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Abstract

Decentralized cryptocurrencies have pushed deployments of distributed consensus to more
stringent environments than ever before. Most existing protocols rely on proofs-of-work which
require expensive computational puzzles to enforce, imprecisely speaking, “one vote per unit of
computation”. The enormous amount of energy wasted by these protocols has been a topic of
central debate, and well-known cryptocurrencies have announced it a top priority to alternative
paradigms. Among the proposed alternative solutions, proofs-of-stake protocols have been of
particular interest, where roughly speaking, the idea is to enforce “one vote per unit of stake”.
Although the community have rushed to propose numerous candidates for proofs-of-stake, no
existing protocol has offered formal proofs of security, which we believe to be a critical, indis-
pensible ingredient of a distributed consensus protocol, particularly one that is to underly a
high-value cryptocurrency system.

In this work, we seek to address the following basic questions:

• What kind of functionalities and robustness requirements should a consensus candidate offer
to be suitable in a proof-of-stake application?

• Can we design a provably secure protocol that satisfies these requirements?

To the best of our knowledge, we are the first to formally articulate a set of requirements for
consensus candidates for proofs-of-stake. We argue that any consensus protocol satisfying these
properties can be used for proofs-of-stake, as long as money does not switch hands too quickly.
Moreover, we provide the first consensus candidate that provably satisfies the desired robustness
properties.

1 Introduction

Consensus protocols are at the core of distributed systems — an important and exciting area that
has thrived for the past 30 years. Traditionally, the deployment of consensus protocols has been
largely restricted to relatively controlled environments, e.g., imagine a (hypothetical) deployment
within Google to replicate a mission-critical service such as Google Wallet. The scale of deployment
has been relatively small, typically involving no more dozens of nodes. Nodes are often owned by
the same organization and inter-connected with high-speed networks. Further, the set of consensus
nodes is typically quite stable and reconfigurations are infrequent.

The rapid rise to fame of decentralized cryptocurrencies such as Bitcoin and Ethereum have
undoubtedly pushed consensus protocols to newer heights, and have demonstrated to us, that
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amazingly, it is possible to achieve robust consensus in a decentralized environment that is much
more “hostile” than the traditional comfort zones for consensus deployment. Partly for this reason,
Bitcoin is often referred to as the “honeybadger of money”.

Most existing cryptocurrencies [43,51] adopt proof-of-work blockchains, originally proposed by
Nakamoto [43]. The Nakamoto blockchain works in a permissionless model, where any node can
freely join and leave the protocol, and there is no a-priori knowledge of the set of consensus nodes.
Until recently, the permissionless setting somewhat escaped the academic community’s attention,
partly because we understand that strong impossibility results exist in the permissionless model [4].
Nakamoto’s ingenious blockchain protocol circumvented this lower bound by introducing proofs-of-
work which, imprecisely speaking, seeks to enforce “one vote per unit of computation”. Notably
several recent works have formally shown the security of the Nakamoto blockchain [26,44],

Although many would consider blockchain protocols a breakthrough for distributed consensus,
today’s blockchain protocols are plagued by several well-known painpoints among which perfor-
mance is perhaps the most visible and most often debated. In particular, today’s blockchains
adopt expensive proofs-of-work, resulting in enormous wastes of energy [18, 27, 48] — it is esti-
mated that Bitcoin mining today consumes more than 1000 MW of power [1], comparable to the
power generated by a nuclear power plant such as Vogtle 3 (Georgia, USA, 1100 MW).

The search for a paradigm shift. The cryptocurrency community has been soul-searching for
a paradigm shift. There is a growing interest in alternative consensus candidates that do not rely
on expensive proofs-of-work, and yet are robust enough to withstand a wide-area deployment. Of
particular interest is a new class of protocols called “proofs-of-stake” where, at 30,000 feet, the
idea is to enforce “one vote per unit of stake in the system”, where stake can be measured by the
amount of currency units owned by a specific node. Since the initial suggestion of this idea in online
Bitcoin forums [47], the community rushed to propose a series of protocol candidates [7, 8, 12, 19,
32,34,40,47,50], and major cryptocurrencies such as Ethereum have declared it a pressing priority
to switch to a proof-of-stake paradigm [2,12].

Despite the abundant and ever-growing excitement, unfortunately, the community continues
to lack a clear and precise articulation of the security requirements of a proof-of-stake consensus
protocol — for this reason, perhaps unsurprisingly, known protocol candidates [7, 8, 12, 19, 32, 34,
40,47,50] all appear to be lacking in one crucial ingredient, that is, formal modeling and proofs of
security.

1.1 Our Contributions

In this paper, we embark on this quest: to search for an “ideal” consensus protocol candidate for
proof-of-stake, that is robust enough to survive the adversarial nature of decentralized deployments,
and more importantly, one that is provably secure.

It is a truth universally acknowledged by the cryptocurrency community, that consensus proto-
cols for decentralized cryptocurrencies must be “highly robust”. Many believe that classical con-
sensus candidates are unsuitable, and that “blockchains are more robust than classical consensus”.
For quite a while, we were not able to formally justify such intuitions, or articulate exactly what
robustness properties we look for. In our prior Sleepy work (Bentov, Pass, and Shi [9]), we make a
first step forward at articulating new robustness properties that are desirable in emerging decen-
tralized applications. Specifically, we show how to apply core ideas behind modern blockchains to
construct consensus protocols in the classical sense, and meanwhile avoid expensive proofs-of-work.
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The resulting protocol, called Sleepy [9], achieves new robustness properties that are not attained
by any classical consensus protocol. To precisely articulate such new robustness properties, our
earlier work [9] demonstrates that traditional network models considered by the distributed sys-
tems literature (including synchronous, asynchronous, and partially synchronous models) are too
coarse-grained to express even very simple and natural robustness properties that one might care
about. Therefore, we proposed a new formal model for consensus referred to as the sleepy model [9]
— which roughly speaking, allows them to simultaneously achieve security in the presence of up to
50% corruption (among online nodes), and meanwhile be able to capture a broad class of failures
and network jitters that are unavoidable in a wide-area setting. Note that this was not possible
with classical models — since to capture failures and network jitters one would have to adopt
the partially synchronous or asynchronous models; and yet a well-known lower bound by Dwork
et al. [21] suggests that in these models, it is impossible to construct a consensus protocol that
tolerates a 1

3 corruption!
While Sleepy may seem like a good starting point, we are still quite far from constructing a

secure proof-of-stake candidate. In this paper, we identify new functionalities and new robustness
properties that are needed for proof-of-stake, and we show that, to satisfy these new functionality
and robustness requirements would require non-trivial challenges both in terms of modeling and
protocol construction. In the remainder of the paper, we make the following contributions.

• First, we articulate, in an intuitive language, a set of robustness properties are desirable for
consensus protocols in the decentralized setting. Particularly, we use proof-of-stake as a driving
application to identify these requirements.

• Second, we make an endeavor to formalize the set of intuitive requirements we have identified. It
turns out that translating the set of intuitive requirements into a formal language is surprisingly
challenging. Echoing findings of our recent Sleepy work [9], here we show that, to an even greater
extent, traditional modeling techniques in classical distributed systems are too coarse-grained
— as a result they are insufficient for articulating new robustness properties that are desired
in emerging decentralized applications, and for articulating the robustness properties of a new
class of protocols.

• Finally, we construct a provably secure consensus candidate called Snow White that achieves our
desired functional and security requirements. More specifically, Snow White relies on the Sleepy
consensus protocol as a starting point. We then describe a sequence of non-trivial enhancements
that make the protocol progressively more versatile and more robust.

In this process, we revisit our modeling choices several times, allowing us to achieve the following:
1) we make sure that our modeling choices are almost tight, in the sense that any additional
trust assumption we introduce is necessary — since without them we would be treading on
theoretical infeasibility; 2) we carefully articulate adversarial capabilities, such that we can
precisely articulate the capabilities of our protocol, and prove it secure under the most powerful
adversary we can defend against.

We point out that while we use proof-of-stake as a motivating application, our modeling tech-
niques and construction may be of independent interest. Specifically, our protocol is generally
applicable as a candidate for robust consensus in decentralized networks, where outages and net-
work jitters are unavoidable, and node churns are frequent.
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1.2 Desiderata and Challenges

In this paper we focus on permissioned consensus protocols that do not require proofs-of-work,
and where there is an a-priori known initial committee of nodes responsible for consensus. In a
decentralized setting, previous work has formally demonstrated that we can bootstrap common
knowledge of this initial committee from a proof-of-work blockchain [46]. Further, in the proof-
of-stake setting, it is often suggested that this initial committee be bootstrapped from an existing
cryptocurrency system such as Bitcoin. Specifically, we can take the set of public keys associated
with monetary value as the initial committee.

Robustness in a sleepy network. Despite common knowledge of an initial committee, not
all nodes in the committee may be online at all times. For example, only a subset of users that
own Bitcoins are miners, many remaining users only run light-weight clients that do not perform
mining, or simply keep their coins in cloud storage [3, 18]. Further, in a wide-area network, node
outages and network jitters are inevitable. In general, we shall classify all offline nodes and nodes
with temporary bad network connections as “sleepy” nodes.

Obviously, the existence of sleepy nodes is unavoidable, and we cannot hope for sleepy nodes
to participate in the consensus. A natural desideratum is that sleepy nodes should not hamper the
progress of the consensus. Additionally, since a decentralized network contains mutually distrustful
nodes, a higher level of resilience is typically desired. Intuitively, the following desideratum is
natural to desire:

Desideratum 1 (sleepy consensus):

We would like a protocol that tolerates sleepy nodes, and specifically, achieves consistency and
liveness when the majority of awake nodes are behaving honestly.

Surprisingly, our own recent work (Bentov, Pass, and Shi [9]) argues that the aforementioned
robustness property is not attained by any existing classical permissioned consensus protocol. We
then define a new formal model called the sleepy model [9], and show that one can apply ideas
behind proof-of-work blockchains to a non-proof-of-work setting, and design new protocols that
achieve the goal of “sleepy consensus”. We believe that such robustness against sleepy nodes is
important for a decentralized proof-of-stake application. It would now appear that the Sleepy
protocol [9] is an attractive starting point for constructing proof-of-stake protocols.

Robust committee reconfigurations. Although the Sleepy protocol [9] achieves new robustness
properties that are not attained by any classical consensus protocol, we soon realize that even Sleepy
may not be robust enough. Below we describe two additional challenges that a proof-of-stake
protocol must address.

Recall that in a proof-of-stake protocol, we would like to give nodes voting power proportional
to their stake in the cryptocurrency. Therefore, committees are determined by the amount of
currency units each public key carries.

However, invariably money can switch hands over time. As a result, the consensus committee
should evolve to include new users that have stake in the system, and prune out old committee
members who no longer hold stake. Since membership churns are a frequent operation, they must
be handled in lightweight manners ideally without having to invoke special execution paths in the
consensus program. We therefore propose the second intuitive desideratum.
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Desideratum 2 (committee reconfigurations):

The protocol should support frequent committee reconfigurations in a light-weight manner.

Robustness against posterior corruptions. The fact money can switch hands over time raises
an additional challenge. In a decentralized network, nodes typically do not have long-term mutual
trust. When the majority of the money in the system has switched hands, old committee members
(possibly more than majority) who no longer hold stake may now be incentivized to attack the
system, e.g., by using their voting power in the past to overwrite history and thus break consistency.
Therefore, we now have the following natural desideratum:

Desideratum 3 (tolerate posterior corruption):

Corrupt members of sufficiently old committees should not be able to overwrite history.

Articulating the posterior corruption requirement formally turns out to be very subtle and
challenging! Following the terminology adopted by Sleepy, henceforth we refer to nodes that are
honest and awake as alert nodes. Ideally, what one would have liked is that the scheme retains
security as long as at any time, there are more alert committee members (of the present committee)
than corrupt ones, or more formally, at any t, there is a positive constant φ such that

alertt(cmtt)

corruptt(cmtt)
> 1 + φ (1)

where alertt(cmtt) and corruptt(cmtt) output those that are alert and corrupt at time t respectively
among the committee at time t. However, it turns out that this notion is unattainable. Specifically,
for a node i that newly joins or one that wakes up from sleep, a committee in the past (say, at
past time t∗) might already have become majority corrupt, and the coalition may now fork off an
alternate history starting from around t∗. At this moment, node i has no means of discerning the
real and the alternate histories. It turns out that we can formalize this intuition and prove a lower
bound that indeed, absent any additional trust assumptions, such a notion of security would have
been unattainable (Section 6).

Our approach is the following.

1. First, we introduce the minimal assumptions necessary to circumvent the theoretical impossi-
bilities. Specifically, we assume that newly joining nodes and nodes that wake up from a long
sleep has a way to determine which is the correct history to believe in. For example, this can
be achieved if the (re)joining node can contact a list of nodes the majority of whom are alert.

2. Second, we quantify the condition specified in Equation (1) more carefully. Let W denote an
appropriate posterior corruption window parameter. Roughly speaking, we require that the
scheme retains security as long as for any t,

alertt(cmtt) ∩ honestt+W (cmtt)

corruptt+W (cmtt)
> 1 + φ (2)

More intuitively, the parameter W qualifies the window over which a committee member has
influence. If a node serves as committee member at time t and never serves on any committee
in the future, then its influence is limited to the window [t, t + W ]. After t + W , even if the
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majority of the committee at t become corrupt, they cannot overwrite the past — as long as
(imprecisely speaking) the corrupt coalition is not also serving on future committees.

Looking forward, the introduction of the parameter W allows our proof-of-stake system to be
secure even when the majority of stake in old committees become corrupt later in time. Since
the committee rotation can lag behind the real-time stake distribution, we would additionally
require that money in the system does not switch hands too quickly, to ensure that honest nodes
are roughly aligned with honest stake — in this way, we can translate the assumptions expected
by our consensus protocol into assumptions on the distribution of stake.

3. Third, we would have to carefully adjust our formal model to distinguish between two types of
sleepers, light sleepers who sleep for a short duration bounded by ∆̃, and deep sleepers who may
sleep indefinitely before waking up. Light sleepers receive all pending messages upon waking
(e.g., network jitters), whereas deep sleepers are treated essentially the same way as respawning
(e.g., longer node outages). Such a distinction is necessary, since it is not hard to see that if
W < ∆̃, agreement would have been impossible for nodes that wake up from light sleep — since
if the committee ∆̃ steps ago are already corrupt when a node wakes up, the corrupt coalition
can fork off an alternate history starting from roughly ∆̃ ago and the waking node would have
no means to discern the real and alternate histories.

1.3 Snow White: Consensus Candidate for Proofs-of-Stake

Finally, we show that when we carefully articulate our model and assumptions to navigate around
theoretical impossibilities while imposing the least amount of constraints, we can indeed construct
a robust candidate consensus protocol, called Snow White, that satisfies all of these requirements.

Further, we argue that a consensus candidate that satisfies these constraints is suitable in a
proof-of-stake setting, as long as money in the system does not change hands too quickly. Under
such assumptions, we can translate the assumptions expected by Snow White for security to as-
sumptions on the distribution of stake. Our Snow White protocol offers a committee reconfiguration
opportunity regularly per epoch. A desirable approach is to allow nodes to have proportional num-
ber of seats in each new committee relative to their current stake in the system. However, since
money in the system can continuously switch hands, it is possible that elected committee members
can sell their money during the time they are serving on the committee at which point they no
longer have stake, and might now be incentivized to attack the system or perform a double-spending
attack. Fundamentally, this problem stems from the fact that our committee election lags slightly
behind the real-time distribution of stake.

To thwart such an attack, we can have the cryptocurrency layer to limit the liquidity in the
monetary system. For example, imagine that at any point of time, a = 30% of the stake is alert
and will remain honest sufficiently long, c = 20% is corrupt, and the rest are sleepy. We can have
the cryptocurrency layer enforce the following rule: only a−c

2 − ε = 5%− ε of the stake can switch
hands during every epoch (technically, this window needs to be longer than an epoch as mentioned
in Section 7). In other words, if in any appropriately long window, only l fraction of money in
the system can switch hands, it holds that as long as at any time, 2l + ε more stake is alert and
remain honest sufficiently long than the stake that is corrupt, we can guarantee that the conditions
expected by the consensus protocol, that is, at any time, more committee members are alert and
remain honest sufficiently long, than the committee members that are corrupt.
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2 Technical Roadmap

2.1 Background: Sleepy Consensus

As mentioned earlier, in the presence of (possibly many) sleepy nodes, it would be desirable for a
protocol to be secure as long as the majority of awake nodes are honest.

Surprisingly, as our own prior work points out [9], no known classical consensus protocol can
achieve this! Specifically, classical synchronous protocols would fail since the possibility of nodes
going to sleep and later waking up violates synchrony assumption outright. While the asynchronous
(or partially synchronous) models were designed exactly to capture adversarial environments with
potentially unbounded message delays, all known asynchronous protocols crucially rely on more
than 2

3 fraction of nodes being honest to achieve security — indeed, it was well-understood that
security against a 1

3 coalition is impossible in the asynchronous setting [21]. As a result, known
asynchronous protocols fail to tolerate up to 50% corruption (among awake nodes) — something
that we have asked for. In particular, imagine if all nodes were awake, then the requirement we
have phrased simply translates to security against < 50% corruption in the classical sense.

It would seem at this point that we are stuck and that we might have asked for a robustness
property that is impossible to achieve. Perhaps surprisingly, our prior work [9] shows that the
aforementioned goal of sleepy consensus is not inherently unattainable.

The sleepy model of consensus. Our earlier work defines a new formal model called the
“sleepy” model [9]. In the sleepy model, honest nodes are either alert or sleepy. An alert node
is one that is online and has predictable network connections to all other alert nodes. Messages
delivered by an alert node is guaranteed to arrive at all other alert nodes within a maximum delay
of ∆, where ∆ is an input parameter to the protocol. A sleepy node captures any node that is
either offline or suffering a slower than ∆ network connection. A sleepy node can later wake up, and
upon waking at time t, all pending messages sent by alert nodes before t−∆ will be immediately
delivered to the waking node.

Therefore, on the surface, the sleepy model takes after both the traditional synchronous model
(in that alert nodes have a network with a known delay parameter), and the traditional asyn-
chronous model (in that nodes allowed to sleep and wake up later at an indefinite time, at which
point it receives all pending messages). As it turns out, such a hybrid model allows us to avoid the
well known 1

3 -lower bound for asynchronous networks, and meanwhile retain the ability to capture
a wide variety of adverse network situations including network jitters and node outages!

