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Abstract. We consider a setting where there are two parties, each party holds a private
graph and they wish to jointly compute the structural dissimilarity between two graphs
without revealing any information about their private input graph. Graph edit distance
(GED) is a widely accepted metric for measuring the dissimilarity of graphs. It measures
the minimum cost for transforming one graph into the other graph by applying graph edit
operations. In this paper we present a framework for securely computing approximated GED
and as an example, present a protocol based on threshold additive homomorphic encryption
scheme. We develop several new sub-protocols such as private maximum computation and
optimal assignment protocols to construct the main protocol. We show that our protocols
are secure against semi-honest adversaries. The asymptotic complexity of the protocol is
O(n5` log∗(`)) where ` is the bit length of ring elements and n is the number of nodes in the
graph.

1 Introduction

Graph matching is a task of assessing the structural similarity of graphs. There are two types
of graph matching, namely exact matching and error-tolerant matching (also known as inexact
matching) [1, 26, 29]. The exact graph matching aims to determine, whether two graphs – a
source graph and a target graph – are identical. The later one aims to find a distortion or
dissimilarity between two graphs. Graph edit distance is a metric that measures the structural
dissimilarity between two graphs. The graph edit distance is quantified as the minimum costs
of edit operations required to transform the source graph into the target graph. We consider
an attribute graph consisting of a set of nodes, a set of edges and labels assigned to nodes and
edges. Examples of such graphs are social network graphs and fingerprint graphs [23, 20]. A
standard set of graph edit operations on an attribute graph includes insertion, and deletion
and substitution of edges and nodes and substitution of vertex and edge labels. Unfortunately,
there is no polynomial time algorithm for computing the exact graph edit distance between two
graphs. However, several algorithms have been developed for computing approximated or sub-
optimal graph edit distance in polynomial time [26, 29, 1, 9, 23]. A common strategy used for
computing the GED is to find an optimal assignment between each node of one graph to each
node of the other graph with minimum cost. The optimal assignment is computed by solving an
assignment problem with a cost matrix derived using the structure of the graphs and the costs of
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graph edit operations. Graph edit distance has many applications in social network graph com-
putation, pattern recognition and biometrics such as in fingerprint identification systems [23, 20].

Our Contributions. In this paper, for the first time, we consider secure two-party graph edit
distance computation where each party has a private graph and they wish to jointly compute an
approximated graph edit distance between two private graphs, without leaking any information
about their input graph. A private graph is meant by the structure of the graph represented by
an adjacency matrix, node labels and edge labels are private, only the number of nodes is public.
First, we propose a general framework for securely computing approximated graph edit distance,
which consists of securely computing the entries of the cost matrix from the private input graphs,
securely solving the assignment problem and securely processing an optional phase to obtain
the graph edit distance. Then, as an example, we develop a protocol for securely computing
an approximated graph edit distance, determining the error-tolerant graph matching, based on
the algorithm by Riesen and Bunke [26]. Our protocol construction relies on threshold additive
homomorphic encryption scheme [13] instantiated by the threshold Paillier encryption scheme
[25]. The reason for choosing homomorphic encryption in the construction is to design efficient
protocols by exploiting the structures of the GED algorithms. To construct the main protocol, we
develop several sub-protocols such as a private maximum computation protocol and an optimal
assignment protocol based on the Hungarian algorithm. We prove the security of the protocol
in the semi-honest model. The difference between the workloads of the parties is negligible. The
asymptotic complexity for the proposed protocol is O(n5(` log∗(`))), where ` is the bit length of
ring elements and n is the maximum among the numbers of nodes in two graphs.

2 Related Work

2.1 Secure Two-party Computation

Secure two-party computation is a powerful tool that enables two parties to jointly compute
a function on their private inputs without revealing any information about the inputs except
the output of the function. Works on secure two-party computation began with the seminal
work of Yao [28] that showed that any function can be securely evaluated in the presence of
semi-honest adversaries by first generating a garbled circuit computing that function and then
sending it to the other party. Then the other party can obtain the output by evaluating the
garbled circuit using a 1-out-of-2 Oblivious Transfer (OT) protocol. A series of work on secure
two-party computation have been done under different security settings and on optimization of
garbled circuits [17, 4, 15], to name a few and a number of tools and compilers such as Fairplay
[19] and TASTY [14] have been developed for secure computation.

2.2 Secure Processing of Graph Algorithms

Graph algorithms have a wide variety of use in many secure applications. Recently secure and
data oblivious graph algorithms have been studied in [2, 5, 6]. Aly et al. [2] proposed secure
data-oblivious algorithms for shortest path and maximum flow algorithms. In [6], Blanton
et al. proposed secure data-oblivious algorithms for breadth-first search, single-source single-
destination shortest path, minimum spanning tree, and maximum flow problems. In [5], Blanton
and Saraph proposed secure data-oblivious algorithms for finding maximum matching size in a
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bipartite graph. In our work, as a sub-task, we need to find a perfect matching for computing
the optimal cost in a complete weighted bipartite graph.

2.3 Secure Edit Distance Computation

An edit distance measures the dissimilarity ( or similarity) between two strings. In [3], Atal-
lah et al. proposed a privacy-preserving protocol for computing an edit distance between two
strings based on an additive homomorphic encryption scheme. Jha et al. [16] presented privacy-
preserving protocols for computing edit distance between two strings. The protocols are con-
structed using oblivious transfer and Yao’s garbled circuits method. Later on, Huang et al. [15]
developed a faster protocol for edit distance computation with the garbled circuit approach. Re-
cently, Cheon et al. [7] proposed a privacy-preserving scheme for computing edit distance over
encrypted strings. Their protocol is based on a somewhat homomorphic encryption scheme.

3 Preliminaries

In our construction, we use the threshold Paillier encryption scheme (TPS) TPS = (πDistKeyGen,
πDistSk,Enc, πDistDec) in the two-party setting, due to Hazay el al. [13] where πDistKeyGen is
the protocol for distributively generating a RSA modulus N = pq, πDistSk is the protocol for
distributed generation of shared private key and πDistDec is the protocol for the distributed
Paillier decryption of shared private key. The encryption algorithm Enc is defined as follows. For
a plaintext message m with randomness r ∈R ZN the ciphertext is computed as c = Enc(m, r) =
rN (N + 1)m mod N2. where N = pq and p and q are two large primes of equal length. Assume
that the bit length of N is `. The Paillier encryption scheme has 1) additive homomorphic
property: E(m1 +m2) = Enc(m1) · Enc(m2) and Enc(km1) = Enc(m1)k and 2) rerandomizing
property meaning for a ciphertext c, without knowing the private key, another ciphertext c′ =
Rand(pk,Enc(m; r), r′) = r′NrN (N + 1)m = (rr′)N (N + 1)m can be created. For the details
about other protocols, the reader is referred to [13].

The computation of the GED involves operations on negative numbers as well. We represent
the negative numbers in modular arithmetic in the encryption as [dN2 e, N−1] ≡ [−bN2 c,−1]. The
positive numbers lie in the range [0, bN2 c] and the negative numbers lie in the range [dN2 e, N−1].

