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Abstract. Multivariate Cryptography is one of the main candidates for creating
post quantum public key cryptosystems. Especially in the area of digital signa-
tures, there exist many practical and secure multivariate schemes. In this paper we
present a general technique to reduce the signature size of multivariate schemes.
Our technique enables us to reduce the signature size of nearly all multivariate
signature schemes by 10 to 15 % without slowing down the scheme significantly.
We can prove that the security of the underlying scheme is not weakened by this
modification. Furthermore, the technique enables a further reduction of the sig-
nature size when accepting a slightly more costly verification process. This trade
off between signature size and complexity of the verification process can not be
observed for any other class of digital signature schemes. By applying our tech-
nique to the Gui signature scheme, we obtain the shortest signatures of all existing
digital signature schemes.

Keywords: Post Quantum Cryptography, Multivariate Cryptography, Digital Signa-
tures, Signature Size

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of communica-
tion in modern society. Today, the security of nearly all of the cryptographic schemes
used in practice is based on number theoretic problems such as factoring large integers
and solving discrete logarithms. The best known schemes in this area are RSA [18], DSA
[10] and ECC. However, schemes like these will become insecure as soon as large enough
quantum computers arrive. The reason for this is Shor’s algorithm [19], which solves num-
ber theoretic problems like integer factorization and discrete logarithms in polynomial
time on a quantum computer. Therefore, one needs alternatives to those classical public
key schemes, which are based on hard mathematical problems not affected by quantum
computer attacks (so called post quantum cryptosystems). The increasing importance
of research in this area has recently been emphasized by a number of authorities. For
example, the american National Security Agency (NSA) has recommended governmen-
tal organizations to change their security infrastructures from schemes like RSA to post
quantum schemes [13] and the National Institute of Standards and Technologies (NIST)
is preparing to standardize these schemes [14].
According to [14], one of the main candidates for this standardization is multivariate
cryptography. Multivariate schemes are in general very fast and require only modest
computational resources, which makes them attractive for the use on low cost devices



like smart cards and RFID chips [2,3]. Additionally, at least in the area of digital signa-
tures, there exists a large number of practical multivariate schemes [6,11,17].

In this paper we present a general technique to reduce the signature size of multivariate
signature schemes. The key idea of our strategy is to send only a part of the signature
to the receiver of a signed message. The verification process consists in solving a multi-
variate quadratic system in a very small number of variables.
By our technique we can reduce the signature size of nearly every multivariate signa-
ture scheme by 10 to 15 % without increasing the key sizes or slowing down the scheme
significantly. Furthermore, we can prove that the security of the signature schemes is
not weakened by our modifications. Moreover, we can achieve a further reduction of the
signature length when accepting a small increase of the verification cost. This trade off
is, to our knowledge, unique for multivariate schemes and can not be observed for any
other class of digital signature schemes. By applying our technique to the Gui signature
scheme of Asiacrypt 2015 [17], we can reduce the signature size of this scheme to 110 bit
(80 bit security), by which we obtain the shortest signatures of all existing schemes.
Our technique is especially attractive in situations, in which the connection between the
sender and the receiver is very slow. An example for this are (wireless) sensor networks.
In such systems, the actual messages are often very short and therefore a major part
of the communication consists of the signatures itself. Reducing the signature length
therefore reduces the communication cost and speeds up the system significantly.
The rest of this paper is organized as follows. In Section 2, we give a short overview of
(wireless) sensor networks and show how these systems can be sped up by our technique.
Section 3 gives an overview of the basic concepts of multivariate cryptography and in-
troduces two of the best known and most widely studied multivariate signature schemes,
namely the Rainbow and the HFEv- signature schemes. Section 4 describes the most
important methods for solving systems of multivariate quadratic equations which can be
used in the verification process of our schemes. In Section 5 we present our technique
in detail and show that our modifications do not weaken the security of the underlying
schemes. Section 6 shows, for concrete parameter sets of Rainbow and HFEv-, which
actual reductions in terms of the signature size can be achieved by our technique. Fur-
thermore, in this section, we analyze the efficiency of our technique using a large set
of experiments. In Section 7 we show how to apply our technique to the Gui signature
scheme, which allows us to efficiently generate secure signatures of size only 110 bit (80
bit security). Finally, Section 8 gives a short discussion of the benefits of our technique
and Section 9 concludes the paper.

