
On Basing Search SIVP on NP-Hardness

Tianren Liu
MIT∗

Abstract

The possibility of basing cryptography on the minimal assumption NP * BPP is at the
very heart of complexity-theoretic cryptography. The closest we got so far was lattice-based
cryptography whose average-case security is based on the worst-case hardness of approximate
shortest vector problems on integer lattices. The state-of-the-art is the construction of a one-way
function (and collision-resistant hash function) based on the hardness of the Õ(n)-approximate
shortest independent vector problem SIVPÕ(n).

Although SIVP is hard in its exact version, Guruswami, et al (CCC 2004) showed that
gapSIVP√

n/ logn
is in NP ∩ coAM and thus unlikely to be NP-hard. Indeed, any language

that can be reduced to gapSIVPÕ(
√
n) (under general probabilistic polynomial-time adaptive

reductions) is in AM ∩ coAM by the results of Peikert and Vaikuntanathan (CRYPTO 2008)
and Mahmoody and Xiao (CCC 2010). However, none of these results apply to reductions to
search problems, still leaving open a ray of hope: can NP be reduced to solving search SIVP
with approximation factor Õ(n)?

We show that any language that can be reduced to solving search SIVP with approximation
factor Õ(n) lies in AM intersect coAM, eliminating the possibility of basing current construc-
tions on NP-hardness.

1 Introduction

It is a long standing open question as to whether cryptography can be based on the minimal
assumption that NP * BPP. More precisely, one would hope to construct cryptographic primitives
such that given an polynomial-time algorithm breaking the security of the primitive, one can
efficiently solve SAT.

A potential line of attack is lattice cryptography. The approach was born out of the break-
through result of Ajtai [Ajt96] which constructs a one-way function family based on the worst case
hardness of certain lattice problems such as the γ-approximate shortest independent vectors prob-
lem (SIVPλ), which can be stated as follows: given an n-dimensional lattice, find a set of n linear
independent vectors whose length1 is at most γ(n) (polynomial in n) times long compare to the
shortest such vectors set. Since the work of Ajtai, the state of the art constructions are those of a
family of collision resistant hash functions (CRHF) based on the hardness of shortest independent
vectors problem with an approximation factor Õ(n) [MR04]. One would hope that this approach
is viable since, Khot shows SIVPγ is NP-hard for any constant factor [Kho05]. Presumably, if one
could construct cryptographic primitives based on the hardness of SIVPγ with γ(n) being constant,
we would golden. Alternatively, if one could extend the result of Khot to show the NP-hardness of
SIVPγ for larger γ(n), we would be closer to the goal of basing cryptography on NP-hardness.

∗liutr@mit.edu
1The length of a vector set is defined as the length of the longest vector in the set.

1

However, there seem to be some sort of negative results when one considers the corresponding
gap versions of the same lattice problem. The gap problem, denoted by gapSIVPγ , is to estimate
the length of the short independent vector set within a factor of γ(n). Peikert and Vaikuntanathan
show that gapSIVPω(

√
n logn) is in SZK [PV08]. Thus there is no Cook reduction from SAT to

gapSIVPÕ(
√
n) unless the polynomial hierarchy collapses [MX10].

Fortunately, the hardness of SIVP is not contradicted by the fact that the gap problem with
same approximation factor is easy. For instance, if one considers any ideal lattice in the field
Z[x]/x2

k
+ 1, its successive minima satisfy λ1 = . . . = λn, thus gapSIVP√n can be trivially solved

using Minkowski’s inequality. However, finding a set of short independent vectors in such ideal
lattices is still not known to be easy. As none of these negative results apply to reductions to search
SIVP, there is still a ray of hope: can NP be reduced to solving search SIVP with approximation
Õ(n)?

Thus, in order to really understand the viability of the approach begun by the work of Ajtai, it
seems one must study the search versions of lattice problems. In this work, we relate the hardness
of the search version SIVPγ , with the gap version gapSIVP. Informally, we show that if gapSIVPγ is
not NP-hard, neither is SIVP√n·γ .

Main Theorem. If gapSIVPγ ∈ SZK and there exists a probabilistic polynomial-time adaptive
reduction from a language L to SIVPÕ(

√
n·γ), then L ∈ AM ∩ coAM.

Corollary (w/ [PV08]). If there exists a probabilistic polynomial-time adaptive reduction from a
language L to SIVPÕ(n), then L ∈ AM ∩ coAM.

As a quick corollary from combining our result with gapSIVPÕ(
√
n) ∈ SZK [PV08], any language

that can be reduced to SIVPÕ(n) lies in AM intersect coAM, thus it’s not NP-hard unless the
polynomial hierarchy collapses. This eliminates the possibility of basing current constructions on
NP-hardness.

1.1 Proof Overview

The first step is to shift from a search problem to a sampling problem. We are looking for a
black-box separation between SIVPγ and NP-hardness by showing that any language L that can be
reduced to SIVPγ is in AM intersect coAM. Let R be the reduction from L to SIVPγ . A näıve
verifier simulates the reduction R and resolves any query to SIVPγ relying on the prover. While
SIVPγ is a search problem, and there is no unique right answer. The prover has the freedom to
decide which answer is present upon each query, and this freedom allows a malicious prover to fool
the näıve verifier. Bogdanov and Brzuska inherently shift to sampling problems in order to separate
size-verifiable one-way functions from NP-Hardness [BB15]. The honest prover replies each query
by sampling over all valid answers uniformly at random. Due to the size-verifiable property, a
malicious prover has little freedom to modify the reply distribution.