4 Problem Formulation

We consider an undirected attribute graph G = (V,E, lG, ζG) where V is a finite set of ver-
tices, E is the set of edges, and lG is the vertex labeling function and ζG is the edge labeling
function. Assume that the graph G does not contain any multi-edges and self-loops. Let G1 =
(V1, E1, lG1 , ζG1) be a source graph and G2 = (V2, E2, lG2 , ζG2) be a target graph. The graph edit
distance [1, 26] betweenG1 andG2 is defined by fGED(G1, G2) = min(eo1,...,eok)∈Γ(G1,G2)

∑k
i=1 c(eoi)

where Γ(G1, G2) is the set of all edit paths that transform G1 into G2 and c(eoi) denotes the
cost for the edit operation eoi. The reader is referred to Appendix C for the details about graph
edit operations.

In this work we consider a setting where there are two parties P1 and P2, P1 has a private
graph G1 and P2 has another private graph G2. The parties wish to compute an approximated
graph edit distance fGED(G1, G2) between G1 and G2 without leaking anything about their
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input graph, where fGED is a function running in polynomial time computing an approximated
graph edit distance between G1 and G2. At the end of the execution of the protocol, each party
Pi should learn nothing about other party’s input graph G3−i, beyond the edit distance value
fGED(G1, G2), i = 1, 2. A private graph is meant by node and edge labels and the structure
of the graph represented by an adjacency matrix are private, only the number of nodes in the
graph is public.

Adversary model. We define the security of the protocol for the GED computation against
honest-but-curious or semi-honest adversaries where a party compromised by an adversary fol-
lows the prescribed actions of the protocol and aims to learn some unintended information from
the execution of the protocol. Let A be a probabilistic polynomial time adversary that can
corrupt at most one party at the beginning of the execution of the protocol. The adversary A
sends all input messages of the corrupted party during the execution of the protocol and receives
messages from the honest party. The honest party follows the instruction of the protocol.

Let A corrupts the party Pi. We denote the view of Pi in the real execution of the protocol
Π by VIEWΠ

Pi
(1λ, G1, G2) = {Gi, Ri,m1,m2, · · · ,mT }, i = 1 or 2, where Gi is Pi’s private input

graph, m1,m2, · · · ,mT are the messages received from P3−i and Ri is Pi’s random tape used
during the execution of the protocol.

Definition 1. Let fGED(G1, G2) be the functionality computing an approximated graph edit
distance. We say that a two-party protocol Π securely evaluates fGED(G1, G2) in the presence
of semi-honest adversaries if there exists a PPT simulator S = (SP1 ,SP2) such that for all G1

and G2, it holds that

{SPi(1λ, Gi, fGED(G1, G2))}
c
≈ {VIEWΠ

Pi(1
λ, G1, G2)}

where
c
≈ denotes the computational indistinguishably of two distribution ensembles.

5 Description of Proposed GED Protocols

This section presents a framework for the two-party graph edit distance computation based on
the assignment problem. As an example, we present a protocol for the graph edit distance
computation and prove its security in the semi-honest model.

5.1 A Framework for Two-party GED Computation

Fig. 1 provides the process of an approximated GED computation. At a high level, the graph
edit distance computation consists of three phases, namely the construction of the cost matrix,
solving the optimal assignment problem with the cost matrix and further processing (optional
processing) using the results from the assignment problem and inputs graphs to improve the
approximated GED. The cost matrix construction phase takes graph inputs from the parties and
computes the entries of the matrix in terms of the costs of graph edit operations. Solving the
assignment problem does not take any graph inputs from parties. Based on the approximation
factor of the approximated GED, the optional processing is performed. The general structure of
the protocols for two-party graph edit distance computation consists of secure two-party evalua-
tions of the cost matrix construction, the optimal assignment problem and optional processing.
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At the end of secure processing of each phase, we ensure that there is no leakage of information
from the output, except the final output that will be known to both parties.

Cost	Matrix	Construc.on	

Op.mal	Assignment	

Op.onal	Processing	

Output	

Party	P2:	G2	Party	P1:	G1	

Op.onal	 Op.onal	

Figure 1: A block diagram for two-party graph edit distance computation

In the current paper, we perform the secure evaluation of graph edit distance, following the
above framework, using the threshold Paillier additive homomorphic encryption scheme. The
private key of the encryption scheme is shared between two parties. First, the parties construct
an encrypted cost matrix using the input graphs and then they run the optimal assignment
protocol on the encrypted cost matrix. The encrypted outputs from the optimal assignment
protocol along with the input graphs if needed are used in the optional processing phase to
obtain the graph edit distance. In Section 5.3, we present an approximated graph edit distance
computation protocol.

5.2 Sub-Protocols

Secure equality testing and comparison protocols have been extensively studied in the literature
under different two-party computation settings, e.g., in [8, 11, 27, 18]. We present a variant
of encrypted equality test protocol, denoted by πEQ in the Appendix. We use the greater-
than protocol of Toft [27] with the modification that we replace the equality test protocol by
πEQ. In this section we present two sub-protocols Private Maximum Computation protocol and
Optimal Assignment protocol that are necessary for the main protocols for graph edit distance.
As our protocol construction uses an equality check, comparison, oblivious transfer and oblivious
polynomial evaluation protocol, we denote the functionalities by FEQ, FCMP FOT, and FOPE

and corresponding protocols by πEQ, πCMP, πOT and πOPE, respectively.

5.2.1 Private Maximum Computation Protocol

Let P1 and P2 hold a vector of encrypted numbers c = (c1, c2, ..., cn) with ci = Enc(xi) for
the plaintext vector x = (x1, x2, ..., xn). Let xmi be the maximum value in x for index mi,
1 ≤ mi ≤ n. The private maximum computation (PMC) protocol is to jointly compute the
encrypted maximum value Enc(xmi) and the encrypted index Enc(mi) from c without revealing
xmi and mi.

We develop a two-party protocol for private maximum computation. The basic idea behind
the construction of the PMC protocol is that one party shuffles the order of the elements of
c through a secret permutation π1 and after shuffling, each element is re-randomized using
Rand(·, ·, ). We denote the resultant vector by c′. Next, the other party chooses a random
permutation π2 and using this permutation, it obliviously picks up an element from c′ by running
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a 1-out-of-n oblivious transfer (OT) protocol [22], denoted by OTn1 , and then randomizes the
chosen element. Both parties then run a comparison protocol to determine the maximum value.
This procedure is repeated (n− 1) times for π2(i), 2 ≤ i ≤ n to compute the maximum among n
encrypted elements. The encrypted index Enc(mi) for the maximum value is computed through
an oblivious polynomial evaluation (OPE) protocol. We use the FNP oblivious polynomial
evaluation protocol [10] to obtain the encrypted index Enc(mi). We describe the details of the
protocol in Fig. 2.

