [CM14]. It is a general framework for reducing
various q-type complexity assumptions or their generalization, namely, the family of uber assumptions
[BBG05, Boy08] to their static counter parts in composite order bilinear group setting making use of
the classic dual system methodology [LW10, LOS+10]. A major efficiency drawback of the framework
of [CM14] was its dependence on asymmetric bilinear groups. Wee [Wee16] has advanced the Déjà Q
technique to overcome the necessity of working with asymmetric bilinear groups. Further, Wee [Wee16]
has applied the enriched Déjà Q technique to design IBE and broadcast encryption (BE) schemes with
essentially optimal parameters without relying on q-type assumptions. Wee has left the possibility of
utilizing this elegant framework as an interesting research problem towards achieving compact parameters
for more advanced cryptographic primitives with security under static assumptions. In this paper, we
make progress in exploring the power of the extended Déjà Q framework by employing the technique
in the context of highly expressive PE systems such as NIPPE and ABE. The technical contribution of
our work thus lies in demonstrating a different approach towards attaining succinctness for NIPPE and

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 5

ABE schemes without requiring q-type assumptions by allowing a crucial looseness of q in the security
reduction. Regarding computation cost, note that the decryption algorithm of both of our constructions
require only 2 pairing operations which is the smallest among all similar works mentioned above.

A third contribution of this paper is to introduce the notion of online-offline multi-input functional
encryption (OO-MIFE) and to develop the first OO-MIFE construction for the multi-input analog of
the inner product functionality. As observed in [ARW16], a multi-input inner-product encryption (MIPE)
scheme in the public key domain for m-ary inner product functions can be readily constructed by running
m independent copies of a single-input inner-product encryption (IPE) scheme. It is trivial to see that a
similar conversion also works for the online-offline setting in this domain. At the same time, the public
key single-input IPE schemes available in the literature [ABDCP15, ALS15] are easily convertible to the
online-offline mode. However, such a transformation does not work in the private key regime [ARW16].

Consequently, in this work, we focus on developing a private key online-offline multi-input inner
product encryption (OO-MIPE) from efficient and standard cryptographic tools. Following the earlier
online-offline FE constructions [GMC08,LZ09,HW14], we attempt to develop an OO-MIPE scheme which
prepares intermediate ciphertext and decryption key components in the offline phase. When the data be-
come available in the online phase, the corresponding ciphertext and decryption key components can be
quickly constructed by incorporating simple correction factors to those intermediate quantities. We start
by observing that the only existing private key MIPE construction due to Abdalla et al. [ARW16] has
well suited algebraic structure for our strategy. We develop a correction technique that carefully utilizes
the algebraic structures of the ciphertext and decryption key components of [ARW16] to push almost the
entire computational bulk into the offline phase without significantly increasing the ciphertext or decryp-
tion key sizes over those of [ARW16]. Like [ARW16], our OO-MIPE construction is built in asymmetric
bilinear groups of prime order. We reduce the selective security of our OO-MIPE construction directly to
that of the MIPE scheme of [ARW16] which is selectively secure under the well-studied k-LIN assumption.
As an advantage of our reduction, our OO-MIPE scheme would inherit any future improvements in the
security guarantee offered by the MIPE construction of [ARW16].

Our online operations are quite fast. Our online decryption key generation algorithm costs only m`(k+
1) modular multiplications, where m, `, and k are respectively the arity of the multi-input inner product
function, the length of the vectors, and the parameter of the underlying complexity assumption. Thus, for
instance, if we base the security of our construction on the Symmetric External Diffie-Hellman (SXDH)
assumption, then k = 1, so that our online decryption key generation algorithm would involve just
2m` modular multiplications. Our online encryption algorithm is even more efficient as it incurs only
modular additions which is the fastest operation in bilinear group setting. Regarding communication
and storage requirements, both our offline and online decryption keys contain m(k + 1) additional Zn-
component over those of the MIPE scheme of [ARW16], while our offline and online ciphertexts both
include only ` additional Zn-components over those of the MIPE construction of [ARW16]. The increase
in the ciphertext and decryption key sizes is reminiscent with those of earlier online-offline single-input
FE constructions [GMC08, LZ09, HW14]. Moreover, the sizes of our public parameters and encryption
keys are exactly the same as those of the MIPE construction of [ARW16].

Concurrent Work: In a concurrent and independent work, Chen et al. [CLR16] have developed a
composite order NIPPE construction identical to the one presented in this paper and have derived its
selective security under the Subgroup Decision assumption, utilizing the Déjà Q technique. However, our
work extends to exploring the power of Déjà Q framework towards even more sophisticated form of PE,
namely, ABE. Moreover, our third contribution, namely, the notion of OO-MIFE and its realization for
the inner product functionality is not reported in the work of [CLR16].

2 Preliminaries

In this section, we will provide some cryptographic backgrounds which will be necessary in the sequel.
Let λ ∈ N denotes the security parameter and 1λ be its unary representation. A function negl is negligible
if for every c ∈ N, there exists k ∈ N such that for all λ > k, |negl(λ)| < 1

λc . Throughout this paper we
will follow notations presented in Fig. 2.1.

6 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Symbol Explanation

ℵ $←− S ℵ is uniformly sampled from a set S.

κ $←− Z(Υ) κ is a random variable representing the output of a randomized algorithm Z on input Υ .

κ = Z(Υ) κ is the output of a deterministic algorithm Z on input Υ .

[H] {1, . . . , H} ⊂ N, where H ∈ N.
→

v a vector (v1, . . . , vH) ∈ ZH
n of length H, for some n,H ∈ N.

B = (Bι,ι′)H×H′ a member of ZH×H′
n , i.e., a matrix of size H × H′ with entries Bι,ι′ ∈ Zn, for ι ∈ [H], ι′ ∈ [H′],

where H,H′ ∈ N.

Bᵀ (→vᵀ) the transpose of the matrix B ∈ ZH×H′
n (the vector →

v ∈ ZH
n).

〈→v, →w〉 or →

v
→

w
ᵀ the inner product

P
i∈[H]

viwi of vectors →

v,
→

w ∈ ZH
n.

z = g
→
v a H-length vector of group elements, (z1 = gv1 , . . . , zH = gvH) ∈ GH, for some cyclic group G

of order n and some g ∈ G, where →

v ∈ ZH
n.

gδ
→
v = (g

→
v)δ (gδv1 , . . . , gδvH) ∈ GH, where δ ∈ Zn, →v ∈ ZH

n, and g ∈ G.

g
→
v+

→
w = g

→
vg

→
w (gv1+w1 , . . . , gvH+wH) ∈ GH, where →

v,
→

w ∈ ZH
n and g ∈ G.

ZZZ = gB a matrix (gBι,ι′)H×H′ ∈ GH×H′ , where B = (Bι,ι′)H×H′ ∈ ZH×H′
n and g ∈ G.

(ZZZ)
→
v = (gB)

→
v g

→
vBᵀ ∈ GH, where →

v ∈ ZH′
n , B ∈ ZH×H′

n , and g ∈ G.

Fig. 2.1. Notations

2.1 Bilinear Pairing Groups
Definition 2.1 (Bilinear Pairing Groups). A bilinear pairing group is a tuple (n,G1,G2,GT , e) of
n ∈ N; cyclic groups G1,G2,GT of order n; and a pairing e : G1×G2 → GT with the following properties:

i) (Bilinearity) For all g1 ∈ G1, g2 ∈ G2, and ζ1, ζ2 ∈ Zn, e(gζ1
1 , g

ζ2
2) = e(g1, g2)ζ1ζ2 .

ii) (Non-Degeneracy) There exists g1 ∈ G1 and g2 ∈ G2 such that e(g1, g2) has order n in GT .

A bilinear pairing group generation algorithm G takes as input the unary encoded security parameter
λ and outputs the description of a bilinear pairing group (n,G1,G2,GT , e) with n of size Θ(λ). G1 and G2
are referred to as the source groups, while GT is referred to as the target group. The group operations in
the groups G1,G2,GT , and the pairing e are assumed to be computable in polynomial time with respect
to the security parameter λ.

A bilinear pairing group (n,G1,G2,GT , e) is said to be symmetric if G1 = G2 = G (say), otherwise, it
is called asymmetric. On the other hand, in case n is a prime integer, the bilinear pairing group is said to
be of prime order, else, it is of composite order. We assume that a bilinear pairing group generator G also
takes as input the variables type ∈ {symmetric, asymmetric} and ord ∈ {prime, composite} in addition
to the security parameter λ, and outputs the description of a bilinear pairing group of the specified kind.

Observe that given a bilinear pairing group (n,G1,G2,GT , e), for any q ∈ N, we can define a new
bilinear pairing Eq : Gq1 × Gq2 → GT as Eq(a, b) =

Q
ι∈[q]

e(aι, bι), for all a ∈ Gq1, b ∈ Gq2. The bilinearity

and non-degeneracy properties of the pairing Eq follows readily from those of the pairing e. Note that
Eq(g

→
v
1 , g

→
w
2) = e(g1, g2)〈

→
v,
→
w〉, for any g1 ∈ G1, g2 ∈ G2, and any →

v,
→

w ∈ Zqn.
In this paper, we consider symmetric bilinear pairing groups of composite order and asymmetric

ones of prime order. For symmetric composite order bilinear pairing groups (n,G,GT , e), we consider
n = p1p2p3, where p1, p2, p3 are three distinct prime integers of size Θ(λ). We let Gpι and Gpιpι′ denote
the subgroups of G of order pι and pιpι′ respectively, for ι, ι′ ∈ [3]. Note that these subgroups are
orthogonal to each other under the bilinear pairing e, i.e., if eg, eg′ are elements of two different subgroups
out of {Gp1 ,Gp2 ,Gp3}, then e(eg, eg′) is the identity element in GT . If g, ĝ, and ğ are some elements of
Gp1 ,Gp2 , and Gp3 respectively, then every element eg ∈ G can be expressed as eg = gξ ĝξ̂ ğξ̆, for some
ξ, ξ̂, ξ̆ ∈ Zn. We will refer to gξ as the “Gp1 component of eg”, and similarly others. Observe that for all
ι ∈ [3], given some eg ∈ Gpι , one can efficiently sample uniformly from Gpι by selecting eξ $←− Zn and
computing egeξ.

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 7

2.2 Complexity Assumptions
Assumption 2.1 (Subgroup Decision-I: SD-I [LW10]). The SD-I assumption is to distinguish be-
tween the distributions$β̂ = ((n,G,GT , e), g, ğ,<β̂), for β̂ ∈ {0, 1}, where (n = p1p2p3,G,GT , e)

$←− G(1λ,

symmetric, composite), g $←− Gp1 , ğ $←− Gp3 , and

<β̂ =
(
gσ

$←− Gp1 , if β̂ = 0
gσ ĝσ̂

$←− Gp1p2 , if β̂ = 1

with ĝ
$←− Gp2 and σ, σ̂

$←− Zn. The SD-I assumption states that for any probabilistic polynomial-time
algorithm B, for any security parameter λ, the distinguishing advantage of B in the SD-I problem,

AdvSD-I
B (λ) =

��Pr[B(1λ, $0) = 1]− Pr[B(1λ, $1) = 1]
�� ≤ negl(λ),

for some negligible function negl.

Assumption 2.2 (Subgroup Decision-II: SD-II [LW10]). The SD-II problem is to distinguish be-
tween the distributions $β̂ = ((n,G,GT , e), g, ğ, v, s,<β̂), for β̂ ∈ {0, 1}, where (n = p1p2p3,G,GT , e)

$←−

G(1λ, symmetric, composite), g $←− Gp1 , ğ $←− Gp3 , v = gσ ĝσ̂
$←− Gp1p2 , s = ĝϕ̂ğϕ̆

$←− Gp2p3 , and

<β̂ =
(
gω ğω̆

$←− Gp1p3 , if β̂ = 0
gω ĝω̂ ğω̆

$←− G, if β̂ = 1

with ĝ
$←− Gp2 and σ, σ̂, ϕ̂, ϕ̆, ω, ω̂, ω̆

$←− Zn. The SD-II states that for any probabilistic polynomial-time
algorithm B, for any security parameter λ, the distinguishing advantage of B in the SD-II problem,

AdvSD-II
B (λ) =

��Pr[B(1λ, $0) = 1]− Pr[B(1λ, $1) = 1]
�� ≤ negl(λ),

for some negligible function negl.

Assumption 2.3 (k-Linear: k-LIN [EHK+13]). The k-LIN(ι) problem, for fixed ι ∈ {1, 2}, is to
distinguish between the distributions $(ι)

β̂
= ((n,G1,G2,GT , e), g1, g2,AAAι,<(ι)

β̂
), for β̂ ∈ {0, 1}, where

(n,G1,G2,GT , e)
$←− G(1λ, asymmetric, prime), g1

$←− G1, g2
$←− G2, AAAι = gAι , and

<(ι)
β̂

=
¨
g
→
sAᵀ

ι , if β̂ = 0
g
→
v
ι , if β̂ = 1

with A $←− Dk, →

s
$←− Zkn, and →

v
$←− Zk+1

n , Dk being an efficiently samplable distribution over full-ranked
matrices in Z(k+1)×k

n . The k-LIN assumption states that for any probabilistic polynomial-time algorithm
B, for any security parameter λ, the distinguishing advantage of B in the k-LIN(ι) problem for fixed
ι ∈ {1, 2},

Advk-LIN,ι
B (λ) =

��Pr[B(1λ, $(ι)
0) = 1]− Pr[B(1λ, $(ι)

1) = 1]
�� ≤ negl(λ),

for some negligible function negl.

2.3 Pairwise Independent Hash Families and the Left-Over Hash Lemma
Definition 2.2 (Min-Entropy). Let R be a random variable over some finite set R. The min-entropy
H∞ of the random variable R is defined as H∞(R) = − log(max%∈R Pr[R = %]).

Definition 2.3 (Pairwise Independent Hash Families). Let V,W ⊂ {0, 1}∗ be finite sets. A family
H2 of hash functions H : V→W is said to be pairwise independent if for any v1, v2 ∈ V such that v1 6= v2
and for any w1, w2 ∈W, we have

Pr
H

$←−H2

[(H(v1) = w1) ∧ (H(v2) = w2)] = 1
(]W)2 ,

where]W denotes the cardinality of the set W.

8 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

The left-over hash lemma, first stated by Impagliazzo et al. [ILL89], is a classic instantiation of strong
randomness extractors [Vad02], based on pairwise independent hash families. Randomness extractors
are functions which take as input a non-uniform random source along with some uniform randomness,
called the seed, and output nearly uniform bits. Randomness extractors are in general extremely useful
objects in cryptography. Arguably, it is difficult to find “pure”, i.e., uniform randomness in nature, but
we may still hope to find “significant” randomness in the form of a random variable that is hard to
predict, i.e., possessing reasonable amount of statistical entropy. If we can manage to get “just a little”
pure randomness, extractors can provide us with some output which can be used as pure randomness in
practice. We will use the left-over hash lemma for extracting uniformly random bits from some random
variable in the proofs of our NIPPE and ABE constructions.
Lemma 2.1 (Left-Over Hash Lemma [ILL89]). Let R be a random variable over some set R and
let = ∈ N. Let H : R → {0, 1}= be sampled from a pairwise independent hash family H2 uniformly and
independently of R. If = = H∞(R) − 2 log 1

ε − O(1), then ∆((H(R),H), (U=,H)) ≤ ε
2 , where U= is the

uniform random variable over {0, 1}= and ∆(V,W) = 1
2
P
∂∈D
|Pr[V = ∂] − Pr[W = ∂]| is a statistical

distance between any two random variables V and W over some set D.

2.4 Overview of the Déjà Q Framework and its Extension
We now briefly explain the core techniques of the Déjà Q framework. This framework is an extension
of the classic dual system methodology [LW10, LOS+10] that eliminates the use of q-type complexity
assumptions for deriving security of bilinear-map-based cryptographic constructions. This was beyond
the reach of earlier techniques in numerous settings. However, the original Déjà Q framework of Chase
et al. [CM14] is not competent to handle advanced encryption systems such as PE, where certain secret
exponents appear in both ciphertexts and decryption keys, i.e., on both arguments of the pairing. Wee
[Wee16] has recently enriched the framework to overcome this bottleneck, employing several simple but
interesting ideas.

The Déjà Q framework elegantly utilizes the dual system technique to reduce the security of a compos-
ite order analog of a cryptographic construction, originally developed in the prime order bilinear group
setting with security under a q-type assumption, to the Subgroup Decision assumptions. To illustrate
the basic ideas of the extended Déjà Q technique, let us assume that we want to apply this technique
to prove the security of the composite order version of certain prime order PE construction secure under
the q-DBDHE assumption. Suppressing many details pertaining to randomization and subgroups, let us
assume that our composite order construction is built in the bilinear group (n,G,GT , e), where n is the
product of two primes p1 and p2. Recall that any prime order PE construction that requires the q-DBDHE
assumption for the security reduction, involves group elements of the form euι = uα

ι , for ι ∈ [2q], where
u is a generator of the group and α is a secret exponent. The group elements {euι}ι∈[2q]\{q+1} are made
public through the public parameters or the decryption keys, while euq+1 is kept secret and the statis-
tical entropy resulting from this group element is used to hide the message in the challenge ciphertext.
When instantiating the PE scheme in the composite order bilinear group, the Gp1 subgroup is used for
functionality, i.e., the composite order scheme involves the group elements euι = uα

ι , for ι ∈ [2q], where
u

$←− Gp1 and α
$←− Zn.