2 (Wireless) Sensor Networks

In this section we describe a possible application scenario for our technique. Since we
aim at reducing the signature size, our technique is especially attractive in situations in
which the connection between sender and receiver is very slow. An example for this are
(wireless) sensor networks.
Let us assume that we have a number of small sensors, which report at regular intervals

their status to a server (as shown in Figure 1). The status messages itself might be very
short, but the messages have to be signed in order to prevent adversaries to send false
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Fig. 1. Sensor Network

messages to the server. The single sensors have only restricted computing, power and
memory capacities. Therefore, multivariate signature schemes are an attractive candidate
to generate the above mentioned signatures. To do this, one has to store the private key
of the multivariate scheme on the sensor. For current multivariate schemes such as Gui,
the size of the private key is only 3kB. If this is still too big for the sensor, the private
key can easily be stored as a random seed.
However, the main problem in our scenario is the slow connection between the sensors and
their server. Therefore, our goal is to reduce the communication between the sensors and
the server as far as possible. Since, in the upper status messages, the message itself might
be very short, the length of the signature plays a major role. Now, multivariate scheme
already generate relatively short signatures (usually a few hundred bits). However, as
we will show in Section 5, we can reduce the length of multivariate signatures further,
without weakening the security of the scheme, increasing the key sizes or making the
signature generation process more costly. By doing so, we can reduce the amount of
communication and therefore speed up the system significantly.

3 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quadratic
polynomials. The security of multivariate schemes is based on the

MQ Problem: Given m multivariate quadratic polynomials p(1)(x), . . . , p(m)(x) in n
variables x1, . . . , xn, find a vector x̄ = (x̄1, . . . , x̄n) such that
p(1)(x̄) = . . . = p(m)(x̄) = 0.



The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic polyno-
mials over the field GF(2) [8].

To build a public key cryptosystem based on the MQ problem, one starts with an easily
invertible quadratic map F : Fn → Fm (central map). To hide the structure of F in the
public key, one composes it with two invertible affine (or linear) maps S : Fm → Fm and
T : Fn → Fn. The public key of the scheme is therefore given by P = S◦F◦T : Fn → Fm.
The private key consists of S, F and T and therefore allows to invert the public key.

Note: Due to the above construction, the security of multivariate public key cryptosys-
tems is not only based on the MQ-Problem but also on the EIP-Problem (“Extended
Isomorphism of Polynomials”) of finding the composition of P [5].

In this paper we concentrate on multivariate signature schemes. For this we require
n ≥ m, which ensures that every message has a signature. The standard signature gen-
eration and verification process of a multivariate signature scheme works as shown in
Figure 2.
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Fig. 2. General workflow of multivariate signature schemes

Signature generation: To generate a signature for a document d, we use a hash func-
tion H to compute a hash value w = H(d) ∈ Fm. After that, one computes recursively
x = S−1(w) ∈ Fm, y = F−1(x) ∈ Fn and z = T −1(y). The signature of the document
d is z ∈ Fn. Here, F−1(x) means finding one (of approximately qn−m) pre-image of x
under the central map F .

Verification: To check, if z ∈ Fn is indeed a valid signature for the document d, we
compute the hash value w = H(d) ∈ Fm and w′ = P(z) ∈ Fm. If w′ = w holds, the
signature is accepted, otherwise rejected.

Since the late 1980’s, many multivariate schemes both for encryption and digital sig-
natures have been proposed. The first one was the Matsumoto-Imai cryptosystem [12],
which was later extended to schemes like Sflash [16] and HFE [15]. A different research



direction lead to the development of multivariate schemes such as UOV [11], Rainbow
[6], enTTS [21] and SimpleMatrix [20]. Although several of these schemes have been
broken due to newly developed attacks, a number of multivariate schemes such as UOV,
Rainbow and HFEv- has withstood (for suitable parameter sets) cryptanalysis for more
than 20 years now. In the next two subsections, we introduce two of these schemes.

3.1 The Rainbow Signature Scheme

The Rainbow signature scheme [6] is one of the most promising and best studied multi-
variate schemes. The scheme can be described as follows.
Let F be a finite field, n ∈ N and v1 < v2 < . . . < v` < v`+1 = n be a sequence of
integers. We set Oi = {vi + 1, . . . , vi+1} and Vi = {1, . . . , vi} (i = 1, . . . `).