Protocol: Private MAX Computation πPMC

Input: A ciphertext vector c = (c1, c2, ..., cn) of x = (x1, x2, ..., xn) where ci =
Enc(xi), 1 ≤ i ≤ n.
Output: Encryption of the maximum value Enc(xmi) and its encrypted position
Enc(mi).

1. P1 chooses a random permutation π1 on {1, 2, ..., n} and computes
(cπ1(1), cπ1(2), ..., cπ1(n)). It then randomizes this vector and obtains c′ =
(c′1, c

′
2, ..., c

′
n) where c′i = Rand(pk, cπ1(i), ri), 1 ≤ i ≤ n where ri is a random

number.

2. P2 chooses a random and secret permutation π2 on {1, 2, ..., n}. It then runs an
OTn1 protocol with inputs c′ from P1 and π2(1) from P2. Let c′π2(1) be the output

of the OT protocol. P2 randomizes c′π2(1) as c′′1 = Rand(pk, c′π2(1), r
′
1) and sends c′′1

to P1.

3. Both parties set cIndex ← c′′1. P2 assigns Index← π2(1).

4. For each t ∈ [2, n], P1 and P2 performs the following steps:

(a) P2 chooses π2(t).

(b) P1 and P2 run the OTn1 protocol with inputs c′ from P1 and π2(t) from P2

Let c′π2(t) be the output of the OT protocol received by P2.

(c) P2 randomizes c′π2(t) as c′′t = Rand(pk, c′π2(1), r
′
t) and sends c′′t to P1.

(d) P1 and P2 run the comparison protocol πCMP with inputs c′′t and cIndex and
let Enc(bt−1) be the output. They run the threshold decryption protocol
DistDec(Enc(bt−1)). If bt−1 = 1, both parties update cIndex ← c′′t and P2

updates Index← π2(t).

5. P1 computes the polynomial representation of π−1
1 using the Lagrange interpola-

tion with coefficients in Zn and let Qπ−1
1

(x) =
∑n−1

j=0 Qjx
j be the polynomial of

degree at most (n− 1).

6. P1 and P2 run the FNP OPE protocol with inputs Qπ−1(x) from P1 and Index
from P2 to compute the encrypted index Enc(mi) where mi = Qπ−1

1
(Index).

(a) P1 encrypts the coefficients of Qπ−1
1

(x) as

(Enc(Q0),Enc(Q1), · · · ,Enc(Qn−1)) and sends it to P2.

(b) P2 computes Enc(Qπ−1
1

(Index)) =
∏n−1
j=0 (Enc(Q1))Index

j
and sends

Enc(Qπ−1
1

(Index)) to P1.

Figure 2: Protocol for private maximum computation
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Complexity. We evaluate the communication and computation overhead of the πPMC protocol,
which is composed of πCMP, an OTn1 protocol and an OPE protocol. Since the round complexity
of πCMP is O(log(`) log∗(`)), the total communication complexity for πCMP is (n log(`) log∗(`)).
The communication overhead for OTn1 is O(n). Therefore the overall communication complexity
for πPMC is O(n2 + n` log(`) log∗(`)). It is easy to see that the computation complexity of the
protocol is also O(n2 + n` log(`) log∗(`)).

Theorem 1. The protocol πPMC securely computes the encrypted maximum value and its en-
crypted maximum index, in the presence of semi-honest adversaries.

Proof. To prove πPMC is secure in the presence of semi-honest adversaries, we need to show that
πPMC is secure in the (FOT,FCMP,FDistDec,FOPE)-hybrid model. Observe that both parties
receive the result from the protocol. Since we considered the semi-honest model, the adversaries
are not allowed to alter their inputs. We construct two separate simulators for two parties
and denote the simulator for P1 by S1 and the simulator for P2 by S2. Both simulators have
independent uniform random tapes.
When P1 is corrupted. Let A be an adversary controlling the party P1. The simulator S1

receives security parameter 1λ, the input c and outputs Enc(xmi) and Enc(mi). In the real
execution of the protocol, the parties’s input is a common encrypted vector. The parties invoke
the protocols for the functionalities FOT, FCMP and FDistDec and FOPE during the execution of
the protocol. The view of the party P1 is given by

VIEWP1 =
(
c, (Enc(xmi),Enc(mi)), π1, {ri}ni=1, {c′′i }ni=1, {bt−1}n−1

t=1 ,Enc(Qπ−1
1

(Index))
)
.

In the ideal execution, to compute Enc(xmi), the parties run the FOT, FCMP and FDistDec

functionalities. In the protocol, the parties receive messages from the other party as well as the
trusted third party computing the above functionalities. The simulators simulate the outputs
of the trusted third party functionalities.
S1 chooses a permutation π1 at uniformly random from Sym(n) denoting a symmetric group

on n symbols and generates random tapes r0 = {r0
i }ni=1 and computes c′. S1 calls the trusted

party computing FOT with inputs π2(1) and c′. As an output, it receives noting. S1 receives c′′1
from P2. The simulator performs the following steps for t = 2, ..., n. S1 calls the trusted party
computing FOT with inputs π2(t) and c′. As an output, it receives noting. S1 receives c′′t from
P2. S1 randomly chooses a bit b′t−1 and a random tape for the encryption of Enc(b′t−1), which is
a simulated value for the functionality FCMP. S1 then calls the trusted third party FDistDec with
the input Enc(b′t−1) and receives bit bt. The simulator performs local computation for cIndex
using the bit bt. The simulator randomly chooses the coefficients (Q0, Q1, · · · , Qn) of Q(x). S1

simulates the output Enc(Qπ−1
1

(Index) of the trusted FOPE functionality with inputs Q(x) and

Index.
The view for the adversaryA output by the simulator is S1(c,Enc(xmi),Enc(mi)) = (c,Enc(xmi),

Enc(mi), π1, r0, c
′, {c′′t }ni=1, {b′t−1},Enc(Qπ−1

1
(Index)). The simulator does not have knowledge

of the actual permutation π2 in the real execution of the protocol. The view in the real execution
of the protocol VIEWP1 and the view of the simulator S1 are identically distributed since the
Paillier encryption scheme is semantically secure and r0 is uniformly distributed.
When P2 is corrupted. Let A be an adversary controlling the party P2. The construction of
the simulator S2 for the view of A is similar to that of S1, except S2 simulates the output for the
trusted functionality FOT and it does not choose the coefficients of Q(x). The view of the adver-
sary output by S2 is given by S2(c,Enc(xmi),Enc(mi)) = (c,Enc(xmi),Enc(mi), π2, r1, {c′i}, {bt−1)}).
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In the real execution of the protocol, the actual permutation π1 is unknown to the simulator.
Applying the same arguments as above, the views for the adversary in the real execution of the
protocol and ideal execution of the protocol are identically distributed.