The extended Déjà Q framework proceeds to reduce the security of the PE construction as follows:
First, using the Gp1/Gp1p2 -Subgroup Decision (SD) assumption, which asserts that random elements
of Gp1 and those of Gp1p2 are computationally indistinguishable, euι’s are indistinguishably switched
to euι = uα

ι

ĝϑ̂1α
ι , for ι ∈ [2q], where ĝ $←− Gp2 and ϑ̂1

$←− Zn. Now, by the Chinese Remainer Theorem
(CRT), it follows that α mod p1 and α mod p2 are independent random values. Hence, α mod p2 can be
replaced by α̂1 mod p2 for a fresh α̂1

$←− Zn as long as no information about α mod p2 is leaked through
the public parameters, decryption keys, or challenge ciphertext.The framework carefully employs this fact
to further transform euι’s to euι = uα

ι

ĝϑ̂1α̂
ι
1 , for ι ∈ [2q]. Performing this two-step transition 2q times, the

framework modifies euι’s to

euι = uα
ι SD−−→ uα

ι

ĝϑ̂1α
ι CRT−−→ uα

ι

ĝϑ̂1α̂
ι
1

SD−−→ uα
ι

ĝϑ̂2α
ι

ĝϑ̂1α̂
ι
1

CRT−−→ uα
ι

ĝ

P
j∈[2]

ϑ̂j α̂
ι
j

SD−−→ . . .
CRT−−→ uα

ι

ĝ

P
j∈[2q]

ϑ̂j α̂
ι
j

,

where ϑ̂1, . . . , ϑ̂2q, α̂1, . . . , α̂2q
$←− Zn.

At this point, the framework invokes the following lemma, which is proven in [Wee16] and in [CM14]
in a more general form.

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 9

Lemma 2.2 (Core Lemma of the Déjà Q Framework [Wee16,CM14]). Consider any prime inte-
ger p and any positive integer £. For any υ1, . . . , υ£, δ1, . . . , δ£ ∈ Zp, define the function F (£)

υ1,...,υ£,δ1,...,δ£
:

[£] → Zp as F (£)
υ1,...,υ£,δ1,...,δ£

(χ) =
P
j∈[£]

υjδ
χ
j . Then, for any (possibly computationally unbounded) algo-

rithm B,����� Pr
{υj ,δj}j∈[£]

$←−Zp

�
B(1£, {F (£)

υ1,...,υ£,δ1,...,δ£
(χ)}χ∈[£]) = 1

�
− Pr

�
B(1£, {R(£)(χ)}χ∈[£]) = 1

������ ≤ O
�£2

p

�
,

where R(£) : [£]→ Zp is a truly random function.

The proof of Lemma 2.2 primarily relies on the fact that the Vandermonde matrix

�
δ1 δ2 . . . δ£
δ2
1 δ2

2 . . . δ2
£

...
...

. . .
...

δ£
1 δ£

2 . . . δ£
£

�
is in-

vertable as long as δ1, . . . , δ£ are distinct, which happens with overwhelming probability over δ1, . . . , δ£
$←−

Zp.
Going back to our example, since α̂1 mod p2, . . . , α̂2q mod p2 are distinct with overwhelming prob-

ability over the choice of α̂1, . . . , α̂2q
$←− Zn, invoking Lemma 2.2, the reduction writes euι = uα

ι

ĝR
(2q)(ι),

for ι ∈ [2q], where R(2q) : [2q] → Zp2 is a truly random function. Thus, each euι now has uniformly and
independently random Gp2 -component. Therefore, if only {euι}ι∈[2q]\{q+1} are disclosed through the pub-
lic parameters or the decryption keys, the Gp2 -component of euq+1 remains absolutely hidden. In order to
utilize the statistical entropy arising out of euq+1 for hiding the message in the challenge ciphertext, the
framework also introduces additional Gp2 -component in the challenge ciphertext during the course of the
reduction that would interact with the random Gp2 -component of euq+1 through the pairing to generate
the entropy. Finally, the framework further amplifies this entropy to completely hide the message in the
challenge ciphertext, using a strong randomness extractor [Vad02].

3 Our Non-Zero Inner-Product-Predicate Encryption Scheme
In this section, we present the first ever non-zero inner-product predicate encryption (NIPPE) construction
featuring constant number of components in both the ciphertexts and the decryption keys. Our NIPPE
scheme is built in composite order bilinear groups and its selective security is proven under the well-studied
static Subgroup Decision assumptions, using the extended Déjà Q framework.

3.1 Notion
Definition 3.1 (Non-Zero Inner-Product-Predicate Encryption: NIPPE [AL10,YAHK14]). A
(public-index) non-zero inner-product-predicate encryption (NIPPE) for vectors in Z`n, for some n, ` ∈ N,
consists of the following polynomial-time algorithms:

NIPPE.Setup(1λ, `) → (mpk,msk): The setup authority takes as input the unary encoded security pa-
rameter 1λ together with the length ` of vectors. It publishes the public parameters mpk while keeps
the master secret key msk to itself.

NIPPE.KeyGen(mpk,msk, →y)→ sk(→y): On input the public parameters mpk, the master secret key msk,
and a vector →

y ∈ Z`n, the setup authority provides a decryption key sk(→y) (which includes →

y in the
clear) to a legitimate decrypter.

NIPPE.Encrypt(mpk, →x)→ (ct(→x),ek): Taking as input the public parameters mpk along with a vector
→

x ∈ Z`n, an encrypter creates a ciphertext ct(→x) (which includes the vector →

x in the clear) and a
session key ek.

NIPPE.Decrypt(mpk, sk(→y),ct(→x))→ ek′ or ⊥: A decrypter takes as input the public parameters mpk,
a decryption key sk(→y) corresponding to some vector →

y ∈ Z`n, and a ciphertext ct(→x) corresponding
to some vector →

x ∈ Z`n. It outputs either a session key ek′ or the empty string ⊥ indicating failure.

The algorithms NIPPE.Setup, NIPPE.KeyGen, and NIPPE.Encrypt are randomized, while the algorithm
NIPPE.Decrypt is deterministic.

10 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

� Correctness: An NIPPE scheme is correct if for any security parameter λ ∈ N, any n, ` ∈ N, and any
→

x,
→

y ∈ Z`n with 〈→x, →y〉 6= 0, we have

Pr
�
(mpk,msk) $←− NIPPE.Setup(1λ, `); sk(→y) $←− NIPPE.KeyGen(mpk,msk, →y);

(ct(→x),ek) $←− NIPPE.Encrypt(mpk, →x) : NIPPE.Decrypt(mpk, sk(→y),ct(→x)) = ek
�

= 1.

� Security: The selective indistinguishability-based (SEL-IND) security notion for an NIPPE scheme is
formalized in terms of the following experiment involving a probabilistic polynomial-time adversary A
and a probabilistic polynomial-time challenger B:

• A declares a challenge vector →

x
∗ ∈ Z`n to B.

• B generates (mpk,msk) $←− NIPPE.Setup(1λ, `) and provides mpk to A.

• B creates (ct∗,ek∗0) $←− NIPPE.Encrypt(mpk, →x∗) and selects ek∗1
$←− {0, 1}λ. Next, B chooses a bit

β ∈ {0, 1} and gives (ct∗,ek∗β) to A.
• A may adaptively make any polynomial number of decryption key queries. In response to a decryption

key query of A corresponding to some vector →

y ∈ Z`n subject to the restriction that 〈→x∗, →y〉 = 0, B
forms sk(→y) $←− NIPPE.KeyGen(mpk,msk, →y) and hands sk(→y) to A.

• A eventually outputs a guess bit β′ ∈ {0, 1}.

An NIPPE is said to be SEL-IND secure if for any probabilistic polynomial-time adversary A, for any
security parameter λ, the advantage of A in the above experiment,

AdvNIPPE,SEL-IND
A (λ) =

��Pr[β = β′]− 1/2
�� ≤ negl(λ),

for some negligible function negl.

3.2 Construction
NIPPE.Setup(1λ, `) → (mpk,msk): The setup authority takes as input the unary encoded security pa-

rameter 1λ together with the length ` of vectors, and proceed as follows:
1. It first generates (n = p1p2p3,G,GT , e)

$←− G(1λ, symmetric, composite).

2. Next, it selects α, γ $←− Zn, g, u $←− Gp1 , and r̆1, . . . , r̆2`
$←− Gp3 .

3. Then, it computes h0 = gγ , hι = gα
ι , for ι ∈ [`], euι = uα

ι

r̆ι, for ι ∈ [2`], and e(g, eu`+1).
4. After that, it samples H : GT → {0, 1}λ from a pairwise independent hash family H2.
5. It publishes the public parameters mpk = ((n,G,GT , e), g, h0, {hι}ι∈[`], {euι}ι∈[2`]\{`+1}, e(g, eu`+1),
H), while keeps the master secret key msk = (p1, p2, p3, α, γ, u).

NIPPE.KeyGen(mpk,msk, →y) → sk(→y): On input the public parameters mpk = ((n,G,GT , e), g, h0,
{hι}ι∈[`], {euι}ι∈[2`]\{`+1}, e(g, eu`+1),H), the master secret key msk = (p1, p2, p3, α, γ, u), and a vector
→

y = (y1, . . . , y`) ∈ Z`n, the setup authority executes the following steps:
1. It picks r̆→

y

$←− Gp3 .

2. It computes k→
y

= u

γ
P
ι′∈[`]

yι′α
`+1−ι′

r̆→
y
.

3. It provides the decryption key sk(→y) = (→y, k→
y
) to a legitimate decrypter.

NIPPE.Encrypt(mpk, →x) → (ct(→x),ek): Taking as input the public parameters mpk = ((n,G,GT , e), g,
h0, {hι}ι∈[`], {euι}ι∈[2`]\{`+1}, e(g, eu`+1),H) along with a vector →

x = (x1, . . . , x`) ∈ Z`n, an encrypter
performs the following steps:
1. It selects θ $←− Zn.

2. It computes c1 = gθ, c2 = (h0
Q
ι∈[`]

hxιι)θ = g

(γ+
P
ι∈[`]

xια
ι)θ

, and T = e(g, eu`+1)θ.

3. It outputs the ciphertext ct(→x) = (→x, c1, c2) and the session key ek = H(T).
NIPPE.Decrypt(mpk, sk(→y),ct(→x))→ ek′ or ⊥: A decrypter takes as input the public parameters mpk =

((n,G,GT , e), g, h0, {hι}ι∈[`], {euι}ι∈[2`]\{`+1}, e(g, eu`+1),H), a decryption key sk(→y) = (→y, k→
y
), and a

ciphertext ct(→x) = (→x, c1, c2). If 〈→x, →y〉 = 0, then it outputs ⊥. Otherwise, it proceeds as follows:

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 11

1. It computes T ′ =
" e

�
c2,

Q
ι′∈[`]

euyι′`+1−ι′
�

e
�
c1, k→y

Q
ι,ι′∈[`]
ι6=ι′

euxιyι′`+1+ι−ι′
�# 1
〈
→
x,
→
y〉

.

2. It retrieves the session key as ek′ = H(T ′).

� Correctness

The correctness of the proposed NIPPE scheme can be verified as follows: Observe that for any ciphertext

ct(→x) = (→x, c1 = gθ, c2 = g

(γ+
P
ι∈[`]

xια
ι)θ

) corresponding to some vector →

x ∈ Z`n and any decryption key

sk(→y) = (→y, k→
y

= u

γ
P
ι′∈[`]

yι′α
`+1−ι′

r̆→
y
) corresponding to some vector →

y ∈ Z`n, we have

T ′ =
" e

�
c2

Q
ι′∈[`]

euyι′`+1−ι′
�

e
�
c1, k→y

Q
ι,ι′∈[`]
ι6=ι′

euxιyι′`+1+ι−ι′
�# 1
〈
→
x,
→
y〉

=
" e

�
g

(γ+
P
ι∈[`]

xια
ι)θ

, u

P
ι′∈[`]

yι′α
`+1−ι′�

e
�
g

(γ+
P
ι∈[`]

xια
ι)θ

,
Q
ι′∈[`]

r̆
yι′
`+1−ι′

�
e
�
gθ, u

γ
P
ι′∈[`]

yι′α
`+1−ι′

u

P
ι,ι′∈[`]
ι 6=ι′

xιyι′α
`+1+ι−ι′�

e
�
gθ, r̆→

y

Q
ι,ι′∈[`]
ι6=ι′

r̆
xιyι′
`+1+ι−ι′

�
1
〈
→
x,
→
y〉

=
"

e
�
g

(γ+
P
ι∈[`]

xια
ι)θ

, u

P
ι′∈[`]

yι′α
`+1−ι′�

e
�
gθ, u

γ
P
ι′∈[`]

yι′α
`+1−ι′

u

P
ι,ι′∈[`]
ι 6=ι′

xιyι′α
`+1+ι−ι′�

1
〈
→
x,
→
y〉

(by orthogonality of the subgroups of G with respect to e)

=
"
e(g, u)

θγ
P
ι′∈[`]

yι′α
`+1−ι′

e(g, u)θα`+1〈
→
x,
→
y〉e(g, u)

θ
P

ι,ι′∈[`]
ι 6=ι′

xιyι′α
`+1+ι−ι′

e(g, u)
θγ
P
ι′∈[`]

yι′α
`+1−ι′

e(g, u)

θ
P

ι,ι′∈[`]
ι 6=ι′

xιyι′α
`+1+ι−ι′

1
〈
→
x,
→
y〉

= e(g, u)θα
`+1

= e(g, eu`+1)θ = T.

Therefore, ek′ = H(T ′) = H(T) = ek.

3.3 Security Analysis
Theorem 3.1 (Security of Our NIPPE Scheme). The NIPPE construction proposed in Section 3.2 is
SEL-IND secure, as per the security model described in Section 3.1, under the SD-I and SD-II assumptions.

Proof. In order to prove Theorem 3.1, we consider a sequence of hybrid experiments. The first hybrid
corresponds to the real SEL-IND security experiment for NIPPE, described in Section 3.1, while the final
hybrid corresponds to one in which the adversary has no advantage. The sequence of hybrid experiments
follows:

Sequence of Hybrid Experiments

Hyb0: This experiment corresponds to the real SEL-IND security experiment of Section 3.1. More pre-
cisely, this experiment proceeds as follows:

• The adversary A submits a challenge vector →

x
∗ to the challenger B.

12 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

• The challenger B creates
�
mpk = ((n,G,GT , e), g, h0 = gγ , {hι = gα

ι}ι∈[`], {euι = uα
ι

r̆ι}ι∈[2`]\{`+1},

e(g, eu`+1 = uα
`+1
r̆`+1),H),msk = (p1, p2, p3, α, γ, u)

� $←− NIPPE.Setup(1λ, `) and provides mpk to A.

• To frame the challenge, B forms
�
ct∗ = (→x∗, c∗1 = gθ, c∗2 = (h0

Q
ι∈[`]

h
x∗ι
ι)θ = g

(γ+
P
ι∈[`]

x∗ια
ι)θ

),ek∗0 =

H(e(g, eu`+1)θ)
� $←− NIPPE.Encrypt(mpk, →x∗) and picks ek∗1

$←− {0, 1}λ. Next, B selects a bit β $←− {0, 1}
and gives (ct∗,ek∗β) to A.

• In response to a decryption key query of A corresponding to some vector →

y subject to the restriction

that 〈→x∗, →y〉 = 0, B creates sk(→y) = (→y, k→
y

= u

γ
P
ι′∈[`]

yι′α
`+1−ι′

r̆→
y
) $←− NIPPE.KeyGen(mpk,msk, →y) and

hands sk(→y) to A.
• Eventually, A outputs a guess bit β′ ∈ {0, 1}.

Hyb1: This experiment is analogous to Hyb0 with the exception that while setting up the NIPPE system,
B selects γ̌ $←− Zn and sets γ = γ̌ −

P
ι∈[`]

x∗ια
ι, where →

x
∗ is the challenge vector declared by A. More

formally, this experiment proceeds as follows:
• As earlier A submits a challenge vector →

x
∗ to B.

• For setting up the NIPPE system, B proceeds as follows:
1. B first generates (n = p1p2p3,G,GT , e)

$←− G(1λ, symmetric, composite).

2. Next, B picks α, γ̌ $←− Zn, g, u $←− Gp1 , and r̆1, . . . , r̆2`
$←− Gp3 .

3. Then, B sets γ = γ̌ −
P
ι∈[`]

x∗ια
ι and computes h0 = g

γ̌−
P
ι∈[`]

x∗ια
ι

= gγ , hι = gα
ι , for ι ∈ [`],euι = uα

ι

r̆ι, for ι ∈ [2`], together with e(g, eu`+1).
4. B also uniformly samples H : GT → {0, 1}λ from a pairwise independent hash family H2.
5. B gives mpk = ((n,G,GT , e), g, h0, {hι}ι∈[`], {euι}ι∈[2`]\{`+1}, e(g, eu`+1),H) to A.
• To frame the challenge, B performs the following steps:

1. B chooses θ $←− Zn.

2. Then, B computes c∗1 = gθ, c∗2 = (gθ)γ̌ = g

(γ+
P
ι∈[`]

x∗αι)θ

, together with ek∗0 = H(e(gθ, eu`+1)), and
uniformly draws ek∗1

$←− {0, 1}λ.