Key Generation: The private key of the scheme consists of two invertible affine maps
S : Fm → Fm and T : Fn → Fn and a quadratic map F(x) = (f (v1+1)(x), . . . , f (n)(x)) :
Fn → Fm. Here, m = n− v1 is the number of components of F .
The components of the central map F are of the form

f (i) =
∑

k,l∈Vj

α
(i)
kl · xk · xl +

∑
k∈Vj ,l∈Oj

β
(i)
kl · xk · xl +

∑
k∈Vj∪Oj

γ
(i)
k · xk + η(i). (1)

Here, j is the only integer such that i ∈ Oj . The public key is the composed map
P = S ◦ F ◦ T : Fn → Fm.

Signature Generation: To generate a signature for a document d, one uses a hash func-
tion H to compute the hash value w = H(d) ∈ Fm. After that, one computes recursively
x = S−1(w), y = F−1(x) and z = T −1(y). Here, F−1(x) means finding one (of approx-
imately qv1) pre-image of x under the central map F . In the case of Rainbow, this is
done as follows.

Algorithm 1 Inversion of the Rainbow central map

Input: Rainbow central map F , vector x ∈ Fm

Output: vector y ∈ Fn such that F(y) = x
1: Choose random values for the variables y1, . . . , yv1 and substitute these values into the

polynomials f (i) (i = v1 + 1, . . . , n).
2: for k = 1 to ` do
3: Perform Gaussian Elimination on the polynomials f (i) (i ∈ Ok) to get the values of the

variables yi (i ∈ Ok).
4: Substitute the values of yi (i ∈ Ok) into the polynomials f (i) (i ∈ {vk+1 + 1, . . . n}).
5: end for

It might happen that one of the linear systems in step 3 of the algorithm does not have
a solution. In this case one has to choose other values for y1, . . . , yv1 and start again.
The signature of the document d is z ∈ Fn.



Signature Verification: To check if z ∈ Fn is indeed a valid signature for the document
d, one computes w = H(d) and w′ = P(z). If w′ = w holds, the signature is accepted,
otherwise rejected.

3.2 The HFEv- Signature Scheme

Another widely known construction is the HFEv- signature scheme, which is often used
as the basis of more advanced multivariate signature schemes such as QUARTZ and Gui
[17] (see Section 7).
Let F = Fq be a finite field with q elements and E be a degree n extension field of F.
Furthermore, we choose integers D, a and v. Let Φ be the canonical isomorphism between
Fn and E, i.e.

Φ(x1, . . . , xn) =

n∑
i=1

xi ·Xi−1. (2)

The central map F of the HFEv- scheme is a map from Fv × E to E of the form

F(X) =

qi+qj≤D∑
0≤i≤j

αij ·Xqi+qj +

qi≤D∑
i=0

βi(v1, . . . , vv) ·Xqi + γ(v1, . . . , vv), (3)

with αij ∈ E, βi : Fv → E being linear and γ : Fv → E being a quadratic function.
Due to the special form of F , the map F̄ = Φ−1 ◦ F ◦Φ is a multivariate quadratic map
from Fn+v to Fn. To hide the structure of F̄ in the public key, one combines it with two
affine (or linear) maps S : Fn → Fn−a and T : Fn+v → Fn+v of maximal rank.

The public key of the scheme is the composed map P = S ◦ F̄ ◦ T : Fn+v → Fn−a,
the private key consists of S, F and T .

Signature generation: To generate a signature for a document d, we use a hash func-
tion H to compute the hash value w = H(d) ∈ Fn−a. After that, the signer performs the
following three steps.

1. Compute a preimage x ∈ Fn of w under the affine map S.

2. Lift x to the extension field E (using the isomorphism Φ). Denote the result by X.
Choose random values for the Vinegar variables v1, . . . , vv ∈ F and compute FV =
F(v1, . . . , vv).
Solve the univariate polynomial equation FV (Y ) = X by Berlekamp’s algorithm and
compute y′ = Φ−1(Y ) ∈ Fn. Set y = (y′||v1|| . . . ||vv).

3. Compute the signature z ∈ Fn+v of the document d by z = T −1(y).

Signature verification: To check if z ∈ Fn+v is indeed a valid signature for the document
d, we compute the hash value w = H(d) and w′ = P(z) ∈ Fn−a. If w′ = w holds, the
signature is accepted, otherwise rejected.