5.2.2 Optimal Assignment (OA) Protocol

The assignment problem is one of the fundamental optimization problems. Given two sets
X = {u1, u2, · · · , un} and Y = {v1, v2, · · · , vn} and a cost matrix W = (wij)n×n where wij
is the cost of assigning ui to vj , the assignment problem is to find a permutation ρ on [1, n]
that maximizes

∑n
i=1wiρ(i). We denote an assignment problem instance and its solution by

(ρ,
∑n

i=1wiρ(i)) ← AssignProb(X,Y,W ), which can be solved by the Hungarian algorithm with
time complexity O(n3) [21]. The assignment problem can also be viewed as the problem of
finding a perfect bipartite matching in a complete weighted bipartite graph G = (V,E,W ) with
V = X ∪ Y,X ∩ Y = φ where the cost matrix W is the weight matrix consisting of weights of
the edges. In this paper, we consider the perfect bipartite matching variant of the Hungarian
algorithm. An optimal assignment ρ that minimizes

∑n
i=1wiρ(i) can be obtained from this by

making the entries of the cost matrix W negative.
Given an encrypted cost matrix W = (Enc(wij))n×n for AssignProb(X, Y, W), we develop a

two-party protocol for the assignment protocol based on the Hungarian algorithm for computing
Enc(

∑n
i=1wiρ(i)) for an optimal assignment ρ. In the secure two-party computation protocol,

we resolve the following challenges a) securely computing and updating the labeling of nodes
in X and Y ; b) hiding the edges in the perfect matching set as it eventually determines the
optimal assignment ρ; and c) securely computing augmenting paths and updating the matching
set. Since the order of node and/or edge operations during the execution of the algorithm
leaks information about the assignment, we prevent this by encrypting the matching set M
and shuffling the order of nodes while keeping the assignment problem invariant. We make
the following observation about the assignment problem when it solved using the Hungarian
algorithm.

Observation 1. Let (ρ,
∑n

i=1wiρ(i)) ← AssignProb(X,Y,W ) be an assignment problem as de-
scribed above. Let π be a permutation on [1, n]. Define Xπ = {uπ(1), · · · , uπ(n)} and Y π =
{vπ(1), · · · , vπ(n)} and W π = (wπ(i)π(j))n×n. If the assignment problems (X,Y,W ) has an optimal
value

∑n
i=1wiρ(i) with assignment mapping ρ, then the assignment problem AssignProb(Xπ, Y π,W π)

has the same optimal value with assignment mapping ρ1 = π ◦ ρ ◦ π−1.

Our main idea for constructing the OA protocol is to choose a secret permutation π shared be-
tween two parties and transform the problem AssignProb(X,Y,W ) into AssignProb(Xπ, Y π,W π)
and then securely execute the steps of the bipartite matching algorithm on the encrypted cost
matrix. The party P1 chooses a secret permutation π1 and P2 chooses another secret per-
mutation π2. Then they jointly construct the encrypted cost matrix W π = (Enc(wπ(i)π(j)))
where π = π2 ◦ π1. We compute the initial labelings of nodes in X using the private maximum
computation protocol πPMC. We encrypt node identities ui ∈ X and vj ∈ Y of the bipartite
graph and their labels, denoted by lblX(u) for u ∈ X and lblY (v) for v ∈ Y and construct
2-tuple sequences as (Enc(ui),Enc(lblX(ui))), 1 ≤ i ≤ n for both X and Y . We use the same
permutation π to hide the order of each sequence of 2-tuple encrypted values component-wise
for both X and Y . Denoting M = {(Enc(u),Enc(v)) : u ∈ X, v ∈ Y } by the matching set
containing encrypted edges, {Enc(u) : u ∈ X} the set all encrypted tail node ids in M by
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M ? X and {Enc(v) : v ∈ Y } the set all encrypted head node ids in M by M ? Y . The ini-
tial matching is found by using the πEQ and πDistDec protocol. An encrypted equality graph
EQlbl represented by an encrypted adjacency matrix is constructed from encrypted labels for
X and Y and encrypted cost matrix W using the πEQ protocol. The perfect matching is found
by extending the matching set by finding an encrypted augmenting path. An encrypted aug-
menting path is found by executing the breadth-first-search (BFS) algorithm on the encrypted
equality graph EQlbl where the source and target vertices are free vertices in X and Y . We
adopt a variant of Blanton et al.’s BFS algorithm [6] in our setting where the secret key for
the decryption algorithm is shared between two parties and we denote this protocol by πBFS.
We don’t provide the technical details due to space limit. For an encrypted equality graph
P := Enc(t0)−Enc(t1)−Enc(t2)− · · · −Enc(tk) of length k− 1, the set of encrypted edges are
given by Pedge = {(Enc(t0),Enc(t1)), (Enc(t2),Enc(t1)), · · · , (Enc(tk−1),Enc(tk))}. After find-
ing Pedge, the matching set is updated as M ← M∆Pedge where ∆ is the symmetric difference
set operation. We use two dummy counters of length n for keeping track of encrypted free nodes
of X and Y . For computing the GED, we only need the maximum value

∑n
i=1wiρ(i). Thus

the protocol outputs only
∑n

i=1wiρ(i). Fig. 3 presents the details of our secure protocol for the
assignment problem.

Complexity. From πOA, it can be seen that the time complexity for finding the initial matching
(Step 1 to Step 7 ) is O(n3 +n2` log(`) log∗(`)). If the initial matching is not a perfect matching,
the computational complexity for terminating the protocol is O(n5` log∗(`)+n4` log(`) log∗(`)) =
O(n5` log∗(`)). An insecure version of the Hungarian algorithm runs in O(n3) steps. The
overhead of the protocol due to security is (n2` log∗(`)).

Theorem 2. The protocol πOA securely computes the encrypted optimal value in the presence
of semi-honest adversaries.

Proof. We prove the security of the protocol in the hybrid model. In the protocol, one party
receives messages from the other party and also from the trusted third party computing a
functionality. The simulator also needs to simulate the outputs for the trusted third party
functionalities. We construct two different simulators for the view of the adversary.
When P1 is corrupted. Let A be the adversary controlling the party P1. S1 chooses 2n
uniformly random tapes r0 = {(r0

i , r
1
i )}ni=1 from ZN and computes the encrypted 2-tuple vector

LBLY . It emulates the outputs Enc(lblX(ui)) and Enc(di), 1 ≤ i ≤ n for the trusted third party
functionality FPMC on ith row Wi. S1 chooses n random tapes r1 = {r2

i }ni=1 uniformly at random
for P1 and computes the encryptions of i, 1 ≤ i ≤ n. S1 picks a permutation π1 and (6n +
n2) random tapes r2 = {{(r3

i , r
4
i , r

5
i , r

6
i , r

7
i , r

8
i )}ni=1, (r

0
ij)n×n} uniformly at random for P1 and

computes LBLXπ1 , LBLYπ1 , Dπ1 and W π1 and rerandomizes each encrypted value. S1 chooses
π2 and (6n+ n2) random tapes r3 = {{(r3

i , r
4
i , r

5
i , r

6
i , r

7
i , r

8
i )}ni=1, (r

1
ij)n×n} uniformly at random

and computes LBLXπ2◦π1 , LBLYπ2◦π1 , Dπ2◦π1 and W π2◦π1 and rerandomizes each encrypted
value using r3. In Step 5, for each Enc(dπ(i)), 1 ≤ i ≤ n, the simulator generates bij at random
and computes Enc(bij) for FEQ with inputs Enc(dπ(i)) and Enc(dπ(j)), 1 ≤ j ≤ i− 1 and obtains
b1 = (b1, b2, · · · , bn). S1 computes R from b1. S1 computesM. In Steps 10 - 14, S1 simulates the
output of the functionalities FEQ, FDistDec, FPMC and FBFS while ensuring the loop terminates
in O(n3) steps. The outputs at `-th iteration for Steps 10 - 14 are b`3 = (b1, b2, · · · , bn) (Step
10); z` = (z1, z2, · · · , zn) and b`4 = (b1, b2, · · · , bn) (Step 11); b`5 = (b1, b2, · · · , b|T |·|Nlbl(S)|) (Step

9



Protocol: Optimal Assignment based on the Hungarian algorithm πOA

Input: The cost matrix Enc(W ) = (Enc(wij))n×n wij = cost(ui, vj).
Output: Optimal assignment value Enc(

∑n
i=1wiρ(i)).