3. Next, B selects a bit β $←− {0, 1} and gives (ct∗ = (→x∗, c∗1, c∗2),ek∗β) to A.
• In response to a decryption key query of A corresponding to some vector →

y subject to the restriction
that 〈→x∗, →y〉 = 0, B executes the following steps:
1. B first selects r̆′→

y

$←− Gp3 .
2. Next, B computes

K→
y

= (
Q
ι′∈[`]

euyι′`+1−ι′)γ̌(
Q

ι,ι′∈[`]
ι 6=ι′

eu−x∗ι yι′`+1+ι−ι′)r̆′→y

= u

γ̌
P
ι′∈[`]

yι′α
`+1−ι′−

P
ι,ι′∈[`]
ι6=ι′

x∗ι yι′α
`+1+ι−ι′

r̆→
y

= u

γ̌
P
ι′∈[`]

yι′α
`+1−ι′−

P
ι,ι′∈[`]

x∗ι yι′α
`+1+ι−ι′

r̆→
y

= u

γ
P
ι′∈[`]

yι′α
`+1−ι′

r̆→
y
,

since 〈→x∗, →y〉 = 0. Here, r̆→
y

= (
Q
ι′∈[`]

r̆
yι′
`+1−ι′)γ̌(

Q
ι,ι′∈[`]
ι 6=ι′

r̆
−x∗ι yι′
`+1+ι−ι′)r̆′→y is uniformly distributed in Gp3 as

r̆′→
y

is so.

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 13

3. B hands the decryption key sk(→y) = (→y, k→
y
) to A.

• At the end, A outputs a guess bit β′ ∈ {0, 1}.

Hyb2: This experiment is similar to Hyb1 with the only exception that while creating the challenge, B
selects w $←− Gp1p2 and sets c∗1 = w, c∗2 = wγ̌ , and ek∗0 = H(e(w, eu`+1)).

Hyb3: This experiment is the same as Hyb2 with the exception that while setting up the NIPPE system,

B sets euι = uα
ι

ĝ

P
j∈[2`]

ϑ̂j α̂
ι
j

r̆ι, for ι ∈ [2`], where ϑ̂1, . . . , ϑ̂2`, α̂1, . . . , α̂2`
$←− Zn, ĝ $←− Gp2 . This in turn

affects the distributions of mpk, ek∗0, and all the sk(→y)’s provided to A.

Hyb4: In this experiment at the time of setting up the NIPPE system, B sets euι = uα
ι

ĝR
(2`)(ι)r̆ι, for

ι ∈ [2`], where R(2`) : [2`] → Zp2 is a truly random function. This further changes the distributions of
mpk, ek∗0, and all the sk(→y)’s given to A. The rest of the experiment proceeds identically to Hyb3.

Hyb5: This experiment is analogous to Hyb4 with the only exception that while framing the challenge,
B selects ek∗0

$←− {0, 1}λ.

Analysis

Let Adv(i)
A (λ) be the advantage of the adversary A, i.e., the absolute difference between 1/2 and A’s proba-

bility of correctly guessing the challenge bit, in Hybi, for i ∈ {0, . . . , 5}. By definition, AdvNIPPE,SEL-IND
A (λ) ≡

Adv(0)
A (λ). Also, note that in Hyb5, both ek∗0 and ek∗1 are uniformly distributed over {0, 1}λ. Therefore,

the view of A in Hyb5 is statistically independent of the challenge bit β $←− {0, 1} selected by B. Hence,
Adv(5)

A (λ) = 0. Moreover, it readily follows that the distributions of mpk, ct∗, ek∗0, and all the sk(→y)’s
provided to A in Hyb0 and those in Hyb1 are identical. Thus, the view of A in Hyb0 and that in Hyb1 are
also the same. Therefore, Adv(0)

A (λ) = Adv(1)
A (λ). Hence, we have

AdvNIPPE,SEL-IND
A (λ) ≤

P
i∈[4]

��Adv(i)
A (λ)− Adv(i+1)

A (λ)
��. (3.1)

Lemmas 3.1–3.4 will show that the RHS of Eq. (3.1) is negligible. Hence, Theorem 3.1 follows. ut

Lemma 3.1. If the SD-I assumption holds, then for any probabilistic polynomial-time adversary A, for
any security parameter λ, |Adv(1)

A (λ)− Adv(2)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. Suppose that there exists a PPT adversary A for which |Adv(1)
A (λ) − Adv(2)

A (λ)| is non-negligible.
We construct a probabilistic polynomial-time algorithm B that attempts to solve the SD-I problem using
A as a sub-routine. The description of B follows:

• B receives an instance of the SD-I problem$β̂ = ((n,G,GT , e), g, ğ,<β̂), where (n = p1p2p3,G,GT , e)
$←−

G(1λ, symmetric, composite), g $←− Gp1 , ğ $←− Gp3 , and <β̂ = gσ
$←− Gp1 or gσ ĝσ̂ $←− Gp1p2 according

as β̂ = 0 or 1 with ĝ
$←− Gp2 and σ, σ̂

$←− Zn. B then initializes A on input 1λ and obtains a challenge
vector →

x
∗ of length ` from A.

• In order to setup the NIPPE system, B proceeds as follows:
1. B first selects α, γ̌, µ, ν̆1, . . . , ν̆2`

$←− Zn and sets u = gµ, r̆ι = ğν̆ι , for ι ∈ [2`].

2. Next, B computes h0 = g

γ̌−
P
ι∈[`]

x∗ια
ι

, hι = gα
ι , for ι ∈ [`], euι = uα

ι

r̆ι, for ι ∈ [2`], and e(g, eu`+1).
3. Then, B uniformly samples H : GT → {0, 1}λ from a pairwise independent hash family H2.
4. B provides A with mpk = ((n,G,GT , e), g, h0, {hι}ι∈[`], {euι}ι∈[2`]\{`+1}, e(g, eu`+1),H) to A.
• To prepare the challenge B proceeds as follows:

1. B first sets c∗1 = <β̂ , c∗2 = <γ̌
β̂
, together with ek∗0 = H(e(<β̂ , eu`+1)), and selects ek∗1

$←− {0, 1}λ.

2. Next, B chooses a bit β $←− {0, 1} and gives (ct∗ = (→x∗, c∗1, c∗2),ek∗β) to A.

14 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

• In response to a decryption key query of A corresponding to some vector →

y of length ` subject to the
restriction that 〈→x∗, →y〉 = 0, B executes the following steps:

1. B first selects ν̆′→
y

$←− Zn and computes r̆′→
y

= ğ
ν̆′→
y .

2. Then, B computes k→
y

= (
Q
ι′∈[`]

euyι′`+1−ι′)γ̌(
Q

ι,ι′∈[`]
ι 6=ι′

eu−x∗ι yι′`+1+ι−ι′)r̆′→y exactly as in Hyb1.

3. B hands sk(→y) = (→y, k→
y
) to A.

• Eventually, A outputs a guess bit β′ ∈ {0, 1}. If β = β′, then B outputs 1. Otherwise, B outputs 0.

Observe that if β̂ = 0, i.e., <β̂ = gσ
$←− Gp1 , then B perfectly simulates Hyb1 by implicitly viewing

θ = σ. On the other hand, if β̂ = 1, i.e., <β̂ = gσ ĝσ̂
$←− Gp1p2 , then B perfectly simulates Hyb2 by viewing

w = <β̂ . This completes the proof of Lemma 3.1. ut

Lemma 3.2. If the SD-II assumption holds, then for any probabilistic polynomial-time adversary A, for
any security parameter λ, |Adv(2)

A (λ)− Adv(3)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. In order to prove Lemma 3.2, we consider a sequence of 4` intermediate hybrid experiments,
namely, {Hyb2,τ,0,Hyb2,τ,1}τ∈[2`] between Hyb2 and Hyb3 as follows:

Sequence of Intermediate Hybrids between Hyb2 and Hyb3

Hyb2,τ,0(τ ∈ [2`]): This experiment is similar to Hyb2 except that while setting up the NIPPE system,

B sets euι = uα
ι

ĝ

ϑ̂τα
ι+

P
j∈[τ−1]

ϑ̂j α̂
ι
j

r̆ι, for ι ∈ [2`], where ϑ̂1, . . . , ϑ̂τ , α̂1, . . . , α̂τ−1
$←− Zn, ĝ $←− Gp2 , and the

other quantities are the same as in Hyb2.

Hyb2,τ,1(τ ∈ [2`]): This experiment is identical to Hyb2,τ,0 except that for all ι ∈ [2`], B replaces ĝϑ̂ται

by ĝϑ̂τ α̂
ι
τ in the expression of euι, where α̂τ

$←− Zn, i.e., in other words, this experiment is analogous to

Hyb2 with the exception that B sets euι = uα
ι

ĝ

P
j∈[τ]

ϑ̂j α̂
ι
j

r̆ι, where ϑ̂1, . . . , ϑ̂τ , α̂1, . . . , α̂τ
$←− Zn, ĝ $←− Gp2 ,

and the other quantities are the same as in Hyb2.

Analysis

Let Adv(2,τ,eb)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference between 1/2

and A’s probability of correctly guessing the challenge bit selected by the challenger B, in Hyb2,τ,eb, for
τ ∈ [2`],eb ∈ {0, 1}. Clearly, Hyb2,0,1 coincides with Hyb2 while Hyb2,2`,1 corresponds to Hyb3. Hence,
Adv(2)

A (λ) ≡ Adv(2,0,1)
A (λ) and Adv(3)

A (λ) ≡ Adv(2,2`,1)
A (λ). Therefore, we have��Adv(2)

A (λ)− Adv(3)
A (λ)

�� ≤ P
τ∈[2`]

��Adv(2,(τ−1),1)
A (λ)− Adv(2,τ,0)

A (λ)
��+

P
τ∈[2`]

��Adv(2,τ,0)
A (λ)− Adv(2,τ,1)

A (λ)
��.

(3.2)
Now, observe that for all τ ∈ [2`], Adv(2,τ,0)

A (λ) = Adv(2,τ,1)
A (λ). This follows from the fact that α mod p1

and α mod p2 are independent random values by the Chinese Remainder Theorem, as well as α mod p2
is completely hidden to the adversary A given mpk, (ct∗,ek∗β), and sk(→y)’s queried by A. Therefore, α
mod p2 can be replaced by ατ mod p2 for a fresh ατ

$←− Zn. Moreover, Claim 3.1 shows that the first
term in the RHS of Eq. (3.2) is negligible. Hence, Lemma 3.2 follows. ut

Claim 3.1. If the SD-II assumption holds, then for any probabilistic polynomial-time adversary A, for
any security parameter λ, |Adv(2,(τ−1),1)

A (λ)− Adv(2,τ,0)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. Suppose that there exists a probabilistic polynomial-time adversaryA for which |Adv(2,(τ−1),1)
A (λ)−

Adv(2,τ,0)
A (λ)| is non-negligible. Below we construct a probabilistic polynomial-time algorithm B that

attempts to solve the SD-II problem using A as a sub-routine.

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 15

• B receives an instance of the SD-II problem $β̂ = ((n,G,GT , e), g, ğ, v, s,<β̂), where (n = p1p2p3,G,

GT , e)
$←− G(1λ, symmetric, composite), g $←− Gp1 , ğ $←− Gp3 , v = gσ ĝσ̂

$←− Gp1p2 , s = ĝϕ̂ğϕ̆
$←−

Gp2p3 , and <β̂ = gω ğω̆
$←− Gp1p3 or gω ĝω̂ ğω̆ $←− G according as β̂ = 0 or 1 with ĝ

$←− Gp2 , and

σ, σ̂, ϕ̂, ϕ̆, ω, ω̂, ω̆
$←− Zn. B then initializes A on input 1λ and obtains a challenge vector →

x
∗ of length

` from A.
• In order to setup the NIPPE system, B proceeds as follows:

1. B first selects α, α̂1, . . . , α̂τ−1, ϑ̂
′
1, . . . , ϑ̂

′
τ−1, γ̌, ν̆

′
1, . . . , ν̆

′
2`

$←− Zn, and sets r̆′ι = ğν̆
′
ι , for ι ∈ [2`].

2. After that, B computes h0 = g

γ̌−
P
ι∈[`]

x∗ια
ι

, hι = gα
ι , for ι ∈ [`], euι = <αι

β̂
s

P
j∈[τ−1]

ϑ̂′j α̂
ι
j

r̆′ι, for ι ∈ [2`],
and e(g, eu`+1).

3. Then, B uniformly samples H : GT → {0, 1}λ from a pairwise independent hash family H2.
4. B provides A with mpk = ((n,G,GT , e), g, h0, {hι}ι∈[`], {euι}ι∈[2`]\{`+1}, e(g, eu`+1),H).
• To frame the challenge, B executes the following steps:

1. B first sets c∗1 = v, c∗2 = vγ̌ , and ek∗0 = H(e(v, eu`+1), while selects ek∗1
$←− {0, 1}λ.

2. Then, B chooses a bit β $←− {0, 1} and gives (ct∗ = (→x∗, c∗1, c∗2),ek∗β) to A.
• In response to a decryption key query of A corresponding to some vector →

y of length ` subject to the
restriction that 〈→x∗, →y〉 = 0, B performs the following steps:
1. B first selects ν̆′→

y

$←− Zn and sets r̆′→
y

= ğ
ν̆′→
y .

2. Then, B computes k→
y

= (
Q
ι′∈[`]

euyι′`+1−ι′)γ̌(
Q

ι,ι′∈[`]
ι 6=ι′

eu−x∗ι yι′`+1+ι−ι′)r̆′→y exactly as in Hyb2,(τ−1),1.

3. B hands sk(→y) = (→y, k→
y
) to A.

• Eventually, A outputs a guess bit β′ ∈ {0, 1}. If β = β′, then B outputs 1. Otherwise, B outputs 0.

Observe that in case β̂ = 0, i.e., <β̂ = gω ğω̆
$←− Gp1p3 , then for all ι ∈ [2`], euι = (gω)αι ĝ

P
j∈[τ−1]

ϕ̂ϑ̂′j α̂
ι
j

r̆ι,

where r̆ι = (ğω̆)αι(ğϕ̆)

P
j∈[τ−1]

ϑ̂′j α̂
ι
j

r̆′ι, and thus B perfectly simulates Hyb2,(τ−1),1. On the other hand, if

β̂ = 1, i.e., <β̂ = gω ĝω̂ ğω̆
$←− G, then for all ι ∈ [2`], euι = (gω)αι ĝ

ω̂αι+
P

j∈[τ−1]

ϕ̂ϑ̂′j α̂
ι
j

r̆ι, where r̆ι =

(ğω̆)αι(ğϕ̆)

P
j∈[τ−1]

ϑ̂′j α̂
ι
j

r̆′ι and hence B perfectly simulates Hyb2,τ,0. This completes the proof of Claim 3.1.
ut

Lemma 3.3. For any (possibly computationally unbounded) adversary A, for any security parameter λ,
|Adv(3)

A (λ)− Adv(4)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. The difference between Hyb3 and Hyb4 is that for all ι ∈ [2`], euι is set as euι = uα
ι

ĝ

P
j∈[2`]

ϑ̂j α̂
ι
j

r̆ι

in Hyb3, whereas, euι = uα
ι

ĝR
(2`)(ι)r̆ι in Hyb4, where ϑ̂1, . . . , ϑ̂2`, α̂1, . . . , α̂2`

$←− Zn, and R(2`) : [2`] →
Zp2 is a truly random function. Hence, Lemma 3.3 readily follows from the core lemma of the Déjà Q
framework (Lemma 2.2) stated in Section 2.4 and the fact that α̂1 mod p2, . . . , α̂2` mod p2 are distinct
with overwhelming probability over α̂1, . . . , α̂2`

$←− Zn.
ut

Lemma 3.4. For any (possibly computationally unbounded) adversary A, for any security parameter λ,
|Adv(4)

A (λ)− Adv(5)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. The only difference between Hyb4 and Hyb5 is that while preparing the challenge, B selects ek∗0
$←−

{0, 1}λ in Hyb5 rather than computing ek∗0 = H(e(w, eu`+1)) as in Hyb4, where w
$←− Gp1p2 , eu`+1 =

uα
ι

ĝR
(2`)(`+1)r̆`+1, and H : GT → {0, 1}λ is uniformly sampled from a pairwise independent hash family

H2. Now, note that in Hyb4, while creating the decryption keys sk(→y) = (→y, k→
y
) queried by A, k→

y
’s are

16 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

formed in the exact same fashion to Hyb1 as k→
y

= (
Q
ι′∈[`]

euyι′`+1−ι′)γ̌(
Q

ι,ι′∈[`]
ι 6=ι′

eu−x∗ι yι′`+1+ι−ι′)r̆′→y , which depend oneu1, . . . , eu`, eu`+2, . . . , eu2`. Also, the public parameters mpk provided to A includes eu1, . . . , eu`, eu`+2, . . . , eu2`
and e(g, eu`+1) = e(g, uαι) (by the orthogonality property of the subgroups with respect to e). Thus,
the decryption keys sk(→y) and the public parameters mpk given to A only reveal information about
R(2`)(1), . . . ,R(2`)(`),R(2`)(`+ 2), . . . ,R(2`)(2`), and leak no information about R(2`)(`+ 1). Therefore,

the quantity, from which ek∗0 is derived in Hyb4, namely, T = e(w, eu`+1) = e(w, uα`+1) · e(w, ĝR
(2`)(`+1))

has min-entropy H∞(T) = log p2 = Θ(λ) coming from R(2`)(` + 1). This holds as long as the Gp2-
component of w is not the identity element of the group, which happens with probability 1− 1

p2
. Hence,

with overwhelming probability the relation λ = H∞(T) − 2 log 1
ε − O(1) is satisfied by ε = 2−Ω(λ).