4 Solving multivariate quadratic systems

In this section we give a short overview of the most important techniques for solving
systems of multivariate quadratic equations that might be used in our scheme.

4.1 The Relinearization Technique

In [11], Kipnis and Patarin proposed the Relinearization technique, which allows to solve
highly overdetermined multivariate quadratic systems in polynomial time. In particular,
a system can be solved by this technique if the number of equations m is greater or equal
to

m ≥ (n+ 1) · (n+ 2)

2
− 1. (4)

The idea can be described as follows:

1. Interpret each of the quadratic monomials xi ·xj in the system as a new variable xij .
2. Solve the resulting linear system by Gaussian Elimination.

If equation (4) holds, the linear system in step 2 has (in most cases) exactly one solution,
which directly yields the solution of the quadratic system.

4.2 Other techniques

If the number n of variables in the system exceeds the upper bound given by equation
(4), the Relinearization method produces a huge set of fake solutions, which are solutions
to the linear system, but do not solve the original quadratic one. In this case one has to
use other methods to solve the quadratic system, for example XL (see Algorithm 2) or
a Gröbner Basis algorithm such as F4 or F5 [7].

The XL Algorithm (”eXtended Linearization”) was proposed by Courtois et al. in [4]. In
order to solve a quadratic system F , the algorithm enlarges the system by multiplying
the polynomials f (i) ∈ F by all monomials of degree d ≤ D−2. By doing so, it obtains a
large system F̃ of degree D polynomials. The algorithm performs Gaussian Elimination
on the system F̃ in order to find a univariate polynomial which then can be solved by
Berlekamp’s algorithm. In this case, it substitutes the solution into F̃ to simplify the
system.
However, if the degree D chosen in step 2 of the algorithm is too small, the enlarged
system F̃ will not contain a univariate polynomial. In this case one has to increase the
degree D and try again. The smallest degree for which the XL algorithm outputs a so-
lution of the system F is called the degree of regularity dreg. This degree of regularity
mainly determines the complexity of the algorithm.

For our purposes we want the quadratic system F to be efficiently solvable. In the
following, we therefore only consider multivariate systems which can be solved by the
XL algorithm at degree 3 or 4. This directly yields an upper bound on the number of
variables in our systems. However, for multivariate quadratic systems, it is a hard task
to find explicit formulas for this upper bound. In Section 6, we therefore try to find



Algorithm 2 XL-Algorithm

Input: Set of polynomials F = (f (1), . . . , f (m))
Output: vector x = (x1, . . . , xn) such that f (1)(x) = . . . = f (m)(x) = 0
1: for i = 1 to n do
2: Fix an integer D > 2.
3: Generate all polynomials h · f (j) with h ∈ Tn

D−2 and j = 1, . . . ,m.
4: Perform Gaussian elimination on the set of all polynomials generated in the previous

step to generate one equation containing only xi.
5: If step 4 produced at least one univariate polynomial in xi, solve this polynomial by e.g.

Berlekamp’s algorithm.
6: Simplify the equations by substituting the value of xi.
7: end for
8: return x = (x1, . . . , xn)

these upper bound for concrete instances of Rainbow and HFEv- using a large number
of experiments.

5 Reducing the signature size of multivariate schemes

In this section we present our technique to reduce the signature size of multivariate
schemes. Our technique can be applied to nearly all multivariate signature schemes, in-
cluding UOV [11], Rainbow [6], HFEv- [15] and TTS [21].
However, it is not possible to apply our technique directly to more advanced multivariate
signature schemes such as QUARTZ and Gui [17]. In order to reduce the signature size
of these schemes, we have to modify our technique slightly (see Section 7).

Let ((S,F , T ),P) be a key pair of a multivariate signature scheme.

Signature Generation: The sender of a message d uses his private key (S,F , T ) to com-
pute a signature z ∈ Fn for the document d just as in the case of the standard signature
scheme. After that, he removes the last k F-elements from the signature z to obtain a
partial signature z̃ ∈ Fn−k and sends z̃ to the verifier.

Signature Verification: The receiver of a signed message checks if z̃ is indeed part of a valid
signature for the document d. To do this, he computes the hash value w = H(d) ∈ Fm of
the document d, substitutes the elements of the partial signature z̃ into the public key
P and uses one of the techniques described in the previous section to solve the resulting
system P̃(zn−k+1, . . . , zn) = w of m quadratic equations in k variables. If the system
has a solution, the signature z̃ is accepted, otherwise it is rejected.