The Sleepy protocol as a starting point. In our earlier work [9], we propose a new consensus
protocol called Sleepy; and prove that Sleepy retains security as long as the majority of awake nodes
are honest.

Intriguingly, the Sleepy protocol borrows core ideas behind proofs-of-work blockchains, and
apply them to a classical setting without proofs-of-work. The resulting protocol achieves non-
trivial robustness guarantees that are not attained by any known classical consensus candidates —
and such new robustness properties are particularly desirable in application scenarios like proofs-of-
stake! As a result, we will use Sleepy as a starting point in constructing protocols for proofs-of-stake.

We now quickly review the Sleepy protocol. Sleepy relies on a random oracle (which can be
replaced with a common reference string and a pseudo-random function if static corruption is
assumed) to elect a leader in every time step. The elected leader is allowed to extend a blockchain
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with a new block, by signing a tuple that includes its own identity, the transactions to be confirm,
the current time, and the previous block’s hash. Like in the Nakamoto consensus, nodes always
choose the longest chain if they receive multiple different ones. To make this protocol fully work,
Sleepy [9] proposes new techniques to timestamp blocks to constrain the possible behaviors of an
adversary. Specifically, there are two important blockchain timestamp rules:

1. a valid blockchain must have strictly increasing timestamps; and

2. honest nodes always reject a chain with timestamps in the future.

Note that all aforementioned timestamps can easily be adjusted to account for possible clock offsets
among nodes by applying a generic protocol transformation [9].

Terminology. Henceforth in this paper, we adopt the same terminology as the Sleepy work [9],
where honest nodes are classified into alert ones and sleepy ones. Alert nodes are honest and awake,
and network delay is bounded by a known ∆ between alert nodes. We assume that all corrupt nodes
are awake.

2.2 Handling Committee Reconfiguration

In general, since nodes come and go in a decentralized network, the consensus protocol ought to
reconfigure the committee periodically to assimilate new nodes that have joined and prune old ones
who are no longer present. For example, in a proof-of-stake system, monetary units may switch
hands, and the committee should evolve over time in sync with evolution of the stake-holders. Old
committee members who no longer hold stake should also cease to have voting power. By contrast,
newly joining nodes should be given seats in the committee proportional to the stake they have.
Intuitively, this raises two requirements:

• We should allow consensus nodes to be spawned dynamically, after the start of protocol execu-
tion. For example, new users interested in a cryptocurrency may purchase money in the system
and join the consensus protocol.

• The protocol should offer committee reconfiguration opportunities frequently and punctually to
evolve the committee over time.

Unfortunately, the Sleepy protocol fails to handle these requirements. Specifically, the Sleepy
protocol does not permit dynamic spawning of new consensus nodes and all committee members
have to be spawned upfront and provided as a-priori common knowledge to all nodes — as we explain
later, there will be an adaptive key selection attack if one wish to support dynamic spawning of
consensus nodes.

We now consider how to allow dynamic node spawning and committee reconfiguration. To be
broadly application to a wide range of applications, our Snow White protocol does not stipulate
how applications should select the committee over time. Roughly speaking, we wish to guarantee
security as long as the application-specific committee selection algorithm respects the constraint
that there is honest majority among all awake nodes — note that the precise condition needed
for security will change later when we start handling (mildly) adaptive corruptions and posterior
corruptions. Therefore, we assume that there is some application-specific function extractpks(chain)
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that examines the state of the blockchain and outputs a new committee over time. In a proof-of-
stake context, for example, this function can roughly speaking, output one public key for each
currency unit owned by the user. In Section 7, we discuss in a proof-of-stake context, how one
might possibly translate assumptions on the distribution of stake to the the formal requirements
expected by the consensus protocol.

Strawman scheme: epoch-based committee selection. SnowWhite provides an epoch-based
protocol for committee reconfiguration. Each Tepoch time, a new epoch starts, and the beginning of
each epoch provides a committee reconfiguration opportunity. Let start(e) and end(e) denote the
beginning and ending times of the e-th committee. Every block in a valid blockchain whose time
stamp is between [start(e), end(e)) is associated with the e-th committee.

It is important that all honest nodes agree on what the committee is for each epoch. To achieve
this, our idea is for honest nodes to determine the new committee by looking at a stabilized part
of the chain. Therefore, a straightforward idea is to make the following modifications to the basic
Sleepy consensus protocol:

• Let 2ω be a look-back parameter.

• At any time t ∈ [start(e), end(e)) that is in the e-th epoch, an alert node determines the e-th
committee in the following manner: find the latest block its local chain whose timestamp is no
greater than start(e)− 2ω, and suppose this block resides at index `.

• Now, output extractpks(chain[: `]) as the new committee.

In general, the look-back parameter 2ω must be sufficiently large such that all alert nodes
have the same prefix chain[: `] in their local chains by time start(e). On the other hand, from an
application’s perspective, 2ω should also be recent enough such that the committee composition
does not lag significantly behind.

Preventing an adaptive key selection attack. Unfortunately, the above scheme is prone to an
adaptive key selection attack where an adversary can break consistency with constant probability.
Specifically, as the random oracle H is chosen prior to protocol start, the adversary can make
arbitrary queries to H. Therefore, the adversary can spawn corrupt nodes and seed them with
public keys that causes them to be elected leader at desirable points of time. For example, since
the adversary can query H, it is able to infer exactly in which time steps honest nodes are elected
leader. Now, the adversary can pick corrupt nodes’ public keys, such that every time an honest
node is leader, a corrupt node is leader too — and he can sustain this attack till he runs out of
corrupt nodes. Since the adversary may control up to Θ(n) nodes, he can thus break consistency
for Θ(n) number of blocks.

We note that the Sleepy consensus protocol avoids such an adaptive key selection attack by
adopting a rather restricted model, where 1) all nodes have to be spawned upfront; 2) all corrupt
and sleep instructions have to be declared upfront; and 3) then the random oracle H is chosen,
and the protocol execution starts. Specifically, Sleepy does not allow dynamic spawning of nodes.

We describe how to defend against such an adaptive key selection attack. For simplicity, we
assume, for the time being, we shall still stick to a static corruption model, but in contrast with
Sleepy, we will allow spawning of new nodes after protocol execution starts. Here static security
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means that the adversary must declare whether a node is corrupt and which times it is asleep
immediately before the node is spawned.

Our idea is to have nodes determine the next epoch’s committee first, and then select the next
epoch’s hash — in this way, the adversary will be unaware of next epoch’s hash until well after the
next committee is determined. More specifically, we can make the following changes to the Sleepy
protocol:

• Let 2ω and ω be two look-back parameters, for determining the next committee and next hash
respectively.

• At any time t ∈ [start(e), end(e)) that is in the e-th epoch, an alert node determines the e-
th committee in the following manner: find the latest block its local chain whose timestamp
is no greater than start(e) − 2ω, and suppose this block resides at index `0. Now, output
extractpks(chain[: `0]) as the new committee.

• At any time t ∈ [start(e), end(e)) an alert node determines the e-th hash in the following manner:
find the latest block its local chain whose timestamp is no greater than start(e)−ω, and suppose
this block resides at index `1. Now, output extractnonce(chain[: `1]) as a nonce to seed the new
hash.

• We augment the protocol such that alert nodes always embed a random seed in any block they
mine, and extractnonce(chain[: `1]) can simply concatenate all seeds in the prefix of the chain
(in practice, further optimizations are possible), and use the resulting string as a nonce to seed
the random oracle H.

For security, we require that

1. The two look-back parameters 2ω and ω are both sufficiently long ago, such that all alert nodes
will have agreement on chain[: `0] and chain[: `1] by the time start(e); and

2. The two look-back parameters 2ω and ω must be spaced out sufficiently in time, such that
the adversary cannot predict extractnonce(chain[: `1]) until well after the next committee is
determined.

Remark 1 (On the use of the random oracle). Note that while the Sleepy work can rely on a pseudo-
random function and a common reference string to remove the random oracle, here we cannot rely
on the same approach, and we thus assume a random oracle. In the Sleepy work, assuming bad
events such as signature forgery and hash collisions do not happen, then the adversary’s best
strategy depends only on whether in each time step each node is elected. In Snow White, however,
once the adversary learns the secret key of the pseudorandom function, he can pick the nonces and
the public keys of newly spawned nodes in a way that is dependent on the pseudorandom function’s
secret key.

Achieving security under adversarially biased hashes. It is not hard to see that the adver-
sary can bias the nonce used to seed the hash, since the adversary can place arbitrary seeds in the
blocks it contributes. In particular, suppose that the nonce is extracted from the prefix chain[: `1].
Obviously, with at least constant probability, the adversary may control the ending block in this
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prefix. By querying H polynomially many times, the adversary can influence the seed in the last
block chain[`1] of the prefix, until it finds one that it likes.

Indeed, if each nonce is used only to select the leader in a small number of time steps (say,
O(1) time steps), such adversarial bias would indeed have been detrimental — in particular, by
enumerating polynomially many possibilities, the adversary can cause itself to be elected with
probability almost 1 (assuming that the adversary controls the last block of the prefix).

However, we observe that as long as the same nonce is used sufficiently many times, the adver-
sary cannot consistently cause corrupt nodes to be elected in many time steps. More specifically,
suppose each nonce is used to elect at least Ω(κ) leaders, then except with negl(κ) probability, the
adversary cannot increase its share by more than an ε fraction — for an arbitrarily small constant
ε > 0. Therefore, to prove our scheme secure, it is important that each epoch’s length (henceforth
denoted Tepoch) be sufficiently long, such that once a new nonce is determined, it is used to elect
sufficiently many leaders.

Reasoning about security under adversarially biased hashes. Formalizing this above in-
tuition is somewhat more involved. In particular, our proof (Section 9.1) relies on the following
strategy:

• First, we prove security under an ideal protocol denoted Πideal (Section 8) where we pretend that
an imaginary trusted entity selects the next epoch’s hash after the next committee is determined.
In this way, the adversary has no bias over the randomness chosen, and the adversary cannot
query the hash either before the next committee is determined.

• Next, we consider another protocol Πbias that captures the adversary’s ability to bias the hash.
We then argue that if a bad event 1) happens with small probability in Πideal, and 2) depends
only on a constant number of hashes in Πbias; then this bad event must happen with small
probability in the in Πbias as well, adjusting for the adversary’s ability to bias the hashes.

• We now inspect all bad events we would like to bound regarding Πbias, including failures related
to chain growth, chain quality, and consistency. We argue that essentially, all these bad events
that we care about can be over-approximated by the union of polynomially bad events that
depend only on a small number of hashes in Πbias. More specifically, we divide the execution of
Πbias into possibly overlapping, medium-sized windows such that we can localize dependence.
We argue that 1) the bad events in each window depend only on the hash functions involved in
each window; 2) each window spans a constant number of epochs; and 3) if nothing bad happens
in each (possibly overlapping) medium-sized window, then nothing bad happens across all time.

In particular, each window cannot be too small since otherwise the bad events we care about
would depend on too many hashes (and thus lead to possibly exponential blowup in a union
bound); and as mentioned earlier, from the application’s perspective, it is desirable that each
window not be too large.

2.3 Security against a Mildly Adaptive Adversary

So far, we have assumed a static corruption model, where all corrupt and sleep instructions have
to be declared upfront at either protocol start or prior to node spawning — and this appears to be
a rather constraining adversarial model. Can we defend against an adversary that can dynamically
corrupt nodes after they are spawned?
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Unfortunately, one soon realizes that this type of overall approach (based on leader-election)
cannot defend against a fully adaptive adversary — since such an adversary can simply observe
who is leader in each time step, and make that node sleep (or corrupt it) precisely in the time step
it is leader. We stress that nonetheless, Sleepy [9] achieves new robustness properties that are not
attained by any classical protocol; and Snow White achieves additional robustness properties on
top of Sleepy [9].

On the bright side, we observe that it is possible to handle a much more powerful adversary
without requiring static corruption. Specifically, we can tolerate an adversary who can dynamically
corrupt nodes or make nodes sleep, but such corrupt or sleep instructions take a while to be
effective. For example, in practice, it may take some time to infect a machine with malware. Such
a “mildly adaptive” corruption model has been formally defined by Pass and Shi [46], where they
call it the τ -agile corruption model, where τ denotes the delay parameter till corrupt or sleep

instructions take effect. Intuitively, as long as τ is sufficiently large, it will be too late for an
adversary to corrupt a node or make the node sleep upon seeing the next epoch’s hash. By the
time the corrupt or sleep instruction takes effect, it will already be well past the epoch.

It turns out, however, that articulating the protocol’s security under such an agile corruption
model turns out to be rather tricky, as we now explain.

A history rewriting attack. The need to support agile corruptions opens up the following
possible scenario: a committee member may be alert at the time that the committee is serving;
however, it can become corrupt later in time.

When an old committee member becomes corrupt, it can now use its signing key to sign arbitrary
blocks in the past; and this leads to a history rewriting attack. Specifically, suppose a specific
committee serves in the e-th epoch. At some point of time much later, the majority of the e-
committee now become corrupt. At this moment, these corrupt nodes can collude and cause a
divergent chain where all blocks fork off starting at roughly the e-th epoch. Specifically, this attack
can succeed because the set of corrupt nodes can fully control the alternative history (as long as
it respects possible application-specific validity rules). He can control the all following epoch’s
hash functions and adaptively select the keys for corrupt nodes in subsequent committees. At this
moment, if a new, alert node gets spawned, it is unable to distinguish the real log from the revised
one, and thus consistency is broken. We point out that such an attack not only applies to a newly
joining node, but also existing nodes as well — if the adversary succeeds in constructing a longer
chain for the alternate history. Interestingly, we point out that such an attack is not possible in
a proof-of-work blockchain. Nodes in a proof-of-work blockchain do not hold any secrets such as
signing keys, and therefore if a node that mines an honest block becomes corrupt later in time, it
cannot overwrite history “for free” without expending additional computation.

Therefore, to be able to prove security, it appears that we will need to require that for any
committee across all time, the majority of nodes in that committee must remain honest forever.
Note that it is okay for the majority of old committee members to go to sleep later, as long as the
majority of any committee does not get corrupt. To make the above intuition more precise, we can
phrase the following condition: there exists a constant φ > 0, such that for any execution trace
view and any t < |view|,

alertt(cmtt(view), view) ∩ honest(cmtt(view), view)

corrupt(cmtt(view), view)
≥ 1 + φ (3)
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In the above1, let cmtt denote the committee serving at time t, then alertt(cmtt(view), view) outputs
those among cmtt that are alert at time t; honest(cmtt(view), view) those among cmtt that remain
honest forever; and corrupt(cmtt(view), view) output those among cmtt that ever become corrupt.
In other words, at any point of time t, the alert nodes among the present committee that remain
honest forever (but possibly can go to sleep) must outnumber the nodes that ever become corrupt
in the present committee.

2.4 Handling Posterior Corruption

Majority posterior corruption. Although the condition specified in Equation (3) allows us
to prove security under an agile adversary, we would like an even stronger robustness guarantee
in proof-of-stake-like applications. In particular, when old committee members have sold their
currency units, they no longer hold stake in the system, and may attempt to subvert the system
by rewriting history. Informally speaking, we desire the following robustness guarantee:

[Security in the presence of majority posterior corruption]: Even when the majority of
old committee members become corrupt, as long as the corruption takes place sufficiently
late in time, it will be too late for the corrupt coalition to go back in time and corrupt
history.

The “punctual” world. Let us first focus on an imaginary world, where all nodes are spawned
upfront prior to protocol start and although nodes are allowed to sleep, sleepy nodes never have
to wake up and rejoin the protocol — henceforth we refer to this world as the “punctual” world.
We show that such a history revision attack is easy to address in such a “punctual” world, without
introducing any additional assumptions. To see this, let us reflect on what the consistency require-
ment means for a blockchain protocol. Consistency requires that at any point of time, if an alert
node removes the trailing O(κ) blocks from its chain, the prefix of the chain should have stabilized
and should always persist into its own future.

This gives rise to the following idea: suppose that we can already prove the consistency property
as long as when there is no majority posterior corruption. Now, to additionally handle majority
posterior corruption, we can have alert nodes always reject any chain that diverges from its current
longest chain at a point sufficiently far back in the past (say, at least W time steps ago). In this
way, old committee members that have since become corrupt cannot convince alert nodes to revise
history that is too far back — in other words, the confirmed transaction log stabilizes and becomes
immutable after a while.

Care must be taken when parametrizing the posterior corruption window W : although a smaller
W indicates stronger security, it is necessary for W to be sufficiently large to not hamper liveness.
If W is too small, the adversary can send alert nodes an adversarial fork, causing alert nodes may
reject honest chains prematurely. This will cause the protocol to get stuck — more specifically,
chain growth lower bound will not hold if W is too small.

Indeed, if we were in such a “punctual” world, with some additional work, we can prove that
the protocol (with the above modification) would indeed be secure as long as the adversary respects
the following condition 2 — below for simplicity we assume that nodes do agree on the committee

1Without risk of ambiguity, we abuse set notation to also denote the set cardinality.
2In fact, the protocol is secure even under more relaxed assumptions: where all nodes are spawned upfront prior

to protocol start, and we allow sleepy nodes to wake up as long as they sleep only for a short amount of time (where
short is a parameter that will be specified later).
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at any time whereas in actual technical definition is more precise such that we do not have to even
make this assumption. We require that there exists a constant φ > 0 such that for every possible
execution trace view, for every t ≤ |view|, let r = min(t+W, |view|),

alertt(cmtt(view), view) ∩ honestr(cmtt(view), view)

corruptr(cmtt(view), view)
≥ 1 + φ (4)

where alertt(cmts(view), view), honestt(cmts(view), view), and corruptt(cmts(view), view) output the
number of nodes in the committee of time s that are alert (or honest, corrupt, resp.) at time t.