Further, note that H : GT → {0, 1}λ is sampled from a pairwise independent hash family H2 uniformly
and independently of T . Thus, by the left-over hash lemma (Lemma 2.1) stated in Section 2.3, it follows
that the statistical distance ∆((H(T),H), (Uλ,H)) ≤ 2−Ω(λ), where Uλ is the uniform random variable
over {0, 1}λ. Thus, in other words, ek∗0 generated in Hyb4 is nearly uniformly distributed over {0, 1}λ.
Hence, Lemma 3.4 follows. ut

4 Our Attribute-Based Encryption Scheme
Here, we present an attribute-based encryption (ABE) scheme for monotone span programs attaining
the least number of components in the ciphertext among existing similar works. Our ABE scheme is
developed in composite order bilinear groups and its selective security is proven under the Subgroup
Decision assumptions, which are the most well-studied static assumptions in this setting, through the
enriched Déjà Q technique.

4.1 Notion
Definition 4.1 (Monotone Span Programs or Monotone Access Structures: MAS [Bei96,
LOS+10,LW11]). Let U ⊂ Zn be an attribute universe containing ` attributes (say), for some `, n ∈ N.
Without loss of generality, let us denote the ` attributes of U as 1, . . . , `. A monotone span program or
monotone access structure (MAS) over U is a labeled matrix A = (M , ρ), where M ∈ Zm×m′n , for some
m,m′ ∈ N, and ρ is a labeling of the rows of M with attributes in U, i.e., ρ : [m] → U. Let Γ ⊆ U be
an attribute set. Let for all ι ∈ [m],

→
M ι ∈ Zm′n denotes the ιth row of the matrix M . Consider the set

IΓ = {ι ∈ [m] | ρ(ι) ∈ U} ⊆ [m]. The MAS A = (M , ρ) accepts Γ if and only if there exists {ηι}ι∈IΓ ⊂ Zn
such that

→

1 =
P
ι∈IΓ

ηι
→
M ι, where

→

1 = (1, 0, . . . , 0) ∈ Zm′n .

Definition 4.2 (Linear Secret-Sharing Scheme: LSS [Bei96,LOS+10,LW11]). Let U = {1, . . . , `} ⊂
Zn be an attribute universe. A linear secret-sharing (LSS) scheme for the set A of MAS’s over U consists
of the following two polynomial-time algorithms:

LSS.Distribute(A = (M , ρ), ς) → {κι}ι∈[m]: This algorithm takes as input an MAS A = (M , ρ) ∈ A,
where M ∈ Zm×m′n and ρ : [m] → U is a labeling of the rows of M , along with a secret ς ∈ Zn to
be shared. It first selects y2, . . . , ym′

$←− Zn, and sets →

y = (ς, y2, . . . , ym′) ∈ Zm′n . Next, it computes
κι =

→
M ι

→

y
ᵀ ∈ Zn, for ι ∈ [m], where

→
M ι represents the ιth row of M . The share associated with the

attribute ρ(ι) is defined to be κι, for ι ∈ [m]. It outputs the set {κι}ι∈[m] of the m shares.
LSS.Reconstruct(A = (M , ρ), Γ)→ (IΓ , {ηι}ι∈IΓ): This algorithm takes as input an MAS A = (M , ρ) ∈
A, where M ∈ Zm×m′n , m,m′ ∈ N, and ρ : [m]→ U is the labeling of the rows of M , together with a
set Γ ⊆ U of attributes accepted by A . Since, A accepts Γ , there exists IΓ ⊆ [m], and {ηι}ι∈IΓ ⊂ Zn
such that

→

1 =
P
ι∈IΓ

ηι
→
M ι, where

→
M ι denotes the ιth row of M . This algorithm determines and outputs

IΓ and {ηι}ι∈IΓ .

Consider MAS A = (M , ρ) ∈ A, where M ∈ Zm×m′n and ρ : [m] → U is the labeling of the rows
of M with attributes in U. Observe that for any Γ ⊂ U accepted by A and any secret ς ∈ Zn, if

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 17

{κι}ι∈[m]
$←− LSS.Distribute(A = (M , ρ), ς) and (IΓ , {ηι}ι∈IΓ) $←− LSS.Reconstruct(A = (M , ρ), Γ), thenP

ι∈IΓ
ηικι =

P
ι∈IΓ

ηι
→
M ι

→

y
ᵀ =

→

1→yᵀ = ς.

We will use the following result on LSS schemes in our security proof.
Lemma 4.1 ([Bei96]). Consider an MAS A = (M , ρ) over an attribute universe U = {1, . . . , `} ⊂ Zn,
where M ∈ Zm×m′n and ρ : [m] → U is the labeling of the rows of M with attributes in U. Let Γ ⊆ U
be a set of attributes. If A does not accept Γ , then there exists a vector

→

d = (−1, d2, . . . , dm′) ∈ Zm′n for
which

→
M ι

→

d
ᵀ

= 0, for all ι ∈ IΓ = {ι ∈ [m] | ρ(ι) ∈ Γ}. Moreover, the vector
→

d can be determined by a
polynomial-time algorithm.

Definition 4.3 (Attribute-Based Encryption: ABE [ALDP11,YAHK14,Att14]). Let U = {1, . . . , `} ⊂
Zn be an attribute universe and A be a family of MAS’s over U. A (key-policy) attribute-based encryp-
tion (ABE) scheme for attributes in U supporting MAS’s in A consists of the following polynomial-time
algorithms:

ABE.Setup(1λ,U)→ (mpk,msk): The setup authority takes as input the unary encoded security param-
eter 1λ along with the attribute universe U. It publishes the public parameters mpk, while keeps the
master secret key msk to itself.

ABE.KeyGen(mpk,msk,A) → sk(A): Taking as input the public parameters mpk, the master secret
key msk, and an MAS A = (M , ρ) ∈ A, the setup authority creates a decryption key sk(A) (which
includes the description of the MAS A in the clear) to a legitimate decrypter.

ABE.Encrypt(mpk, Γ) → (ct(Γ),ek): On input the public parameters mpk together with an attribute
set Γ ⊆ U, an encrypter prepares a ciphertext ct(Γ) (which includes the attribute set Γ in the clear)
and a session key ek.

ABE.Decrypt(mpk, sk(A),ct(Γ))→ ek′ or ⊥: A decrypter takes as input the public parameters mpk,
a decryption key sk(A) corresponding to its MAS A = (M , ρ) ∈ A, and a ciphertext ct(Γ) created
for the attribute set Γ ⊆ U. It either outputs a session key ek′ or outputs ⊥ indicating failure.

The algorithms ABE.Setup, ABE.KeyGen, and ABE.Encrypt are randomized, while the algorithm ABE.Decrypt
is deterministic.

� Correctness: An ABE is correct if for any security parameter λ, any n ∈ N, any attribute universe
U ⊂ Zn, any MAS A = (M , ρ) over U, and any attribute set Γ ⊆ U accepted by A , we have

Pr
�
(mpk,msk) $←− ABE.Setup(1λ,U); sk(A) $←− ABE.KeyGen(mpk,msk,A);

(ct(Γ),ek) $←− ABE.Encrypt(mpk, Γ) : ABE.Decrypt(mpk, sk(A),ct(Γ)) = ek
�

= 1.

� Security: The selective indistinguishability-based (SEL-IND) security of an ABE scheme is formal-
ized in terms of the following experiment involving a probabilistic polynomial-time adversary A and a
probabilistic polynomial-time challenger B:

• A declares a challenge attribute set Γ ∗ ⊆ U to B.
• B generates (mpk,msk) $←− ABE.Setup(1λ,U) and provides mpk to A.

• To prepare the challenge, B first creates (ct∗,ek∗0) $←− ABE.Encrypt(mpk, Γ ∗) and samples ek∗1
$←−

{0, 1}λ. Next, B selects a bit β ∈ {0, 1} and gives (ct∗,ek∗β) to A.
• A may adaptively query any polynomial number of decrytion keys. In response to a decryption key

query of A corresponding to MAS A = (M , ρ) ∈ A subject to the restriction that A does not accept
Γ ∗, B creates sk(A) $←− ABE.KeyGen(mpk,msk,A) and hands sk(A) to A.
• Finally, A outputs a guess bit β′ ∈ {0, 1}.

An ABE scheme is said to be SEL-IND secure if for any probabilistic polynomial-time adversary A, for
any security parameter λ, the advantage of A in the above experiment,

AdvABE,SEL-IND
A (λ) =

��Pr[β = β′]− 1/2
�� ≤ negl(λ),

for some negligible function negl.

18 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

4.2 Construction
ABE.Setup(1λ,U)→ (mpk,msk): The setup authority takes as input the unary encoded security param-

eter 1λ along with an attribute universe U = {1, . . . , `}. It proceeds as follows:

1. It first generates (n = p1p2p3,G,GT , e)
$←− G(1λ, symmetric, composite).

2. Next, it selects µ, α, γ $←− Zn, g $←− Gp1 , and ğ, r̆0, r̆1, . . . , r̆`+1
$←− Gp3 .

3. Then, it computes h0 = gγ r̆0, u = gµ, euι′ = uα
ι′

r̆ι′ , for ι′ ∈ [`+ 1], and e(g, eu`+1).
4. After that, it uniformly samples H : GT → {0, 1}λ from a pairwise independent hash family H2.
5. It publishes the public parameters mpk = ((n,G,GT , e), g, ğ, h0, {euι′}ι′∈U, e(g, eu`+1),H), while

keeps the master secret key msk = (p1p2p3, µ, α, γ).
ABE.KeyGen(mpk,msk,A) → sk(A): On input the public parameters mpk = ((n,G,GT , e), g, ğ, h0,
{euι′}ι′∈U, e(g, eu`+1),H), the master secret key msk = (p1p2p3, µ, α, γ), and an MAS A = (M , ρ)
belonging to the family A of MAS’s over U, where M ∈ Zm×m′n and ρ : [m]→ U is the labeling of the
rows of M with attributes in U, the setup authority executes the following steps:
1. It first computes m shares {κι}ι∈[m]

$←− LSS.Distribute(A = (M , ρ), ς = µα`+1) of the secret
ς = µα`+1.

2. For ι ∈ [m], it performs the following:
a) It picks ℘ι

$←− Zn, r̆′ι, r̆′ι,ι′
$←− Gp3 , for ι′ ∈ U\{ρ(ι)}.

b) It computes kι = gκιg(γ+µαρ(ι))℘ι r̆′ι, k′ι = g℘ι , k′′ι,ι′ = gµα
ι′℘ι r̆′ι,ι′ , for ι′ ∈ U\{ρ(ι)}.

3. It provides the decryption key sk(A) = (A , {kι, k′ι, {k′′ι,ι′}ι′∈U\{ρ(ι)}}ι∈[m]) to a legitimate de-
crypter.

ABE.Encrypt(mpk, Γ) → (ct(Γ),ek): On input the public parameters mpk = ((n,G,GT , e), g, ğ, h0,
{euι′}ι′∈U, e(g, eu`+1),H) along with an attribute set Γ ⊆ U, an encrypter operates as follows:

1. It picks θ, ν̆Γ
$←− Zn, and sets r̆Γ = ğν̆Γ .

2. It sets c1 = gθ, c2 = (h0
Q
ι′∈Γ

euι′)θ r̆Γ = g
(γ+µ

P
ι′∈Γ

αι
′
)θ

(r̆0
Q
ι′∈Γ

r̆ι′)θ r̆Γ , and T = e(g, eu`+1)θ.

3. It outputs the ciphertext ct(Γ) = (Γ, c1, c2) and the session key ek = H(T).
ABE.Decrypt(mpk, sk(A),ct(Γ)) → ek′ or ⊥: A decrypter takes as input the public pa-

rameters mpk = ((n,G,GT , e), g, ğ, h0, {euι′}ι′∈U, e(g, eu`+1),H), its decryption key sk(A) =
(A , {kι, k′ι, {k′′ι,ι′}ι′∈U\{ρ(ι)}}ι∈[m]) corresponding to its legitimate MAS A = (M , ρ) ∈ A, where
M ∈ Zm×m′n and ρ : [m] → U is a labeling of the rows of M with attributes in U, together with a
ciphertext ct(Γ) = (Γ, c1, c2) prepared for some attribute set Γ ⊆ U. If A does not accept Γ , then
it outputs ⊥. Otherwise, it executes the following steps:

1. It first determines (IΓ , {ηι}ι∈IΓ) $←− LSS.Reconstruct(A = (M , ρ), Γ)).

2. Next, it computes b1 =
Q
ι∈IΓ

(kι
Q

ι′∈Γ\{ρ(ι)}
k′′ι,ι′)ηι , b2 =

Q
ι∈IΓ

(k′ι)ηι , and T ′ = e(c1, b1)
e(c2, b2) .

3. It retrieves the session key as ek′ = H(T ′).

� Correctness: The correctness of the proposed ABE scheme can be verified as follows: Consider any
decryption key

sk(A) =
�
A = (M , ρ),

¦
kι = gκιg(γ+µαρ(ι))℘ι r̆′ι, k

′
ι = g℘ι , {k′′ι,ι′ = gµα

ι′℘ι r̆′ι,ι′}ι′∈U\ρ(ι)
©
ι∈[m]

�
corresponding to some MAS A = (M , ρ) ∈ A, where M ∈ Zm×m′n and ρ : [m] → U is the labeling

of the rows of M with attributes in U. Let ct(Γ) = (Γ, c1 = gθ, c2 = g
(γ+µ

P
ι′∈Γ

αι
′
)θ

(r̆0
Q
ι′∈Γ

r̆ι′)θ r̆Γ)

be a ciphertext prepared for some attribute set Γ ⊆ U accepted by the MAS A . Since, A accepts Γ ,
by the correctness of the LSS scheme,

P
ι∈IΓ

ηικι = µα`+1, where (IΓ , {ηι}ι∈IΓ) $←− LSS.Reconstruct(A =

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 19

(M , ρ), Γ)). Thus, we have

b1 =
Q
ι∈IΓ

�
kι

Q
ι′∈Γ\{ρ(ι)}

k′′ι,ι′
�ηι

=
Q
ι∈IΓ

�
gκιg(γ+µαρ(ι))℘ι r̆′ι

Q
ι′∈Γ\{ρ(ι)}

gµα
ι′℘ι r̆′ι,ι′

�ηι
= g

P
ι∈IΓ

ηικι

g

P
ι∈IΓ

¦
ηι℘ι

�
γ+µ

P
ι′∈Γ

αι
′
�© Q

ι∈IΓ

�
r̆′ι

Q
ι′∈Γ\{ρ(ι)}

r̆′ι,ι′
�ηι

= gµα
`+1
g

P
ι∈IΓ

¦
ηι℘ι

�
γ+µ

P
ι′∈Γ

αι
′
�© Q

ι∈IΓ

�
r̆′ι

Q
ι′∈Γ\{ρ(ι)}

r̆′ι,ι′
�ηι

= uα
`+1
g

P
ι∈IΓ

¦
ηι℘ι

�
γ+µ

P
ι′∈Γ

αι
′
�© Q

ι∈IΓ

�
r̆′ι

Q
ι′∈Γ\{ρ(ι)}

r̆′ι,ι′
�ηι

, since u = gµ.

On the other hand,

b2 =
Q
ι∈IΓ

(k′ι)ηι =
Q
ι∈IΓ

(g℘ι)ηι = g

P
ι∈IΓ

ηι℘ι

.

Therefore,

T ′ = e(c1, b1)
e(c2, b2) =

e
�
gθ, uα

`+1
g

P
ι∈IΓ

{ηι℘ι(γ+µ
P
ι′∈Γ

αι
′
)}�

e
�
g

(γ+µ
P
ι′∈Γ

αι′)θ
, g

P
ι∈IΓ

ηι℘ι�
(by orthogonality of the subgroups of G with respect to e)

= e(g, u)θα`+1
e(g, g)

(
P
ι∈IΓ

ηι℘ι)(γ+µ
P
ι′∈Γ

αι
′
)θ

e(g, g)
(
P
ι∈IΓ

ηι℘ι)(γ+µ
P
ι′∈Γ

αι′)θ

= e(g, u)θα
`+1

= e(g, eu`+1)θ = T.

Hence, ek′ = H(T ′) = H(T) = ek.

4.3 Security Analysis
Theorem 4.1 (Security of Our ABE Scheme). The ABE scheme proposed in Section 4.2 is SEL-IND
secure, as per the security model described in Section 4.1, under the SD-I and SD-II assumptions.