1. P1 computes (Enc(lblY (v1) : 1 ≤ i ≤ n) with lblY (vi) = 0, vi ∈ Y and (Enc(i) : 1 ≤ i ≤ n)

and constructs LBLY =
(

(Enc(lblY (vi)),Enc(i)) : 1 ≤ i ≤ n
)

and sends it to P2.

2. L ← φ; VP ← φ; M← φ;

3. For each ui ∈ X, P1 and P2 run πPMC with input ith row Wi = (wi1, wi2, ..., win) and
obtain output Enc(lblX(ui)) and Enc(di) where lblX(ui) = widi = max

vj∈Y
{wij}, ui ∈ X and

1 ≤ di ≤ n.

(a) Construct LBLX =
(

(Enc(lblX(ui)),Enc(i)) : 1 ≤ i ≤ n
)

.

(b) Construct D = ((Enc(i),Enc(di)) : 1 ≤ i ≤ n).

(c) Update L ← L ∪ {
(
Enc(lblX(ui)),Enc(lblY (vi))

)
}.

4. P1 chooses a random perm π1 and computes the following and sends all to P2

(a) LBLYπ1 :=
(

(Enc(lblY (vπ1(j))),Enc(π1(j))) : 1 ≤ j ≤ n
)

, LBLXπ1 :=(
(Enc(lblX(uπ1(j))),Enc(π1(j))) : 1 ≤ j ≤ n

)
(b) Dπ1 := ((Enc(π1(j)),Enc(dπ1(j))) : 1 ≤ j ≤ n)

(c) W π1 = (Enc(wπ1(i)π1(j)))n×n

(d) Rerandomize each encrypted value above

5. P2 chooses a random perm π2 and computes the following and sends all to P1

(a) LBLYπ2◦π1 :=
(

(Enc(lblY (vπ2◦π1(j))),Enc(π2 ◦ π1(j))) : 1 ≤ j ≤ n
)

,

(b) LBLXπ2◦π1 :=
(

(Enc(lblX(uπ2◦π1(j))),Enc(π2 ◦ π1(j))) : 1 ≤ j ≤ n
)

(c) Dπ2◦π1 := ((Enc(π2 ◦ π1(j)),Enc(dπ2◦π1(j))) : 1 ≤ j ≤ n)

(d) W π2◦π1 = (Enc(wπ2◦π1(i)π2◦π1(j)))n×n

(e) Rerandomize each encrypted value above. Set π = π2 ◦ π1.

6. For each (Enc(π(i)),Enc(dπ(i))) ∈ Dπ, i = 1, ..., n, P1 and P2 run πEQ protocol with inputs
Enc(dπ(i)) and Enc(dπ(j)) and obtain Enc(bij), bij ∈ {0, 1} for j = 1, ..., i − 1. Compute

R =
∏i−1
j=1 Enc(bij). P1 and P2 run πEQ protocol with inputs R and Enc(0) and obtain

Enc(bi) as output. P1 and P2 then jointly decrypt Enc(bi). If bi = 1, perform M ←
M∪ {(Enc(π(i)),Enc(dπ(i)))}.

7. If |M| = n, return the encrypted optimal value is Enc(
∑n

i=1 lblX(uπ(i)) +∑n
i=1 lblY (vπ(i))) =

∏n
i=1 Enc(lblX(uπ(i)))

∏n
i=1 Enc(lblY (vπ(i)). Else, P1 and P2 exe-

cute the following steps.

8. P1 and P2 construct a matrix EQlbl = (Enc(eij))n×n by running the πEQ protocol with
inputs Enc(lblX(uπ(i)) + lblY (vπ(j))) and Enc(wπ(i)π(j)) where Enc(eij) is the output
1 ≤ i, j ≤ n and eij ∈ {0, 1}.
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Protocol: Optimal Assignment πOA (Cont.)

9. Initialize S ← φ and T ← φ.

10. P1 and P2 find Enc(uπ(i)) such that Enc(uπ(i)) /∈M ? X, then S ← S ∪ {Enc(uπ(i))}.
11. P1 and P2 compute Nlbl(S) for each Enc(uπ(i)) ∈ S as

(a) For row EQlbl
i = (Enc(ei1),Enc(ei2), · · · ,Enc(ein)) of EQlbl, compute Zi = (Enc(ei1 ·

v1),Enc(ei2 · v2), · · · ,Enc(ein · vn)) from EQlbl
i where Enc(eik · k) = Enc(eik)

k.

(b) Run πSR protocol with input Zi = (Enc(ei1 · v1),Enc(ei2 · v2), · · · ,Enc(ein · vn)) and
obtain the output Z ′i = (z1, z2, · · · , zn)

(c) Run πEQ with inputs zj and Enc(0) and obtain the output Enc(bj). Run DistDec
on input Enc(bi) and obtain bj for 1 ≤ j ≤ n. If bj = 0, perform Nlbl(S) ←
Nlbl(S) ∪ {Enc(vj)}.

12. P1 and P2 check the equality of sets Nlbl(S) and T running πEQ and πDistDec protocols.

13. If Nlbl(S) = T

(a) P1 and P2 compute T̄ = ((LBLYπ1 ? Y )− T ) from sets LBLYπ ? Y and T by running
πEQ and πDistDec protocols.

(b) For each Enc(uπ(i)) ∈ S and Enc(vj) ∈ T̄ , P1 and P2 compute Enc(lblij) =
Enc(lblX(uπ(i)) + lblY (vj)− wπ(i)π(j)).

(c) P1 and P2 compute Enc(δlbl) = min{Enc(lblij) : Enc(i) ∈ S,Enc(j) ∈ T} using the
πPMC protocol.

(d) P1 and P2 update the label lbl as

Enc(lblX(u)) = Enc(lblX(u)) · Enc(δlbl)
−1 if E(u) ∈ S

Enc(lblY (v)) = Enc(lblY (v)) · Enc(δlbl) if E(v) ∈ T

14. If Nlbl(S) 6= T

(a) P1 and P2 choose Enc(vj) ∈ Nlbl(S)− T .