The distribution discussed in this work is discrete Gaussian distribution. Discrete Gaussian
over a lattice is a distribution such that the probability of vertex v is proportional to e−π‖v−c‖

2/s2 ,
where c is its “centre” and parameter s is its “width”. Lemma 4.1 shows that discrete Gaussian
sampling is as hard as SIVPγ in the sense that there is a black-box reduction from SIVPγ to discrete
Gaussian sampling with “width” γ(n)/

√
n.

• (Lemma 4.1) For γ ≥
√
n, SIVPγ can be reduced to discrete Gaussian sampling on lattice

with “width” σ = γ√
n
λn. Therefore, if a language can be reduce to SIVPn, then it could be

reduced to discrete Gaussian sampling on lattice with “width” s ≤
√
n · λn.

2

The proof of Lemma 4.1 is quite intuitive. If you can sample discrete Gaussian distributions,
keep sampling multiple times from the discrete Gaussian centered at 0. With good probability, the
newly sampled vertex is short and is linear independent from previously sampled verteces.

The next natural question is, which property separates a sampling problem from NP-hardness?
Here we introduce the notion of “probability-verifiable”. Informally, a distribution family is probability-
verifiable if for any distribution D in this distribution family and for any possible value v, the
probability that Pr[v ← D] can be computed with an arbitrarily good precision in AM.

• (Lemma 4.2) If a language L can be reduced to a probability-verifiable sampling problem S,
then L ∈ AM ∩ coAM.

Lemma 4.2 is a generalization of [BB15]. Assume language L can be reduced to sampling
problem S. The input of S is interpreted as the description of a distribution, let Ppd denotes
the distribution specified by input pd. For simplicity, assume there is an efficient algorithm that
computes the probability Ppd(v) given pd and value v. This property is stronger than probability-
verifiable.

Let R be the reduction from L to sampling problem S. On each input x, an execution RS(x) is
determined by the random tape of reduction, denoted by r, and the how the queries to sampling
problem S are answered. The transcript is defined as σ = (r, pd1, v1, . . . , pdT , vT) where pdt, vt are
the t-th query/answer to S. Note that r, v1, . . . , vT determine the execution, pdt is determined by
r, v1, . . . , vt−1 and

Pr[RS(x)→ 1] =
∑

σ:valid transcript
of RS(x)→1

Pr[σ] =
∑

σ:valid transcript
of RS(x)→1

Pr[r] · Ppd1(v1) · . . . · PpdT (vT).

The probability Pr[RS(x) → 1] can be bounded by set lower bound protocol of Goldwasser and
Sipser [GS86], thus L ∈ AM. Symmetrically, L ∈ coAM.

There is one last step missing between Lemma 4.1 and Lemma 4.2: Is discrete Gaussian sampling
probability-verifiable? What’s the smallest factor γ such that discrete Gaussian sampling with
“width” ≤ γλn is probability-verifiable? Lemma 4.3 answers this question, and it connects the
hardness of discrete Gaussian sampling with the hardness of gapSIVP.

• (Lemma 4.3) Assume gapSIVPγ is in SZK. There exists a real valued function s(B) ∈
[λn, Õ(γ) · λn] such that given a lattice basis B, discrete Gaussian sampling over lattice
L(B) with “width” s(B) is probability-verifiable.

Lemma 4.3 has an easier proof if assuming a stronger condition that gapSIVPγ is in P. If there
is an imaginary deterministic polynomial time algorithm solving gapSIVPγ , there exists s(B) ∈
[λn(B), γλn(B)] that can be efficiently computed by binary search. As s(B) ≥ λn(B), the verifier
can force the prover to provide n linear independent vectors w1, . . . ,wn whose length no longer
than s(B). Given the lattice basis B and a set of short linear independent vectors, there exists an
efficient algorithm that samples from discrete Gaussian with parameter we interested in [BLP+13].
When the verifier can sample from a distribution, he can estimate the probability of each value
using set lower bound protocol [GS86].

This informal proof shows that the only ability of the verifier is to compute some function s(B) ∈
[λn(B), γλn(B)]. Lemma 3.1 enables the verifier to compute such a function given gapSIVPγ ∈
SZK.

• (Corollary of Lemma 3.1) Assume gapSIVPγ is in SZK. There exists a real valued function

s(B) ∈ [λn, Õ(γ) · λn] that can be efficiently computed in AM.

3

2 Preliminaries

Lattice A lattice in Rn is an additive subgroup of Rn{ n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

generated by n linearly independent vectors b1, . . . ,bn ∈ Rn. The set of vectors b1, . . . ,bn is called
a basis for the lattice. A basis can be represented by matrix B ∈ Rn×n whose columns are the basis
vectors. The lattice generated by the columns of B is denoted by L(B).

L(B) = {Bx : x ∈ Nn}.

The i-th successive minimum of a lattice L, denoted by λi(L), is defined as the minimum length
that L contains i linearly independent vectors of length at most λi(L). Formally,

λi(L) := min{r : dim(L ∩ rB) ≥ i},

where rB is the radius r ball centered at the origin defined as rB := {x ∈ Rn : ‖x‖2 ≤ r}. We
abuse notations and write λi(B) instead of λi(L(B)).

Shortest Independent Vectors Problem (SIVP) SIVP is a computational problem. Given
a basis B of an n-dimensional lattice, find a set of n linear independent vectors v1, . . . ,vn ∈ L(B)
such that maxi ‖vi‖ is minimized, i.e., ‖vi‖ ≤ λn(B) for all 1 ≤ i ≤ n.