Proof. In order to prove Theorem 4.1, we again consider a sequence of hybrid experiments. The first
hybrid corresponds to the real SEL-IND security experiment described in Section 4.1 and the final hybrid
corresponds to one in which the adversary has no advantage. The sequence of hybrid experiments is
described below:

Sequence of Hybrid Experiments

Hyb0: This experiment corresponds to the real SEL-IND security experiment described in Section 4.1.
More precisely, this experiment proceeds as follows:

• The adversary A submits a challenge attribute set Γ ∗ ⊆ U to the challenger B.

• B forms
�
mpk = ((n = p1p2p3,G,GT , e), g, ğ, h0 = gγ r̆0, {euι′ = uα

ι′

r̆ι′}ι′∈U, e(g, eu`+1 = uα
`+1
r̆`+1),H),

msk = (p1, p2, p3, µ, α, γ)
� $←− ABE.Setup(1λ,U = {1, . . . , `}) and provides A with mpk.

20 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

• In order to create the challenge for A, B begins by preparing
�
ct∗ = (Γ ∗, c∗1 = gθ, c∗2 =

g
(γ+µ

P
ι′∈Γ∗

αι
′
)θ
r̆Γ∗),ek∗0 = H(e(g, eu`+1 = gµα

`+1
r̆`+1)θ)

� $←− ABE.Encrypt(mpk, Γ ∗) and samples

ek∗1
$←− {0, 1}λ. Next, B selects a bit β $←− {0, 1} and gives (ct∗,ek∗β) to A.

• In response to a decryption key query of A corresponding to some MAS A = (M , ρ) ∈ A, where
M ∈ Zm×m′n and ρ : [m] → U is the labeling of the rows of M with attributes in U, subject to
the restriction that A does not accept Γ ∗, B generates sk(A) =

�
A , {kι = gκιg(γ+µαρ(ι))℘ι r̆′ι, k

′
ι =

g℘ι , {k′′ι,ι′ = gµα
ι′℘ι r̆′ι,ι′}ι′∈U\{ρ(ι)}}ι∈[m]

� $←− ABE.KeyGen(mpk,msk,A) and hands sk(A) to A.

• At the end, A outputs a guess bit β′ ∈ {0, 1}.

Hyb1: This experiment proceeds in the following way:

• A submits a challenge attribute set Γ ∗ ⊆ U to B.
• To setup the ABE system, B operates as follows:

1. B first generates (n = p1p2p3,G,GT , e)
$←− G(1λ, symmetric, composite).

2. Then, B selects µ, α, γ̌ $←− Zn, g $←− Gp1 , ğ, r̆′0, r̆1, . . . , r̆2`
$←− Gp3 , and sets γ = γ̌ − µ

P
ι′∈Γ∗

αι
′ ,

u = gµ, euι′ = uα
ι′

r̆ι′ , for ι′ ∈ [2`].

3. Next, B forms h0 = gγ̌(
Q

ι′∈Γ∗
euι′)−1r̆′0 = g

γ̌−
P
ι′∈Γ∗

αι
′

(
Q

ι′∈Γ∗
r̆ι′)−1r̆′0 = gγ r̆0, where r̆0 = (

Q
ι′∈Γ∗

r̆ι′)−1r̆′0,

and e(g, eu`+1).
4. After that, B uniformly samples H : GT → {0, 1}λ from a pairwise independent hash family H2.
5. B provides A with mpk = ((n,G,GT , e), g, ğ, h0, {euι′}ι′∈U, e(g, eu`+1),H).

• In order to frame the challenge, B proceeds as follows:

1. First, B chooses θ ∈ Zn and r̆Γ∗
$←− Gp3 .

2. It forms c∗1 = gθ, c∗2 = (gθ)γ̌(r̆′0)θ r̆Γ∗ = g
(γ+

P
ι′∈Γ∗

αι
′
)θ

(r̆0
Q

ι′∈Γ∗
r̆ι′)θ r̆Γ∗ , ek∗0 = H(e(gθ, eu`+1)), and

selects ek∗1
$←− {0, 1}λ.

3. Next, B picks a bit β $←− {0, 1} and gives (ct∗ = (Γ ∗, c∗1, c∗2),ek∗β) to A.

• In response to a decryption key query of A corresponding to an MAS A = (M , ρ) ∈ A, where
M ∈ Zm×m′n and ρ : [m] → U is the labeling of the rows of M with attributes in U, subject to the
restriction that A does not accept Γ ∗, B executes the following steps:
1. Since, A = (M , ρ) does not accept Γ ∗, thanks to Lemma 4.1 of Section 4.1, B can determine

in polynomial time
→

d = (−1, d2, . . . , dm′) ∈ Zm′n such that
→
M ι

→

d
ᵀ

= 0, for all row vectors
→
M ι of

M such that ι ∈ IΓ∗ , where IΓ∗ = {ι ∈ [m] : ρ(ι) ∈ Γ ∗}. B picks y′2, . . . , y′m′
$←− Zn and sets

→

y = (µα`+1,−µα`+1d2 + y′2, . . . ,−µα`+1dm′ + y′m′) = −µα`+1
→

d+ →

y
′, where →

y
′ = (0, y′2, . . . , y′m′) ∈

Zm′n . Thus, for any ι ∈ [m],
→
M ι

→

y
ᵀ = −µα`+1

→
M ι

→

d
ᵀ

+
→
M ι

→

y
′ᵀ.

2. For all ι ∈ [m], B generates the decryption key components corresponding to the ιth row of M as
follows:

i) (ι ∈ IΓ ∗): In this case, B performs the following:

a) B computes the share κι =
→
M ι

→

y
′ᵀ =

→
M ι

→

y
ᵀ corresponding to the ιth row of M , as

→
M ι

→

d
ᵀ

= 0 in
this case.

b) B selects ℘′ι
$←− Zn, r̆′′ι , r̆′′ι,ι′

$←− Gp3 , for ι′ ∈ U\{ρ(ι)}, and sets ℘ι = ℘′ι + α`+1−ρ(ι).

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 21

c) B computes

kι = gκιgγ̌℘ι
� Q
ι′∈Γ∗\{ρ(ι)}

euι′�−℘′ι� Q
ι′∈Γ∗\{ρ(ι)}

eu`+1+ι′−ρ(ι)
�−1

r̆′′ι

= gκιg

γ̌℘ι−℘′ιµ
P

ι′∈Γ∗\{ρ(ι)}

αι
′
−µ

P
ι′∈Γ∗\{ρ(ι)}

α`+1+ι′−ρ(ι)

r̆′ι

= gκιg

�
γ̌−µ

P
ι′∈Γ∗\{ρ(ι)}

αι
′
�
℘ι

r̆′ι = gκιg

�
γ+µαρ(ι)

�
℘ι
r̆′ι,

where r̆′ι =
� Q
ι′∈Γ∗\{ρ(ι)}

r̆ι′
�−℘′ι� Q

ι′∈Γ∗\{ρ(ι)}
r̆`+1+ι′−ρ(ι)}

�−1
r̆′′ι ,

k′ι = g℘ι , and

k′′ι,ι′ = eu℘′ιι′ eu`+1+ι′−ρ(ι)r̆
′′
ι,ι′ = gµ℘

′
ια
ι′+µα`+1+ι′−ρ(ι)

r̆′ι,ι′

= gµ℘ια
ι′

r̆′ι,ι′ , for ι′ ∈ U\{ρ(ι)},

where r̆′ι,ι′ = r̆
℘′ι
ι′ r̆`+1+ι′−ρ(ι)r̆

′′
ι,ι′ .

ii) (ι /∈ IΓ ∗): Observe that in this case, the share corresponding to the ιth row of M is
κι = −µα`+1

→
M ι

→

d
ᵀ

+
→
M ι

→

y
′ᵀ =

→
M ι

→

y
ᵀ. B forms the decryption key components as follows:

a) B picks ℘′ι
$←− Zn, r̆′′ι , r̆′′ι,ι′

$←− Gp3 , for ι′ ∈ U\{ρ(ι)}, and sets ℘ι = ℘′ι + α`+1−ρ(ι)
→
M ι

→

d
ᵀ
.

b) B computes

kι = g
→
M ι

→
y
′ᵀ

gγ̌℘ι
� Q
ι′∈Γ∗

euι′�−℘′ι� Q
ι′∈Γ∗

eu`+1+ι′−ρ(ι)
�−→M ι

→

d
ᵀeu℘′ιρ(ι)r̆′′ι

= g
→
M ι

→
y
′ᵀ

g
γ̌℘ι−℘′ιµ

P
ι′∈Γ∗

αι
′
−
→
M ι

→

d
ᵀ
µ
P
ι′∈Γ∗

α`+1+ι′−ρ(ι)+µ℘′ια
ρ(ι)

r̆′ι

= g−µα
`+1
→
M ι

→

d
ᵀ

+
→
M ι

→
y
′ᵀ

g
γ̌℘ι−℘ιµ

P
ι′∈Γ∗

αι
′
+µ℘′ια

ρ(ι)+µα`+1
→
M ι

→

d
ᵀ

r̆′ι

= gκιg(γ+µαρ(ι))℘ι r̆′ι,

where r̆′ι =
�Q

ι′∈Γ∗ r̆ι′
�−℘′ι� Q

ι′∈Γ∗
r̆`+1+ι′−ρ(ι)

�−→M ι

→

d
ᵀ

r̆
℘′ι
ρ(ι)r̆

′′
ι ,

k′ι = g℘ι , and

k′′ι,ι′ = eu℘′ιι′ eu→M ι

→

d
ᵀ

`+1+ι′−ρ(ι)r̆
′′
ι,ι′ = gµ℘

′
ια
ι′+µα`+1+ι′−ρ(ι)

→
M ι

→

d
ᵀ

r̆′ι,ι′

= gµ℘ια
ι′

r̆′ι,ι′ , for ι′ ∈ U\{ρ(ι)},

where r̆′ι,ι′ = r̆
℘′ι
ι′ r̆
→
M ι

→

d
ᵀ

`+1+ι′−ρ(ι)r̆
′′
ι,ι′ .

3. B hands sk(A) =
�
A ,
¦
kι, k

′
ι, {k′′ι,ι′}ι′∈U\{ρ(ι)}

©
ι∈[m]

�
to A.

• A eventually outputs a guess bit β′ ∈ {0, 1}.

Hyb2: This experiment is similar to Hyb1 with the only exception that while creating the challenge, B
selects w $←− Gp1p2 , r̆Γ∗

$←− Gp3 , and sets c∗1 = w, c∗2 = wγ̌ r̆Γ∗ , and ek∗0 = H(e(w, eu`+1)).

Hyb3: This experiment is the same as Hyb2 with the exception that while setting up the ABE system,

B sets euι′ = uα
ι′

ĝ

P
j∈[2`]

ϑ̂j α̂
ι′
j

r̆ι′ , for ι′ ∈ [2`], where ϑ̂1, . . . , ϑ̂2`, α̂1, . . . , α̂2`
$←− Zn, ĝ $←− Gp2 , while as before

u = gµ, for µ $←− Zn. This in turn affects the distributions of mpk, ek∗0, and all the sk(A)’s provided to
A.

22 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Hyb4: In this experiment, while setting up the ABE system, B sets euι′ = uα
ι′

ĝR
(2`)(ι′)r̆ι′ , for ι′ ∈ [2`],

where R : [2`]→ Zp2 is a truly random function. This further changes the distributions of mpk, ek∗0, and
all the sk(A)’s given to A. The rest of the experiment proceeds identically to Hyb3.

Hyb5: This experiment is analogous to Hyb4 with the only exception that while framing the challenge,
B selects ek∗0

$←− {0, 1}λ.

Analysis

Let Adv(i)
A (λ) be the advantage of the adversary A, i.e., the absolute difference between 1/2 and A’s proba-

bility of correctly guessing the challenge bit, in Hybi, for i ∈ {0, . . . , 5}. By definition, AdvABE,SEL-IND
A (λ) ≡

Adv(0)
A (λ). Also, note that in Hyb5, both ek∗0 and ek∗1 are uniformly distributed over {0, 1}λ. Therefore,

the view of A in Hyb5 is statistically independent of the challenge bit β $←− {0, 1} selected by the challenger
B. Hence, Adv(5)

A (λ) = 0. Moreover, it readily follows that the distributions of mpk, ct∗, ek∗0, and all the
sk(A)’s provided to A in Hyb0 and those in Hyb1 are identical. Thus, the view of A in Hyb0 and that in
Hyb1 are also the same. Therefore, Adv(0)

A (λ) = Adv(1)
A (λ). Hence, we have

AdvABE,SEL-IND
A (λ) ≤

P
i∈[4]

��Adv(i)
A (λ)− Adv(i+1)

A (λ)
��. (4.1)

Lemmas 4.2–4.5 will show that the RHS of Eq. (4.1) is negligible. Hence, Theorem 4.1 follows. ut

Lemma 4.2. If the SD-I assumption holds, then for any probabilistic polynomial-time adversary A, for
any security parameter λ, |Adv(1)

A (λ)− Adv(2)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. Suppose that there exists a probabilistic polynomial-time adversary A for which |Adv(1)
A (λ) −

Adv(2)
A (λ)| is non-negligible. We construct a PPT algorithm B that attempts to solve the SD-I problem

using A as a sub-routine. The description of B follows:

• B receives an instance of the SD-I problem$β̂ = ((n,G,GT , e), g, ğ,<β̂), where (n = p1p2p3,G,GT , e)
$←−

G(1λ, symmetric, composite), g $←− Gp1 , ğ $←− Gp3 , and <β̂ = gσ
$←− Gp1 or gσ ĝσ̂ $←− Gp1p2 according

as β̂ = 0 or 1 with ĝ
$←− Gp2 and σ, σ̂

$←− Zn. B then initializes A on input 1λ and obtains a challenge
attribute set Γ ∗ ⊆ U from A.

• In order to setup the ABE system, B proceeds as follows:
1. B first selects µ, α, γ̌, ν̆′0, ν̆1, . . . , ν̆2`

$←− Zn, and sets u = gµ, r̆′0 = ğν̆
′
0 , r̆ι′ = ğν̆ι′ , for ι′ ∈ [2`], along

with euι′ = uα
ι′

r̆ι′ , for ι′ ∈ [2`].
2. Next, B computes h0 = gγ̌(

Q
ι′∈Γ∗

euι′)−1r̆′0 and e(g, eu`+1).

3. Then, B uniformly samples H : GT → {0, 1}λ from a pairwise independent hash family H2.
4. B provides A with mpk = ((n,G,GT , e), g, ğ, h0, {euι′}ι′∈U, e(g, eu`+1),H) to A.
• To prepare the challenge B proceeds as follows:

1. B first picks νΓ∗
$←− Zn, and sets r̆Γ∗ = ğν̆Γ∗ , c∗1 = <β̂ , c∗2 = <γ̌

β̂
r̆Γ∗ , together with ek∗0 =

H(e(<β̂ , eu`+1)). B also selects ek∗1
$←− {0, 1}λ.

2. Next, B chooses a bit β $←− {0, 1} and gives (ct∗ = (Γ ∗, c∗1, c∗2),ek∗β) to A.
• In response to a decryption key query of A corresponding to some MAS A = (M , ρ) ∈ A, where M ∈
Zm×m′n and ρ : [m]→ U is the labeling of the rows of M with attributes in U, subject to the restriction
that A does not accept Γ ∗, B creates the decryption key sk(A) =

�
A ,
¦
kι, k

′
ι, {k′′ι,ι′}ι′∈U\{ρ(ι)}

©
ι∈[m]

�
exactly as in Hyb1. While generating sk(A), B computes the required random elements of Gp3 by
uniformly sampling elements from Zn and placing them in the exponent of ğ $←− Gp3 included within
the challenge SD-I problem instance. B hands sk(A) to A.

• At the end, A outputs a guess bit β′ ∈ {0, 1}. If β = β′, then B outputs 1. Otherwise, B outputs 0.

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 23

Observe that if β̂ = 0, i.e., <β̂ = gσ
$←− Gp1 , then B perfectly simulates Hyb1 by implicitly viewing

θ = σ. On the other hand, if β̂ = 1, i.e., <β̂ = gσ ĝσ̂
$←− Gp1p2 , then B perfectly simulates Hyb2 by viewing

w = <β̂ . This completes the proof of Lemma 4.2. ut

Lemma 4.3. If the SD-II assumption holds, then for any probabilistic polynomial-time adversary A, for
any security parameter λ, |Adv(2)

A (λ)− Adv(3)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. In order to prove Lemma 4.3, we consider a sequence of 4` intermediate hybrid experiments,
namely, {Hyb2,τ,0,Hyb2,τ,1}τ∈[2`] between Hyb2 and Hyb3 as follows:

Sequence of Intermediate Hybrids between Hyb2 and Hyb3

Hyb2,τ,0(τ ∈ [2`]): This experiment is similar to Hyb2 except that while setting up the ABE system,

B sets euι′ = uα
ι′

ĝ

ϑ̂τα
ι′+

P
j∈[τ−1]

ϑ̂j α̂
ι′
j

r̆ι′ , for ι′ ∈ [2`], where ϑ̂1, . . . , ϑ̂τ , α̂1, . . . , α̂τ−1
$←− Zn, ĝ $←− Gp2 , and

u = gµ, with µ
$←− Zn.