Note that the condition specified in Equation (4) is weaker than that in Equation (3) which
implies a higher degree of robustness. Informally, it requires the following: at any time t, there
must be more alert committee members that remain honest (but possibly can fall asleep) for W
more times steps, than those that become corrupt within a W window; In other words, we no
longer require the majority of any committee to remain honest (possibly asleep) forever; we now
only require that the majority of any committee to remain honest for a duration of W — and it is
okay even if all the committee become corrupt sufficiently late in time. Another way to think of
the constraint in Equation (4) is the following: we would like to guarantee that if a node becomes
corrupt after time t + W , it should no longer have voting power over any history that is prior to
t. Therefore, each committee does not care if their members become corrupt as long as corruption
happens sufficiently late in time.

Joining safely. Earlier, we have describe an approach that defends against posterior corruption
in an “punctual” world — assuming that node joins late in time, and no node ever needs to wake
up and rejoin the protocol. The remaining challenge is to design a secure bootstrapping mechanism
for nodes that join or rejoin late.

Recall that we described a history revision attack earlier, where if the majority of an old
committee become corrupt at a later point of time, they can simulate an alternate past, and
convince a newly joining node believe in the alternate past. Therefore, it seems that the crux is
the following question:

How can a node joining the protocol correctly identify the true version of history?

Unfortunately, it turns out that this is impossible without additional trust — in fact, we can for-
malize the aforementioned attack and prove a lower bound (Section 6) which essentially shows that
in the presence of majority posterior corruption, a newly joining node has no means of discerning
a real history from a simulated one:

[Lower bound for posterior corruption]: Absent any additional trust, it is impossible
achieve consensus in the sleepy model of execution, if the majority of an old committee
can become corrupt later in time.

We therefore ask the following question: what minimal, additional trust assumptions can we
make such that we can defend against majority posterior corruption? Informally speaking, we
show that all we need is a secure bootstrapping process for newly joining nodes as described below.
We assume that a newly joining node is provided with a list of nodes L the majority of whom must
be alert — if so, the new node can ask the list of nodes in L to vote on the current state of the
system, and thus it will not be mislead to choose a “simulated” version of the history.
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Rejoining safely. Besides newly joining nodes, a related issue is when sleepy nodes wake up,
they must securely rejoin the system. In the sleepy network model [9], we assume that a sleepy
node, upon waking, would receive all pending messages plus possibly adversarial inserted ones.
With posterior corruption, however, if nodes sleep for too long and then wake up, it is effectively
not much different than a newly spawning node — for example, in the extreme case, the node can
sleep from the start and only wake up much later. As a result, absent additional trust assumptions,
an adversary can confuse the waking node with a simulated history — by sending the waking
node protocol messages from both the real and simulated executions. In fact, we can formalize
this intuition and prove an impossibility result, which works almost identically as the previous
impossibility for newly joining nodes (Section 6).

In light of this lower bound, we make the following changes to our model and protocol: we will
distinguish between a light sleeper and a deep sleeper: a light sleeper is one that wakes up relatively
quickly after falling asleep; whereas a deep sleeper may be asleep for a long time. Intuitively, a
deeper sleeper captures a longer outage — possibly longer than the posterior corruption window.
Therefore for a deep sleeper to rejoin the protocol, it must perform a secure initialization procedure
in the same manner as a newly joining node; otherwise the adversary can convince the rejoining
node to accept a simulated history instead of the real one. On the other hand, a light sleeper
captures transient network jitters, typically much shorter than the posterior corruption window.
We assume that a light sleeper receives all pending messages (including possibly adversarial ones)
upon waking, and a light sleeper need not perform protocol reinitialization3.

We point out that the ability to capture light sleepers is important: it fundamentally separates
our model from traditional synchronous models. Traditional synchronous protocols that rely on
strong synchrony to reach common knowledge would generally be insecure in our model, where
nodes can sleep transiently and receive messages off-sync when they wake up.

2.5 Putting it Altogether

In summary, our protocol, roughly speaking, works as follows. A formal description of the full
protocol is presented in Section 5.

1. First, following Sleepy, there is a random oracle H that determines if a member of the present
committee is a leader in each time step. If a node is leader in a time step t, he can extend
the blockchain with a block of the format (h−1, txs, time, nonce, pk, σ), where h−1 is the previous
block’s hash, txs is a set of transactions to be confirmed, nonce is a random seed that will be
useful later, pk is the node’s public key, and σ is a signature under pk on the entire contents of
the block. A node can verify the validity of the block by checking that 1) Hnoncee(pk, time) < Dp

where Dp is a difficulty parameter such that the hash outcome is smaller than Dp with probability
p, and noncee is a nonce that is reselected every epoch (we will describe how the nonce is selected
later); and 2) the signature σ verifies under pk.

2. Also following Sleepy, a valid blockchain’s timestamps must respect two constraints: 1) all
timestamps must strictly increase; and 2) any timestamp in the future will cause a chain to be
rejected.

3When Snow White awakens from her sleep, she sends a message to the prince, “Good heavens, where am I?”
“You are with me”, the prince sends a message in reply, “I love you more than anything else in the world” [28].
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3. Next, to defend against old committees that have since become corrupt from rewriting history,
whenever an alert node receives a valid chain that is longer than his own, he only accepts the
incoming chain if the incoming chain does not modify blocks too far in the past, where “too far
back” is defined by the parameter κ0.

4. Next, a newly joining node or a node waking up from deep sleep must invoke a secure bootstrap-
ping mechanism such that it can identify the correct version of the history to believe in. One
mechanism to achieve this is for the (re)spawning node to contact a list of nodes the majority
of whom are alert.

5. Next, our protocol defines each contiguous Tepoch time steps to be an epoch. At the beginning
of each epoch, committee reconfiguration is performed in the following manner. First, nodes
find the latest prefix (henceforth denoted chain−2ω) in their local chain whose timestamp is
at least 2ω steps ago. This prefix chain−2ω will be used to determine the next committee —
and Snow White defers to the application-layer to define how specifically to extract the next
committee from the state defined by chain−2ω. Next, nodes find the latest prefix (henceforth
denoted chain−ω) in their local chain whose timestamp is at least ω steps ago. Given this prefix
chain−ω, we extract the nonces contained in all blocks, the resulting concatenated nonce will be
used to seed the hash function H for the next epoch.

2.6 Related Work

We briefly review the rich body of literature on consensus protocols including permissioned and
permissionless consensus. Much of this section borrows from our earlier work [9].

Models for permissioned consensus protocols. Consensus in the permissioned setting [6,
10, 11, 13, 17, 20, 21, 23–25, 29, 30, 35–39, 49] has been actively studied for the past three decades;
and we can roughly classify these protocols based on their network synchrony, their cryptographic
assumptions, and various other dimensions.

Roughly speaking, two types of network models are typically considered, the synchronous model,
where messages sent by honest nodes are guaranteed to be delivered to all other honest nodes in
the next round; and partially synchronous or asynchronous protocols where message delays may
be unbounded, and the protocol must nonetheless achieve consistency and liveness despite not
knowing any a-priori upper bound on the networks’ delay. In terms of cryptographic assumptions,
two main models have been of interest, the “unauthenticated Byzantine” model [38] where nodes are
interconnected with authenticated channels4; and the “authenticated Byzantine” model [20], where
a public-key infrastructure exists, such that nodes can sign messages and such digital signatures
can then be transferred.

Permissioned, synchronous protocols. Many feasibility and infeasibility results have been
shown. Notably, Lamport et al. [38] show that it is impossible to achieve secure consensus in
the presence of a 1

3 coalition in the “unauthenticated Byzantine” model (even when assuming
synchrony). However, as Dolev and Strong show [20], in a synchronous, authenticated Byzantine
model, it is possible to design protocols that tolerate an arbitrary number of corruptions. It is

4This terminology clash stems from different terminology adopted by the distributed systems and cryptography
communities.
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also understood that no deterministic protocol fewer than f rounds can tolerate f faulty nodes [20]
— however, if randomness is allowed, existing works have demonstrated expected constant round
protocols that can tolerate up to a half corruptions [23,30].

Permissioned, asynchronous protocols. A well-known lower bound by Fischer, Lynch, and
Paterson [24] shows if we restrict ourselves to protocols that are deterministic and where nodes
do not read clocks, then consensus would be impossible even when only a single node may be
corrupt. Known feasibility results typically circumvent this well-known lower bound by making
two types of assumptions: 1) randomness assumptions, where randomness may come from various
sources, e.g., a common coin in the sky [13, 25, 42], nodes’ local randomness [6, 49], or randomness
in network delivery [11]; and 2) clocks and timeouts, where nodes are allowed to read a clock and
make actions based on the clock’s value. This approach has been taken by well-known protocols
such as PBFT [17] and FaB [39] that use timeouts to re-elect leaders and thus ensure liveness even
when the previous leader may be corrupt.

Another well-known lower bound in the partially synchronous or asynchronous setting is due
to Dwork et al. [21], who showed that no protocol (even when allowing randomness or clocks) can
achieve security in the presence of a 1

3 corrupt coalition.

Permissionless consensus. The permissionless model did not receive sufficient academic at-
tention, perhaps partly due to the existence of strong lower bounds such as what Canetti et al.
showed [4]. Roughly speaking, we understand that without making additional trust assumptions,
not many interesting tasks can be achieved in the permissionless model where authenticated chan-
nels do not exist between nodes.

Amazingly, cryptocurrencies such as Bitcoin and Ethereum have popularized the permissionless
setting, and have demonstrated to us, that perhaps contrary to the common belief, highly interesting
and non-trivial tasks can be attained in the permissionless setting. Underlying these cryptocurrency
systems is a fundamentally new type of consensus protocols commonly referred to as proof-of-work
blockchains [43]. Upon closer examination, these protocols circumvent known lower bounds such
as those by Canetti et al. [4] and Lamport et al. [38] since they rely on a new trust assumption,
namely, proofs-of-work, that was not considered in traditional models.

Formal understanding of the permissionless model has just begun [26, 44–46]. Notably, Garay
et al. [26] formally analyze the Nakamoto blockchain protocol in synchronous networks. Pass et
al. [44] extend their analysis to asynchronous networks. More recently, Pass and Shi [46] show
how to perform committee election using permissionless consensus and then bootstrap instances of
permissioned consensus — in this way, they show how to asymptotically improve the response time
for permissionless consensus.

Finally, existing blockchains are known to suffer from a selfish mining attack [22], where a
coalition wielding 1

3 of the computation power can reap up to a half of the rewards. Pass and
Shi [45] recently show how to design a fair blockchain (called Fruitchains) from any blockchain
protocol with positive chain quality. Since our Snow White consensus protocol is a blockchain-
style protocol, we also inherit the same selfish mining attack. However, we can leverage the same
techniques as Pass and Shi [45] to build a fair blockchain from Snow White.

Dynamic reconfiguration for consensus protocols. Dynamic reconfiguration has been stud-
ied in the classical setting for permissioned consensus. For example, Vertical Paxos [37] and BFT-
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SMART [10] allow nodes to be reconfigured in a dynamic fashion. The more recent Hybrid Consen-
sus protocol by Pass and Shi [46] also performs committee reconfiguration over time, however, their
protocol requires that in some transient windows, multiple instances of the permissioned consensus
protocol are run concurrently.

In this paper, we also consider dynamic reconfiguration, but we consider it for blockchain-style
protocols and rely on new techniques. One compelling advantage of our approach is that group
reconfiguration is seamless in our protocol and does not need to introduce special execution paths.
We also do not need to invoke multiple concurrent consensus instances.

Proofs-of-stake. The idea of having a cryptocurrency that relies on proofs-of-stake was discussed
first in an online forum [7,19], and subsequently considered in various works [7,8,12,32,34,40,50].
Various types of protocols have been considered, for example, those that combine proofs-of-work
and proofs-of-stake [8,19], those that rely on variants of classical consensus [34,41], and those that
more closely resemble a blockchain where elected leaders sign blocks [5, 7, 33]. Superficially, the
latter category of protocols [5, 7, 33] is closest to our work. However, at the moment we are not
able to prove any of these existing candidates secure. Many subtle choices made in our protocol
are crucial to proving security, e.g., the precise timestamp rules, and the correct parametrization
of the difficulty parameter — existing candidates lack one or more of these crucial ingredients, and
therefore we know of no proof to any existing protocol. We stress that these details are important,
and even small changes to our protocol can cause our proofs to break in the best case, or open up
to possible attacks in the worst.

Recently, well-known cryptocurrencies such as Ethereum has declared it a pressing priority to
switch to a proof-of-stake protocol, and they are currently developing a candidate called Casper [12].
Thus far, to the best of our knowledge, no protocol has offered formal security, which we believe
is of critical importance for a consensus protocol, especially one that underlies a cryptocurrency
system that carries high value.

3 Definitions

3.1 Protocol Execution Model

We first describe our basic protocol execution model. Our protocol execution model extends and
enriches the sleepy model [9]. To capture a more powerful adversary, we make the following notable
changes in modeling in comparison with sleepy [9]:

• We allow dynamic node spawning whereas the basic sleepy model [9] requires that all nodes
(including honest and corrupt ones) be spawned prior to protocol start.

• We allow the adversary to issue corrupt and sleep instructions after protocol execution starts,
whereas in the basic sleepy model [9], all corrupt and sleep instructions must be declared
upfront prior to protocol start. Later when we describe our protocol, we will specify further
constraints on the adversary, in particular, under what conditions the adversary can corrupt
nodes or make them sleep.

• Our model distinguishes between a light sleeper and a deep sleeper and treats them differently.
As explained in Sections 2.1 and 5, such a distinction is necessary so as not to tread on theoretical
impossibility.
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Below we describe our execution model. We note that this section focuses on describe the basic
execution model. We defer it to later sections to specify precise constraints (e.g., how long it takes
for corruption to take effect, what parameters are admissible, etc.) that must be placed on the
adversary to prove our protocol secure.

We assume a standard Interactive Turing Machine (ITM) model [14–16] often adopted in the
cryptography literature.

(Weakly) synchronized clocks. We assume that all nodes can access a clock that ticks over
time. In the more general form, we allow nodes clocks to be offset by a bounded amount —
commonly referred to as weakly synchronized clocks. We point out, that it is possible to apply
a general transformation such that we can translate the clock offset into the network delay, and
consequently in the formal model we may simply assume that nodes have synchronized clocks
without loss of generality.

Specifically, without loss of generality, assume nodes’ clocks are offset by at most ∆, where ∆
is also the maximum network delay — if the two parameters are different, we can always take the
maximum of the two incurring only constant loss. Below we show a transformation such that we
can treat weakly synchronized clocks with maximum offset ∆ as setting with synchronized clocks
but with network delay 3∆. Imagine the following transformation: honest nodes always queue
every message they receive for exactly ∆ time before “locally delivering” them. In other words,
suppose a node i receives a message from the network at local time t, it will ignore this message
for ∆ time, and only act upon the received message at local time t + ∆. Now, if the sender of
the message (say, node j) is honest, then j must have sent this message during its own local time
[t− 2∆, t+ ∆]. This suggests that if an honest node j sends a message at its local time t, then any
honest node i must locally deliver the message during its local time frame [t, t+ 3∆].

Therefore henceforth in this paper we consider a model with a globally synchronized clocks
(without losing the ability to express weak synchrony). Each clock tick is referred to as an atomic
time step. Nodes can perform unbounded polynomial amount of computation in each atomic time
step, as well as send and receive polynomially many messages.

Network delivery. The adversary is responsible for delivering messages between nodes. We
assume that the adversary A can delay or reorder messages arbitrarily, as long as it respects the
constraint that all messages sent from honest nodes must be received by all honest nodes in at most
∆ time steps.

Corruption model. At any point of time, the environment Z can communicate with corrupt
nodes in arbitrary manners. This also implies that the environment can see the internal state of
corrupt nodes. Corrupt nodes can deviate from the prescribed protocol arbitrarily, i.e., exhibit
byzantine faults. All corrupt nodes are controlled by a probabilistic polynomial-time adversary
denoted A, and the adversary can see the internal states of corrupt nodes. For honest nodes, the
environment cannot observe their internal state, but can observe any information honest nodes out-
put to the environment by the protocol definition. Specifically, we assume the following corruption
model.

• Spawn. At any time, Z can spawn fresh nodes, either alert or corrupt ones.
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We assume that upon spawning an alert node i at (the beginning of) time t, (A,Z) must deliver
an initialization message to node i. Our protocols later will impose further constraints on this
initialization message, and these constraints may imply additional trust assumptions necessary
for a node to securely join the protocol. Therefore we defer requirements for the initialization
message to protocol-specific compliance rules.

We allow the adversary A to spawn corrupt nodes on its own without informing Z.

• Corrupt. At any time t, A can issue to Z a corruption instruction of the form:

(corrupt, i, t′) where t′ ≥ t

A (corrupt, i, t′) instruction causes node i to become corrupt at time t′ ≥ t (if it did not already
become corrupt earlier).

• Sleep. At any time t, A can issue to Z a sleep instruction of the form:

(sleep, i, t0, t1) where t0 ≤ t ≤ t1

A (sleep, i, t0, t1) instruction causes node i to be asleep (or sleeping/sleepy) between time [t0, t1]
— as long as it did not already become corrupt earlier. A sleeping honest node (also called a
sleeper) stops receiving or sending messages. If a sleeper does not become corrupt during the
time it is asleep, it may wake up later again.

Our model distinguishes between a deep sleeper and a light sleeper. A sleeper that sleeps for a
long time before waking up is called a deep sleeper and one that wakes up soon is called a light
sleeper. The definition of long and short depends on the protocol, and therefore we defer its
specification to protocol-specific compliance rules.

When a light sleeper wakes up, (A,Z) is required to deliver a wakeup message that is an
unordered set containing

– all the pending messages that node i would have received (but did not receive) had it not
slept; and

– any polynomial number of adversarially inserted messages of (A,Z)’s choice.

By contrast, a deep sleeper waking up is treated the same way as node respawning. Specifically,
(A,Z) is required to resend the node an initialization message which must satisfy the same
requirement of an initialization message for a newly spawning node.

To summarize, a node can be in one of the following states:

1. Honest. An honest node can either be awake or asleep (or sleeping/sleepy). Henceforth we
say that a node is alert if it is honest and awake. When we say that a node is asleep (or
sleeping/sleepy), it means that the node is honest and asleep.