SIVPγ is the approximation version of SIVP with factor λ. Given a basis B of an n-dimensional
lattice, find a set of n linear independent vectors v1, . . . ,vn ∈ L(B) such that ‖vi‖ ≤ γ(n) · λn(B)
for all 1 ≤ i ≤ n. The approximation factor γ is typical a polynomial in n.

gapSIVPγ is the decision version of SIVPγ . An input to gapSIVPγ is a basis B of a n-dimensional
lattice and a scalar s. It is a YES instance if λn(B) ≤ s, and is a NO instance if λn(B) ≥ λ(n) · s.

Discrete Gaussian For any vector c and any s > 0, let

ρc,s(v) = e−π‖v−c‖
2
2/s

2

be a Gaussian function with mean c and width s. Functions are extends to sets in usual way,
ρc,s(L) =

∑
v∈L ρc,s(v). The discrete Gaussian distribution over lattice L with mean c and width

s, denoted by NL,c,s, is defined by

∀v ∈ L, NL,c,s(v) =
ρc,s(v)

ρc,s(L)
.

In this work, most discrete Gaussian distributions considered are centered at the origin. Let ρs,NL,s
denote ρ0,s,NL,0,s resp.

Sampling Problems Besides computational problems and decision problems, we define sampling
problems. The input of a sampling problem specifies a distribution, let Ppd denotes the distribution
specified by input pd. The goal is to sample from the distribution Ppd. A probabilistic polynomial-
time algorithm S perfectly solves the sampling problem if for any input pd

∀v,Pr[S(pd)→ v] = Ppd(v).

4

The probability is over the random input tape of S. In a more practical definition, S solves the
sampling problem if the output distribution of S(pd) is close to Ppd, i.e.

∆sd(S(pd, 1`),Ppd) ≤ 1

`

where ∆sd denotes the statistical distance.
For example, in this work, discrete Gaussian is considered as a sampling problem. For any

function s(·) mapping lattice bases to positive real numbers, define sampling problem DGSs. The
input of DGSs is a lattice basis B. The target output distribution PB is the discrete Gaussian
distribution NL(B),s(B), where each vector v ∈ L(B) is sampled with probability

PB(v) = NL(B),s(B)(v) =
ρs(B)(v)

ρs(B)(L(B))
.

Probability-Verifiable A sampling problem is probability-verifiable if there exists an AM pro-
tocol to lower bound Px(v) for any Px and v. More precisely, there exists a family of error function
{ηx,m} such that for any x,m, the error function ηx,m : {0, 1}∗ → [0,+∞) satisfies

∑
v ηx,m(v) ≤ 1

m ,
and the promise problem

• YES instance: (x, v, p̂, 1m) such that p̂ = Px(v)

• NO instance: (x, v, p̂, 1m) such that p̂ ≥ Px(v) + ηx,m(v)

is in AM.

Sampling Oracles In order to formalize the (probabilistic) Turing reduction to a sampling prob-
lem, we also define sampling oracles, which is a generalization of traditional oracles studied by com-
plexists. Let S be a sampling oracle for a fixed sampling problem. S can be queried on any valid
pd; upon query pd, sampling oracle S(pd) would always output a fresh sample from distribution
Ppd. E.g. if the sampling oracle S is queried for the same pd multiple times, it would outputs i.i.d.
samples from distribution Ppd.

A probabilistic Turing reduction from a language L to a sampling problem S is a probabilistic
poly-time oracle Turing machine R, such that R can solve L given a sampling oracle that samples
from S in the sense that

x ∈ L =⇒ RS(x)→ 1 w.p. ≥ 2/3,

x /∈ L =⇒ RS(x)→ 1 w.p. ≤ 1/3.

If such a reduction exists, we say L can be reduced to sampling problem S, denoted by L ∈ BPPS.
Similarly, a computational problem or a search problem can be reduced to a sampling problem

S if they can be efficiently solved given the sampling oracle of S.

R-TFAM This complexity class is introduced by Mahmoody and Xiao [MX10]. Informally, it’s
consist of real-valued functions that can be efficiently computed in AM. A function {0, 1}∗ → R is
in R-TFAM if the following promise problem is in AM:

• YES instance: (x, f(x), 1m).

• NO instance: (x, y, 1m) such that |y − f(x)| > 1
m .

5

Statistical Zero Knowledge Statistical zero knowledge (SZK) is the class of decision problems
that can be verified by a statistical zero-knowledge proof protocol. Entropy Difference (ED) is a
complete problem for SZK [GV99], which is defined as the following: Given two polynomial-size
circuits, C and D, let C and D be the distributions of their respective outputs when C,D are fed
with uniform random input. The problem is to distinguish between

• YES instance: (C,D) such that H(C)−H(D) ≥ 1;

• NO instance: (C,D) such that H(C)−H(D) ≤ −1.

Where H is the Shannon entropy. Moreover, the mapping H : C 7→ H(C) is in R-TFAM.

3 Gap Problems

The lattice problem gapSIVP is essentially to estimate λn(B) given a lattice basis B. This definition
can be generalized to any real valued functions. Define the gap problem of function f : {0, 1}∗ → R+

with gap γ : {0, 1}∗ → [1,+∞), denoted by gapfγ , as the promise problem

• YES instance: (x, y) such that y ≤ f(x);

• NO instance: (x, y) such that y > γ(x) · f(x).

In this work, estimating λn(B) is of critical importance. The easyness of gapSIVPγ (the gap
problem of function λn) is not sufficient for the proof. Instead, a stronger form of approximation
is defined. Say g : {0, 1}∗ → R+ is an approximation of function f within factor γ if f(x) ≤ g(x) ≤
λ(x) · f(x) for all x. Clearly, computing g is a harder problem than gapfγ , in the sense that there
is a trivial reduction from gapfγ to computing g.