(b) If Enc(vj) /∈M ? Y , find an augmenting path P := Enc(uk)−Enc(vj) by running the
πBFS protocol with inputs EQlbl and Enc(vj).

(c) Update M←M∆Pedge. Goto Step 7.

(d) If Enc(vj) ∈ M ? Y and (Enc(uπ(`)),Enc(vj)) ∈ M, extend alternating tree S ←
S ∪ {Enc(upi(`))} and T ← T ∪ {Enc(vj)}. Goto Step 11.

Figure 3: Secure Optimal Assignment Protocol based on the Hungarian Algorithm
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12); b`6 = (b1, b2, · · · , bt), t ≤ n, (Step 13); b`7 = (b1, b2, · · · , bt), t ≤ n, P`sim = Enc(u) − Enc(v)
(simulated augmenting path), b`8 = (b1, b2, · · · , b|M|·|Pedge|) and b`9 = (b1, b2, · · · , bt), t ≤ n (Step

14). Define B` = (b`3, z
`,b`5,b

`
6,b

`
7,P`sim,b

`
8,b

`
9). The output of S1 is S1(1λ, n,X, Y,W ) =

(r1, π1, r2, LBL
Xπ2◦π1 , LBLYπ2◦π1 , Dπ2◦π1 ,W π2◦π1 , EQlbl,b1,b2, {B`}). The distributions for

LBLXπ2◦π1 , LBLYπ2◦π1 , Dπ2◦π1 and B` in the real and ideal executions are identically distributed
since the random tapes for r1 and r2 were chosen uniformly at random, the Paillier encryption
scheme is semantically secure and the permutation π2 for the honest party in the real execution
of the protocol is unknown to S1.
When P2 is corrupted. Let the adversary A controlling the party P2. The construction
of the simulator is similar to that of S1, except Step 1. We don’t provide the details of the
simulator S2. The view of A output by S2 is S2(1λ, n,X, Y,W ) = (r3, π2, LBL

Xπ1 , LBLYπ1 ,
Dπ1 ,W π1 , EQlbl,b1,b2, {B`}). Applying the similar argument, the views for the adversary in
the real and ideal execution of the protocol are identically distributed.

As the protocols πEQ, πPMC, πSR, πDistDec and πBFS are secure, applying the composition
theorem, πOA is secure in the hybrid model against semi-honest adversaries and hence πOA is
secure in the real execution of the protocol.

5.3 The Main Protocol for Graph Edit Distance

In this section we present a secure realization of the approximated GED computation by Riesen
and Bunke [26], based on bipartite graph. We consider the two-party computation in the semi-
honest model. We consider a setting where there are two parties P1 and P2, each party has a
private graph Gi = (Vi, Ei, lGi , ζGi) with ni = |Vi| ≥ 3 and n = n1 + n2. For simplicity, we
consider the cost matrix W that includes only the costs of node edit operations 1. The parties
start the protocol execution by computing a cost matrix. We start by explaining how the parties
jointly construct the cost matrix.

5.3.1 Encrypted Cost Matrix Construction

We assume that each party secretly defines the costs for the graph edit operations deletion,
insertion and substitution of nodes and/or edges. The edit operation costs for nodes are defined
as follows. Let lG1(ui) = αi ∈ ZN be the node labeling function of G1 and lG2(vj) = βj ∈ ZN
be the node labeling function of G2. The party P1 chooses the edit costs of node insertion and
deletion operations as c(ui → ε) = c(ε → ui) = C1 ∈ ZN . Similarly, the party P2 decides the
costs of insertion and deletion operations for nodes as c(ε → vj) = c(vj → ε) = C2 ∈ ZN . The
cost of the node substitution operation is defined as wij = c(ui → vj) = min{(c(ui → ε) + c(ε→
vj)), c

′(ui → vj)} = min{(C1 + C2), |αi − βj |} where c′(ui → vj) = |αi − βj |, αi, βj ∈ ZN . This
definition of the cost function can be found in [23]. Each entry of the cost matrix is computed
by running a joint protocol.

We now explain how to construct the encrypted cost matrix W = (Enc(wij))n×n. For
insertion and deletion operations, the party Pi encrypts its cost Enc(Ci) and sends it to the other
party. For the substitution cost, the parties exchange respective encrypted costs of insertion
and deletion operations and encrypted node labels. Let the parties P1 and P2 have encryptions
Enc(d1) and Enc(d2) of numbers d1 and d2, respectively and they would like to compute Enc(|d1−

1Several constructions of cost matrix can be found in [26, 9, 24] for the improvement of the approximation of
the actual GED. However, the two-party computation of GED remains same, except the cost matrix construction.
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Protocol: Protocol ΠGED

Input: Graph G1 = (V1, E1, lG1) from P1 and G2 = (V2, E2, lG2) from P2.
Output: Approximated graph edit distance d = fGED(G1, G2) or ⊥.

1. P1 and P2 run the distributed key generation protocol πDistKeyGen, followed by the
distributed shared secret key generation protocol πDistSk.

2. P1 encrypts the cost for node insertion and deletion Enc(C1) and {Enc(αi) : ui ∈
V1}.

3. P2 encrypts the cost for node insertion and deletion Enc(C2) and {Enc(βj) : vj ∈
V2}.

4. For each ui ∈ V1 and vj ∈ V2, P1 and P2 run πSub with inputs Enc(C1) and
Enc(αi) from P1 and inputs Enc(C2) and Enc(βj) from P2 and obtain the output
Enc(wij).

5. P1 and P2 make all the entries of E(W ) negative, i.e., W ′ = (Enc(w′ij))n×n =

(Enc(wij)
−1)n×n where w′ij = −wij .

6. Run the optimal assignment protocol πOA with input Enc(W ′) and obtain the
output the encrypted the minimum cost Enc(

∑n
i=1w

′
idi

).

7. P1 and P2 jointly run the distributed decryption protocol πDistDec on
Enc(

∑n
i=1w

′
idi

)−1 and obtain the approximated graph edit distance d =
(
∑n

i=1widi).

Figure 4: Protocol for computing an approximated graph edit distance based on bipartite graph

d2|) where |d1−d2| is the absolute difference between d1 and d2. The absolute difference between
d1 and d2 can be computed as |d1−d2| = (d1−d2)+b(d2−d1) = (1−b)d1 +(b−1)d2 where b = 0,
d1 < d2; otherwise, b = 1. We use this relation to compute encrypted absolute difference between
two encrypted numbers. We provide the details of the protocol in Figure 6 in Appendix A.

5.3.2 Description of the Protocol

We are now ready to describe the protocol. The parties P1 and P2 initiate the protocol by
generating the public key and the shares of the private key for the threshold Paillier encryption
scheme using πDistKeyGen and πDistSk, respectively. Each party encrypts its node labels for the
construction of the encrypted cost matrix. The computation of GED consists of two main
phases. First, the parties construct the encrypted cost matrix Enc(W ) = (Enc(wij))n×n using
the function defined above and then solve the assignment problem with input as the encrypted
cost matrix Enc(W ) to find an optimal of the nodes of the graphs. The parties use the distributed
decryption protocol DistDec to obtain the graph edit distance fGED(G1, G2) = (

∑n
i=1widi).