2. Corrupt. Without loss of generality, we assume that all corrupt nodes are awake.

3.2 Notational Conventions

Negligible functions. A function negl(·) is said to be negligible if for every polynomial p(·),
there exists some κ0 such that negl(κ) ≤ 1

p(κ) for all κ ≥ κ0.
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Convention for parameters. In this paper, unless otherwise noted, all variables are by default
(polynomially bounded) functions of the security parameter κ. Whenever we say var0 > var1, this
means that var0(κ) > var1(κ) for every κ ∈ N. Variables may also be functions of each other. How
various variables are related will become obvious when we define derived variables and when we
state parameters’ admissible rules for each protocol.

Importantly, whenever a parameter does not depend on κ, we shall explicitly state it by calling
it a constant.

Compliant executions. In this paper, for each protocol we introduce (including intermediate
ones used in the proofs), we will define compliant executions by specifying a set of constraints on
the p.p.t. pair (A,Z). Roughly speaking, our theorems will state that desirable security properties
are respected except with negligible probability in any compliant execution. Since compliance is
defined per protocol, we will often use the notation Π-compliant (A,Z) to mean that (A,Z) must
respect the constraints expected by the Π protocol.

4 Preliminaries: Blockchain Formal Abstraction

In this section, we define the formal abstraction and security properties of a blockchain. Our
definitions follow the approach of Pass et al. [44], which in turn are based on earlier definitions
from Garay et al. [26], and Kiayias and Panagiotakos [31].

Since our model distinguishes between two types of honest nodes, alert and sleepy ones, we define
chain growth, chain quality, and consistency for alert nodes. However, we point out the following:
1) if chain quality holds for alert nodes, it would also hold for sleepy nodes; 2) if consistency holds for
alert nodes, then sleep nodes’ chains should also satisfy common prefix and future self-consistency,
although obviously sleepy nodes’ chains can be much shorter than alert ones.

Notations. For some A,Z, consider some view in the support of EXECΠ(A,Z, κ); we use the
notation |view| to denote the number of time steps in the execution, viewt to denote the prefix of
view up until time step t.

We assume that in every time step, the environment Z provides a possibly empty input to every
honest node. Further, in every time step, an alert node sends an output to the environment Z.
Given a specific execution trace view with non-zero support where |view| ≥ t, let i denote a node
that is alert at time t in view, we use the following notation to denote the output of node i to the
environment Z at time step t,

output to Z by node i at time t in view: chainti(view)

where chain denotes an extracted ideal blockchain where each block contains an ordered list of
transactions. Sleepy nodes stop outputting to the environment until they wake up again.

Later in the text, if the context is clear, we sometimes omit writing a subset of the sub- or
super-scripts and/or the view — for example, sometimes we simply write chain if the context is
clear.
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4.1 Chain Growth

The first desideratum is that the chain grows proportionally with the number of time steps. Let,

min-chain-increaset,t′(view) = min
i,j
|chaint+t′j (view)| − |chainti(view)|

max-chain-increaset,t′(view) = max
i,j
|chaint+t′j (view)| − |chainti(view)|

where we quantify over nodes i, j such that i is alert at viewt and j is alert at viewt+t
′
.

Let growtht0,t1(view,∆, T ) = 1 iff the following two properties hold:

• (consistent length) for all time steps t ≤ |view| − ∆, t + ∆ ≤ t′ ≤ |view|, for every two
players i, j such that in view i is alert at t and j is alert at t′, we have that |chaint′j (view)| ≥
|chainti(view)|

• (chain growth lower bound) for every time step t ≤ |view| − t0, we have

min-chain-increaset,t0(view) ≥ T.

• (chain growth upper bound) for every time step t ≤ |view| − t1, we have

max-chain-increaset,t1(view) ≤ T.

In other words, growtht0,t1 is a predicate which tests that a) alert parties have chains of roughly
the same length, and b) during any t0 time steps in the execution, all alert parties’ chains increase
by at least T , and c) during any t1 time steps in the execution, alert parties’ chains increase by at
most T .

Definition 1 (Chain growth). A blockchain protocol Π satisfies (T0, g0, g1)-chain growth, if for all
Π-compliant p.p.t. pair (A,Z), there exists some negligible function negl such that for every κ ∈ N,
T ≥ T0, t0 ≥ T

g0
and t1 ≤ T

g1
the following holds:

Pr
[
view← EXECΠ(A,Z, κ) : growtht0,t1(view,∆, κ) = 1

]
≥ 1− negl(κ)

4.2 Chain Quality

The second desideratum is that the number of blocks contributed by the adversary is not too large.
Given a chain, we say that a block B := chain[j] is honest w.r.t. view and prefix chain[: j′]

where j′ < j if in view there exists some node i alert at some time t ≤ |view|, such that 1)
chain[: j′] ≺ chainti(view), and 2) Z input B to node i at time t. Informally, for an honest node’s
chain denoted chain, a block B := chain[j] is honest w.r.t. a prefix chain[: j′] where j′ < j, if earlier
there is some alert node who received B as input when its local chain contains the prefix chain[: j′].

Let qualityT (view, µ) = 1 iff for every time t and every player i such that i is alert at t in view,
among any consecutive sequence of T blocks chain[j+1..j+T ] ⊆ chainti(view), the fraction of blocks
that are honest w.r.t. view and chain[: j] is at least µ.

Definition 2 (Chain quality). A blockchain protocol Π has (T0, µ)−chain quality, if for all Π-
compliant p.p.t. pair (A,Z), there exists some negligible function negl such that for every κ ∈ N
and every T ≥ T0 the following holds:

Pr
[
view← EXECΠ(A,Z, κ) : qualityT (view, µ) = 1

]
≥ 1− negl(κ)
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Global GΣ
sign functionality (possibly shared with other protocols)

On initialization: Γ = ∅

On receive gen from P:

(pk, sk)← Σ.gen(1κ), and add the tuple (P, pk, sk) to table Γ

Notify A of (P, pk), and return pk

On receive sign(pk,msg) from P in protocol sid :

assert that a tuple of the form (P, pk, sk) ∈ Γ exists for some sk

return Σ.Signsk,sid (msg)

On receive getkey(P) from A: if P is corrupt, return all tuples in Γ of the form (P, , ) to A

Figure 1: Global signing functionality, parametrized by a signature scheme denoted Σ =
(Sign,Ver). We use the shorthand Signsk,sid and Verpk,sid to denote that the message is prefixed
with the protocol’s session identifier sid .

4.3 Consistency

Roughly speaking, consistency stipulates common prefix and future self-consistency. Common
prefix requires that all honest nodes’ chains, except for roughly O(κ) number of trailing blocks
that have not stabilized, must all agree. Future self-consistency requires that an honest node’s
present chain, except for roughly O(κ) number of trailing blocks that have not stabilized, should
persist into its own future. These properties can be unified in the following formal definition (which
additionally requires that at any time, two alert nodes’ chains must be of similar length).

Let consistentT (view) = 1 iff for all times t ≤ t′, and all players i, j (potentially the same)
such that i is alert at t and j is alert at t′ in view, we have that the prefixes of chainti(view) and
chaint

′
j (view) consisting of the first ` = |chainti(view)| − T records are identical — this also implies

that the following must be true: chaint
′
j (view) > `, i.e., chaint

′
j (view) cannot be too much shorter

than chainti(view) given that t′ ≥ t.

Definition 3 (Consistency). A blockchain protocol Π satisfies T0-consistency, if for all Π-compliant
p.p.t. pair (A,Z), there exists some negligible function negl such that for every κ ∈ N and every
T ≥ T0 the following holds:

Pr
[
view← EXECΠ(A,Z, κ) : consistentT (view) = 1

]
≥ 1− negl(κ)

Note that a direct consequence of consistency is that at any time, the chain lengths of any two
alert players can differ by at most T (except with negligible probability).

5 The Snow White Protocol

5.1 Modeling Digital Signatures

Our protocol makes use of digital signatures. We model digital signatures in a way such that the
signature keys can be shared between our consensus protocol and any application-level protocol. For
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example, imagine that the cryptocurrency layer uses the same signing keys to sign transactions. Our
modeling approach guarantees that the security of our Πsleepy protocol is retained when composed
with arbitrary application-level protocols, as long as the application-level protocols respect the
compliance rules expected by Πsleepy.

Specifically, we follow the GUC paradigm [15] and model the signature as a signing functionality
shared across protocols. Figure 1 illustrates this signature functionality denoted GΣ

sign, which is
parametrized by a signature scheme denoted Σ. We often omit writing the superscript Σ without
risk of ambiguity. We now explain the Gsign functionality. Gsign generates and remembers a new
signature key pair for a party upon the gen call; and signs messages for parties upon the sign

call using any of the party’s signing keys. Finally upon a getkey query, Gsign discloses the secret
signing keys of corrupt parties to the adversary A.

Note that in practice, such a functionality is actually realized in the following way: every honest
node implements a trusted signing wrapper that is shared across all protocols instances executed by
the honest node. This trusted signing wrapper is in charge of generating signature keys and perform
signing operations. Following the GUC modeling paradigm [15], the union of the trusted signing
wrappers across all honest nodes is considered as the trusted computing base (TCB), and therefore
conceptually grouped into this single functionality Gsign. When a node becomes corrupt, its signing
wrapper is then controlled by the adversary, therefore the secret signing keys get disclosed to the
adversary.

Like in the standard GUC paradigm, we assume that the environment Z can interact with Gsign

in the following ways:

• Z can interact with Gsign acting as an honest party executing other (possibly rogue) protocols.
Since other protocols have different session identifiers, Z cannot ask Gsign to sign messages
pertaining to the challenge session identifier, which is the protocol instance that we are proving
security for.

• Z can interact with Gsign acting as a corrupt party or A by routing messages through the
adversary A.

Mapping from public keys to nodes. In addition to defining honest, alert, and corrupt for
nodes, it will be convenient later for us to refer to public keys as being honest, alert, or corrupt.
This is defined in the most natural manner.

Given an execution trace denoted view, a public key pk is said to be honest (or alert resp.) at
time t ≤ |view| in view, if some tuple of the form (P, pk, ) ∈ Gsign.Γ at time t in view, and further,
P is honest (or alert resp.) at time t in view. If a public key pk is not honest at t, we say that it is
corrupt at t. Note that a corrupt pk may not exist in Gsign.

5.2 Format of Real-World Blocks

We use the notation chain to denote a real-world blockchain. Our protocol also defines an extract
function that outputs an ordered list of transactions from a blockchain. A real-world blockchain is
a chain of real-world blocks. We now define a valid block and a valid blockchain.

Valid blocks. We say that a tuple

B := (h−1, txs, time, nonce, pk, σ, h)
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is a valid block iff

1. Σ.Verpk,sid ((h−1, txs, time, nonce);σ) = 1 where sid is the session identifier of the proof-of-stake
protocol — as mentioned earlier, we use the notation Verpk,sid to indicate that the message is
prefixed with the protocol’s session identifier sid ; and

2. h = d(h−1, txs, time, nonce, pk, σ), where d : {0, 1}∗ → {0, 1}κ is a collision-resistant hash func-
tion — technically collision resistant hash functions must be defined for a family, but here for
simplicity we pretend that the sampling from the family has already been done before protocol
start, and therefore d is a single function.

Valid blockchain. Let eligiblet(chain, pk) be a function that given the current state of chain,
determines whether pk is elected as a leader in time step t, by making calls to a random oracle H.
We defer the concrete specification of eligiblet(chain, pk) to Figure 2.

Let chain denote an ordered chain of real-world blocks, we say that chain is a valid blockchain
w.r.t. eligible and time t iff

• chain[0] = genesis := (⊥,⊥, time = 0, nonce0,⊥,⊥, h = ~0) where nonce0 is a nonce randomly
generated prior to protocol start;

• chain[−1].time ≤ t; and

• for all i ∈ [1..`], the following holds:

1. chain[i] is a valid block;

2. chain[i].h−1 = chain[i− 1].h;

3. chain[i].time > chain[i− 1].time, i.e., timestamps are strictly increasing; and

4. let t := chain[i].time, pk := chain[i].pk, it holds that eligiblet(chain[: i− 1], pk) = 1.

5.3 Epoch-Based Committee Election

Epochs. Our protocol proceeds in epochs, where in each epoch, a different committee will be
elected and will be eligible to mine blocks. Let Tepoch be a protocol parameter that denotes the
length of each epoch. We define a round-down function

rnddown(t) := b t

Tepoch
c · Tepoch

to denote the starting time of the epoch that time t belongs to.

Per-epoch committee election. Let view be an execution trace of non-zero support where
the current time t := |view|. Let i denote a node that is honest at time t in view. Let chain :=
chainit(view) be node’s i’s chain at time t in view. At this point of time, node i will apply an election
function to decide the set of public keys eligible in the current time step t. To this end, node i
will look at its local chain, and select a block that is sufficiently far back — the set of public keys
contained in the prefix up to this block will be eligible to mine in time t.

We have yet to define what it means to be “sufficiently far back”. To this end, we define
a look-back parameter denoted ω. An honest node i will select the largest index j such that
chain[j].time + 2ω ≤ rnddown(t). Then the public keys extracted by calling extractpks(chain[: j])
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will be the committee for time t. Later, we will choose the parameter ω to be reasonably large
(and yet not too long ago) such that all honest nodes will agree on committee at time t with
overwhelming probability.

elect cmtt(chain) :=
extractpks(chain[: j]) where j is the largest index s.t. chain[j].time + 2ω ≤ rnddown(t)

Per-epoch hash reseeding. Given a set of eligible committee members, a hash function will be
applied to choose a leader for each time step. We now define a rule for selecting this hash function.
Let H denote a globally known hash function modeled as a random oracle. We henceforth use the
notation

Hnonce(x) := H(nonce||x)

In other words, we elect a hash by choosing a nonce.

elect ht(chain) := chain[j].nonce where j is the largest index s.t. chain[j].time + ω ≤ rnddown(t)

Later, we will choose an appropriate parameter ω such that

1. ω is reasonably large (and yet not too long ago) such that all honest nodes will agree on the
hash function elected at time t with overwhelming probability; and

2. ω is smaller than 2ω by a reasonable margin, such that the hash will be selected sufficiently
long after the committee is determined by the blockchain.

5.4 Protocol Overview

We describe our Snow White protocol in Figure 2. The protocol proceeds in epochs whose length
is determined by the parameter Tepoch. At the start of each epoch, the protocol switches to a new
committee that can be determined by examining the current state of the blockchain. Further, a
new hash is used for each different epoch, and the hash is selected by computing a new nonce from
the current state of the blockchain.

Once a committee and a hash is determined for an epoch, we can now describe the “mining”
process. Let pkse denote the e-th committee. In every time step during the e-th epoch, if a node
iis in the e-th committee, it will compute H(pk, t) and if the outcome is smaller than Dp, then node
i is a leader in time step t. In this case, node i will extend its current chain by signing a new block
containing the following: 1) the previous block’s hash, 2) a set of transactions to be confirmed, 3)
the current time, 4) a freshly generated nonce, and 5) its own public key. The node then announces
the new chain to the network.

In each time step, regardless of whether a node is in the present committee, a node receives
chains from the network and verify their validity. If a received chain is valid but deviates from a
node’s current chain too far in the past, such a chain is not punctual and will be rejected. Nodes
always choose the longest chain among all chains it did not reject.

Finally, when a node spawns or wakes up from deep sleep (henceforth referred to as respawning),
an initialization procedure is invoked. At this moment, A must deliver to the node an initialization
message containing a list of chains denoted {chaini}i∈L such that the majority of these chains reflect
the true state of an alert node at time t− 1 (see protocol compliance rules defined in Section 5.5).
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Protocol Πsnowwhite(κ0, p, ω, Tepoch, extractpks)

On input init() from Z:

let pk := Gsign.gen(), output pk to Z, wait to receive (pks0, {chaini}i∈L)

find the longest valid chain0 that is a prefix of the majority of chains in {chaini}i∈L
find the longest valid chain ∈ {chaini}i∈L such that chain0 ≺ chain

record chain and pk

On receive chain ′:

assert |chain ′| > |chain| and chain ′ is valid w.r.t. the current time t

assert chain[: −κ0] ≺ chain ′

chain := chain ′ and gossip chain

Every time step:

• receive input transactions(txs) from Z, and pick nonce←${0, 1}κ

• let t be the current time, if eligiblet(chain, pk):

let σ := Gsign.sign(pk, chain[−1].h, txs, t, nonce), h′ := d(chain[−1].h, txs, t, nonce, pk, σ),

let B := (chain[−1].h, txs, t, nonce, pk, σ, h′), let chain := chain||B and gossip chain

• output extract(chain) to Z where extract is the function outputs an ordered list containing
the txs extracted from each block in chain

Subroutine eligiblet(chain, pk)

Assume: chain[0].nonce = nonce0, extractpks(chain[: 0]) = pks0

Let elect cmtt(chain) be a function that returns extractpks(chain[: j]) s.t. j is the largest index
satisfying chain[j].time + 2ω ≤ rnddown(t)

Let elect ht(chain) be a function that returns extractnonce(chain[: j]) s.t. j is the largest index
satisfying chain[j].time + ω ≤ rnddown(t)

Let pks∗ := elect cmtt(chain), let nonce∗ := elect ht(chain)

Return 1 if Hnonce∗(pk, t) < Dp and pk ∈ pks∗; else return 0

extractnonce(chain): output the concatenation of the nonces in all blocks in chain

Figure 2: The Snow White consensus protocol. The difficulty parameter Dp is set such that
a committee member is elected leader with probability p in a single time step. pks0 denotes the
initial committee. Chain validity is stated w.r.t. eligible although we omit writing w.r.t. eligible for
simplicity.
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Table 1: Notations

κ security parameter
chainti extracted ideal-world chain for node i honest at time t
chainti real-world formatted chain for node i honest at time t
W posterior corruption window

φ
φ fraction more must be alert and remain honest for W more steps

than those corrupt within W steps

τ agility parameter, time till corruption/sleep operations take effect
∆ maximum network delay for alert nodes

∆̃ maximum duration of a light sleep
2ω, ω time to look back to decide committee/hash respectively
κ0 := κ

2 incoming chain must agree with all but the last κ0 blocks
p probability that a node gets elected leader in any time step

Tepoch length of an epoch

If this is the protocol start, this list can simply be the genesis block. As mentioned earlier, this
reflects the fact that a spawning (or respawning) node can contact a list of nodes in the network
the majority of whom must be alert. As we argue in Sections 2.1 and 6, this process allows a
spawning or respawning node to determine the correct version of history to believe in. Without
this additional trust assumption, consensus would have been impossible in the presence of majority
posterior corruption. Now the spawning/respawning node computes its state as follows: First, it
computes the longest valid chain0 that is a prefix of the majority of chains in the list. Next, it
finds the longest chain in the list that contains chain0. This chain now becomes the internal state
of the spawning/respawning node.