The following lemma shows a reduction in the other direction: if gapfγ is in SZK, then there
exists an approximation of f within almost the same factor, which can be computed in AM.

Lemma 3.1. For any real valued function f : {0, 1}∗ → R+ and any gap γ : {0, 1}∗ → [1,+∞) that
log γ(x) ≤ poly(|x|), if gapfγ ∈ SZK, then for any constant µ > 1, there exists g : {0, 1}∗ → R+

such that ∀x, g(x) ∈ [f(x), µγ(x)f(x)] and g is in R-TFAM.

Lemma 3.1 can be combined with previous results about gapSIVP. Guruswami, et al. show
that gapSIVP√

n/ logn
∈ coAM [GMR04]. Peikert and Vaikuntanathan show that gapSIVPγ ∈

NISZK ⊆ SZK for any γ = ω(
√
n log n) [PV08]. Thus there exists an approximation of λn within

a factor Õ(
√
n) that can be computed in AM.

Corollary (w/ [PV08]). For any γ(n) = ω(
√
n log n), there exists a function g maps lattice bases

to real numbers such that g ∈ R-TFAM and λn(B) ≤ g(B) < γ(n) · λn(B).

Proof of Lemma 3.1. Entropy Difference (ED) is a complete problem for SZK, so gapfγ ∈ SZK
implies the existance of a reduction (x, y) 7→ (Cx,y, Dx,y) that maps input x together with a real
number y to random circuits Cx,y, Dx,y. Let Cx,y and Dx,y be the output distributions of Cx,y, Dx,y.
The reduction from gapfγ to ED satisfies the following properties:

• There is an efficient deterministic algorithm computing Cx,y, Dx,y given input (x, y).

• H(Cx,y)−H(Dx,y) > 2 for any x, y that y ≤ f(x).

• H(Cx,y)−H(Dx,y) < −1 for any x, y that y > γ(x) · f(x).

6

Define the clamp function

clamp(y) :=


0, if y ≤ 0;

y, if y ∈ (0, 1);

1, if y ≥ 1.

For any fixed constant µ > 1, define

g(x) = exp

(
lnµ ·

+∞∑
i=0

clamp(H(Cx,µi)−H(Dx,µi)) + lnµ ·
+∞∑
i=1

(
clamp(H(Cx,µ−i)−H(Dx,µ−i))

)
.

As clamp(H(Cx,y)−H(Dx,y)) = 1 for y ≤ f(x),

g(x) ≥ exp
(
lnµ · dlogµ(f(x))e

)
≥ f(x).

As clamp(H(Cx,y)−H(Dx,y)) = 0 for y > γ(x) · f(x),

g(x) ≤ exp
(
lnµ · dlogµ(γ(x) · f(x))e

)
≤ µγ(x) · f(x).

In order to complete the proof, we show that g is in R-TFAM. For any input x, ĝ, the prover
can prove ĝ ≈ g(x) if ĝ = g(x).

Consider the following protocol, ε = 1/ poly(m, ln γ) will be fixed later.

AM “protocol” on input (x, ĝ)

P: Send . . . , d̂−1, d̂0, d̂1, d̂2, . . . such that logµ ĝ =
∑∞

i=0 clamp(d̂i) +
∑∞

i=1(clamp(d̂−i)− 1)

P,V: For each i ∈ Z, convince the verifier that d̂i − ε < H(Cx,µi)−H(Dx,µi) < d̂i + ε

On any input x, define di = H(Cx,µi) − H(Dx,µi). And honest prover should send d̂i = di.

The prover have to prove that di − ε < d̂i < di + ε. For µi ≤ f(x), d̂i ≥ di − ε ≥ 1, then
clamp(d̂i) = 1 = clamp(di). For µi ≥ µγ(x)f(x), d̂i ≤ di + ε ≤ 0, then clamp(d̂i) = 0 = clamp(di).
For f(x) < µi < µγ(x)f(x), | clamp(d̂i)− clamp(di)| ≤ |d̂i − di| < ε.

Thus ∣∣∣ ln ĝ − ln g(x)

lnµ

∣∣∣ ≤∑
i∈Z
| clamp(d̂i)− clamp(di)|

=
∑

f(x)<µi<µγ(x)f(x)

| clamp(d̂i)− clamp(di)|

< dlogµ(µγ(x))eε

<
ln γ(x) + 2

lnµ
ε.

If ε is sufficiently small, ĝ would be close to g(x). To ensure |ĝ − g(x)| ≤ 1
mg(x), it’s sufficient to

set ε = O(1
m(ln γ(x)+2)).

The above “protocol” is not a real protocol, as it requires the prover to send an infinite sequence
to the verifier. To compress the proof, the prover need a succinct interactive proof that dj > 1 for
all j ≤ iL and dj < 0 for all j ≥ iH .

For an index i, if the prover can convince the verifier that di = H(Cx,µi) −H(Dx,µi) < 2, the
verifier also learns that µi > g(x), thus for any j ≥ i + dlogµ γ(x)e, µj > γ(x)g(x) and dj ≤ −1.

7

Similarly, if the prover can convince the verifier that di = H(Cx,µi) −H(Dx,µi) > −1 , the verifier
also knows that dj ≥ 2 for any j ≤ i− dlogµ γ(x)e.

Thus the real AM protocol that proves ĝ ∈ (g(x)− 1
m , g(x) + 1

m) is the following:

AM protocol on input (x, ĝ, 1m)

P: Send d̂iL , d̂iL+1, . . . , d̂iH−1, d̂iH such that

• logµ ĝ = iL +
∑iH

i=iL
clamp(d̂i)

• iH = iL + 2dlogµ γ(x)e

• d̂iL+dlogµ γ(x)e > 0

• d̂iL+dlogµ γ(x)e+1 < 1

P,V: For each i ∈ Z, convince the verifier that d̂i − ε < H(Cx,µi)−H(Dx,µi) < d̂i + ε
for ε = O(1

m(ln γ(x)+2)).