Hyb2,τ,1(τ ∈ [2`]): This experiment is identical to Hyb2,τ,0 except that for all ι ∈ [2`], B replaces ĝϑ̂ται

by ĝϑ̂τ α̂ιτ in the expression of euι, where α̂τ
$←− Zn, i.e., in other words, this experiment is analogous to Hyb2

with the exception that B sets euι′ = uα
ι′

ĝ

P
j∈[τ]

ϑ̂j α̂
ι′
j

r̆ι′ , for ι′ ∈ [2`], where ϑ̂1, . . . , ϑ̂τ , α̂1, . . . , α̂τ
$←− Zn,

ĝ
$←− Gp2 , and u = gµ, with µ

$←− Zn.

Analysis

Let Adv(2,τ,eβ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference between 1/2

and A’s probability of correctly guessing the challenge bit selected by the challenger B, in Hyb2,τ,eβ , for
τ ∈ [2`], eβ ∈ {0, 1}. Clearly, Hyb2,0,1 coincides with Hyb2 while Hyb2,2`,1 corresponds to Hyb3. Hence,
Adv(2)

A (λ) ≡ Adv(2,0,1)
A (λ) and Adv(3)

A (λ) ≡ Adv(2,2`,1)
A (λ). Therefore, we have��Adv(2)

A (λ)− Adv(3)
A (λ)

�� ≤ P
τ∈[2`]

��Adv(2,(τ−1),1)
A (λ)− Adv(2,τ,0)

A (λ)
��+

P
τ∈[2`]

��Adv(2,τ,0)
A (λ)− Adv(2,τ,1)

A (λ)
��.

(4.2)
Now, observe that for all τ ∈ [2`], Adv(2,τ,0)

A (λ) = Adv(2,τ,1)
A (λ). This follows from the fact that α mod p1

and α mod p2 are uniformly and independently random values by the Chinese Remainder Theorem, as
well as α mod p2 is completely hidden to the adversary A given mpk, (ct∗,ek∗β), and all the sk(A)’s
queried by A. Therefore, α mod p2 can be replaced with α̂τ mod p2 for a fresh α̂τ

$←− Zn. Moreover,
Claim 4.1 shows that the first term in the RHS of Eq. (4.2) is negligible. Hence, Lemma 4.3 follows. ut

Claim 4.1. If the SD-II assumption holds, then for any probabilistic polynomial-time adversary A, for
any security parameter λ, |Adv(2,(τ−1),1)

A (λ)− Adv(2,τ,0)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. Suppose that there exists a probabilistic polynomial-time adversaryA for which |Adv(2,(τ−1),1)
A (λ)−

Adv(2,τ,0)
A (λ)| is non-negligible. Below we construct a probabilistic polynomial-time algorithm B that

attempts to solve the SD-II problem using A as a sub-routine.

• B receives an instance of the SD-II problem $β̂ = ((n,G,GT , e), g, ğ, v, s,<β̂), where (n = p1p2p3,G,

GT , e)
$←− G(1λ, symmetric, composite), g $←− Gp1 , ğ $←− Gp3 , v = gσ ĝσ̂

$←− Gp1p2 , s = ĝϕ̂ğϕ̆
$←−

Gp2p3 , and <β̂ = gω ğω̆
$←− Gp1p3 or gω ĝω̂ ğω̆ $←− G according as β̂ = 0 or 1 with ĝ

$←− Gp2 , and

σ, σ̂, ϕ̂, ϕ̆, ω, ω̂, ω̆
$←− Zn. B then initializes A on input 1λ and obtains a challenge attribute set Γ ∗ ⊆ U

from A.
• In order to setup the ABE system, B proceeds as follows:

1. B first selects α, α̂1, . . . , α̂τ−1, ϑ̂
′
1, . . . , ϑ̂

′
τ−1, γ̌, ν̆

′
0, ν̆
′
1, . . . , ν̆

′
2`

$←− Zn, and sets r̆′0 = ğν̆
′
0 , r̆′ι′ = ğν̆

′
ι′ , for

ι′ ∈ [2`], along with euι′ = <αι
′

β̂
s

P
j∈[τ−1]

ϑ̂′j α̂
ι′
j

r̆′ι′ , for ι′ ∈ [2`].

24 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

2. After that, B computes h0 = gγ̌(
Q

ι′∈Γ∗
euι′)−1r̆′0 and e(g, eu`+1).

3. Then, B uniformly samples H : GT → {0, 1}λ from a pairwise independent hash family H2.
4. B provides A with mpk = ((n,G,GT , e), g, ğ, h0, {euι′}ι′∈U, e(g, eu`+1),H).
• To frame the challenge, B executes the following steps:

1. B first selects ν̆Γ∗
$←− Zn, and sets r̆Γ∗ = ğν̆Γ∗ , c∗1 = v, c∗2 = vγ̌ r̆Γ∗ , together with ek∗0 =

H(e(v, eu`+1). B also selects ek∗1
$←− {0, 1}λ.

2. Then, B chooses a bit β $←− {0, 1} and gives (ct∗ = (Γ ∗, c∗1, c∗2),ek∗β) to A.
• In response to a decryption key query of A corresponding to some MAS A = (M , ρ) ∈ A, where M ∈
Zm×m′n and ρ : [m]→ U is the labeling of the rows of M with attributes in U, subject to the restriction
that A does not accept Γ ∗, B creates the decryption key sk(A) =

�
A ,
¦
kι, k

′
ι, {k′′ι,ι′}ι′∈U\{ρ(ι)}

©
ι∈[m]

�
exactly as in Hyb2,τ−1,1. While generating sk(A), B computes the required random elements of Gp3

by uniformly sampling elements from Zn and placing them in the exponent of ğ $←− Gp3 included
within the challenge SD-II problem instance. B hands sk(A) to A.
• At the end, A outputs a guess bit β′ ∈ {0, 1}. If β = β′, then B outputs 1. Otherwise, B outputs 0.

Observe that in case β̂ = 0, i.e., <β̂ = gω ğω̆
$←− Gp1p3 , then for all ι′ ∈ [2`], euι′ = (gω)αι

′

ĝ

P
j∈[τ−1]

ϕ̂ϑ̂′j α̂
ι′
j

r̆ι′ ,

where r̆ι′ = (ğω̆)αι
′

(ğϕ̆)

P
j∈[τ−1]

ϑ̂′j α̂
ι′
j

r̆′ι′ , and thus B perfectly simulates Hyb2,τ−1,1. On the other hand,

if β̂ = 1, i.e., <β̂ = gω ĝω̂ ğω̆, then for all ι′ ∈ [2`], euι′ = (gω)αι
′

ĝ

ω̂αι
′
+
P

j∈[τ−1]

ϕ̂ϑ̂′j α̂
ι′
j

r̆ι′ , where r̆ι′ =

(ğω̆)αι
′

(ğϕ̆)

P
j∈[τ−1]

ϑ̂′j α̂
ι′
j

r̆′ι′ , and hence B perfectly simulates Hyb2,τ,0. This completes the proof of Claim 4.1.
ut

Lemma 4.4. For any (possibly computationally unbounded) adversary A, for any security parameter λ,
|Adv(3)

A (λ)− Adv(4)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. The difference between Hyb3 and Hyb4 is that for all ι′ ∈ [2`], euι′ is set as euι′ = uα
ι′

ĝ

P
j∈[2`]

ϑ̂j α̂
ι′
j

r̆ι′ in
Hyb3, whereas, euι′ = uα

ι′

ĝR
(2`)(ι′)r̆ι′ in Hyb4, where ϑ̂1, . . . , ϑ̂2`, α̂1, . . . , α̂2`

$←− Zn, and R(2`) : [2`]→ Zp2

is a truly random function. Hence, Lemma 4.4 follows in a similar fashion as Lemma 3.3 from the core
lemma of the Déjà Q framework (Lemma 2.2) stated in Section 2.4 and the fact that α̂1 mod p2, . . . , α̂2`

mod p2 are distinct with overwhelming probability over α̂1, . . . , α̂2`
$←− Zn. ut

Lemma 4.5. For any (possibly computationally unbounded) adversary A, for any security parameter λ,
|Adv(4)

A (λ)− Adv(5)
A (λ)| ≤ negl(λ), for some negligible function negl.

Proof. The only difference between Hyb4 and Hyb5 is that while preparing the challenge, B selects
ek∗0

$←− {0, 1}λ in Hyb5 rather than computing ek∗0 = H(T), with T = e(w, eu`+1) as in Hyb4, where
w

$←− Gp1p2 , eu`+1 = uα
`+1
ĝR

(2`)(`+1)r̆`+1, and H : GT → {0, 1}λ is uniformly sampled from a pair-
wise independent hash family H2. Now, note that in Hyb4, while creating the queried decryption keys
sk(A) =

�
A ,
¦
kι, k

′
ι, {k′′ι,ι′}ι′∈U\{ρ(ι)}

©
ι∈[m]

�
corresponding to some MAS A = (M , ρ) ∈ A, where

M ∈ Zm×m′n and ρ : [m] → U is the labeling of the rows of M with attributes in U, the components
kι, k

′
ι, and k′′ι,ι′ are formed exactly as in hyb1 in the following manner:

i) (ι ∈ IΓ ∗)

kι = g
→
M ι

→
y
′ᵀ

gγ̌(℘′ι+α
`+1−ρ(ι))

� Q
ι′∈Γ∗\{ρ(ι)}

euι′�−℘′ι� Q
ι′∈Γ∗\{ρ(ι)}

eu`+1+ι′−ρ(ι)
�−1

r̆′′ι ,

k′ι = g℘
′
ι+α

`+1−ρ(ι)
, k′′ι,ι′ = eu℘′ιι′ eu`+1+ι′−ρ(ι)r̆

′′
ι,ι′ ,

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 25

ii) (ι /∈ IΓ ∗)

kι = g
→
M ι

→
y
′ᵀ

gγ̌(℘′ι+
→
M ι

→

d
ᵀ
α`+1−ρ(ι))

� Q
ι′∈Γ∗

euι′�−℘′ι� Q
ι′∈Γ∗

eu`+1+ι′−ρ(ι)
�−→M ι

→

d
ᵀeu℘′ιρ(ι)r̆′′ι ,

k′ι = g℘
′
ι+α

`+1−ρ(ι)
→
M ι

→

d
ᵀ

, k′′ι,ι′ = eu℘′ιι′ eu→M ι

→

d
ᵀ

`+1+ι′−ρ(ι)r̆
′′
ι,ι′ ,

where IΓ∗ = {ι ∈ [m] | ρ(ι) ∈ Γ ∗}. Thus, it can be readily seen that the components of the decryption keys
provided to A depend on eu1, . . . , eu`, eu`+2, . . . , eu2`. Also, the master public key mpk provided to A includes
h0 = gγ̌(

Q
ι′∈Γ∗

euι′)−1r̆′0, euι′ , for ι′ ∈ U, where Γ ∗ ⊆ U = {1, . . . , `}, and e(g, eu`+1) = e(g, uα`+1). Hence, it is

clear that the mpk involves only eu1, . . . , eu`. Thus, the decryption keys sk(A)’s and the public parameters
mpk given to A only reveal information about R(2`)(1), . . . ,R(2`)(`),R(2`)(` + 2), . . . ,R(2`)(2`), and
leak no information about R(2`)(` + 1). Therefore, the quantity, from which ek∗0 is derived in Hyb4,

namely, T = e(w, eu`+1) = e(w, uα`+1) · e(w, ĝR
(2`)(`+1)) has min-entropy H∞(T) = log p2 = Θ(λ) coming

from R(2`)(` + 1). This holds as long as the Gp2 -component of w is not the identity element of the
group, which happens with probability 1 − 1

p2
. Hence, with overwhelming probability the relation λ =

H∞(T)−2 log 1
ε −O(1) is satisfied by ε = 2−Ω(λ). Further, note that H : GT → {0, 1}λ is sampled from a

pairwise independent hash family H2 uniformly and independently of T . Thus, by the left-over hash lemma
(Lemma 2.1) stated in Section 2.3, it follows that the statistical distance ∆((H(T),H), (Uλ,H)) ≤ 2−Ω(λ),
where Uλ is the uniform random variable over {0, 1}λ. Hence, Lemma 4.5 follows. ut

5 Our Online-Offline Multi-Input Inner Product Encryption Sc-
heme

In this section we introduce the notion of online-offline multi-input functional encryption (OO-MIFE) and
present the first OO-MIFE construction for the bounded-norm multi-input inner product functionality in
the private key setting. Our construction is developed in asymmetric bilinear groups of prime order with
security under the k-LIN assumption.

5.1 Notion
Definition 5.1 (Multi-Input Bounded-Norm Inner Product Functionality [ARW16]). A multi-
input bounded-norm inner product function family F`,Bm over Zn, for some n, `,m, B ∈ N with n � mB,
consists of functions F→

y
(1)
,...,

→
y

(m) : (Z`n)m → Zn associated with a tuple of vectors (→y(1)
, . . . ,

→

y
(m)) ∈

(Z`n)m, where F→
y

(1)
,...,

→
y

(m)(→x(1)
, . . . ,

→

x
(m)) = (

P
j∈[m]

〈→x(j)
,
→

y
(j)〉) mod n, for →

x
(1)
, . . . ,

→

x
(m) ∈ Z`n with the

norm of component inner products, |〈→x(j)
,
→

y
(j)〉| ≤ B, for j ∈ [m].

In order to simplify naming conventions, we will omit “bounded-norm” for the rest of the paper, but we
will always refer to a multi-input inner product functionality with this property.

Definition 5.2 (Online-Offline Private Key Multi-Input Inner Product Encryption: OO-
MIPE). A private key online-offline multi-input inner product encryption scheme for an inner product
function family F`,Bm over Zn consists of the following polynomial-time algorithms:

OO-MIPE.Setup(1λ, `,m, B) → (pp, {enk(j)}j∈[m],msk): The setup authority takes as input the unary
encoded security parameter 1λ, the length ` ∈ N of vectors, the arity m ∈ N of the multi-input inner
product functionality, and the bound B ∈ N. It generates m private encryption keys {enk(j)}j∈[m],
the master secret key msk, and the public parameters pp. It publishes pp, provides enk(j) to the jth

encrypter, for j ∈ [m], while keeps msk to itself. Observe that we are considering private key setting
and hence pp are not sufficient to encrypt. It merely includes some public informations such as the
group description in a bilinear-map-based construction.

OO-MIPE.OfflineKeyGen(pp,msk) → itsk: Taking as input the public parameters pp and the master
secret key msk, the setup authority creates and stores an intermediate decryption key itsk.

26 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

OO-MIPE.OnlineKeyGen(pp,msk, itsk, (
→

y
(1)
, . . . ,

→

y
(m))) → sk(→y(1)

, . . . ,
→

y
(m)): On input the public pa-

rameters pp, the master secret key msk, a fresh intermediate decryption key itsk generated in the
offline phase, together with an m-tuple of vectors (→y(1)

, . . . ,
→

y
(m)) ∈ (Z`n)m, the setup authority pro-

vides a decryption key sk(→y(1)
, . . . ,

→

y
(m)) (which includes the tuple (→y(1)

, . . . ,
→

y
(m)) in the clear) to a

legitimate decrypter.
OO-MIPE.OfflineEncrypt(pp, j,enk(j))→ itct(j) : The jth encrypter takes as input the public parameters

pp, its index j, together with its private encryption key enk(j), prepares an intermediate ciphertext
itct(j) , and stores it.

OO-MIPE.OnlineEncrypt(pp, j, itct(j) ,
→

x
(j)) → ct(j)(→x(j)): The jth encrypter upon input the public pa-

rameters pp, its index j, a fresh intermediate ciphertext itct(j) generated in the offline phase, and a
vector →

x
(j) ∈ Z`n, outputs a ciphertext ct(j)(→x(j)), which includes the index j.

OO-MIPE.Decrypt(pp, sk(→y(1)
, . . . ,

→

y
(m)), {ct(j)(→x(j))}j∈[m])→

P
j∈[m]

〈→x(j)
,
→

y
(j)〉 or ⊥: On input the pub-

lic parameters pp, a decryption key sk(→y(1)
, . . . ,

→

y
(m)) corresponding to a vector tuple (→y(1)

, . . . ,
→

y
(m)) ∈

(Z`n)m, together with a set of m ciphertexts {ct(j)(→x(j))}j∈[m], where ct(j)(→x(j)) encrypts the vec-
tor →

x
(j) ∈ Z`n, for j ∈ [m], a decrypter either outputs the multi-input inner product function valueP

j∈[m]
〈→x(j)

,
→

y
(j)〉 or ⊥ indicating failure.

The algorithm OO-MIPE.Decrypt is deterministic while all the others are randomized.