Remark: committee members and non-members. We remark that in each epoch, there are
two types of nodes in the system, the current committee members and committee non-members.
Although only committee members are contributing blocks, our consistency and liveness guarantees
extend to all nodes, including members and non-members.

5.5 Compliant Execution

We now articulate a set of constraints that (A,Z) must respect for our protocol to guarantee
security.

Summary of notations. For convenience, we summarize our notations and parameters in Ta-
ble 1.

Additional useful notations. It will also be useful to define some derived variables. Recall that
p is the probability that a node is elected leader in a given time step. 1 + φ is the minimum ratio
of alert nodes over corrupt ones across time. n is the total number of awake nodes at any given
time. We define a set of intermediate variables α, β, and γ which are defined as functions of p, n,
φ, and possibly ∆.
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1. Let α := 1− (1− p)
n(1+φ)
2+φ be the probability that some alert node is elected leader in one round;

and

2. Let β := 1− (1−p)
n

2+φ be the probability that some corrupt node is elected leader in one round;

3. Let γ := α
1+∆α . γ is a “discounted” version of α which takes into account the fact that messages

sent by alert nodes can be delayed by ∆ time steps; γ corresponds to alert nodes’ “effective”
proportion among all awake nodes.

Admissible parameters. Without loss of generality due to rescaling of κ, we shall henceforth
assume that

κ0 =
κ

2

We say that the parameters (p, κ0, Tepoch, ω; n, φ,∆, τ, ∆̃,W ) are Πsnowwhite-admissible iff the
following constraints hold:

• np∆ < 1 and moreover, there exists a constant ψ > 0 such that

(1− 2α(∆ + 1))α > (1 + ψ)β

• W > ω ≥ 2κ
γ + ∆̃;

• Tepoch ≥ 3ω;

• τ > W + Tepoch + 2ω;

Intuitions for admissible parameters. We now given an intuitive explanation for these pa-
rameters. All these intuitions will later arise as technicalities in our proof.

• First, the requirement (1 − 2α(∆ + 1))α > (1 + ψ)β roughly says that the alert committee
members that remain honest till the near future, even when discounted by a parameter related
to the network delay, must outnumber the committee members that are corrupt or to become
corrupt in the near future — where “near future” is characterized by the posterior corruption
window W . Specifically, the discount factor (1−2α(∆ + 1)) arise due to technicalities that arise
in the consistency proof.

• Second, the look-back parameters 2ω and ω must be reasonably large, such that

1. The prefix of the chain that is used to decide the next epoch’s committee and hash has
stabilized, such that all nodes will agree on the next epoch’s committee and hash;

2. The two look-back parameters are spaced out far enough such that when the committee is
determined, the adversary cannot predict the nonce that determines the next hash; and

3. Further, the parameters ω and 2ω are related to the light sleep bound ∆̃ and the punctuality
parameter κ0 = κ

2 , ensuring that even when a light sleeper wakes up, it suffices to use its
old chain (before going to sleep) with the last κ0 blocks removed — henceforth denoted
chains[: −κ0] where s is the time the node last went to sleep — to decide the next committee
and hash. Specifically, this requires that chains[: −κ0] must have a block with a recent
enough timestamp relative to ω and 2ω.
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• Next, nodes reject blocks that modify κ0 blocks back into their past, and for light sleepers this
is adjusted by another ∆̃ parameter — therefore the posterior corruption window W has to be
reasonably large to be commensurate with these two parameters.

• Next, the epoch length Tepoch has to be reasonably large, since as we mention in Section 2.2 and
Section 9.1, once a random oracle is chosen, it must be used sufficiently many times to prove
security. Also in our current parameterization, we do not treat the first epoch specially, so Tepoch

must also be large enough for the protocol to warm up — roughly speaking, the blockchain must
be at least 2ω time long for a committee (that is not the initial committee) to be determined.

• Finally, the agility parameter τ , which stipulates how long it takes for corrupt and sleep

instructions to take effect, must be reasonably large to eliminate possible “adaptive” corruption
behaviors, where the adversary first sees the next committee and hash, and then decides who
to corrupt or make sleep. If τ is sufficiently large, such an attack will not succeed. Specifically,
if an adversary attempts to corrupt a node (or make it sleep) after seeing the next hash, then
when the corrupt or sleep instruction takes effect, it will already be well after this epoch for
such “adaptivity” to be effective, where the notion of “well after” is related to the posterior
corruption parameter W . Roughly speaking, from the time the adversary sees the next hash till
“well after” the next epoch takes a total of W + Tepoch + c · ω time; therefore, the requirement
that τ > W + Tepoch + 2ω is easy to understand.

Compliant executions. We say that the pair (A,Z) is Πsnowwhite-compliant if the following
holds for any view with non-zero support:

• Initialization. At the start of the execution, the following happens. First, Z can spawn a
set of either honest or corrupt nodes. Z learns the honest nodes’ public keys after calling their
init() procedure. Next, Z provides the inputs (pks0, {genesis}) to all honest nodes.

At this point, protocol execution starts. A is not allowed to query the random oracle H prior to
protocol start.

• τ-agility. Whenever A issues a (corrupt, t) or a (sleep, t, t′) instruction at time r, it must
hold that t− r ≥ τ .

• Sleeping. If a sleeper wakes up within ∆̃ time since it last went to sleep, it is considered a light
sleeper. Otherwise, if it sleeps for more than ∆̃ time before waking up it is considered a deep
sleeper and must reinitialize as if it is re-spawning (see below).

• Spawning. When a new node spawns or a deep sleeper wakes up, (A,Z) must deliver the same
pks0 to this node, and further (A,Z) must deliver to this node a message {chaint−1

i }i∈L that
contains the internal chains of a set of nodes (denoted L) the majority of whom are alert at
t− 1. If a node i ∈ L is corrupt5, it can provide an arbitrarily chaint−1

i .

Intuitively, this captures the requirement that a newly spawning node must be able to connect
to a subset of nodes the majority of which are alert.

5Considering that in practice, it may take ∆ time for messages to be transmitted to the newly spawned node, it is
possible to relax this condition where (A,Z) is only required to deliver to a spawning node a message {chaintii }i∈L
where for more than majority of L, it must hold that i is alert at ti ∈ [t−∆, t]. It is not hard to adjust the proofs of
our theorems to this relaxed case.
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• Resilience. Let t ≤ |view|, and let i be a node that is honest at time t in view. Let chainti(view)
denote node i’s protocol internal state at time t in view, and define

cmtti(view) := elect cmtt(chainti(view))

We require that for every t ≤ |view|, for every honest node i that is honest at t in view, let
r = min(t+W, |view|),

alertt(cmtti(view), view) ∩ honestr(cmtti(view), view)

corruptr(cmtti(view), view)
≥ 1 + φ (5)

where alertt, honestr, corruptr are defined as below:

– alertt(S, view) outputs those in S that are alert at time t in view.

– honestr(S, view) outputs those in S that are honest at time r.

– corruptr(S, view) outputs those in S that are corrupt at time r.

Informally, we require that among committee of time t (as perceived by any node honest at time
t), more are alert at time t and remain honest till r (but possibly can go to sleep), than those
corrupt at time r.

• Number of awake nodes. For every honest node i that is honest at time t in view, let
r = min(t+W, |view|), we have that

(alertt(cmtti(view), view) ∩ honestr(cmtti(view), view)) + corruptr(cmtti(view), view) = n

• Admissible parameters. The parameters (p, κ0, Tepoch, ω;n, φ,∆, τ, ∆̃,W ) are Πsnowwhite-

admissible, where p, κ0, Tepoch, ω are input parameters to the Πsnowwhite protocol, and (n, φ,∆, τ, ∆̃,W )
are parameters related to (A,Z).

5.6 Theorem Statement

Theorem 1 (Security of Πsnowwhite). For any constant ε0, ε > 0, any T0 ≥ ε0κ, Πsnowwhite satisfies
(T0, g0, g1)-chain growth, (T0, µ)-chain quality, and T0-consistency against any Πsnowwhite-compliant
p.p.t. pair (A,Z), with the following parameters:

• chain growth lower bound parameter g0 = (1− ε)γ;

• chain growth upper bound parameter g1 = (1 + ε)np; and

• chain quality parameter µ = (1− ε)(1− β
α);

where α, β, γ are defined as in Section 5.5.
The proof of this theorem will be provided in Sections 8, 9, and 10.
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6 Lower Bounds

Recall that in our protocol, when a node first spawns or after a deep sleeper wakes up, the node
must perform an initialization procedure where it contacts a list of nodes the majority of whom are
alert. We show that this additional trust assumption is necessary if one wishes to tolerate majority
posterior corruption.

We state our lower bound for a blockchain protocol, but it is not hard to see that the same
lower bound proof holds for any consensus protocol (often referred to as state machine replication
in the classical distributed systems literature) as defined by Pass and Shi [46]. Note that Pass and
Shi also show that a formal blockchain abstraction implies a classical consensus (i.e., state machine
replication) abstraction.

Theorem 2 (Access to a majority honest set for (re)spawning nodes is necessary). Assuming
common knowledge of the initial committee cmt0, and absent any additional trust assumptions, it
is impossible to realize a secure blockchain protocol in our execution model if there exists 1

poly(κ)
fraction of views such that no node ever sleeps, and at some time T ,

corruptT (cmt0, view) > alert1(cmt0, view) ∩ honestT (cmt0, view)

The lower bound holds even if at any time, there are more alert present committee members than
corrupt ones, even if all corruptions are declared statically upfront, and even if assuming a PKI.

Proof. Consider the following (A,Z) pair:

• (A,Z) first provides an initial committee cmt0 consisting of n = 2f + 1 nodes, where f of them
are corrupt, and the remaining are alert. Then at time T , one additional node among cmt0
becomes corrupt — at this moment, f + 1 among cmt0 are corrupt, and f are still alert.

• (A,Z) constructs appropriate transactional inputs such that this will cause the committee to
switch completely at some time t∗ < T , such that the new committee, denoted cmt1, does not
intersect with cmt0. Further, (A,Z) makes sure that all nodes in cmt1 are alert all the time.

• At time T , when the majority of cmt0 become corrupt, (A,Z) creates a simulated execution
in its head with the f + 1 corrupt cmt0 members that he has: in the simulated execution, a
different set of transactions are provided to the initial committee cmt0, such that at time t∗ the
simulated execution switches to a new committee cmt′1 consisting only of corrupt nodes. In this
way, (A,Z) can continue with the simulation after the committee switch. Further, S′1 also does
not intersect with cmt0 just like the real execution.

• (A,Z) spawns a new alert node i after time T , and delivers messages from both the simulated
and the real executions to node i.

Since the simulated execution and the real one are identically distributed, the newly joining
node i cannot output the correct log with probability more than 1

2 .

We note that the same lower bound proof holds for a deep sleeper that sleeps for a long time
and then wakes up. In other words, if we changed our model to prevent dynamic spawning of nodes,
but still allow sleeping, the same lower bound would still hold if majority posterior corruption can
happen.
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7 Extensions and Application to Proofs of Stake

In this section, we discuss how to apply the Snow White protocol in a proof-of-stake application.

Assumptions on distribution of stake. Roughly speaking, our Snow White protocol expects
the following assumption for security: at any point of time, there are more alert committee members
that will remain honest sufficiently long than there are corrupt committee members. In a proof-
of-stake setting, we would like to articulate assumptions regarding the distribution of stake among
stake-holders, and state the protocol’s security in terms of such assumptions.

Since our Snow White protocol allows a committee reelection opportunity once every epoch,
it is possible that the distribution of the stake in the system lags behind the committee election.
However, suppose that this is not the case, e.g., pretend for now that there is no money transfer,
then it is simple to translate Snow White’s assumptions to distribution on stake. Imagine that
the application-defined extractpks(chain) function will output one public key for each unit of cur-
rency as expressed by the state of chain — we do not care about the implementation details of
extractpks(chain), and in fact that is an advantage of our modular composition approach. In this
way, our Snow White protocol retains security as long as the at any point of time, more stake is
alert and will remain honest sufficiently long than the stake that is corrupt. Here when we say “a
unit of stake is alert (or honest, corrupt, resp.)”, we mean that the node that owns this unit of
stake is alert (or honest, corrupt, resp.).

In the real world, however, there is money transfer — after all that is the entire point of having
cryptocurrencies — therefore the committee election lags behind the redistribution of stake. This
may give rise to the following attack: once a next committee is elected, the majority of the stake in
the committee can now sell their currency units and perform an attack on the cryptocurrency (since
they now no longer have stake). For example, the corrupt coalition can perform a double-spending
attack where they spend their stake but attempt to fork a history where they did not spend the
money.

One approach to thwart such an attack is to limit the liquidity in the system. For example,
imagine that at any point of time, a = 30% of the stake is alert and will remain honest sufficiently
long, c = 20% is corrupt, and the rest are sleepy. We can have the cryptocurrency layer enforce
the following rule: only a−c

2 − ε = 5%− ε of the stake can switch hands during every window of size
2ω + Tepoch +W . In other words, if in any appropriately long window, only l fraction of money in
the system can switch hands, it holds that as long as at any time, 2l + ε more stake is alert and
remain honest sufficiently long than the stake that is corrupt, we can guarantee that the conditions
expected by the consensus protocol, that is, at any time, more committee members are alert and
remain honest sufficiently long, than the committee members that are corrupt.

Incentive compatibility. In a practical deployment, a very important desideratum is incentive
compatibility. Roughly speaking, we hope that each node will earn a “fair share” of rewards and
transaction fees — and in a proof-of-stake system, fairness is defined as being proportional to the
amount of stake a node has. In particular, any minority coalition of nodes should not be able to
obtain an unfair share of the rewards by deviating from the protocol — in this way, rational nodes
should not be incentivized to deviate from the protocol.

Since Snow White relies on Sleepy which is a blockchain-style protocol, we also inherit the
drawback of Nakamoto blockchain — it is well-known that there exists a selfish mining attack [22,44]
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such that a minority coalition can increase its rewards by a factor of nearly 2 in the worst case.
In a recent work called Fruitchains, Pass and Shi [45] describes a novel idea that bootstraps a

ε-fair blockchain from a standard Nakamoto blockchain [26,43,44]. In essence, Fruitchains proposes
to use two mining processes piggybacked on top of each other, one for the underlying Nakamoto
consensus for mining “blocks”, and another one for mining “fruits”. Fruitchains then relies on
the first mining process’s liveness to ensure that all honest nodes’ work mining fruits will surely
be incorporated and cannot be erased by an adversary. Pass and Shi [45] argue that Fruitchains
can not only be used to fairly distribute fruit rewards6, but also transaction fees — as long as
transaction fees are distributed equally among a recent segment of roughly Ω(κε ) fruits, where κ
is the security parameter and ε > 0 is a constant that denotes the fairness parameter. If such a
mechanism is adopted to distribute rewards and transaction fees, Fruitchains guarantees that no
minority coalition (in terms of computation power) can gain ε-fraction more rewards and fees than
its fair share.

We stress that the Fruitchains transformation also applies to our Snow White protocol, and
we can rely on the same idea to achieve fairness and incentivize honest behavior. In particular,
we can introduce a second mining process by having two hashes per epoch. The first hash is still
used for mining blocks just like in the present Snow White protocol, and the second hash is used
for mining “fruits”. Just like in Fruitchains, mining rewards can be distributed to fruits rather
than blocks, and transaction fees can be distributed equally among a recent segment of roughly
Ω(κε ) fruits. Just like in Fruitchains, this guarantees that as long as at any time, there are more
alert committee members that remain honest sufficiently long than corrupt committee members,
the corrupt coalition cannot increase its share by more than ε no matter how it deviates from the
prescribed protocol.

8 Proofs: Analyzing A Simplified Ideal Protocol

Proof roadmap. Instead of directly analyzing the real-world protocol which is rather complex,
we first describe some ideal protocols where nodes interact with each other, and an ideal func-
tionality will act as as a trusted third party and keep track of all legitimate chains. The ideal
protocols are much simpler to analyze in comparison with the real-world protocol. Further, the
ideal protocols are meant to capture of the essence of the real-world protocol in some way, such
that analyzing possible attacks in the ideal protocols will be indicative of the possible attacks in
the real-world protocol.

In this section, we start by analyzing a very simple ideal protocol denoted Πideal, and then
through a sequence of hybrid steps. In the next section, we gradually augment the ideal protocol
such that it becomes increasingly closer to the real-world protocol. At the end of this section, we
will arrive at a hybrid protocol called Πhyb, which captures ideal-world attack behavior but sends
messages that contain real-world formatted chains. Finally, in Section 10, we will show that the
real-world protocol Πsnowwhite is as secure as the hybrid protocol Πhyb.

8.1 Simplified Ideal Protocol Πideal

We first define a simplified protocol Πideal parametrized with an ideal functionality Ftree — see
Figures 3 and 4. The ideal functionality Ftree allows the adversary A to choose the committee for

6“Orange is the new block” in Fruitchains.
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Ftree(Tepoch, p)

On init: tree := genesis

On receive setpids(t, pidst) from A:

assert no tuple of the form (t, ) has been recorded

assert pidst contain only parties that have been spawned

record (t, pidst)

On receive leader(P, t) from A or internally:

assert (t, pidst) has been recorded, and P ∈ pidst

if Γ[P, t] has not been set, let Γ[P, t] :=

{
1 with probability p

0 o.w.

return Γ[P, t]

On receive extend(chain,B) from P: let t be the current time:

assert chain ∈ tree, chain||B /∈ tree, and leader(P, t) outputs 1

append B to chain in tree, record time(chain||B) := t, and return “succ”

On receive extend(chain,B, t′) from corrupt party P∗: let t be the current time

assert chain ∈ tree, chain||B /∈ tree, leader(P∗, t′) outputs 1, and time(chain) < t′ ≤ t
append B to chain in tree, record time(chain||B) = t′, and return “succ”

On receive verify(chain) from P: return (chain ∈ tree)

Figure 3: Ideal functionality Ftree. The ideal functionality allows A to choose a committee
on a time-based granularity. A is not able to query the leader entry point for time t until it has
chosen a committee for time t.