Remark: Indeed we do not have to reconstruct the complete signature z ∈ Fn by
solving the system P̃(zn−k+1, . . . , zn) = w. Instead of this, it suffices to check whether
the system has a solution. If we use the Relinearization technique for the verification, it
therefore suffices to bring the linearized system into row-echelon form and check if the



last equations (which contain only zero terms on the left) hold. The reason for this is
given by Proposition 1.

Algorithms 3 and 4 show the standard verification process for multivariate schemes and
our modified one in algorithmic form.

5.1 How to choose the parameter k?

In this section we consider the question how we should choose the number k of F-elements
removed from the original signature z. Increasing the number k will lead to shorter sig-
natures but increase the computational effort to check the authenticity of a signature.

If (k+1)·(k+2)
2 −1 ≤ m, the system P̃(x) = w from step 3 of Algorithm 4 can be solved by

the Relinearization technique (see Section 4.1). This means that we can find a solution
in polynomial time. Therefore we get

Proposition 1. Let (k+1)·(k+2)
2 − 1 ≤ m. Then the partial signature z̃ ∈ Fn−k can not

be found significantly faster than the full signature z ∈ Fn.

Proof. Let us assume that we have a valid partial signature z̃ ∈ Fn−k for a document
d. By substituting the elements of z̃ into the public key P we obtain a system P̃ of
m quadratic equations in k variables. Due to our assumption we can solve this system
and therefore recover the whole signature z in polynomial time using the Relinearization
technique (see Section 4.1).

Remark: The above proposition states that an attacker who is able to generate a valid
partial signature z̃ ∈ Fn−k can generate the whole signature z ∈ Fn quasi without ad-
ditional computational cost. This shows that the security of the underlying signature
schemes is not weakened by our modifications.

Algorithm 3 Standard Verification
Algorithm for Multivariate Schemes

Input: public key P, document d, sig-
nature z ∈ Fn

Output: boolean value TRUE or
FALSE

1: w = H(d) ∈ Fm

2: w′ = P(z)
3: if w′ = w then
4:
5: return TRUE
6: else
7: return FALSE
8: end if

Algorithm 4 Modified Verification Al-
gorithm for Multivariate Schemes

Input: public key P, document d, partial
signature z̃ ∈ Fn−k

Output: boolean value TRUE or
FALSE

1: w = H(d) ∈ Fm

2: P̃ = P(z̃)
3: if IsConsistent (P̃(x) = w) = TRUE

then
4: return TRUE
5: else
6: return FALSE
7: end if



From equation (4), we can derive the maximal number k of elements by which we
can reduce the length of the original signature z such that the partial signature z̃ can be
verified using the Relinearization technique by

k = b1
2
· (
√

9 + 8 ·m− 3)c. (5)

In the following, we slacken this condition a bit. If (k+1)·(k+2)
2 − 1 > m, we can not solve

the system P̃(x) = w by the Relinearization technique any more and therefore can not
recover the whole signature z in polynomial time. However, if the number k is not too
large, we can solve the system P̃(x) = w by the XL Algorithm at a very low degree (e.g.
dreg ∈ {3, 4}). In this case, the computational effort of recovering the whole signature z
is still very small. We therefore come to the conjecture

Conjecture: If the system P̃(zn−k+1, . . . , zn) = w of m quadratic equations in k vari-
ables can be solved by the XL Algorithm at degree 3 or 4, our technique does not weaken
the security of the underlying signature scheme.

Furthermore, in this case, the additional computational effort needed to verify the re-
duced signature is still acceptable.
However, as already mentioned in Section 4.2, it is a hard task to find explicit upper
bounds for the parameter k such that the system P̃(x) = w can be solved by the XL
Algorithm at a given degree. In the next section we try to find, for concrete instances of
Rainbow and HFEv-, these upper bounds by performing a large set of experiments.

6 Results

In this section we show, for concrete instances of the multivariate schemes Rainbow and
HFEv-, the possible reduction of the signature size enabled by our technique. Further-
more we analyze the efficiency of our technique using a straightforward implementation
of the schemes.

Table 1 shows, for the multivariate signature schemes Rainbow and HFEv-, possible
choices of the parameter k of our technique and the resulting reduction in terms of the
signature size of the schemes.