4 Search SIVP and NP-hardness

Lemma 4.1. Let s(·) be a function mapping lattice bases to real numbers, such that ∀B, 2λn(B) ≤
s(B) ≤ γ√

n
λn(B). Then there exists a probabilistic Turing reduction from SIVPγ to DGSs.

Lemma 4.2. If there exists a probabilistic Turing reduction from a promise problem L = (LY , LN)
to probability-verifiable sampling problems, then L ∈ AM ∩ coAM.

Lemma 4.3. For any factor γ, if gapSIVP
γ(n)/
√
π log(2n+4)

∈ SZK, then there exists a function

s(·) mapping lattice bases to real numbers, such that ∀B, s(B) ∈ [2λn(B), γ(n) · λn(B)] and DGSs
is probability-verifiable.

4.1 From Search SIVP to Discrete Gaussian Sampling

This section proves Lemma 4.1. The reduction from SIVPγ to discrete Gaussian sampling is straight-
forward: If we can sample from discrete Gaussian distribution of width s ∈ [2 · λn, γ√

n
λn], keep

sampling from it until n short, linear independent vectors are sampled.
When sampling from discrete Gaussian NL(B),s(B), there are two bad events that might occurs:

• The sampled vector is too long, its Euclidean norm is larger than γλn(B).

• The sampled vector is not linearly independent from previous ones, it lies in the subspace
spanned by previously chosen vectors.

In order to prove Lemma 4.1, it’s sufficient to show that there is a constant probability that none
of these bad events occurs.

Lemma 4.4 (Lemma 1.5 in [Ban93]). For any c > 1/
√

2π, n-dimensional lattice L

ρs(L \ cs
√
nB) < Cn · ρs(L) (1)

where C = c
√

2πe · e−πc2.

8

Lemma 4.4 bounds the probability that an overlong vector is sampled from a discrete Gaussian
distribution. Let the constant c in formula (1) equals 1,

Pr
v←NL(B),s(B)

[
‖v‖ >

√
n · s(B)

]
=
ρs(L(B) \ s

√
nB)

ρs(L(B))
<
√

2πe · e−π < 0.2.

As γ(n) · λn(B) ≥
√
n · s(B),

Pr
v←NL(B),s(B)

[
‖v‖ > γλn(B)

]
≤ Pr

v←NL(B),s(B)

[
‖v‖ >

√
n · s(B)

]
< 0.2.

For any proper linear subspace V (Rn, we would bound the probability Prv←NL(B),s(B)
[v ∈ V].

By the definition of successive minimum, there exists u ∈ L \ V such that ‖u‖ ≤ λn(B). Let L′
denotes L∩V. As L is close under addition, L′+ u,L′−u are subsets of L. Moreover, as V is close
under addition and u /∈ V, L′ + u,L′,L′ − u are disjointed.

Pr
v←NL(B),s(B)

[v ∈ V] =
ρs(L′)
ρs(L)

≤ ρs(L′)
ρs(L′ − u) + ρs(L′) + ρs(L′ + u)

=

∑
v∈L′ ρs(v)∑

v∈L′
(
ρs(v − u) + ρs(v) + ρs(v + u)

)
For any vectors u,v such that ‖u‖ ≤ λn(B) ≤ s/2,

ρs(v − u) + ρs(v + u) = e−π‖v−u‖
2/s2 + e−π‖v−u‖

2/s2

= (e−2π〈u,v〉/s
2

+ e2π〈u,v〉/s
2
)e−π‖u‖

2/s2e−π‖v‖
2/s2 ≤ 2e−π/2

2
ρs(v)

Thus

Pr
v←NL(B),s(B)

[v ∈ V] ≤
∑

v∈L′ ρs(v)∑
v∈L′(1 + 2e−π/22)ρs(v)

=
1

1 + 2e−π/22
< 0.6.

By union bound, the probability of bad event is at most 0.8. By Chernoff bound, if sample
m times from the discrete Gaussian distribution (for m ≥ 10n), the probability that the sampled
vectors contains n linear independent vectors of length at most γλn(B) is at least 1− e−

m
10 .

4.2 Probability-Verifiable Sampling Problem and NP-hardness

This section proves Lemma 4.2, which is a generalization of [BB15], the proof technique are similar.
Let M be the reduction from a promise problem L = (LY , LN) to S. For a given input x, we

want to distinguish between Pr[MS(x)→ 1] ≥ 8/9 and Pr[MS(x)→ 1] ≤ 1/9 in AM. Notice that
the randomness includes the random tape ofM and the randomness S used to answer each query.

A transcript of an execution ofMS(x) is an tuple (r, pd1, v1, pd2, v2, . . . , pdT , vT) consists of the
random tape of M, all queries to S and the correlated answers. The transcript fully determined
the execution MS(x), and

Pr[MS(x)→ 1] =
∑

transcript (r,pd1,v1,pd2,v2,...,pdT ,vT)
determines a execution whereMS(x)→1

Pr[(r, pd1, v1, pd2, v2, . . . , pdT , vT)]

=
∑

transcript (r,pd1,v1,pd2,v2,...,pdT ,vT)
determines a execution whereMS(x)→1

Pr[r]
T∏
t=1

Ppdt(vt).

In the proof, we construct an AM protocol that estimate this sum.