Protocol Πideal

On receive init(chain0): record chain := chain0

On receive chain′: if |chain′| > |chain| and Ftree.verify(chain′) = 1: chain := chain′, gossip chain

Every time step:

• receive input B from Z
• if Ftree.extend(chain,B) outputs “succ”: chain := chain||B and gossip chain

• output chain to Z

Figure 4: Ideal protocol Πideal
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every time step separately, specifically, by calling Ftree.setpids(t, pidst). Ftree flips random coins to
decide whether a committee member is the elected leader for every time step. Once the A commits
to a committee for a specific time step t, it is now allowed to query a function called Ftree.leader
that tells A which committee member is elected as the leader in time t (if any at all). However,
A cannot query Ftree.leader( , t) for time t function before committing to the t-th committee
(since otherwise A could adaptively choose a committee such that honest nodes never get elected
as leaders). Further, we require that the adversary A follow a somewhat static corruption model:
once it chooses a node i as a member of any committee, it is not allowed to corrupt node i any
more — since otherwise A could simply query Ftree.leader and adaptively corrupt those that have
been elected as leaders. Finally, alert and corrupt nodes can call Ftree.extend to extend known
chains with new blocks if they are the elected leader for a specific time step. Ftree keeps track of
all valid chains, such that alert nodes will call Ftree.verify to decide if any chain they receive is
valid. Alert nodes always store the longest valid chains they have received, and try to extend it.

Given some view sampled from EXECΠideal(A,Z, κ), we say that a chain ∈ Ftree(view).tree has
an Ftree-timestamp of t if Ftree(view).time(chain) = t.

Compliant (A,Z). A compliant (A,Z) pair for protocol Πideal is defined as a pair of p.p.t.
algorithms such that every view of non-zero support satisfies the following constraints:

• Sleeping. No matter how long a node sleeps till it wakes up, it is treated as a light sleeper (as
long as the node has not become corrupt during its sleep).

• Spawning. When a new, alert node spawns at time t, (A,Z) must deliver to it an initialization
message chain0 such that chain0 ∈ Ftree and chain0 is no shorter than the shortest chain of any
alert node at time t− 1. If this is the protocol start, then chain0 is simply genesis. All spawned
nodes must have distinct party identifiers.

• A-priori commitment of future committee. A must have called Ftree.setpids(t, pidst)
before t. In other words, A must choose the committee pidst before time t.

• Epoch-wise somewhat static corruption. Instead of delayed corruption/sleep, we consider
a more permissive but easier to analyze corruption model. Roughly speaking, we require that
A cannot adaptively corrupt a node after examining whether it is elected a leader in any time
step. Further, A cannot adaptively make a node sleep for the duration [t0, t1] after observing
whether the node is elected leader during [t0, t1]. We formalize this intuition below.

At any time t ≤ t′, A is allowed to issue (corrupt, i, t′) iff

– A has not called Ftree.setpids(r, pidsr) for any r such that i ∈ pidsr;

At time t ≤ t0 ≤ t1, A is allowed to issue (sleep, i, t0, t1) iff

– for every r ∈ [t0, t1], A has not called Ftree.setpids(r, pidsr) such that i ∈ pidsr.

In other words, after a node i has been selected for any committee, A can no longer corrupt it
— this also means that if a node is honest when it is chosen into the committee, it will remain
honest forever. Further, before choosing the e-th committee, A must commit to which nodes
will be asleep and exactly when during epoch e.
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• Resilience. At any time step t, let cmtt(view) be the (t, pidst) committee set that A sends to
Ftree in view. It must hold that

alertt(cmtt(view), view) ∩ honest(cmtt(view), view)

corrupt(cmtt(view), view)
≥ 1 + φ

where alertt(S, view) denotes those among S are alert at time t; honest(S, view) denotes those
among S remain honest forever; and and corrupt(S, view) denotes those among S are ever corrupt
in view.

• Number of awake nodes. Let cmtt(view) be the (t, pidst) committee set that A sends to Ftree

in view. It must hold that for every t ≤ |view|,

(alertt(cmtt(view), view) ∩ honest(cmtt(view), view)) + corrupt(cmtt(view), view) = n

In other words, at every time step t, the number of alert committee members and the number
of corrupt committee members must sum up to n.

• Admissible parameters. The parameters (p, n, φ,∆) satisfy the following constraints: np∆ <
1 and moreover, there exists a constant ψ > 0 such that

(1− 2α(∆ + 1))α > (1 + ψ)β

where α and β are derived variables whose definitions were presented in Section 5.5.

Theorem 3 (Security of Πideal). For any constant ε0, ε > 0, any T0 ≥ ε0κ, Πsnowwhite satisfies
(T0, g0, g1)-chain growth, (T0, µ)-chain quality, and T0 consistency against any Πideal-compliant
p.p.t. pair (A,Z), with the following parameters:

• chain growth lower bound parameter g0 = (1− ε)γ;

• chain growth upper bound parameter g1 = (1 + ε)np; and

• chain quality parameter µ = (1− ε)(1− β
α);

where α, β, γ are defined as in Section 5.5.

Proof. Although our ideal protocol Πideal is different from the ideal protocol for Sleepy [9], we stress
that the differences are inconsequential to the induced stochastic process. We claim that the proof
follows in the same manner as that of Sleepy [9], by pointing out the differences between our ideal
protocol and that of Sleepy [9].

Recall that Sleepy [9] defines an ideal protocol where they assume that there is a fixed committee
known upfront. All nodes are spawned upfront, and all corrupt and sleep instructions are declared
upfront. Our Πideal is more fine-grained: First, each time step can have a different committee.
Second, nodes can get spawned dynamically, and corrupt and sleep instructions need not be
declared at the time of spawning. However, it is important to observe that the compliance rule
for our Πideal basically stipulates that from the perspective of every committee: 1) if the adversary
wants a committee member to ever be corrupt, he must commit to this decision before seeing
random coins that decide if the committee member gets elected as leader; and 2) if the adversary
wants a committee member at t to be asleep at t, he also must commit to this decision before seeing
the random coins that decide if this committee member is elected leader at t.
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9 Proofs: Intermediate Hybrid Protocols

9.1 Ideal Protocol with Adversarially Biased Hashes

We now consider a hybrid protocol denoted Πbias that effectively allows the adversary to bias the
hash functions. The definition of Πbias is almost identical to Πideal, except that all honest nodes’
interactions with Ftree are now replaced with Fbias.

Compliant executions. A compliant (A,Z) pair for Πbias is defined in almost the same way as
a compliant environment for Πideal, except now we additionally require that

• A must have Fbias.sethash(e, noncee) before epoch e starts. In other words, A must choose the
next hash function before the next epoch begins.

• We additionally require that Tepoch ≥ κ
γ .

A useful lemma. Henceforth we will sometimes use the terminology “hash for an epoch” to refer
to the randomness used by Fbias (or Ftree) for the epoch. Recall that the only difference between
Πbias and Πideal is that in Πbias, when Fbias picks the hash for an epoch, the adversary is allowed to
look at polynomially many choices for each epoch’s hashes, and then instruct Fbias which hash to
use. In particular, the adversary can choose the worst-case combination of different epochs’ hashes
to maximize its own advantage.

Given a view, we say that A looks at q hashes for an epoch in view, if all of its queries to
Fbias.leader for a given epoch has q distinct nonces. Further, let view←$EXEC

Πideal(A,Z, κ), and
let bad-event(view) be a random variable defined over view. We now define the same bad-event(view′)
over an execution trace view′←$EXEC

Πbias(A,Z, κ) in the most natural manner. In particular,
view′ can be thought of as a superset of the bits in view. We can define a function compress(view′)
which removes all additional bits that are in view′ but not in view, such as the Fbias.sethash
calls made by A; and moreover only the hashes chosen by A are preserved in compress(view′), the
remaining hashes are thrown away in compress(view′). In this way we can define bad-event(view′) :=
bad-event(compress(view′)).

Lemma 1 (Union bound over small number of hashes). Let bad-event(view) ∈ {0, 1} be a random
variable that depends only on the randomness for c epochs, i.e., there exists E ⊂ N where |E| = c,
such that for any Πideal-compliant p.p.t. pair (A,Z), the following holds where ~υ(view) returns the
all the randomness Ftree generated for all epochs in view, and υe(view) denotes the randomness
generated by Ftree corresponding to the e-th epoch:

Pr
[
view←$EXEC

Πideal(A,Z, κ) : bad-event(view) = 1
∣∣ ~υ(view)

]
= Pr

[
view←$EXEC

Πideal(A,Z, κ) : bad-event(view) = 1
∣∣ {υe(view)}e∈E

]
We have that any p.p.t. pair Πbias-compliant p.p.t. pair (A′,Z ′) such that A′ looks at no more

than q hashes for each epoch in any view ← EXECΠbias(A′,Z ′, κ) of non-zero support, there exists
a Πideal-compliant p.p.t. pair (A,Z), the following holds:

Pr
[
view←$EXEC

Πbias(A′,Z ′, κ) : bad-event(view) = 1
]

≤ Pr
[
view←$EXEC

Πideal(A,Z, κ) : bad-event(view) = 1
]
· qc
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Fbias(Tepoch, p)

On init: tree := genesis

On receive setpids(t, pidst) from A:

assert no tuple of the form (t, ) has been recorded,

assert pidst contain only parties that have been spawned

record (t, pidst)

On receive leader(nonce,P, t) from A or internally:

assert (t, pidst) has been recorded, and P ∈ pidst

if Γ[nonce,P, t] has not been set, let Γ[nonce,P, t] :=

{
1 with probability p

0 o.w.

return Γ[nonce,P, t]

On receive sethash(e, noncee) from A: record (e, noncee)

On receive extend(chain,B) from P: let e = epoch(t) where t denotes the current time

assert chain ∈ tree, chain||B /∈ tree, and a pair (e, noncee) was recorded

assert leader(noncee,P, t) outputs 1

append B to chain in tree, record time(chain||B) = t, and return “succ”

On receive extend(chain,B, t′) from corrupt party P∗: let e = epoch(t′):

assert chain ∈ tree, and chain||B /∈ tree,

assert a pair (e, noncee) was recorded, and leader(noncee,P∗, t′) outputs 1

assert time(chain) < t′ ≤ t where t is current time

append B to chain in tree, record time(chain||B) = t′, and return “succ”

On receive verify(chain) from P: return (chain ∈ tree)

Figure 5: Ideal functionality Fbias, allowing adversarially biased hash functions.

Proof. By a straightforward union bound. More specifically, for any p.p.t. pair Πbias-compliant
p.p.t. pair (A′,Z ′) that attacks Πbias, we can construct a Πideal-compliant p.p.t. pair (A,Z) and
an execution of Πideal, where (A,Z) is allowed to choose the random bits of Ftree for epochs not
in E, i.e., epochs that bad-event does not depend on; however for epochs in E, Ftree gets to choose
the randomness.

(A,Z) calls (A′,Z ′) as a blackbox. Whenever (A′,Z ′) makes leader queries on a future time
step t that is not in any of the epochs in E, (A,Z) generates the answer at random. Whenever
(A′,Z ′) calls sethash for an epoch in E, (A,Z) asks Ftree to use the same random bits as what
(A′,Z ′) has chosen for the corresponding epoch. Whenever (A′,Z ′) makes leader queries on a
future time step t that is in an epoch in E, and the query contains a nonce that has not been seen, at
this moment, (A,Z) flips a random coin with probability 1

q and guesses whether the nonce queried

will be chosen by (A′,Z ′). If the coin turns up heads, (A,Z) returns answers to (A′,Z ′) consistent
with its Ftree. Otherwise, (A,Z) returns fresh random answers. If the choice later turns out to be
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wrong, (A,Z) simply aborts. If eventually (A′,Z ′) calls sethash for a challenge nonce it has never
queried (for an epoch in E), for any future leader query related to this challenge nonce, (A,Z)
returns answers consistent with its own Ftree. Finally, whatever other actions (A′,Z ′) outputs,
(A,Z) replays it in the execution of Πideal. It is not hard to see that (A,Z) will not abort with 1

qc

probability. If (A,Z) does not abort, then bad-event happens in the execution of Πbias iff it happens
in the execution of Πideal. Due to the definition of conditional independence, the probability of bad-
event happening in Πideal does not depend on the randomness of any other epoch not in E (recall
that we had (A,Z) fix the randomness of Ftree for any epoch not in E).

Theorem 4 (Security of Πbias). Πbias satisfies T0-consistency, (T0, µ)-chain quality, and (T0, g0, g1)-
chain growth against any Πbias-compliant (A,Z) for the same parameters T0, µ, g0, g1 as defined in
Theorem 3.

Proof. We now prove the above Theorem 4. Due to Lemma 1, it suffices to show that every bad
event we care about bounding is a subset of the union of poly(κ) bad events each of which depends
only on a constant number of hashes. Recall that the proof of Theorem 3 essentially follows the
proof in the Sleepy paper [9] — as mentioned earlier even though our ideal protocol is different
from that of Sleepy [9], the differences are inconsequential and does not alter the induced stochastic
process.

In the remainder of the proof, we will revisit Sleepy’s proof [9]. Instead of presenting the full
proof again from scratch, we focus on pointing out how to express every bad event as the union of
polynomially many bad events each of which depends only on a constant number of hashes.

Chain growth lower bound. It is easy to see that the consistent length property still holds
with our new Πbias.

We now prove chain growth lower bound. We will show that and every window of medium
length, i.e., for every T0

g0
≤ t0 ≤ 2T0

g0
, the chain growth lower bound holds for the parameter t0

over views sampled from EXECΠbias(A,Z, κ). It is not hard to see that if the chain growth lower
bound holds for every window of medium length T0

g0
≤ t0 ≤ 2T0

g0
, then it also holds for every T ≥ T0

and every t0 ≥ T
g0

, since every longer window can be broken up into disjoint windows of medium
lengths, and we simply have to take a union bound over these windows.

To complete the proof, it suffices to observe the following:

• In Sleepy’s chain growth lower bound proof [9] which in turn follows that of Pass et al. [44], for
any window [t, t′], conditioned on any execution trace viewt up till time t, the minimum chain
growth during the window [t, t′] is upper bounded by a random variable that depends only on
the randomness generated by Ftree corresponding to the time window [t, t′], but does not depend
on any other random bits generated by Ftree. Our chain growth lower bound proof then goes to
show that conditioned on any viewt, the minimum chain growth during the window [t, t′] has to
be large. Note that the minimum chain growth during the window [t, t′] may depend on random
bits before this window, but the proof lower bounds the minimum chain growth during [t, t′] with
another (implicitly defined) random variable that does not depend on any randomness before t.

• Since Tepoch ≥ κ
γ , it holds that every window of medium length (where medium length is as

defined above) involves only O(1) number of epochs.
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However, as mentioned earlier, since the chain growth lower bound for a medium sized window
is lower bounded by a random variable that depends only on c = O(1) hashes, by Lemma 1, chain
growth lower bound holds except with negligible probability over view←$EXEC

Πbias(A,Z, κ) for any
medium sized window.

Chain quality. We examine the chain quality proof of Sleepy [9]. Below we use the same notations
as in Sleepy [9].

If t ≤ 2Tepoch is small, then the random variable Q(view)[r : r + t] depends on only c = O(1)
number of hashes. Similarly, the random variable A(view)[r : r + t] also depends only on c = O(1)
number of hashes for t ≤ 2Tepoch.

Applying Lemma 1, for fixed [r, r+ t] such that t ≤ 2Tepoch is small, we have that for any ε > 0,
any p.p.t. pair (A,Z) compliant for Πbias,

Pr
[
view←$EXEC

Πbias(A,Z, κ) : Q(view)[r : r + t] > (1 + ε)np · t
]
< negl(npt) · q(κ)c

and
Pr
[
view←$EXEC

Πbias(A,Z, κ) : A(view)[r : r + t] > (1 + ε)βt
]
< negl(βt) · q(κ)c

where q(κ) denotes the maximum number of hash queries made by A.
Now, taking a union bound, we can upper bound Qt(view) and At(view) for any t ≤ 2Tepoch —

see the Sleepy work [9] for definitions of Qt and At. Specifically, for any t ≤ 2Tepoch, any ε > 0,
any Πbias-compliant p.p.t. pair (A,Z), there exists a negligible function negl(·) and a polynomial
function poly(·) such that for all κ,

Pr
[
view←$EXEC

Πbias(A,Z, κ) : Qt(view) > (1 + ε)np · t
]
< negl(npt) · poly(κ)

Pr
[
view←$EXEC

Πbias(A,Z, κ) : At(view) > (1 + ε)βt
]
< negl(βt) · poly(κ)

The above proved bounds for Qt(view) and At(view) for small values of t, assuming t ≤ 2Tepoch.
We now consider large windows. Similarly as before, we can break up large windows into medium-
sized windows of lengths [Tepoch, 2Tepoch]. By taking a union bound over all windows, we easily get
the following fact.

Fact 1. For any t > 0, any ε > 0, any p.p.t. pair (A,Z) compliant for Πbias, there exists a negligible
function negl(·) and a polynomial poly(·) such that for all κ,

Pr
[
view←$EXEC

Πbias(A,Z, κ) : Qt(view) > (1 + ε)np · t
]
< negl(np ·min(t, Tepoch)) · poly(κ)

Pr
[
view←$EXEC

Πbias(A,Z, κ) : At(view) > (1 + ε)βt
]
< negl(β ·min(t, Tepoch)) · poly(κ)

The remainder of the chain quality proof can then be completed following exactly the same
recipe as Sleepy [9], plugging in our new Fact 1 to bound the random variables At and Qt.
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Consistency. In Sleepy’s consistency proof [9], they define a view to be bad if there exists t0 ≤
t1 ≤ |view| where t1 − t0 ≥

√
κ
β , such that

A(view)[t0 : t1] ≥ chain(view)[t0 : t1]

They show that there are negl(κ) fraction of such bad views — note that the same holds in our case,
simply plugging in our new Fact 1. Conditioned on views that are not bad, the Sleepy work [9] then
argue that for every window of length 2κ

β , there has to exist a pivot point except with negligible

probability. Note that for any window of length 2κ
β , and ignoring views that are not bad, the bad

event that a pivot point does not exist within the window depends on randomness that are at most
∆ far from boundaries of the window — this means that the bad event depends on O(1) number
of hashes given that Tepoch ≥ κ

γ . Now by Lemma 1, the bad event that there does not exist a pivot

within a window of length 2κ
β is negl(κ). The remainder of the proof follows in the same way as

Sleepy [9].