� Correctness: A OO-MIPE scheme is correct if for any security parameter λ ∈ N, any n, `,m, B ∈ N,
any (→x(1)

, . . . ,
→

x
(m)), (→y(1)

, . . . ,
→

y
(m)) ∈ (Z`n)m with |〈→x(j)

,
→

y
(j)〉| ≤ B, for j ∈ [m], we have

Pr
�
(pp, {enk(j)}j∈[m],msk) $←− OO-MIPE.Setup(1λ, `,m, B); itsk

$←− OO-MIPE.OfflineKeyGen(pp,msk);

sk(→y(1)
, . . . ,

→

y
(m)) $←− OO-MIPE.OnlineKeyGen(pp,msk, itsk, (

→

y
(1)
, . . . ,

→

y
(m)));

{itct(j)
$←− OO-MIPE.OfflineEncrypt(pp, j,enk(j))}j∈[m];

{ct(j)(→x(j)) $←− OO-MIPE.OnlineEncrypt(pp, j, itct(j) ,
→

x
(j))}j∈[m] :

OO-MIPE.Decrypt(pp, sk(→y(1)
, . . . ,

→

y
(m)), {ct(j)(→x(j))}j∈[m]) =

P
j∈[m]

〈→x(j)
,
→

y
(j)〉
�

= 1.

� Security: The selective indistinguishability-based (SEL-IND) security notion for a private key OO-
MIPE scheme in the multi-challenge model is formalized through the following experiment involving a
probabilistic polynomial-time adversary A and a probabilistic polynomial-time challenger B:

• For each j ∈ [m], A submits some polynomial number qj of pairs of vectors {(→x(j,tj ,0)
,
→

x
(j,tj ,1))}tj∈[qj].

• B generates (pp, {enk(j)}j∈[m],msk) $←− OO-MIPE.Setup(1λ, `,m, B) and provides pp to A.

• B selects a bit β $←− {0, 1} and creates ct∗(j,tj) $←− OO-MIPE.OnlineEncrypt(pp, j,OO-MIPE.OfflineEncrypt(pp,
j,enk(j)), →x(j,tj ,β)), for j ∈ [m], tj ∈ [qj]. B gives {ct∗(j,tj)}j∈[m],tj∈[qj] to A.

• A may adaptively make any polynomial number of decryption key queries. In response to a decryp-
tion key query of A corresponding to some m-tuple of vectors (→y(1)

, . . . ,
→

y
(m)) ∈ (Z`n)m subject to the

restriction that for any (t1, . . . , tm) ∈ [q1]×. . .×[qm],
P
j∈[m]

〈→x(j,tj ,0)
,
→

y
(j)〉 =

P
j∈[m]

〈→x(j,tj ,1)
,
→

y
(j)〉, B forms

the decryption key sk(→y(1)
, . . . ,

→

y
(m)) $←− OO-MIPE.OnlineKeyGen(pp,msk,OO-MIPE.OfflineKeyGen(pp,

msk), (→y(1)
, . . . ,

→

y
(m))) and hands the decryption key sk(→y(1)

, . . . ,
→

y
(m)) to A.

• A eventually outputs a guess bit β′ ∈ {0, 1}.

A private key OO-MIPE scheme is said to be SEL-IND secure if for any probabilistic polynomial-time
adversary A, for any security parameter λ, the advantage of A in the above experiment,

AdvOO-MIPE,SEL-IND
A (λ) =

��Pr[β = β′]− 1/2
�� ≤ negl(λ),

for some negligible function negl.

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 27

Remark 5.1. As observed in [BSW11, O’N10], for single-input FE, e.g., NIPPE or ABE, the single and
multi-challenge security models are equivalent through a standard hybrid argument. However, as pointed
out in [GGG+14], such a hybrid argument does not work in case of MIFE. In this work, we consider the
stronger of the two models, i.e., the multi-challenge security [GGG+14] for OO-MIPE.

5.2 Construction
OO-MIPE.Setup(1λ, `,m, B) → (pp, {enk(j)}j∈[m],msk): The setup authority takes as input the unary

encoded security parameter 1λ, the length ` of vectors, the arity m of the multi-input inner product
function, and the bound B. It proceeds as follows:
1. It first generates (n,G1,G2,GT , e)

$←− G(1λ, asymmetric, prime) such that n� mB.

2. Next it selects A(1), . . . ,A(m) $←− Z(k+1)×k
n , W (1), . . . ,W (m) $←− Z`×(k+1)

n , N (1), . . . ,N (m) $←−
Zk×(k+1)
n ,

→

f
(1)
, . . . ,

→

f
(m) $←− Zkn, for some appropriate k ∈ N, g1

$←− G1, and g2
$←− G2.

3. Then, it computes AAA(j)
1 = gA

(j)

1 , DDD(j)
1 = gW

(j)A(j)

1 , F (j)
1 = gN

(j)A(j)

1 , for j ∈ [m], and G = e(g1, g2).
4. It sets the public parameters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)

1 ,DDD
(j)
1 , FFF

(j)
1 }j∈[m]), the encryp-

tion keys enk(j) =
→

f
(j)

, for j ∈ [m], and master secret key msk = ({W (j),N (j)}j∈[m],
P
j∈[m]

→

f
(j)

).

It publishes pp, provides enk(j) to the jth encrypter, for j ∈ [m], while keeps msk to itself.
OO-MIPE.OfflineKeyGen(pp,msk)→ itsk: Taking as input the public parameters pp = ((n,G1,G2,GT , e),

g1, g2, G, {AAA(j)
1 ,DDD

(j)
1 ,FFF

(j)
1 }j∈[m]) and the master secret key msk = ({W (j),N (j)}j∈[m],

P
j∈[m]

→

f
(j)

), the

setup authority executes the following steps:
1. It first picks →

z
(1)
, . . . ,

→

z
(m) $←− Zk+1

n , and
→

h
$←− Zkn.

2. After that, it computes ek(1,j)
= g

→
z

(j)+
→

hN(j)

2 , for j ∈ [m], ek(2)
= g

→

h
2 , and ÜK(3) = G

〈
P
j∈[m]

→

f
(j)
,
→

h〉

.

3. It stores the intermediate decryption key itsk = ({ek(1,j)
}j∈[m], ek(2)

, ÜK(3), {→z(j)}j∈[m]).

OO-MIPE.OnlineKeyGen(pp,msk, itsk, (
→

y
(1)
, . . . ,

→

y
(m)))→ sk(→y(1)

, . . . ,
→

y
(m)):

On input the public parameters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)
1 ,DDD

(j)
1 , FFF

(j)
1 }j∈[m]), the mas-

ter secret key msk = ({W (j),N (j)}j∈[m],
P
j∈[m]

→

f
(j)

), a fresh intermediate decryption key itsk =

({ek(1,j)
}j∈[m], ek(2)

, ÜK(3), {→z(j)}j∈[m]) formed in the offline phase, along with an m-tuple of vectors
(→y(1)

, . . . ,
→

y
(m)) ∈ (Z`n)m, the setup authority performs the following steps:

1. It sets k(1,j) = ek(1,j)
, for j ∈ [m], k(2) = ek(2)

, K(3) = ÜK(3), and
→

k
(4,j)

= →

y
(j)
W (j) − →

z
(j), for

j ∈ [m].

2. It gives a legitimate decrypter with the decryption key sk(→y(1)
, . . . ,

→

y
(m)) = ((→y(1)

, . . . ,
→

y
(m)),

{k(1,j)}j∈[m],k
(2),K(3), {

→

k
(4,j)
}j∈[m]).

OO-MIPE.OfflineEncrypt(pp, j,enk(j))→ itct(j) : The jth encrypter takes as input the public parameters
pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)

1 ,DDD
(j)
1 , FFF

(j)
1 }j∈[m]), its index j ∈ [m], along with its private

encryption key enk(j) =
→

f
(j)

. It operates as follows:
1. It first selects →

u
(j) $←− Z`n and →

s
(j) $←− Zkn.

2. Next, it computes ec(1,j) = g
→
u

(j)

1 (DDD(j)
1)

→
s

(j)
= g

→
u

(j)+
→
s

(j)
A(j)ᵀW (j)ᵀ

1 , ec(2,j) = g
→

f
(j)

1 (FFF (j)
1)

→
s

(j)
=

g
→

f
(j)

+
→
s

(j)
A(j)ᵀN(j)ᵀ

1 , and ec(3,j) = (AAA(j)
1)

→
s

(j)
= g

→
s

(j)
A(j)ᵀ

1 .

3. It stores the intermediate ciphertext itct(j) = (ec(1,j),ec(2,j),ec(3,j),
→

u
(j)).

OO-MIPE.OnlineEncrypt(pp, j, itct(j) ,
→

x
(j)) → ct(j)(→x(j)): An encrypter upon input the public parame-

ters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)
1 ,DDD

(j)
1 , FFF

(j)
1 }j∈[m]), its own index j ∈ [m], a fresh interme-

diate ciphertext itct(j) = (ec(1,j),ec(2,j),ec(3,j),
→

u
(j)) created in the offline phase, and a vector →

x
(j) ∈ Z`n,

proceeds as follows:

28 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

1. It sets c(1,j) = ec(1,j), c(2,j) = ec(2,j), c(3,j) = ec(3,j), and →

c
(4,j) = →

x
(j) − →

u
(j).

2. It outputs the ciphertext ct(j)(→x(j)) = (j, c(1,j), c(2,j), c(3,j),
→

c
(4,j)).

OO-MIPE.Decrypt(pp, sk(→y(1)
, . . . ,

→

y
(m)), {ct(j)(→x(j))}j∈[m]) →

P
j∈[m]

〈→x(j)
,
→

y
(j)〉 or ⊥: A decrypter

takes as input the public parameters pp = ((n,G1,G2,GT , e), g1, g2, G, {AAA(j)
1 ,DDD

(j)
1 ,FFF

(j)
1 }j∈[m]),

a decryption key sk(→y(1)
, . . . ,

→

y
(m)) = ((→y(1)

, . . . ,
→

y
(m)){k(1,j)}j∈[m],k

(2),K(3), {
→

k
(4,j)
}j∈[m]) corre-

sponding to an m-tuple of vectors (→y(1)
, . . . ,

→

y
(m)) ∈ (Z`n)m, and m ciphertexts {ct(j)(→x(j)) =

(j, c(1,j), c(2,j), c(3,j),
→

c
(4,j))}j∈[m]. It executes the following:

1. It first computes eT =
Y
j∈[m]

2664E`(c(1,j) g
→
c

(4,j)

1 , g
→
y

(j)

2)Ek(c(2,j),k(2))

Ek+1(c(3,j),k(1,j) g
→

k
(4,j)

2)

3775 . (5.1)

2. Next, it computes T =
eT

K(3) .

3. Finally, it attempts to determine a value ψ ∈ Zn such that T = Gψ, by exhaustively searching
a polynomial size range of possible values and outputs ψ, if successful. Otherwise, it outputs ⊥
indicating failure.

� Correctness: The correctness of the proposed OO-MIPE construction can be verified as follows:
Consider any decryption key

sk(→y(1)
, . . . ,

→

y
(m)) =

�
(→y(1)

, . . . ,
→

y
(m)), {k(1,j) = g

→
z

(j)+
→

hN(j)

2 }j∈[m],k
(2) = g

→

h
2 ,

K(3) = e(g1, g2)
〈
P
j∈[m]

→

f
(j)
,
→

h〉

, {
→

k
(4,j)

= →

y
(j)
W (j) − →

z
(j)}j∈[m]

�
corresponding to the m-tuple of vectors (→y(1)

, . . . ,
→

y
(m)) ∈ (Z`n)m, and m ciphertexts¦

ct(j)(→x(j)) =
�
j, c(1,j) =g

→
u

(j)+
→
s

(j)
A(j)ᵀW (j)ᵀ

1 , c(2,j) = g
→

f
(j)

+
→
s

(j)
A(j)ᵀN(j)ᵀ

1 ,

c(3,j) = g
→
s

(j)
A(j)ᵀ

1 ,
→

c
(4,j) = →

x
(j) − →

u
(j)�©

j∈[m]

encrypting the vectors →

x
(1)
, . . . ,

→

x
(m) ∈ Z`n. We have,eT =

Q
j∈[m]

"
E`(c(1,j)g

→
c

(4,j)

1 , g
→
y

(j)

2)Ek(c(2,j),k(2))

Ek+1(c(3,j),k(1,j)g
→

k
(4,j)

2)

#
=

Q
j∈[m]

"
E`(g

→
u

(j)+
→
s

(j)
A(j)ᵀW (j)ᵀ

1 g
→
x

(j)
−
→
u

(j)

1 , g
→
y

(j)

2)Ek(g
→

f
(j)

+
→
s

(j)
A(j)ᵀN(j)ᵀ

1 , g
→

h
2)

Ek+1(g
→
s

(j)
A(j)ᵀ

1 , g
→
z

(j)+
→

hN(j)

2 g
→
y

(j)
W (j)−

→
z

(j)

2)

#
=

Q
j∈[m]

"
e(g1, g2)〈

→
x

(j)+
→
s

(j)
A(j)ᵀW (j)ᵀ,

→
y

(j)
〉e(g1, g2)〈

→

f
(j)

+
→
s

(j)
A(j)ᵀN(j)ᵀ,

→

h〉

e(g1, g2)〈
→
s

(j)
A(j)ᵀ,

→
y

(j)
W (j)+

→

hN(j)〉

#
=

Q
j∈[m]

"
e(g1, g2)〈

→
x

(j)
,
→
y

(j)
〉+〈

→

f
(j)
,
→

h〉+
→
s

(j)
A(j)ᵀ(

→
y

(j)
W (j)+

→

hN(j))ᵀ

e(g1, g2)
→
s

(j)
A(j)ᵀ(

→
y

(j)
W (j)+

→

hN(j))ᵀ

#
= e(g1, g2)

P
j∈[m]

〈
→
x

(j)
,
→
y

(j)
〉

e(g1, g2)
〈
P
j∈[m]

→

f
(j)
,
→

h〉

.

Therefore,

T =
eT

K(3) = e(g1, g2)

P
j∈[m]

〈
→
x

(j)
,
→
y

(j)
〉

e(g1, g2)
〈
P
j∈[m]

→

f
(j)
,
→

h〉

e(g1, g2)
〈
P
j∈[m]

→

f
(j)
,
→

h〉
= e(g1, g2)

P
j∈[m]

〈
→
x

(j)
,
→
y

(j)
〉

.

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 29

Hence, if
P
j∈[m]

〈→x(j)
,
→

y
(j)〉 is contained within the specified polynomial range of values searched by OO-

MIPE.Decrypt, then the algorithm correctly outputs the functional value.

5.3 Security Analysis
Theorem 5.1 (Security of Our OO-MIPE Scheme). The OO-MIPE scheme proposed in Section 5.2
is SEL-IND secure as per the security model described in Section 5.1 under the k-LIN assumption.

Proof. In order to prove Theorem 5.1, we demonstrate that any probabilistic polynomial-time adversary
A with a non-negligible advantage in breaking the SEL-IND security (according to the security model
introduced in Section 5.1) of the OO-MIPE scheme proposed in Section 5.2, which we would represent as
SOO-MIPE = (OO-MIPE.Setup,OO-MIPE.OfflineKeyGen,OO-MIPE.OnlineKeyGen,OO-MIPE.OfflineEncrypt,
OO-MIPE.OnlineEncrypt,OO-MIPE.Decrypt), can be employed to build a probabilistic polynomial-time
adversary B that breaks the SEL-IND security (as per the security model of [ARW16] described in Fig. 5.1)
of the private key multi-input inner product encryption (MIPE) construction of [ARW16], which we
represent as SMIPE = (MIPE.Setup,MIPE.KeyGen,MIPE.Encrypt,MIPE.Decrypt). We note that the OO-
MIPE.Setup algorithm is exactly identical to MIPE.Setup, while the OO-MIPE.Decrypt algorithm is the
augmentation of MIPE.Decrypt by adding the terms framed by boxes in Eq. (5.1). The description of the
algorithms MIPE.KeyGen and MIPE.Encrypt are provided in the relevant places below in this proof. The

The selective indistinguishability-based (SEL-IND) security notion for a private key MIPE scheme in the multi-
challenge model is formalized through the following experiment involving a probabilistic polynomial-time ad-
versary B and a probabilistic polynomial-time challenger C:

• For each j ∈ [m], B submits some polynomial number qj of pairs of vectors {(→x′(j,tj ,0)
,
→

x
′(j,tj ,1))}tj∈[qj].

• C generates (pp′, {enk′(j)}j∈[m],msk′) $←− MIPE.Setup(1λ, `,m, B) and provides pp′ to B.

• C selects a bit β $←− {0, 1} and creates ct′∗(j,tj) $←− MIPE.Encrypt(pp′, j, enk′(j),
→

x
′(j,tj ,β)), for j ∈ [m], tj ∈

[qj]. C gives {ct′∗(j,tj)}j∈[m],tj∈[qj] to B.
• B may adaptively make any polynomial number of decryption key queries. In response to a decryption key

query of B corresponding to some m-tuple of vectors (→y′(1)
, . . . ,

→

y
′(m)) ∈ (Z`n)m subject to the restriction

that for any (t1, . . . , tm) ∈ [q1] × . . . × [qm],
P
j∈[m]

〈→x′(j,tj ,0)
,
→

y
′(j)〉 =

P
j∈[m]

〈→x′(j,tj ,1)
,
→

y
′(j)〉, C forms the de-

cryption key sk′(→y′(1)
, . . . ,

→

y
′(m)) $←− MIPE.KeyGen(pp′,msk′, (→y′(1)

, . . . ,
→

y
′(m))) and hands the decryption key

sk′(→y′(1)
, . . . ,

→

y
′(m)) to B.