Fig. 4 presents the details of the approximated GED computation protocol.

Complexity of ΠGED. For computing encrypted node labels, each party performs O(n) oper-
ations. The computation complexity for constructing the encrypted cost matrix is O(n2). The
parties run the optimal assignment protocol on the encrypted matrix. The computational com-
plexity and the communication complexity of the graph edit distance protocol ΠGED is at most
O(n5` log∗(`)). The complexity of the protocol is dominated by that of the optimal assignment
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protocol. In the protocol execution, the parties do almost an equal amount of computation.

Theorem 3. Assuming the threshold Paillier encryption scheme is secure, the protocol ΠGED is
secure in the presence of the semi-honest adversaries.

Proof. The protocol ΠGED sequentially invokes the protocols for distributed key generation
πDistKeyGen and πDistSk, the cost matrix construction πSub and the optimal assignment πOA, and
the distributed decryption πDistDec for the approximated GDE. The protocols πDistKeyGen, πDistSk

and πDistDec are secure according to [13]. The construction of πSub based on πCMP. The se-
curity of the πSub protocol relies on that of πCMP, which is proven secure in [27]. Theorem 2
guarantees the parties securely solves the assignment problem. According to the sequential com-
position theorem [12], ΠGED is secure against semi-honest adversaries in the real execution of
the protocol.

6 Conclusions

In this paper we considered secure two-party computation of graph edit distance measuring the
dissimilarity between two graphs where each party has a private graph and they wish to jointly
compute graph edit distance of two private graphs. We proposed a framework for the graph
edit distance computation and, as an example, developed a protocol for computing of graph edit
distance. To construct main protocols for graph edit distance, we developed sub-protocols such
as private maximum computation and optimal assignment protocol based on the Hungarian
algorithm. The asymptotic complexities of both protocols are O(n5(` log∗(`))). Our protocol is
secure against semi-honest adversaries and has applications in two-party social network graph
computations for measuring structural similarity and fingerprint identifications.
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A Description of Sub-Protocols

A.1 Encrypted Equality Test Protocol and Comparison Protocol

Given encryptions Enc(y1) and Enc(y2) of y1 and y2, respectively, where y1 and y2 are of `-bit
numbers in ZN . In our setting, the secure equality testing protocol outputs the encrypted value
Enc(b) where b = 0 if y1 6= y2 and b = 1 if y1 = y2, without revealing y1, y2 and b where y1 and
y2 are of ` bits. Our equality testing protocol is based on the idea of plaintext-space reduction
introduced in [11], which can also be found in [18]. The setting of the equality check is different
from the one proposed in [11]. In our case, the private key is shared between the parties, but
in [11], one party holds the private key and the other party holds the encrypted numbers. We
describe a secure encrypted equality test protocol based on plaintext-space reduction in Fig. 5.
We use the greater-than protocol of Toft [27] with the modification that we replace the equality
test protocol by πEQ. We denote this protocol by πCMP which takes inputs Enc(x) and Enc(y)
and outputs Enc(b) where b = 1 iff x ≥ y and b = 0, otherwise. Its round complexity is O(log(`))
and computation complexity is O(` log(`) log∗(`)).

A.2 Shuffling and randomizing Protocol and Substitution Cost Protocol

Fig. 6 presents the protocol for computing the substitution cost for constructing the cost matrix.

Lemma 1. The protocol πSub is secure in the presence of the semi-honest adversaries.

Proof. The proof is based on the fact that πCMP is secure and the messages received by the
parties are semantically-secure threshold encryptions.

B The Assignment Problem

Given a cost matrix W = (wij)n×n, the assignment problem can be solved by the Hungarian
algorithm with time complexity O(n3) [21]. The assignment problem can be viewed as a perfect
bipartite matching in a complete bipartite graph. Before describing the main algorithm, we
define some terms that will be used to describe the algorithm.

Let G = (V,E) be a complete bipartite graph where V = (X ∪ Y ) with X ∩ Y = φ is
the set of vertices and E is the set of edges, one vertex is connected to all other vertices. A
labeling for the vertices of G, denoted by lbl : V → R, is a function such that, for all (u, v) ∈ E,
lblX(u) + lblY (v) ≥ w(u, v) where w(u, v) = wuv is the weight of edge (u, v). The labeling of
vertices of X and Y are denoted by lblX(·) and lblY (·), respectively. An equality subgraph is
defined as a subgraph Glbl = (V, Elbl) ⊂ (V,E) for which Elbl = {(u, v) ∈ E : lblX(u) + lblY (v) =
w(u, v)}.

The neighbor of a vertex u, denoted by Nlbl(u), is defined as Nlbl(u) = {v : (u, v) ∈ Elbl}
and Nlbl(S) = ∪u∈SNlbl(u). We denote the bipartite matching set by M. We say a vertex v
is matched if it is an endpoint of an edge in M. Otherwise, v is free or unmatched. A path is
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Protocol: Equality Test πEQ
Input: Two encrypted numbers Enc(y1) and Enc(y2).
Output: Enc(b) where b = 0 if y1 6= y2 and b = 1 if y1 = y2.

1. Denote y = y1 − y2. P1 and P2 perform the operation: Enc(y) = Enc(y1)
Enc(y2) .

2. P1 generates a random number A1 and represents it in binary as A1 =
A1
`−1A

1
`−2...A

1
0 and computes c1 ← Enc(y+A1) and C1

i ← Enc(A1
i ), 0 ≤ i ≤ n−1

and send {c1, C
1
i , 0 ≤ i ≤ `− 1} to P2.

3. P2 generates a random number A2 and represents it in binary as A2 =
A2
`−1A

2
`−2...A

2
0 and computes c2 ← Enc(y + A1 + A2) and computes C2

i ←
Enc(A2

i ), 0 ≤ i ≤ n− 1 and send {c2, C
2
i , 0 ≤ i ≤ `− 1} to P1.

4. P1 and P2 run πDistDec to decrypt c2 to obtain x where x = y +A1 +A2 = y +A
and A = A1 +A2.

5. P1 and P2 compute the ciphertexts Enc(Ai) where A = A`−1A`−2...A0 using
C1
i , C

2
i , 0 ≤ i ≤ ` − 1 and additive circuits of two integers as follows. P1 and P2

computes Enc(s0) with s0 = 0. For i = 0 to `−1, P1 and P2 execute the following
steps and for each encryption operation parties re-randomize the ciphertext:

(a) P1 computes Enc(A1
i si) = Enc(si)

A1
i and Enc(2A1

i si) = Enc(si)
2A1

i from
Enc(si) and send these two to P2.

(b) P2 computes Enc(A2
i si) = Enc(si)

A2
i and Enc(2A2

i si) = Enc(si)
2A2

i from
Enc(si) and send these two to P1.