Chain growth upper bound. First, given that we have already proved chain growth lower
bound and a bound for the random variable At, we can prove a “no long block withholding” lemma
in exactly the same way as Sleepy [9], where for a withholding time of εt, the failure probability
is replaced with negl(min(β ·min(t, Tepoch))) · poly(κ) instead of negl(βt)poly(κ). For completeness,
we state this lemma below since it will be used later in the proof as well.

Let withhold-time(view) be the longest number of time steps t such that in view: 1) at some
time in view, the adversary mines a chain with purported Ftree-timestamp r; and 2) chain is first
accepted by honest nodes at time r + t in view.

Lemma 2 (No long block withholding). For every Πbias-compliant p.p.t. (A,Z) pair, for every
constant 0 < ε < 1, there exists a negligible function negl(·) such that

Pr
[
view←$EXEC

Πbias(A,Z, κ) : withhold-time(view) > εt
]
≤ negl(βmin(t, Tepoch)) · poly(κ)

We can now prove chain growth upper bound exactly in the same way as Sleepy [9], relying on
our bound on Qt as well as the new “no long block withholding” lemma.

9.2 Allowing Posterior Corruption

The “no long block withholding” lemma (see Lemma 2) states that if there is a chain ∈ Fpunctual.tree
with a sufficiently old timestamp, then if an honest node never accepted chain as its prefix earlier, it
is not going to ever accept chain as its prefix. This implies that even if the adversary A successfully
asks Fpunctual to extend a chain with a sufficiently stale timestamp, this action is useless because
A cannot ever persuade any honest node to ever accept this chain (or any longer chain containing
it). In this section, we will augment our ideal functionality to simply reject A’s requests to extend
a chain with a sufficiently stale timestamp — see Fpunctual in Figure 6. It is not hard to show that
this modification does not affect the security of our ideal protocol.

Protocol Πpunctual. We define Πpunctual in exactly the same manner as Πbias, except that calls
to Fbias are now replaced with calls to Fpunctual.

42



Fpunctual(Tepoch, p,W )

Almost the same as Fbias, except with the following change highlighted in blue:

On receive extend(chain,B, t′) from corrupt party P∗: let e = epoch(t′):

assert chain ∈ tree, and chain||B /∈ tree

assert a pair (e, noncee) was recorded, and leader(noncee,P∗, t′) outputs 1

assert time(chain) < t′ ≤ t where t is current time

assert t′ ≥ t−W
append B to chain in tree, record time(chain||B) = t′, and return “succ”

Figure 6: Ideal functionality Fpunctual. Fpunctual enforces punctuality, and rejects stale blocks
that arrive too late. Blue denotes the difference from Fbias.

Compliant (A,Z). We now consider a model where Z can corrupt committee members suffi-
ciently ancient in the past, as long as Z has not committed these nodes to serve on committees in
recent, present, or future epochs. We show that because Fpunctual rejects blocks with stale times-
tamps anyway, corruption into the past does not allow the adversary to do anything interesting
additionally. As a result, we prove that Πpunctual is actually secure in this stronger corruption
model.

More formally, we say that a p.p.t. pair (A,Z) is compliant for Πpunctual iff the following holds:

• A-priori commitment of committees and hashes. Same as Πbias.

• Spawning and sleeping. Same as the compliance rules for Πbias.

• Corruption model. At time t ≤ t′, A is allowed to issue (corrupt, i, t′) iff

– there does not exist r ≥ t′ − W such that A has called Fpunctual.setpids(r, pidsr) where
i ∈ pidsr;

At time t ≤ t0 ≤ t1, A is allowed to issue (sleep, i, t0, t1) if

– for every r ∈ [t0, t1], A has not called Fpunctual.setpids(r, pidsr) such that i ∈ pidsr.

In other words, A can only ask a node i to become corrupt at time t′, if A has not committed
i to be on a committee any time at t′ −W or later. However, it is possible that after A asks
a node i to become corrupt at a future time, A can then commit it to some committee. It is
also possible for A to ask a node to be corrupt at a future time if the node served on some very
old committee, but has not been committed to any committee since. Note that this “posterior
corruption” ability was not allowed for our earlier corruption model (i.e., (A,Z) compliant for
Πbias).

Further, similar as before, before A commits to a committee for time t, A must commit to which
set of honest nodes will become asleep at time t.

• Resilience. For any time step t, let cmtt(view) be the (t, pidst) committee set that A sends to
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Fpunctual in view, let r = min(t+W, |view|), it must hold that

alertt(cmtt(view), view) ∩ honestr(cmtt(view), view)

corruptr(cmtt(view), view)
≥ 1 + φ

where alerts(S, view), honests(S, view), and corrupts(S, view) denote those among S are alert,
honest, and corrupt at time s respectively.

Notice that our new resilience rule is weaker now, it only requires at any time t, alert committee
members who remain honest for W more steps outnumber committee members who become
corrupt by t+W . Before in Πideal and Πbias, we essentially required W to be infinity.

• Number of awake nodes. Let cmtt(view) be the (t, pidst) committee set that A sends to
Fpunctual in view. It holds that for every t ≤ |view|, let r = min(t+W, |view|),

(alertt(cmtt(view), view) ∩ honestr(cmtt(view), view)) + corruptr(cmtt(view), view) = n

• Admissible parameters. Same as in Πbias with the additional requirement that W ≥ κ
γ .

Theorem 5 (Security of Πpunctual). Πpunctual satisfies T0-consistency, (T0, µ)-chain quality, and
(T0, g0, g1)-chain growth against any Πpunctual-compliant (A,Z) for the same parameters T0, µ, g0, g1

as defined in Theorem 3.

Proof. First, it is not hard to see that Πpunctual satisfies consistency, µ-chain quality, and (g0, g1)-
chain growth for a weaker corruption model, i.e., against any any p.p.t. pair (A,Z) compliant w.r.t.
Πbias (rather than w.r.t. Πpunctual). Recall that a (A,Z) pair compliant w.r.t. Πbias is not allowed
posterior corruption. To see this, consider a compliant execution of Πbias. Due to the “no long
block withholding” lemma, a block with an old timestamp will never be first accepted by honest
nodes with 1 − negl(βW ) = 1 − negl(βκγ ) = 1 − negl(κ) probability, where W denotes how old the
block is.

Below we simply ignore the negligible fraction of bad views where the “no long block withhold-
ing” lemma fails. This means that in any good view, if A tries to call Fbias.extend(chain,B, t′) at
time t, where t′ < t −W and suppose that chain||B is not already in Fbias, then no honest will
later ever call Fbias.verify(chain′) where chain||B ≺ chain′. For this reason, it is equivalent if Fbias

simply ignored such adversarial requests to Fbias.extend( , , t′) at time t, where t′ < t−W . And
the only difference between Πbias and Πpunctual is precisely this: in Πpunctual, Fpunctual ignores such
adversarial requests to extend a chain with very old timestamps.

Let allchainst(view) denote the set that includes an ordered list of the output chains of all nodes
alert at time t. To complete the proof, it suffices to show the following lemma.

Lemma 3 (Posterior corruption does not matter). For any Πpunctual-compliant p.p.t. (A,Z), there
exists Πbias-compliant p.p.t. (A′,Z ′), and a function somechainst(view) that selects an appropriate
subset of alert nodes’ output chains in view and at time t, such that the following distributions are
identical:

view←$EXEC
Πpunctual(A,Z, κ) : {allchainst(view)}t∈[|view|] and

view′←$EXEC
Πpunctual(A′,Z ′, κ) : {somechainst(view′)}t∈[|view′|]
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Proof. (A′,Z ′) runs (A,Z) in a sandbox and intercepts (A,Z)’s communications with outside. At
a high level, whenever (A,Z) wants to corrupt a node, (A′,Z ′) will spawn a sybil of the node and
corrupt the sybil instead. This will allow (A′,Z ′) to respect Πbias’s compliance rules and yet be
able to emulate (A,Z)’s attack. As pointed out earlier, if Πpunctual is run with such a weaker, Πbias-
compliant attacker, then the execution respects all the desired properties including chain growth,
chain quality, and consistency. Since (A′,Z ′) can emulate attacks by (A,Z), we can then infer that
Πpunctual retains these properties in the presence of a stronger, Πpunctual-compliant attacker too.

• If at some time t ≤ t′, A issues (corrupt, i, t′): if A has issued (corrupt, i, r) for r ≤ t′ earlier,
this request is ignored. Otherwise, i must not been chosen as a committee member for [t′−W,∞]
since (A,Z) is Πpunctual-compliant. Now Z ′ spawns a sybil i∗ immediately (if no sybil of i has
been spawned earlier) and provides it with i’s internal state as input. Let i∗ be the sybil of
i spawned either at the current time t or earlier. Further, A′ issues (corrupt, i∗, t′). (A′,Z ′)
remembers (or updates) the mapping sybil[i] = (i∗, t′ −W ). We also say that t′ −W is sybil
node i∗’s effective time. Intuitively, i∗ will act as a defunct copy of i before its effective time;
and afterwards i∗ will act on behalf of i and then i will effectively become the defunct copy.

• WheneverA calls Fpunctual.setpids(t, pidst) and this is the first timeA calls Fpunctual.setpids(t, ),
(A′,Z ′) will inspect pidst. If i ∈ pidst and some tuple sybil[i] = (i∗, s) has been stored for some
s ≤ t, replace node i’s occurrence in pidst with i∗.

Whenever A calls Fpunctual.extend( , , ) or Fpunctual.verify( ) acting as node i at time t,
(A′,Z ′) finds the stored sybil identity i∗ for i — note that such a sybil identity i∗ has to exist
and i∗ has to be already corrupt at t if A is acting as i at t. Now A′ rewrites the call acting as
i∗ instead.

Similarly, whenever A calls Fpunctual.leader( , i, t), (A′,Z ′) makes the following check: if i has a
stored sybil identity i∗ and moreover i∗ is effective at time t, then A′ rewrites the call replacing
i with i∗.

• Whenever A or Z sends a message to an honest node i, A′ or Z ′ sends a duplicate of this message
to i’s sybil i∗ if one exists.

• Whenever a sybil node i∗ sends a message to A or Z at time t (this means that the sybil node
i∗ has not become corrupt yet, and is still honest), simply drop the message.

• For every other message sent by (A,Z), (A′,Z ′) directly passes through them.

If (A,Z) is Πpunctual-compliant, and let (A′,Z ′) be defined as above, then the following facts
must hold: in any view′ ← EXECΠpunctual(A′,Z ′, κ) of non-zero support, for any pair of nodes (i, i∗)
where i∗ is i’s sybil whose effective time is r, i∗ is never on any committee for any t ≤ r; and i is never
on any committee for any t > r. Further, for every sybil i∗ in view′, A′ has to issue (corrupt, i∗, )
instructions prior to any Fpunctual.setpids calls that commit i∗ to being a committee member.

Claim 1. If (A,Z) is Πpunctual-compliant, then (A′,Z ′) must be Πbias-compliant.

Proof. • Corruption model. Observe that a Πpunctual-compliant A will never issue (corrupt, i, t′)
at time t ≤ t′, if node i has already been committed to as a committee member for time t′ −W
of after. If A issues (corrupt, i, t′) at time t ≤ t′ for some node i that was on a committee before
t′−W but has not been committed to as a committee member since, then (A′,Z ′) captures this
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request and rewrites it with a spawn and a corrupt request for a different node i∗. In this way,
it is not hard to see that A′ will never issue (corrupt, i, t′) at time t ≤ t′ if node i has ever been
committed to as any (past or future) committee member by time t.

• Resilience and correct parametrization. For any fixed sequence of random bits ~υ consumed by
all ITMs in the execution, we consider the pair of execution traces defined by ~υ, denoted view(~υ)
and view′(~υ) in the support of EXECΠpunctual(A,Z, κ) and EXECΠpunctual(A′,Z ′, κ) respectively.

It is not hard to see that for every pair view(~υ) and view′(~υ) defined by randomness ~υ,

∀t : alertt(cmtt(view′), view′) = alertt(cmtt(view), view)

We now show that

∀t : corrupt(cmtt(view′), view′) = corruptmin(t+W,|view|)(cmtt(view), view)

which would also imply

∀t : honest(cmtt(view′), view′) = honestmin(t+W,|view|)(cmtt(view), view)

≤: For every node j that is on the committee of time t in view′ and is ever corrupt, j must be
the sybil of some node henceforth denoted i. Clearly i must be on the committee for time
t in view, therefore it suffices to show that i is corrupt by time min(t + W, |view|) in view.
Notice that if j on the committee at time t and is ever corrupt in view′, let r denote the time
that j becomes corrupt. It must be the case that (corrupt, j, r) is issued and afterwards A′
commits j to being a committee member at t. We now show r ≤ t + W . Notice that if A′
issues (corrupt, j, r), then j must be a sybil node whose effective time starts at r −W —
before r −W even though j has been spawned, it does not do anything interesting such as
being added to committees. Therefore t ≥ r −W .

To complete the proof, it is not hard to observe that (corrupt, i, r) must be in view and
further in view A must commit i to being a committee member at t.

≥: For every i on the committee at t in view and is ever corrupt in [t,min(t+W, |view|), it must
be the case that in view, A issues (corrupt, i, r) for some r ≤ min(t + W, |view|) first, and
then A commits i to the t-th committee. Therefore, in the corresponding view′, A′ will issue
(corrupt, i∗, r) where i∗ is the sybil of i in view′. Further, A′ will commit i∗ to the t-th
committee.

It is easy to verify that (A′,Z ′) satisfies the remaining compliance rules.

We now consider the most natural selection function somechains that selects a subset of alert
nodes’ output chains at every time t given view′ ← EXECΠpunctual(A′,Z ′, κ). Specifically, for each
pair (i, i∗) such that both are alert at time t, somechainst would select i∗ at time t if t is at or after
i∗’s effective time. Otherwise, somechainst would select i.

Claim 2. Under the aforementioned selection function somechainst, for every pair view(~υ) and
view′(~υ) defined by randomness ~υ,

{allchainst(view)}t∈[|view|] = {somechainst(view′)}t∈[|view′|]
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Protocol Πhyb

On input init() from Z:

let pk := Gsign.gen(), output pk to Z, wait to receive chain, record chain and pk

On receive chain ′:

assert |chain ′| > |chain| and F̃punctual.verify(chain ′) = 1

chain := chain ′ and gossip chain

Every time step:

• receive input transactions(txs) from Z
• pick random fresh nonce, and let t be the current time

• let σ := Gsign.sign(pk, chain[−1].h, txs, t, nonce), h′ := d(chain[−1].h, txs, t, nonce, pk, σ)

• let B := (chain[−1].h, txs, t, nonce, pk, σ, h′)

• if F̃punctual.extend(chain, B) outputs “succ”: let chain := chain||B and gossip chain

• output extract(chain) to Z

F̃punctual: Same as Fpunctual except that the extend( , B, t′) entry point now additionally asserts
that t′ = B.time

Figure 7: A hybrid protocol carrying real-world blocks.

Proof. To see this, notice that all (A′,Z ′) does is renaming nodes — therefore it is not hard to see
that the only way that the two can differ is if at some time t ≥ t′, A calls Fpunctual.extend( , , t′)
acting as some corrupt node i, such that i is leader for t′ in view, but i is no longer effective at time
t in view′ because its sybil node i∗ has taken over.

Now suppose that at t ≥ t′, A calls Fpunctual.extend( , , t′) acting as some corrupt node i.
There are two cases:

• t′ < t −W : In this case, Fpunctual would have ignored the request in view since the timestamp
t′ is too old.

• t′ ≥ t −W : Since we know that in view, i is corrupt at time t, it has to be the case that i∗ is
already effective at time t′.

9.3 Hybrid Protocol: Ideal Protocol with Real-World Blocks

We are almost ready to show that our real-world protocol emulates the ideal-world one which we
know how to analyze. But before that, we have to go through one more intermediate step that
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correct the protocol’s interfaces to the environment Z such that the interfaces will type check by
the real-world protocol’s type definitions.

In this section, we will define a hybrid protocol Πhyb that carries real-world interfaces to the
environment Z — see Figure 7. We will show that all the properties we care about (including
consistency, chain growth, and chain quality) hold for Πhyb in exactly the same way they hold for
Πpunctual. Since Πhyb carries real-world interfaces, we can later show that our real-world protocol
Πsnowwhite emulates Πhyb; and therefore the real-world protocol satisfies all these properties as well.

Compliant (A,Z). We say that (A,Z) Πhyb-compliant if the following holds for any view with
non-zero support:

• Initialization. At the start of the execution, the following happens. First, Z can spawn a set of
either honest or corrupt nodes. Z learns the honest nodes’ public keys after calling their init()
procedure. Next, A provides the inputs {genesis} to all honest nodes. At this point, protocol
execution starts.

• Sleeping. All sleepers are treated as light sleepers. Upon waking, all pending messages it
should have received but did not receive are delivered, plus adversarially inserted messages.

• Spawning. When a new, alert node spawns at time t, (A,Z) must deliver to it an initialization
message chain0 such that chain0 ∈ Fpunctual and chain0 is no shorter than the shortest chain of
any alert node at time t− 1.

• A-prior commitment. A must have called Fpunctual.setpids(t, pidst) before t. Similarly, A
must have called Fpunctual.sethash(e, pidse) before start(e).

• Corruption model, resilience, number of awake nodes, admissible parameters. Same
as in Πpunctual.

Theorem 6 (Security of Πhyb). Πhyb satisfies T0-consistency, (T0, µ)-chain quality, and (T0, g0, g1)-
chain growth against any Πhyb-compliant (A,Z) for the same parameters T0, µ, g0, g1 as defined in
Theorem 3.

Proof. Follows in a straightforward manner from the security of Πpunctual.

Remark: Agreement of F̃punctual timestamp and blockchain timestamp. We note that

F̃punctual checks that the claimed timestamp agrees with the timestamp in the block B when
an adversary calls extend. Observe also that alert nodes always use truthful timestamps when
calling F̃punctual.extend. Due to this reason, henceforth, for any chain ∈ F̃punctual, we may use its

F̃punctual-timestamp and chain[−1].time interchangeably.