9

Proof of Lemma 4.2 It’s sufficient to show that L = (LY , LN) ∈ AM. Then the same argument
would shows L̄ = (LN , LY) ∈ AM, which implies L ∈ coAM.

L can be efficiently reduced to a probability-verifiable sampling problem. Let S denote a cor-
related sampling oracle. The reduction is a probability polynomial-time oracle algorithm M such
that

x ∈ LY =⇒ Pr[MS(x)→ 1] ≥ 8

9
,

x ∈ LN =⇒ Pr[MS(x)→ 1] ≤ 1

9
.

(2)

The probability is over the random tape of M and the randomness used by S. Without loss of
generality, assume there exists T = poly(n) thatM uses T bits of randomness and makes T queries
on any input x ∈ {0, 1}n.

Define a transcript of an execution MS(x) as a tuple (r, pd1, v1, pd2, v2, . . . , pdT , vT) where
r ∈ {0, 1}T is the random tape of M, pdt is the t-th query to sampling oracle S and vt is the
t-th sample returned by S. The length of vt is bounded by some polynomial of n, let `(n) be a
polynomial that upper bound |vt|.

Note that the input, the random tape and oracle’s answers fully determine the reduction. Given
the input and random tape, the reduction’s first query is predictable; given the input, random tape
and the oracle’s previous answers, the reduction’s next query is predictable. Therefore, we define
a transcript σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT) to be valid, if it’s potentially a transcript of an
execution MS(x), i.e. if for all 1 ≤ t ≤ T , pdt would the t-th query in execution MS(x) when r is
the random tape and v1, . . . , vt−1 is the oracle’s previous answers. By this definition, σ is a valid
transcript doesn’t implies vt has non-zero probability under distribution pdt. Let C(x) denote the
set of all valid transcripts of MS(x).

The transcript also determines the output of the reduction. Define a transcript σ to be accepting,
if σ is valid and the corresponding execution MS(x) output 1. Let C1(x) denote the set of all
accepting transcripts of MS(x).

Let Px(σ) denotes the probability that σ is the transcript of MS(x) when the random tape is
uniformly chosen and S is an ideal sampling oracle. Then by chain rule,

Px(σ) =
1

2T

T∏
t=1

Ppdt(vt)

for any valid transcript σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT). For any input x, we know C1(x) ⊆
C(x), ∑

σ∈C(x)

Px(σ) = 1,
∑

σ∈C1(x)

Px(σ) = Pr[MS(x)→ 1]

by the definition of valid/accepting transcripts. Thus, by condition (2), to distinguish between x ∈
LY and x ∈ LN , it’s sufficient to distinguish between

∑
σ∈C1(x)

Px(σ) ≥ 8/9 and
∑

σ∈C1(x)
Px(σ) ≤

1/9.
Define D(x) as the set of all tuple (σ, k) such that σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT) ∈ C1(x),

and k is an integer that

1 ≤ k ≤ K · Px(σ) = K · 1

2T

T∏
t=1

Ppdt(vt)

where K = 10 · 2T · 2T (`+1). Then the size of D(x) is roughly K ·Pr[MS(x)→ 1] if K is sufficiently
large.

10

The sampling problem is probability-verifiable. By definition, there exists a family of error
function {ηpd,m} such that for any pd,m, the error function ηpd,m : {0, 1}∗ → [0,+∞) satisfies∑

v ηpd,m(v) ≤ 1, and the promise problem

• YES instances: (pd, v, p̂, 1m) such that p̂ = Ppd(v)

• NO instances: (pd, v, p̂, 1m) such that p̂ ≥ Ppd(v) + 1
mηpd,m(v)

is in AM. Let ProbLowerBound be the corresponding AM protocol.
Let set D′(x) consist of all tuple (σ, k) such that σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT) ∈ C1(x),

and k is an integer that

1 ≤ k ≤ K · 1

2T

T∏
t=1

(
Ppdt(vt) +

1

T
ηpdt,T (vt)

)
.

Here K = 10 · 2T · 2T (`+1) as in the definition of D(x). By definition, D(x) ⊆ D′(x).

Claim. The promise problem

• YES instances: (x, σ, k) such that (σ, k) ∈ D(x)

• NO instances: (x, σ, k) such that (σ, k) /∈ D′(x)

is in AM.

Proof. TranscriptChecking is an AM protocol that solves this promise problem.

AM protocol TranscriptChecking on input (x, σ = (r, pd1, v1, pd2, v2, . . . , pdT , vT), k)

V: Check whether σ is a valid accepting transcript of MS(x); Reject if not

P: Send p̂1, . . . , p̂T , an honest prover should send p̂t = Ppdt(vt)

P,V: Run protocol ProbLowerBound(pdt, vt, 1
10T) for all 1 ≤ t ≤ T , repeat polynomial many times

in parallel and take majority so that the total error probability is exponentially small; Reject
if either of these protocols reject.

V: Check whether 1 ≤ k ≤ K · 1
2T

∏q
i=1 p̂i; Reject if not

For (σ, k) ∈ D(x), an honest prover could convince the verifier that to accept (x, σ, k).
For malicious prover, he should send p̂t such that p̂t ≤ Ppdt(vt) + 1

10T ηpdt,10T (vt), otherwise
he’ll be caught in ProbLowerBound protocol with overwhelming probability. Thus he could not let
verifier accept (x, σ, k) if (σ, k) /∈ D′(x).

Claim. The size of D(x) is at least 2
3K if x ∈ LY .