For every scheme and parameter set, the 7-th column of the table gives the maximal
values of the parameter k such that the partial signature z̃ can be verified by the Re-
linearization technique, the XL Algorithm with dreg = 3 and the XL Algorithm with
dreg = 4 respectively. While the first of these numbers can be computed using formula
(5), the values of k corresponding to the XL Algorithm were obtained experimentally.
In the 8-th column of the table we give first the length of a standard signature (without
reduction). The second number shows the length of the shortest partial signature which
can be verified using the Relinearization technique, while the third and fourth numbers
show the lengths of the shortest signatures that can be verified using the XL Algorithm
at degree 3 and 4 respectively. The 9-th column shows the corresponding reduction fac-
tors.



security private key public key hash size verification signature reduction
level scheme size (kB) size (kB) (bit) by k size (bit) in %

80

Rainbow(GF(28)17,13,13) 19.9 25.1 208

standard 0 344 -
Relinearization 5 304 12
XL (dreg = 3) 10 264 23
XL (dreg = 4) 14 232 33

HFEv-(GF(7),62,8,2,2) 2.9 47.1 168

standard 0 192 -
Relinearization 9 165 14
XL (dreg = 3) 17 135 27
XL (dreg = 4) 23 126 34

100

Rainbow(GF(28),26,16,17) 44.4 59.0 264

standard 0 472 -
Relinearization 6 424 10
XL (dreg = 3) 12 384 19
XL (dreg = 4) 16 344 27

HFEv-(GF(7),78,8,3,3) 4.5 93.5 210

standard 0 243 -
Relinearization 11 216 14
XL (dreg = 3) 17 192 22
XL (dreg = 4) 24 171 30

Table 1. Possible Reduction of the Signature Length for Rainbow and HFEv-

In the case of the HFEv- signature scheme, we use GF(7) as the underlying field. We
store one element of GF(7) in 3 bits, while 5 elements of GF(7) can be efficiently used
to store 14 bits. To store a hash value of length 160 bit, we therefore need 60 elements
of GF(7), to store a hash value of 200 bit, we need 75 GF(7) elements.
As can be seen from Table 1 we can, in the case of HFEv-, get signatures which are
smaller than the input size of the scheme, even when restricting to verifying the partial
signatures with the Relinearization technique. But also for the Rainbow scheme, our
technique enables us to reduce the signature length by up to 12 %.
When verifying the reduced signatures with the XL Algorithm (with dreg = 3), we can
obtain a reduction of the signature length by 20-25 %. When allowing the XL Algorithm
to reach degree 4, we can achieve reductions of up to 34 %.

6.1 Efficiency of the Verification Process

To estimate the efficiency of the modified verification process, we created a straightfor-
ward implementation of the Rainbow and HFEv- signature schemes in MAGMA code.
Our scheme runs on a single core of a server with 24 AMD Opteron processors (2.4 GHz)
and 128 GB of RAM. Table 2 shows the time needed for the verification of a (partial)
signature (average time of 10,000 verification processes).

As the table shows, there is no significant difference between the running times of the
standard verification process and the modified verification process combined with the
Relinearization technique. We therefore can achieve a reduction of the signature length
by up to 15 % at quasi no cost. A further reduction of the signature length is possible if
we accept an increase in the verification time. We hence observe a trade off between sig-
nature size and efficiency of the verification process, which, to our knowledge, is unique
for multivariate signature schemes and can not be observed for any other class of digital



security verification signature reduction verification
level (bit) scheme by k size (bit) in % time (ms)

80

Rainbow(GF(28),17,13,13)

standard 0 344 - 0.21
Relinearization 5 304 12 0.25

XL Algorithm (dreg = 3) 10 264 23 10.8
XL Algorithm (dreg = 4) 14 232 33 425.0

HFEv-(GF(7),62,8,2,2)

standard 0 192 - 0.86
Relinearization 9 165 14 0.91

XL Algorithm (dreg = 3) 17 141 27 21.3
XL Algorithm (dreg = 4) 22 126 34 634.6

100

Rainbow(GF(28),26,16,17)

standard 0 472 - 0.42
Relinearization 6 424 10 0.47

XL Algorithm (dreg = 3) 12 376 20 14.3
XL Algorithm (dreg = 4) 16 344 27 534.6

HFEv-(GF(7),78,8,3,3)