• B eventually outputs a guess bit β′ ∈ {0, 1}.

A private key MIPE scheme is said to be SEL-IND secure if for any probabilistic polynomial-time adversary B,
for any security parameter λ, the advantage of B in the above experiment,

AdvMIPE,SEL-IND
B (λ) =

��Pr[β = β′]− 1/2
�� ≤ negl(λ),

for some negligible function negl.

Fig. 5.1. SEL-IND Security Model for MIPE

description of B is presented below:

• B initializes A on input 1λ and receives back the pairs of vectors {(→x(j,tj ,0)
,
→

x
(j,tj ,1))}tj∈[qj] for j ∈ [m]

from A. Then, for each j ∈ [m], B picks →

a
(j,tj) $←− Z`n, for tj ∈ [qj]. For each j ∈ [m], B submits

the pairs of vectors {(→x′(j,tj ,0) = →

x
(j,tj ,0) − →

a
(j,tj)

,
→

x
′(j,tj ,1) = →

x
(j,tj ,1) − →

a
(j,tj))}tj∈[qj] to its SEL-IND

challenger C for SMIPE.
• B obtains the public parameters pp′ = ((n,G1,G2,GT , e), g1, g2, e(g1, g2), {AAA(j)

1 ,DDD
(j)
1 ,FFF

(j)
1 }j∈[m]) from

its SEL-IND challenger C, where pp′ is generated by C by running MIPE.Setup(1λ, `,m, B). Here,
(n,G1,G2,GT , e)

$←− G(1λ, asymmetric, prime), g1
$←− G1, g2

$←− G2, and for all j ∈ [m], AAA(j)
1 = gA

(j)

1 ,
DDD

(j)
1 = gW

(j)

1 , FFF (j)
1 = gN

(j)

1 with A(j) $←− Z(k+1)×k
n , W (j) $←− Z`×(k+1)

n , N (j) $←− Zk×(k+1)
n . Clearly, pp′

30 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

has the same distribution as the public parameters pp in SOO-MIPE. B provides the public parameters
pp = pp′ to A.

• Next, B receives the set of challenge ciphertexts {ct′∗(j,tj)}j∈[m],tj∈[qj] from its SEL-IND challenger

C such that for each j ∈ [m], tj ∈ [qj], ct′∗(j,tj) = (j, c′(1,j,tj) = g
→
x
′(j,tj ,β)+

→
s

(j,tj)
A(j)ᵀW (j)ᵀ

1 , c′(2,j,tj) =

g
→

f
(j)

+
→
s

(j,tj)
A(j)ᵀN(j)ᵀ

1 , c′(3,j,tj) = g
→
s

(j,tj)
A(j)ᵀ

1) $←− MIPE.Encrypt(pp′, j,enk′(j) =
→

f
(j)
,
→

x
′(j,tj ,β)), where

β
$←− {0, 1} is the random bit selected by C. Here, {

→

f
(j)
}j∈[m] is the set of vectors uniformly sampled

from Zkn by the MIPE.Setup algorithm and for each j ∈ [m], tj ∈ [qj],
→

s
(j,tj) $←− Zkn is the randomness

chosen by the MIPE.Encrypt algorithm. For each j ∈ [m], tj ∈ [qj], B sets the challenge ciphertext
ct∗(j,tj) = (j, c(1,j,tj) = c′(1,j,tj), c(2,j,tj) = c′(2,j,tj), c(3,j,tj) = c′(3,j,tj),

→

c
(4,j,tj) = →

a
(j,tj)). B gives the

set of ciphertexts {ct∗(j,tj)}j∈[m],tj∈[qj] to A.

• In response to a decryption key query of A corresponding to an m-tuple of vectors (→y(1)
, . . . ,

→

y
(m)) ∈

(Z`n)m subject to the restriction that for any (t1, . . . , tm) ∈ [q1] × . . . × [qm],
P
j∈[m]

〈→x(j,tj ,0)
,
→

y
(j)〉 =P

j∈[m]
〈→x(j,tj ,1)

,
→

y
(j)〉, B queries a decryption key to C corresponding to the tuple (→y′(1)

, . . . ,
→

y
′(m)) =

(→y(1)
, . . . ,

→

y
(m)) and receives back a decryption key sk′(→y(1)

, . . . ,
→

y
(m)) =

�
(→y(1)

, . . . ,
→

y
(m)), {k′(1,j) =

g
→
y

(j)
W (j)+

→

hN(j)

2 }j∈[m],k
′(2) = g

→

h
2 ,K

′(3) = e(g1, g2)
〈
P
j∈[m]

→

f
(j)
,
→

h〉� $←− MIPE.KeyGen
�
pp′,msk′ =

({W (j),N (j)}j∈[m],
P
j∈[m]

→

f
(j)

), (→y(1)
, . . . ,

→

y
(m))

�
from C. Here,

→

h
$←− Zkn is a random vector selected

by the MIPE.KeyGen algorithm. Observe that (→y(1)
, . . . ,

→

y
(m)) constitutes a valid decryption key query

in the SEL-IND security experiment for SMIPE since for any (t1, . . . , tm) ∈ [q1]× . . .× [qm], we have

P
j∈[m]

〈→x′(j,tj ,0)
,
→

y
(j)〉 =

P
j∈[m]

〈→x(j,tj ,0) − →

a
(j,tj)

,
→

y
(j)〉

=
P
j∈[m]

〈→x(j,tj ,0)
,
→

y
(j)〉 −

P
j∈[m]

〈→a(j,tj)
,
→

y
(j)〉

=
P
j∈[m]

〈→x(j,tj ,1)
,
→

y
(j)〉 −

P
j∈[m]

〈→a(j,tj)
,
→

y
(j)〉

=
P
j∈[m]

〈→x(j,tj ,1) − →

a
(j,tj)

,
→

y
(j)〉

=
P
j∈[m]

〈→x′(j,tj ,1)
,
→

y
(j)〉.

B selects
→

b
(1)
, . . . ,

→

b
(m) $←− Zk+1

n , and provides A with the decryption key sk(→y(1)
, . . . ,

→

y
(m)) =�

(→y(1)
, . . . ,

→

y
(m)), {k(1,j) = k′(1,j)g−

→

b
(j)

2 }j∈[m],k
(2) = k′(2),K(3) = K ′(3), {

→

k
(4,j)

=
→

b
(j)
}j∈[m]

�
.

• A eventually outputs a guess bit β′ ∈ {0, 1}. B also outputs β′ as its guess bit in its SEL-IND
experiment for SMIPE.

Note that all the challenge ciphertexts and decryption keys queried by A are correctly simulated by B.
This can be readily verified by checking the decryption equation of SOO-MIPE. Moreover, the ciphertexts
and decryption keys are randomized by B to have the proper distributions. Also, it is immediate that for
all j ∈ [m], tj ∈ [qj], β ∈ {0, 1}, if ct′∗(j,tj) encrypts →

x
′(j,tj ,β), then ct∗(j,tj) encrypts →

x
(j,tj ,β) as well.

Hence, it follows that the simulation of the SEL-IND security experiment for SOO-MIPE by B is perfect.
Further, if A correctly guesses the challenge bit in this simulated SEL-IND experiment for SOO-MIPE, then
B correctly guesses the challenge bit in its SEL-IND security experiment for SMIPE. Hence, Theorem 5.1
follows as SMIPE is SEL-IND secure under the k-LIN assumption. ut

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 31

6 Conclusion
In this paper, we have employed the extended Déjà Q framework [CM14,Wee16] for constructing NIPPE
and ABE systems with succinct ciphertexts and decryption keys without relying on q-type complexity
assumptions. We have also defined and constructed online-offline MIPE scheme. Although, the Déjà Q
framework has already proven itself as a strong technique for avoiding the need of q-type assumptions
in constructing various cryptographic primitives with very short parameters, as pointed out in [CM14],
the current version of this technique is not readily amenable to use in prime order bilinear group setting.
Developing a prime order variant of this classic framework is undoubtedly a fascinating research problem
as it can lead to further efficiency improvements. On the other hand, in view of the emerging trend of
performing complex applications in small device and the wide range of potentials of MIFE, it is instructive
to make further progress in the field of online-offline MIFE, both towards supporting expressive multi-input
functionalities of practical significance as well as achieving stronger security guarantees.

References
ABDCP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryp-

tion schemes for inner products. In IACR International Workshop on Public Key Cryptography–PKC
2015, pages 733–751. Springer, 2015.

AL10. Nuttapong Attrapadung and Benôıt Libert. Functional encryption for inner product: Achieving
constant-size ciphertexts with adaptive security or support for negation. In International Workshop
on Public Key Cryptography–PKC 2010, pages 384–402. Springer, 2010.

ALDP11. Nuttapong Attrapadung, Benôıt Libert, and Elie De Panafieu. Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In International Workshop on Public Key Cryptography–
PKC 2011, pages 90–108. Springer, 2011.

ALS15. Shweta Agrawal, Benoit Libert, and Damien Stehle. Fully secure functional encryption for inner
products, from standard assumptions. Cryptology ePrint Archive, Report 2015/608, 2015.

AR16. Shweta Agrawal and Alon Rosen. Online-offline functional encryption for bounded collusions. Cryp-
tology ePrint Archive, Report 2016/361, 2016.

ARW16. Michel Abdalla, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product functional encryption
from pairings. Cryptology ePrint Archive, Report 2016/425, 2016.

Att14. Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework, fully se-
cure functional encryption for regular languages, and more. In Advances in Cryptology–EUROCRYPT
2014, pages 557–577. Springer, 2014.

Att15. Nuttapong Attrapadung. Dual system encryption framework in prime-order groups. Cryptology
ePrint Archive, Report 2015/390, 2015.

BBG05. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. In Advances in Cryptology–EUROCRYPT 2005, pages 440–456. Springer, 2005.

Bei96. Amos Beimel. Secure schemes for secret sharing and key distribution. Technion-Israel Institute of
technology, Faculty of computer science, 1996.

BF01. Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Advances in
Cryptology–CRYPTO 2001, pages 213–229. Springer, 2001.

BGJS15. Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-input functional
encryption for unbounded arity functions. In Advances in Cryptology–ASIACRYPT 2015, pages
27–51. Springer, 2015.

BKS15. Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the private-
key setting: Stronger security from weaker assumptions. Cryptology ePrint Archive, Report 2015/158,
2015.

BLR+15. Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zimmerman. Se-
mantically secure order-revealing encryption: Multi-input functional encryption without obfuscation.
In Advances in Cryptology–EUROCRYPT 2015, pages 563–594. Springer, 2015.

Boy08. Xavier Boyen. The uber-assumption family. In International Conference on Pairing-Based
Cryptography–Pairing 2008, pages 39–56. Springer, 2008.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Theory of Cryptography Conference–TCC 2011, pages 253–273. Springer, 2011.

CCL+13. Cheng Chen, Jie Chen, Hoon Wei Lim, Zhenfeng Zhang, Dengguo Feng, San Ling, and Huaxiong
Wang. Fully secure attribute-based systems with short ciphertexts/signatures and threshold access
structures. In CryptographersŠ Track at the RSA Conference–CT-RSA 2013, pages 50–67. Springer,
2013.

CGW15. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system abe in prime-order groups via
predicate encodings. In Advances in Cryptology–EUROCRYPT 2015, pages 595–624. Springer, 2015.

32 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Che06. Jung Hee Cheon. Security analysis of the strong diffie-hellman problem. In Advances in Cryptology–
EUROCRYPT 2006, pages 1–11. Springer, 2006.

CLR16. Jie Chen, Benôıt Libert, and Somindu Ramanna. Non-zero inner product encryption with short
ciphertexts and private keys. In Security and Cryptography for Networks–SCN 2016, pages 23–41.
Springer, 2016.

CM14. Melissa Chase and Sarah Meiklejohn. Déja q: Using dual systems to revisit q-type assumptions. In
Advances in Cryptology–EUROCRYPT 2014, pages 622–639. Springer, 2014.

CW14. Jie Chen and Hoeteck Wee. Semi-adaptive attribute-based encryption and improved delegation for
boolean formula. In International Conference on Security and Cryptography for Networks–SCN 2014,
pages 277–297. Springer, 2014.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Villar. An algebraic framework
for diffie-hellman assumptions. In Advances in Cryptology–CRYPTO 2013, pages 129–147. Springer,
2013.

EMN+09. Keita Emura, Atsuko Miyaji, Akito Nomura, Kazumasa Omote, and Masakazu Soshi. A ciphertext-
policy attribute-based encryption scheme with constant ciphertext length. In International Confer-
ence on Information Security Practice and Experience–ISPEC 2009, pages 13–23. Springer, 2009.

Fre10. David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In Advances in Cryptology–EUROCRYPT 2010, pages 44–61. Springer, 2010.

GGG+14. Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit
Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Advances in
Cryptology–EUROCRYPT 2014, pages 578–602. Springer, 2014.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for circuits from multilinear maps. In Advances in Cryptology–CRYPTO 2013, pages 479–499.
Springer, 2013.

GJN15. Vipul Goyal, Aayush Jain, and Adam O’ Neill. Multi-input functional encryption with unbounded-
message security. Cryptology ePrint Archive, Report 2015/1113, 2015.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. How to run turing machines on encrypted data. In Advances in Cryptology–CRYPTO 2013,
pages 536–553. Springer, 2013.

GMC08. Fuchun Guo, Yi Mu, and Zhide Chen. Identity-based online/offline encryption. In International
Conference on Financial Cryptography and Data Security, pages 247–261. Springer, 2008.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In 13th ACM conference on Computer and communications
security, pages 89–98. ACM, 2006.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits.
Journal of the ACM (JACM), 62(6):45, 2015.

HLR10. Javier Herranz, Fabien Laguillaumie, and Carla Ràfols. Constant size ciphertexts in threshold
attribute-based encryption. In International Workshop on Public Key Cryptography–PKC 2010, pages
19–34. Springer, 2010.

HW14. Susan Hohenberger and Brent Waters. Online/offline attribute-based encryption. In International
Workshop on Public Key Cryptography–PKC 2014, pages 293–310. Springer, 2014.

ILL89. Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation from one-way
functions. In Twenty-first annual ACM symposium on Theory of computing, pages 12–24. ACM,
1989.

LOS+10. Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption.
In Advances in Cryptology–EUROCRYPT 2010, pages 62–91. Springer, 2010.

LW10. Allison Lewko and Brent Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In Theory of Cryptography Conference–TCC 2010, pages 455–479. Springer,
2010.

LW11. Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In Advances in
Cryptology–EUROCRYPT 2011, pages 568–588. Springer, 2011.

LZ09. Joseph K Liu and Jianying Zhou. An efficient identity-based online/offline encryption scheme. In
International Conference on Applied Cryptography and Network Security–ACNS 2009, pages 156–167.
Springer, 2009.

O’N10. Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556, 2010.

OSW07. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-monotonic
access structures. In 14th ACM conference on Computer and communications security, pages 195–203.
ACM, 2007.

OT15. Tatsuaki Okamoto and Katsuyuki Takashima. Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. Designs, Codes and Cryptography, 77(2-3):725–
771, 2015.

Succinct PE and Online-Offline MIPE under Standard Static Assumptions 33

SHI+12. Yumi Sakemi, Goichiro Hanaoka, Tetsuya Izu, Masahiko Takenaka, and Masaya Yasuda. Solving a
discrete logarithm problem with auxiliary input on a 160-bit elliptic curve. In International Workshop
on Public Key Cryptography–PKC 2012, pages 595–608. Springer, 2012.

SW05. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in Cryptology–
EUROCRYPT 2005, pages 457–473. Springer, 2005.

Tak14. Katsuyuki Takashima. Expressive attribute-based encryption with constant-size ciphertexts from
the decisional linear assumption. In International Conference on Security and Cryptography for
Networks–SCN 2014, pages 298–317. Springer, 2014.

Vad02. Salil P Vadhan. Randomness extractors and their many guises. In Foundations of Computer Science–
FOCS 2002, page 9. IEEE, 2002.

Wat05. Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology–
EUROCRYPT 2005, pages 114–127. Springer, 2005.

Wat11. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In International Workshop on Public Key Cryptography–PKC 2011, pages 53–70.
Springer, 2011.

Wee16. Hoeteck Wee. Déjà q: Encore! un petit ibe. In Theory of Cryptography Conference–TCC 2016, pages
237–258. Springer, 2016.

YAHK14. Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and Noboru Kunihiro. A framework and
compact constructions for non-monotonic attribute-based encryption. In International Workshop on
Public Key Cryptography–PKC 2014, pages 275–292. Springer, 2014.

	Succinct PE and Online-Offline MIPE under Standard Static Assumptions
	Introduction
	Preliminaries
	Bilinear Pairing Groups
	Complexity Assumptions
	Pairwise Independent Hash Families and the Left-Over Hash Lemma
	Overview of the Déjà Q Framework and its Extension

	Our Non-Zero Inner-Product-Predicate Encryption Scheme
	Notion
	Construction
	Security Analysis

	Our Attribute-Based Encryption Scheme
	Notion
	Construction
	Security Analysis

	Our Online-Offline Multi-Input Inner Product Encryption Sc-heme
	Notion
	Construction
	Security Analysis

	Conclusion