(c) Using Enc(2A2
i si), P1 computes Enc(2A2

iA
1
i si) = Enc(2A2

i si)
A1
i and using

Enc(A1
i si), P2 computes Enc(2A1

iA
2
i si) = Enc(A1

i si)
A2
i .

(d) P1 computes Enc(si+1) = (C2
i )A

1
i ·Enc(A1

i si)·Enc(A2
i si) = Enc(A1

iA
2
i +A1

i si+
A2
i si).

(e) P2 computes Enc(si+1) = (C1
i )A

2
i ·Enc(A1

i si)·Enc(A2
i si) = Enc(A1

iA
2
i +A1

i si+
A2
i si).

6. P1 and P2 independently perform the following steps:

(a) Compute Enc(Ai) =
Enc(A1

i )·Enc(A2
i )·Enc(si)·Encpk(4siA

1
iA

2
i )

Enc(2A1
i si)·Enc(2A2

i si)
.

(b) Compute Enc(Zi) = Enc(Ai)·Enc(xi)
Enc(2xiAi)

using Enc(Ai) and xi where Zi = xi⊕Ai =
xi +Ai − 2xiAi.

(c) Compute Enc(Z) as Enc(Z) =
∏`−1
i=0 Enc(Zi) where Z =

∑`−1
i=0 Zi.

7. Set Enc(y)← Enc(Z), P1 and P2 execute Step 2 to Step 6 log∗(`) times.

8. P1 and P2 compute Enc(1− Z). Output Enc(1− Z).

Figure 5: Protocol for equality of two encrypted numbers using the Paillier threshold encryption
scheme
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Protocol: Substitution Cost πSub
Input: P1’s inputs Enc(C1) and Enc(αi); P2’s inputs Enc(C2) and Enc(βj);
Output: Enc(wij) where wij = c(ui → vj) = min{(c(ui → ε) + c(ε→ vj)), |αi − βj |}.

1. P1 computes Enc(C1) and Enc(αi) and sends these to P2.

2. P2 computes Enc(C2) and Enc(βj) and sends these to P1.

3. P1 and P2 compute Enc(C1+C2) = Enc(c(ui → ε)+c(ε→ vj)) by multiplying Enc(C1)
and Enc(C2).

4. P1 and P2 run πCMP with inputs Enc(αi) and Enc(βj) and obtain Enc(b).

5. P1 first computes Enc(1− b) from Enc(b) and then computes Enc((1− b)αi) and sends
Enc((1− b)αi) to P2.

6. P2 first computes Enc(b−1) from Enc(b) and then computes Enc((b−1)βj) and sends
Enc((b− 1)βj) to P1.

7. Both parties compute Enc(|αi − βj |) = Enc((1− b)αi) · Enc((b− 1)βj).

8. P1 and P2 run πCMP with inputs Enc(C1 +C2) and Enc(|αi− βj |) and obtain Enc(b′).
If b′ = 0, output Enc(wij) = Enc(C1 + C2)), otherwise output Enc(|αi − βj |).

Figure 6: Protocol for computing node substitution cost c(ui → vj)

alternating if its edges alternate betweenM and Elbl−M. An alternating path is augmenting if
both of its endpoints are free. Let P be an augmenting path with respect toM in Elbl and P be
the set of edges in the path. The improved matching can be computed asM′ = (M\P)∪(P\M).
Algorithm 1 presents a pseudocode of the Hungarian algorithm.

C Graph Edit Operations and Cost Matrix

A standard set of graph edit operations are node insertion (ε → u), deletion (u → ε) and
substitution (u → v) and edge insertion (ε → e), deletion (e → ε) and substitution (e1 → e2)
and substitution of node and edge labels where ε denotes empty nodes or edges. The edge edit
operations can be defined in terms of the node edit operations as follows. Let e1 = (u1, u2) ∈ E1

and e2 = (v1, v2) ∈ E2 where u1, u2 ∈ V1 ∪ {ε} and v1, v2 ∈ V2 ∪ {ε}. An edge substitution
operation between e1 and e2, denoted by e1 → e2, is defined as the node substitution operations
u1 → v1 and u2 → v2. If there is no edge e1 in E1 and e2 ∈ E2, then the edge insertion in G1,
denoted by (ε→ e2) is defined by ε→ v1 and ε→ v2. Similarly, if there is an edge e1 ∈ E1 and
no edge e2 in E2, then the edge deletion, denoted by (e1 → ε) is defined by u1 → ε and v2 → ε.

The cost matrix is constructed by considering substitution costs of vertices and the costs of
vertex insertions and deletions. The structure of the edit cost matrix W = (wij)(n+m)×(n+m)
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Algorithm 1 Hungarian algorithm based on perfect bipartite matching

1: Input: Graphs G = (X,Y,E) and W = (wi,j) where X = {u1, u2, ..., un}, Y =
{v1, v2, ..., vn} and wi,j = wight(ui, vj)

2: Output: Optimal assignment M
3: procedure Hungarian Bipartite(G,W )
4: Find a valid labeling lbl: Set lbl(v) = 0, v ∈ Y and lbl(u) = maxv′∈Y {w(u, v′)}, u ∈ X.
5: M← φ //Finding initial matching M corresponding to the labeling lbl

6: while No more edges can be added do
7: Select an edge (u, v) where none of u and v is incident to an edge in M
8: M←M∪ (u, v).
9: end while

10: if M is perfect, i.e., |M| = n then
11: return M
12: else
13: Pick free vertex u ∈ X and set S ← {u} and T ← Φ
14: if Nlbl(S) = T then
15: δlbl = minu∈S,v /∈T {lbl(u) + lbl(v)− w(u, v)}
16: Update labeling lbl′ ← lbl where

lbl′(s) =


lbl(s)− δlbl if s ∈ S
lbl(s) + δlbl if s ∈ T
lbl(s) otherwise.

17: else
18: Pick v ∈ Nlbl(S)− T
19: If v is unmatched, find an augmenting path P := u − v. Augment M as
M′ =M∆P and set M =M′ and Go to 10.

20: If v is a matched, say to z, extend alternating tree: S = S ∪{z}, T = T ∪{v}. Go
to Step 14.

21: end if
22: end if
23: return M
24: end procedure
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has the following form [26]:

C =



w11 w12 · · · w1m w1ε ∞ · · · ∞
w21 w22 · · · w2m ∞ w2ε · · · ∞

...
...

...
...

...
...

...
...

wn1 wn2 · · · wnm ∞ ∞ · · · wnε
wε1 ∞ · · · ∞ 0 0 · · · 0
∞ wε2 · · · ∞ 0 0 · · · 0
...

...
...

...
...

...
...

...
∞ ∞ · · · wεm 0 0 · · · 0


=

[
W1 W2

W3 W4

]

where the submatrix W1 is corresponding to the cost assignment of nodes (i→ j), W2 and W3

are corresponding to the cost assignment of node deletion (i→ ε) and insertion (ε→ i) of nodes.
The insertion and deletion of edges are not taken care of in the cost matrix. However, it is not
hard to incorporate the edge substitution cost into the matrix entries. We don’t provide the
details here.
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