standard 0 243 - 1.25
Relinearization 10 213 12 1.32

XL Algorithm (dreg = 3) 19 186 23 37.2
XL Algorithm (dreg = 4) 24 171 30 928.6

Table 2. Verification times for Rainbow and HFEv- schemes with reduced signature length

signature schemes.
Figure 3 shows this trade off for the example of the Rainbow signature scheme with
parameters (v1, o1, o2) = (17, 13, 13). In particular, we note that we can achieve a reduc-
tion of the signature size of Rainbow by 5 byte (12 %) at quasi no cost. However, for
larger values of k (i.e. solution of P̃(x) = w by the XL Algorithm with dreg ∈ {3, 4})
the running time of the verification process increases significantly. More experimental
data regarding this trade off between signature size and verification time can be found
in Table 2.

7 Application of our Technique to Gui

The Gui signature scheme as proposed by Petzoldt et al. in [17] is currently the mul-
tivariate signature scheme with the shortest signatures. In this section we show how to
apply our technique to Gui, by which we obtain the shortest signatures of all currently
existing signature schemes. However, due to the special signature generation process of
Gui, this can not be done straightforward. In order to show this, we start with a short
description of Gui.
The Gui signature scheme [17] is an extension of the HFEv- signature scheme introduced
in Section 3.2. Indeed, the public and private keys of Gui are just HFEv- keys over GF(2)
with specially chosen parameters n,D, a and v. The signature generation process of Gui
is very fast [17] and produces very short signatures of size not more than 120 bit. How-
ever, due to the parameter choice of Gui, the input length of the HFEv- scheme is only
90 bit. Therefore, it would be possible for an attacker to come up with two messages d1
and d2 whose hash values collide in these first 90 bits (birthday attack). To overcome this
problem, the authors of [17] developed a specially designed signature generation process
for their scheme. Roughly spoken, to generate a signature for a message d, Gui computes



Fig. 3. Verification time (ms) for Rainbow(17,13,13) and different values of k

r ∈ {3, 4} HFEv- signatures for different hash values of the document d and combines
them to a single Gui signature of length (n− a) + r · (a+ v) bits. Algorithm 5 shows the
signature generation process of Gui in algorithmic form.

In order to verify a Gui signature σ ∈ GF(2)
(n−a)+r·(a+v)

, we have to evaluate the public
key of Gui r times (see Algorithm 6).

This repeated evaluation of the public key prevents us from applying our technique
to Gui directly. However, we are still able to reduce the signature size of Gui by a + v
bit.
In particular, while the original Gui signature σ is of the form σ = (Sr, Xr, . . . , X1),
we just transmit the partial signature σ̃ = (Sr, Xr, . . . , X2). The modified verification
algorithm of Gui works as shown in Algorithm 7.
In our modified verification process, the hash values D1, . . . , Dr are computed just as
in the case of the original Gui scheme (line 3 to 6). We follow the original verification
process of Gui (see Algorithm 6) further to compute the vectors Sr−1, . . . , S1 (line 7 to
9). After that, we substitute S1 into the public key P (line 10) to obtain a system P̃ of
n− a quadratic equations in a+ v variables. The signature σ̃ is accepted, if and only if
the system P̃(x) = D1 has a solution. For the parameters proposed in [17], this step can
be performed by the Relinearization technique (see Section 4.1) in polynomial time.
By our technique, we can therefore reduce the signature size of Gui from (n−a)+r·(a+v)
bit to (n− a) + (r− 1) · (a+ v) bit. Table 3 shows the possible reduction of the signature
size for the four parameter sets proposed in [17]. As the table shows, we can, for the
parameters (n,D, a, v, r) = (95, 9, 5, 5, 3) (80 bit security), obtain signatures of size 110
bit, which are the shortest signatures of all existing schemes (both in the classical and
the post quantum world). Note that by our modifications the security of the scheme is
not weakened at all (c.f. Proposition 1), and the performance is not reduced significantly.