11

Proof. x ∈ LY implies that Pr[MS(x)→ 1] ≥ 8
9 . Thus

|D(x)| =
∑

σ∈C1(x)

bK · Px(σ)c

≥
∑

σ∈C1(x)

(K · Px(σ)− 1)

= K ·
∑

σ∈C1(x)

Px(σ)− |C1(x)|

≥ K · Pr[MS(x)→ 1]− |C(x)|

≥ 8

9
K − 2T · 2T (`+1)

=
8

9
K − 1

10
K

≥ 2

3
K

Claim. D′(x) has size at most 1
3K if x ∈ LN .

Proof. x ∈ LN implies that Pr[MS(x)→ 1] ≤ 1
9 .

|D′(x)| =
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT)∈C1(x)

⌊
K · 1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)⌋

≤ K ·
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT)∈C1(x)

1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)

= K ·
∑

σ=(r,pd1,...,vT)∈C1(x)

(
1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)
− 1

2T

T∏
t=1

Ppdt(vt)
)

+K ·
∑

σ=(r,pd1,v1,pd2,v2,...,pdT ,vT)∈C1(x)

1

2T

T∏
t=1

Ppdt(vt)

≤ K ·
∑

σ=(r,pd1,...,vT)∈C(x)

(
1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)
− 1

2T

T∏
t=1

Ppdt(vt)
)

+K · Pr[MS(x)→ 1]

≤ (e1/10 − 1)K +
1

9
K

≤ 1

3
K.

12

The second to last inequality symbol relies on the following inequality,

∑
σ=(r,pd1,v1,...,pdT ,vT)∈C(x)

(
1

2T

T∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

))

=
∑

(r,pd1,v1,...,pdT−1,vT−1,pdT)
∃vT (r,pd1,v1,...,pdT ,vT)∈C(x)

(
1

2T

T−1∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)
·

∑
v

(
PpdT (v) +

1

10T
ηpdT ,10T (v)

))

≤
∑

(r,pd1,v1,...,pdT−1,vT−1)
∃pdT ,vT (r,pd1,...,vT)∈C(x)

(
1

2T

T−1∏
t=1

(
Ppdt(vt) +

1

10T
ηpdt,10T (vt)

)(
1 +

1

10T

))

...

≤
∑

r∈{0,1}T

1

2T

(
1 +

1

10T

)T
≤
(

1 +
1

10T

)T
≤ e1/10.

Combining the claims above, L can be reduced to the following promise problem

• YES instances: x such that |D′(x)| ≥ |D(x)| ≥ 2
3K;

• NO instances: x such that |D(x)| ≤ |D′(x)| ≤ 1
3K.

This promise problem can be solved in AM using the set lower bound protocol of Goldwasser and
Sipser [GS86]. Thus L ∈ AM.

4.3 DGSs is Probability-Verifiable

By lemma 3.1, for any approximation factor γ, if gapSIVPγ/µ ∈ SZK for any constant µ > 1,
there exists a function g maps lattice bases to real numbers such that g is in R-TFAM and
λn(B) ≤ g(B) < γ(n)λn(B).

For any base B and lattice point v ∈ L(B). As g ∈ R-TFAM, the verifier can force the prover
to provide a sufficiently accurate estimation of g(B), denoted by ĝ. As ĝ ≈ g(B) ≥ λn(B), the
verifier can ask the prover to provide a set of linear independent vectors W = (w1, . . . ,wn) such
that ‖W‖ ≤ ĝ. Here the length of a vector set, e.g. ‖W‖, is defined as the length of the longest
vector in the set.

Given such a short independent vector set W, there exists an efficient algorithm that samples
from discrete Gaussian distributionNL(B),ŝ such that ŝ = ϕ(n)·ĝ and ϕ(n) = Θ(

√
n log n) [BLP+13,

GPV08]. Moreover, the verifier can estimate the probability that v is sampled from NL(B),ŝ using
set lower bound protocol.

Let s(B) = ϕ(n) · g(B), then ŝ is a good estimation of s(B). If the bias between ŝ and s(B) is
sufficiently small, one could expect Pr[v← NL(B),ŝ] ≈ Pr[v← NL(B),s(B)].

13

Proof of Lemma 4.3. By Lemma 3.1, gapSIVP
γ(n)/
√
π log(2n+4)

∈ SZK implies the existence of

a function g maps lattice bases to real numbers such that g is in R-TFAM and g(B) ∈ [3 ·
λn(B), γ(n)/

√
log(2n+ 4)/π · λn(B)]. Define s(B) =

√
ln(2n+ 4)/π · g(B), thus

2λn(B) ≤ 3 ·
√

ln(2n+ 4)/π · λn(B) ≤ s(B) < γ(n)λn(B).

Given any basis B, vector v ∈ L(B) and precision parameter m. The verifier can learn a good
estimation on g(B), denoted by ĝ. As g(B) ≥ λn(B), the verifier could ask the prover to provide
a set of linear independent vectors of L(B), denoted by W, such that ‖W‖ ≤ ĝ.

Given a set of linear independent vectors W that ‖W̃‖ ≤ ĝ, there is an efficient algorithm
which samples from discrete Gaussian NL(B),

√
ln(2n+4)/π·ĝ [BLP+13]. Let S denote this sampling

algorithm. Let ŝ =
√

ln(2n+ 4)/π · ĝ, then ŝ is a good approximation of s(B). Let r be the random
tape in the sampling algorithm S, then

Pr[v← NL(B),ŝ] =
{r : S(B′, ŝ) outputs v when r is the random input tape}

2|r|
.

We could use set lower bound protocol to lower bound the probability Pr[v ← NL(B),ŝ]. Thus the
promise problem

• YES instances: (W,v, ŝ, p̂, 1m) such that v ∈ L, ‖W̃‖ ≤ ŝ√
ln(2n+4)/π

, p̂ = Pr[v← NL(B),ŝ]

• NO instances: (W,v, ŝ, p̂, 1m) such that p̂ ≥ (1 + 1
m) Pr[v← NL(B),ŝ]

is in AM, as it can be solved by protocol ProbLowerBound.

AM protocol ProbLowerBound on input (B,v, p̂, 1m)

P: Send ĝ, an honest prover should send ĝ = g(B)

P,V: Convince the verifier that |ĝ − g(B)| ≤ cδ · g(B),
where δ = 1

nm2 , c is a sufficiently small constant

P: Send W = (x′1, . . . ,x
′
n)

V: Check if W is a basis of L(B) and ‖W̃‖ ≤ ĝ

P,V: Run set lower bound protocol to convince the verifier that p̂ ≤ (1 + 1
2m) Pr[v ← NL(B),ŝ],

where ŝ =
√

ln(2n+ 4)/π · ĝ

To prove DGSs is probability-verifiable, it’s sufficient to show that ProbLowerBound is an AM
protocol that estimate the probability Pr[v← NL(B),ŝ] with high accuracy. The estimation error of
ProbLowerBound has two sources: (a) the inaccuracy of set lower bound protocol, which introduce
an O(1

m) multiplicative error; and (b) the inaccuracy when estimating s(B). Let ηB(v) be the
estimation error, the error term satisfies

NB,s(B)(v) + ηB(v) ≤
(

1 +
1

2m

)
max

|ŝ−s(B)|≤δ·s(B)
NB,ŝ(v) (3)

To complete the proof, it’s sufficient to show that
∑

v∈L(B) ηB(v) = O(1
m). By summing (3) over

v ∈ L(B),

1 +
∑

v∈L(B)

ηB(v) ≤
(

1 +
1

2m

) ∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v).

14

Thus it’s sufficient to show ∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) ≤ 1 +O(
1

m
). (4)

∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) =
∑

v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

ρŝ(v)

ρŝ(L(B))

≤
∑

v∈L(B)

max|ŝ−s(B)|≤δ·s(B) ρŝ(v)

min|ŝ−s(B)|≤δ·s(B) ρŝ(L(B))

≤
ρ(1+δ)s(L(B))

ρ(1−δ)s(L(B))

(5)

For any short vector v that ‖v‖ � s/
√
δ, the relative difference between ρ(1+δ)s(v) and

ρ(1−δ)s(v) is small.

ρ(1+δ)s(v)

ρ(1−δ)s(v)
= exp

(
π‖v‖22
s2

(
(1− δ)−2 − (1 + δ)−2

))
= 1 +O

(
δ · ‖v‖

2
2

s2

)
Let radius r = s ·

√
n · logm, then

ρ(1+δ)s(L(B) ∩ rB)

ρ(1−δ)s(L(B) ∩ rB)
= 1 +O

(
δ · r

2

s2

)
= 1 +O((logm)2/m2) = 1 + o(1/m) (6)

For long vectors in lattice L(B), the sum of their probability in distribution NL(B),(1+δ)s is
small. In particular, by lemma 4.4

ρ(1+δ)s(L(B))

ρ(1+δ)s(L(B) ∩ rB)
= 1 +

ρ(1+δ)s(L(B) \ rB)

ρ(1+δ)s(L(B) ∩ rB)

≤ 1 +O(logm · e−π(logm)2)

= 1 + o(1/m).

(7)

Inequality (4) is proved by combining (5)(6)(7),

∑
v∈L(B)

max
|ŝ−s(B)|≤δ·s(B)

NB,ŝ(v) ≤
ρ(1+δ)s(L(B))

ρ(1−δ)s(L(B))

≤
(

1 + o(
1

m
)
)
·
ρ(1+δ)s(L(B) ∩ rB)

ρ(1−δ)s(L(B) ∩ rB)

≤
(

1 + o(
1

m
)
)(

1 + o(
1

m
)
)

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
99–108. ACM, 1996.

15

[Ban93] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen, 296(1):625–635, 1993.

[BB15] Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-way functions on
np-hardness. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptog-
raphy - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer Science,
pages 1–6. Springer, 2015.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Clas-
sical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013.

[GMR04] Venkatesan Guruswami, Daniele Micciancio, and Oded Regev. The complexity of the
covering radius problem on lattices and codes. In 19th Annual IEEE Conference on
Computational Complexity (CCC 2004), 21-24 June 2004, Amherst, MA, USA, pages
161–173. IEEE Computer Society, 2004.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada,
May 17-20, 2008, pages 197–206. ACM, 2008.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, pages 59–68. ACM, 1986.

[GV99] Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero knowledge
with applications to the structure of szk. In Computational Complexity, 1999. Proceed-
ings. Fourteenth Annual IEEE Conference on, pages 54–73. IEEE, 1999.

[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J.
ACM, 52(5):789–808, 2005.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. In 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 372–381. IEEE Computer
Society, 2004.

[MX10] Mohammad Mahmoody and David Xiao. On the power of randomized reductions and
the checkability of sat. In Computational Complexity (CCC), 2010 IEEE 25th Annual
Conference on, pages 64–75. IEEE, 2010.

[PV08] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge
proofs for lattice problems. In David Wagner, editor, Advances in Cryptology - CRYPTO
2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages
536–553. Springer, 2008.

16

	Introduction
	Proof Overview

	Preliminaries
	Gap Problems
	Search SIVP and NP-hardness
	From Search SIVP to Discrete Gaussian Sampling
	Probability-Verifiable Sampling Problem and NP-hardness
	DGSs is Probability-Verifiable