Algorithm 5 Signature Generation Process of Gui

Input: Gui private key (S, F , T ) message d, repetition factor r

Output: signature σ ∈ GF(2)(n−a)+r(a+v)

1: h← SHA-256(d)
2: S0 ← 0 ∈ GF(2)n−a

3: for i = 1 to r do
4: Di ← first n− a bits of h
5: (Si, Xi)← HFEv−−1(Di ⊕ Si−1)
6: h← SHA-256(h)
7: end for
8: σ ← (Sr||Xr|| . . . ||X1)
9: return σ

Algorithm 6 Standard Verification
Algorithm of Gui

Input: Gui public key P, message
d, repetition factor r, signature
σ ∈ GF(2)(n−a)+r(a+v)

Output: boolean value TRUE or
FALSE

1: h← SHA-256(d)
2: (Sr, Xr, . . . , X1)← σ
3: for i = 1 to r do
4: Di ← first n− a bits of h
5: h← SHA-256(h)
6: end for
7: for i = r − 1 to 0 do
8: Si ← P(Si+1||Xi+1)⊕Di+1

9: end for
10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if

Algorithm 7 Modified Verification Al-
gorithm of Gui

Input: Gui public key P, message d,
repetition factor r, partial signature
σ̃ ∈ GF(2)(n−a)+(r−1)·(a+v)

Output: boolean value TRUE or
FALSE

1: h← SHA-256(d)
2: (Sr, Xr−1, . . . , X1)← σ̃
3: for i = 1 to r do
4: Di ← first n− a bits of h
5: h← SHA-256(h)
6: end for
7: for i = r − 1 to 1 do
8: Si ← P(Si+1||Xi+1)⊕Di+1

9: end for
10: P̃ ← P(S1)
11: if IsConsistent(P̃(x) = D1) then
12: return TRUE
13: else
14: return FALSE
15: end if

8 Discussion

The technique proposed in Section 5 of this paper enables us to reduce the signature
size of multivariate schemes in a very flexible way. In particular, as Figure 3 shows, we
achieve a reduction of the signature size by 10-15 % at quasi no cost and a trade off
between further reduction and the efficiency of the verification process. Again we note
that our modifications do not weaken the security of the schemes.
To our knowledge, this possibility to reduce the signature length without extra cost is
unique for multivariate signature schemes, and no other family of signature schemes al-
lows something similar. While, for some lattice based signature schemes [9], there also



security private key public key verification signature reduction
level scheme size (kB) size (kB) by k size (bit) in %

80

Gui(GF(2),96,5,6,6,4) 3.1 61.5
standard 0 126 -

Relinearization 13 113 10

Gui(GF(2),95,9,5,5,3) 3.0 59.2
standard 0 120 -

Relinearization 11 109 9

Gui(GF(2),94,9,4,4,4) 2.9 56.8
standard 0 122 -

Relinearization 9 113 7

120 Gui(GF(2),127,9,4,6,4) 5.2 139.2
standard 0 163 -

Relinearization 11 152 7
Table 3. Possible Reduction of the public key size for Gui

exist techniques to reduce the signature size, they are much less flexible than the pro-
posed technique and require significant extra computation.
Our technique can be applied to every standard multivariate signature scheme such as
UOV [11], Rainbow [6], HFEv- [15] and TTS [21] and, with some modifications, to more
advanced schemes such as QUARTZ and Gui [17], too. Although, for these schemes,
we can not reach as high reduction factors as for Rainbow and HFEv-, we obtain, by
applying our technique to Gui, the shortest signatures of all existing signature schemes
(both in the classical and the post quantum world).
As demonstrated in Section 2 of this paper, our technique is especially suitable in sit-
uations where the connection between sender and receiver is slow. In particular, if the
original messages are very short (e.g. status messages of a node in a sensor network) and
therefore the signatures are a major part of the communication, our technique helps to
reduce the communication cost and therefore speeds up the system significantly. Fur-
thermore, if the small sensors report their status to a computationally powerful server,
a slightly more complicated verification process as implied by our technique should be
no major problem.

9 Conclusion

In this paper we proposed a general technique to reduce the signature size of multivariate
schemes. Our technique enables us to decrease the signature size of nearly all multivari-
ate signature schemes such as Rainbow and HFEv- by up to 15 %, without slowing down
the verification process of the schemes significantly. We can prove that the security of
the underlying scheme is not weakened by this modification. We can achieve a further
reduction of the signature size when accepting a slightly more costly verification process.
Therefore, we observe a trade off between signature length and the efficiency of the ver-
ification process, which, to our knowledge, is unique for multivariate signature schemes.
By applying our technique to the Gui signature scheme of [17], we obtain signatures of
size only 110 bit (80 bit security), which are the shortest signatures of all existing digital
signature schemes (both in the classical and the post quantum world).
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