9.4 Timestamp Freshness Lemma

We prove a useful property about timestamp freshness in any alert node’s chain. This will be useful
in the next section when we prove that the real-world protocol emulates the hybrid-world. Roughly
speaking, the timestamp freshness property says that in any alert node’s chain, the timestamp of
any block cannot be too early relative to the position of the block in the chain. This will later be
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useful in Section 10 in proving that in a simulated execution, certain good events (whose occurrence
depends on the existence of large timestamps in alert nodes’ chains) happen early enough.

Formally, we define a property freshtime`,r(view) = 1 iff the following holds for view: at any
time t, for any node i alert at t and suppose |chainti(view)| ≥ `, then chainti(view)[−`].time > t− r.

Claim 3 (Freshness of timestamp in stablized chain). For any Πhyb-compliant p.p.t. pair (A,Z),
there exists a negligible function negl(·) such that for every κ, every ε, ε0 > 0, every ` > 0, let
r = `+εκ

g0
where g0 = (1− ε0)γ, it holds that

Pr
[
view←$EXEC

Πhyb(A,Z, κ) : freshtime`,r(view) = 1
]
≥ 1− negl(κ)

Proof. Below we ignore the negligible fraction of views where bad events such as failure of chain
quality or chain growth happen.

If t < r, the claim trivially holds. We focus on proving the case where t ≥ r. In this case, by
chain growth, every node alert at time t must have chain length at least `+ εκ. By chain quality,
in chainti[−(` + εκ) : −`] there must be a block mined by node j honest at time t′ in view — by
definition this means that node j has chain length at least |chainti| − (`+ εκ) at time t′.

By chain growth, we have that at most t − t′ ≤ `+εκ
g0

= r time has elapsed between t′ and t.
Since honest blocks contain true timestamps reflecting when the block is mined, there exists a block
in B ∈ chainti[−`+ εκ : −`] such that B.time ≥ t− r. The rest of the proof is obvious by observing
that timestamps must be strictly increasing in chainti assuming i is alert at t.

Remark. Henceforth, whenever we apply Claim 3 in our proofs, we will assume that g0 = (1−ε0)γ
for an ε0 that is appropriately small — it is not hard to identify such a ε0 for all proofs that rely
on Claim 3 henceforth — we therefore often omit spelling out g0 as g0 = (1− ε0)γ for simplity.

10 Proofs: Real World is as Secure as the Hybrid World

10.1 Theorem Statement

Theorem 7 (Πsnowwhite emulates Πhyb while preserving compliance). For any real-world p.p.t.
adversary A for Πsnowwhite, there exists a p.p.t. adversary (also called the simulator) S for Πhyb,
such that for any p.p.t. Z satisfying the condition that (A,Z) is Πsnowwhite-compliant, we have that

• (S,Z) is Πhyb-compliant; and

• EXECΠsnowwhite(A,Z, κ)
c≡ EXECΠhyb(S,Z, κ)

In the above, both Πsnowwhite and Πhyb (and specifically F̃punctual) are instantiated with “matching”
parameters. More specifically, the following must be hold:

• Both Πsnowwhite and Πhyb (or more specifically F̃punctual) are instantiated with the same (p, Tepoch).

• Suppose W is the posterior corruption parameter respected by the real-world adversary A, it
holds that in protocol Πhyb, F̃punctual is instantiated with the parameter W .

In this section, we prove the above Theorem 7.

49



AddtoTree(chain)

• Computes ` such that chain[: ` − 1] is the longest prefix of chain such that F̃punctual.verify
(chain[: `− 1]) = 1.

• If any block in chain[` :] is signed by a public key that does not correspond to a corrupt node,
abort outputting signature-failure.

• Else, for each `′ ∈ [`, |chain|]: call F̃punctual.extend(chain[: `′ − 1], chain[`′], chain[`′].time)
acting as the corrupt node that corresponds to chain[`′].pk at time chain[`′].time.

• If F̃punctual.verify(chain) does not return true at this point, abort outputting extend-failure.

Figure 8: AddtoTree subroutine internally called by S.

10.2 Simulator Construction

We first describe the construction of S, which interacts in a blackbox manner with A.

Intended invariants by construction. By construction, the simulator is meant to maintain
the following invariants:

1. S keeps performing internal checks in every time step, and aborts whenever (S,Z) is about to
violate Πhyb’s compliance rules. In this way, as long as the simulation has not aborted, (S,Z)
is by construction Πhyb-compliant, and therefore we can use the security properties of Πhyb to
reason about the simulated execution. Later, we will also show aborts will not happen except
with negligible probability.

2. S always makes sure that any chain sent to alert nodes that would have been accepted by alert
nodes in the real world must be in F̃punctual. In other words, if A tries to send a chain to an alert
node i, S will first emulate node i’s Πsnowwhite-behavior to see if node i might have accepted
chain in the real-world protocol Πsnowwhite. If so, then S will make sure that chain is indeed in
F̃punctual before forwarding chain to i. This may mean that S will need to call F̃punctual.extend
to insert new chains before forwarding chain to i.

In this way, an essential step in showing the indistinguishability of the real-world and simulated
executions is to argue that S can always succeed in adding a chain to F̃punctual if chain would
have been accepted in the real-world by alert nodes (see Section 10.4).

Simulator description. For convenience, we introduce the syntactic sugar

F̃punctual.setpids(e, pidse)

to allow S to set the committee for each time step t that is in epoch e, all with the same
committee pidse. Clearly F̃punctual.setpids(e, pidse) can be implemented by multiple calls to

F̃punctual.setpids(t, pidst).
Our simulator S relies on a parameter ε∗ > 0. Our proof will hold as long as ε∗ is sufficiently

small, e.g., less than 1
4 . Henceforth without loss of generality, the reader can assume that ε∗ = 1

4 .
The security failure probability will be related to ε∗, e.g., in the form of negl(poly(ε∗, κ)).
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• Whenever a party calls Gsign.gen, the adversary is notified of the pair (P, pk). It stores this
party identifier and public key mapping. If an honest node’s public key ever collides with a key
that is already stored in the mapping, abort outputting duplicate-key-failure.

• Since S sees all messages sent to and from honest nodes, S can simulate the internal longest
chain kept by all honest nodes in the most natural manner. Henceforth we assume that for any
t, any i honest at time t, S knows chainti.

• Whenever A asks hash queries: if this query has been seen before, S returns the same answer
as before.

Else, suppose that the query is of the form Hnonce(pk, t), let e = epoch(t): if S has not yet
committed to F̃punctual the e-th committee, then S simply generates a random number of ap-

propriate length, and returns it to A. Else if S has committed to F̃punctual the e-th committee,

then S generates a random number that agrees with F̃punctual. Note that due to our simulator
description later, if S has committed to the e-th committee, then there is a spawned party
(either honest or corrupt) for each public keys in the e-th committee, and the simulator S must
have this mapping stored.

More specifically, S first looks up the party identifier P that corresponds to pk. If such a party
identifier is not found, S samples a random number of appropriate length and returns it to A.
Else, S calls b = F̃punctual.leader(nonce,P, t). If b = 1, it rejection samples an h until h < Dp,
and then returns h. Else, it it rejection samples an h until h ≥ Dp, and then returns h.

• Whenever A sends a protocol message chain to an honest party i, the simulator S checks the
validity of chain simulating node i running the real-world protocol’s checks — here the hash
function H is implemented with S’s own table. Specifically, S answers its own H queries in the
same way that it answers A’s H queries. If these real-world checks pass, the simulator S calls
AddtoTree(chain) as described in Figure 8. If the call does not abort outputting signature-failure
or extend-failure, S forwards chain to node i.

If the real-world checks fail, S drops the message chain and does not forward chain to node i
— note that this may cause S to violate the ∆ network delivery requirement. Therefore, as we
describe later, S will perform internal consistency checks, and if it ever violates the ∆ network
delivery requirement, it simply aborts outputting ∆-failure.

• Whenever A sends an initialization message {chaini}i∈L to an honest party i that has just
spawned or waken up from deep sleep: the simulator S runs the real-world algorithm to com-
pute an initial chain — as before, here the hash H is implemented by S itself. S then calls
AddtoTree(chain), and if the call did not abort with either signature-failure or extend-failure, S
sends chain to node i.

• At the beginning of every time step t, the simulator S performs the following verification. First,
if S has not called F̃punctual.setpids(e, ) or F̃punctual.sethash(e, ) where e := epoch(t), abort
outputting late-failure. The simulator additionally checks the resilience, number of awake nodes,
and admissible parameter conditions for time step t, and if the checks fail, abort outputting
param-failure.

For each honest node i, the simulator finds chainti henceforth denoted chaini for short. Recall
that the simulator keeps track of the longest chain each honest node has.
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– Consistency checks. For every node i alert at time t, S computes pksi := elect cmtt(chaini). If
both i and j are alert at t but pksi 6= pksj abort outputting consistency-failure. If pksi does not

agree with the committee at t which S previously committed to F̃punctual, abort outputting
consistency-failure. Here consistency is defined by S’s internal public key to party identifier
mapping.

For every node i alert at time t, S computes noncei := elect ht(chaini). If noncei does not
agree with what S previously committed to F̃punctual, abort outputting consistency-failure.

– Choose next committee or hash when necessary. Henceforth let chain := chainti, note that S
checks all alert nodes’ chains to see if it needs to choose the next committee or hash.

If |chain| ≥ ε∗κ + 2, S will check to see if it needs to commit to the next epoch’s committee
and/or hash. Let start(e) := e · Tepoch denote the start of epoch e ∈ N.

For any e ∈ N, if there exists consecutive blocks (B0, B1) ∈ chain[: −ε∗κ] such that B1.time +
2ω > start(e) but B0.time + 2ω ≤ start(e), S calls

F̃punctual.setpids(e, extractpids(chain0)) where chain0 := chain[: index(B0)]

if it has not already called F̃punctual.setpids(e, ) earlier. Here extractpids(chain0) first calls
pks∗ := extractpks(chain0) and then maps the public keys to their party identifiers in the
following way:

1. If S has recorded (P, pk) then map pk to P. Recall that S should have recorded such a
mapping for all honest nodes’ public keys.

2. If S has not recorded a mapping for pk, spawn a corrupt node with party identifier j, and
map pk to j. Recall that our execution model allows S to spawn corrupt nodes without Z’s
knowledge. Further S stores the mapping from the party identifier j to the public key pk.

Similarly, for any e ∈ N, if there exists consecutive blocks (B0, B1) ≺ chain[: −ε∗κ] such that
B1.time+ω > start(e) butB0.time+ω ≤ start(e), S calls F̃punctual.sethash(e, extractnonce(chain0))

where chain0 := chain[: index(B0)] if it has not already called F̃punctual.sethash(e, ) earlier.

• At the end of every time step t, S performs a network delivery check. If it has ever received a
message from some alert node by t−∆, but the message did not get delivered to any node alert
at t, then S aborts outputting ∆-failure.

• Whenever S calls F̃punctual.sethash(e, noncee), if A (or any internal call) has made a hash query

of the form Hnoncee( , ) before S called F̃punctual.setpids(e, ), abort outputting predict-failure.

• If A ever issues a (corrupt, i, t′) instruction to Z at time t ≤ t′, the simulator S checks that it
has not committed node i to any committee at time t′ −W or later. If the check fails, S aborts
outputting corruption-failure; else, pass through the instruction to Z.

If A ever issues a (sleep, i, t0, t1) instruction to Z at time t ≤ t0 ≤ t1, the simulator S checks
that it has not committed node i to any committee between [t0, t1]. If the check fails, S aborts
outputting corruption-failure; else, pass through the instruction to Z.

• S directly passes through all other messages between A and Gsign. Similarly, S directly passes
through all other messages between A and Z.
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• At the protocol start, whenever A sends pks0 to a spawning node as part of the initialization
message, S registers the first epoch’s committee with F̃punctual. Before doing so, if there is any
public key in pks0 that does not have a party identifier mapping, S spawns a corrupt node that
corresponds to this public key, and stores the mapping. S also registers nonce0 with F̃punctual

as the nonce for the first epoch at protocol start.

• If S ever observes that two honest nodes have different chains with the same block hash, abort
outputting hash-failure.

We can now immediately state a few simple facts.

Fact 2 (Compliant execution). In the above simulation, for any p.p.t. (A,Z) Πsnowwhite-compliant,
the pair (SA,Z) is Πhyb-compliant.

Proof. By definition, notice that the construction of the simulator S performed internal checks and
always aborts outputting failure before it ever has a chance of being non-compliant.

Fact 3 (No hash collision). S does not abort with hash-failure except with negligible probability.

Proof. Straightforward due to the collision resistance of the digest function d.

Fact 4 (No honest key collision). S does not abort with duplicate-key-failure except with negligible
probability.

Proof. Straightforward due to the security of the signature scheme.

Due to the above facts, henceforth we will ignore the negligible fraction of views that have hash
or honest key collisions.

10.3 Consistency and Compliance of the Simulated Execution

In this section, we focus on showing that if (A,Z) is Πsnowwhite-compliant, then the simulated
execution has nice properties regarding consistency and the relative timing of events.

Lemma 4 (Consistency and a-priori commitment). For any compliant p.p.t. (A,Z) pair, there
exists a negligible function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to late-failure or consistency-failure
]
≤ negl(κ)

Proof. We consider any view for EXECΠhyb(S,Z, κ) where none of the bad events related to chain
quality, growth, and consistency happen.

We prove the lemma for hashes, and the argument for the committee goes in the same way. It
suffices to prove the following: For any e ∈ N in view, let t = start(e), it holds that for every node
i honest at time t− 1, there exists

1. an honest block B ∈ chaint−1
i [: −ε∗κ] with B.time > t− ω; and

2. an honest block B′ ∈ chaint−1
i [: −ε∗κ] with B′.time ≤ t− ω.
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where chaint−1
i (view) denotes the internal chain maintained by node i at time t − 1 in view. We

often write chaint−1
i in place of chaint−1

i (view) without risk of ambiguity.
Notice that due to the definition of S which runs the real-world checks on any chain received

from A before forwarding them onto honest nodes, and due to the definition of Πhyb, chaint−1
i must

have strictly increasing timestamps. Therefore if the above conditions regarding the existence of B
and B′ in chaint−1

i are satisfied then

• S will have called F̃punctual.sethash(e, ) before time t;

• Due to consistency and definition of S, S will not abort with consistency-failure due to disagree-
ment on the hash for epoch e in view.

Notice that the existence of the block B′ trivially holds since the genesis block is defined to
have a timestamp of 0. The existence of a block B is proved in Claim 3 given that ω ≥ 2κ

γ + ∆̃.
This completes our proof.

Lemma 5 (Unpredictability of future hashes). For any compliant p.p.t. (A,Z) pair, there exists
a negligible function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to predict-failure
]
≤ negl(κ)

Proof. Given a view ← EXECΠhyb(SA,Z) where none of the bad events related to chain qual-
ity, growth, consistency happen. Let e ∈ N denote an epoch in view such that S has called
F̃punctual.sethash(e, ). Note that by definition, S must have called F̃punctual.setpids(e, ) too.
Let T = start(e).

• Henceforth in this proof we shall adopt small enough constants ε0 and ε′. The proof holds for
any constant small enough. For example, one may assume ε0 = ε′ = 1/8.

• Let chainti(view) be the chain that triggered S to call F̃punctual.sethash(e, ), where i is a node
honest at time t. Let (B∗−1, B

∗) be two consecutive blocks in chainti[: −ε∗κ], where B∗.time >
T − ω and B∗−1 ≤ T − ω.

Let Bl denote the last honest block to the left of B∗ in chainti that is not genesis. We will
first pretend that such a block Bl exists, and later we will prove that indeed it does. Let
Br ∈ chainti[index(B

∗) :] be the first honest block to the right of B∗ — such a block must exist
due to chain quality, and that there are at least ε∗κ blocks to the right of B∗. By chain quality,
index(Br) − index(B∗) ≤ ε0κ in chainti, and index(B∗) − index(Bl) ≤ ε0κ in chainti. Therefore,
index(Br) − index(Bl) ≤ 2ε0κ. Further, since Bl is honest, T1 := Bl.time is the time when an
honest node first mines Bl. Similarly, T2 := Br.time is the time when an honest node first mines
Br. By chain growth, T2 − T1 ≤ 2ε0κ

g0
. By definition, we also know that T1 ≤ B∗.time ≤ T2, and

therefore B∗.time− T1 ≤ 2ε0κ
g0

, i.e., T1 ≥ B∗.time− 2ε0κ
g0

> T − ω − 2ε0κ
g0

.

For the above bound on T1 to hold, it remains to show that such a Bl exists. To show this, we
prove that there is a constant ε′ > 0 such that index(B∗) (w.r.t. chainti) is greater than ε′κ, since
then Bl must exist by chain quality. Suppose for the sake of contradiction that index(B∗) < ε′κ.
As before, let Br be the first honest block to the right of B∗ in chainti. Such a Br must exist
within at most ε0κ blocks from B∗. Therefore index(Br) < (ε′ + ε0)κ. Since Br is an honest
block, Br.time denotes the time Br was first mined by an honest node. By chain growth,
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Br.time ≤ (ε′+ε0)κ
g0

. Since T ≥ Tepoch ≥ 3ω ≥ 3κ
g0

, it holds that for sufficiently small constants

ε′, ε0 > 0,

B∗.time ≤ Br.time ≤ (ε′ + ε0)κ

g0
≤ T − ω

Therefore we reach a contradiction.

• Let T0 be the time in view that S called F̃punctual.setpids(e, ). We now show that T0 ≤ T−1.5ω.

It is not hard to see that S will definitely have called F̃punctual.setpids(e, ) by time t, if there is
a node i honest at t− 1, such that chaint−1

i [: −ε∗κ] contains a block whose timestamp is greater
than T − 2ω where T = start(e).

By Claim 3, let r = T − 1.5ω ≥ 1.5ω, for every node i honest at r − 1, chainr−1
i [: −ε∗κ] must

contain a block whose timestamp is greater than r − ω
2 = T − 2ω — notice that this relies on

our choice of ε∗ being sufficiently small. This suffices for showing that T0 ≤ T − 1.5ω.

Given our extractnonce definition, it suffices to prove that T1 > T0. Recall that T1 is the time
the honest block Bl is mined, and the block Bl contains a random string that is unpredictable any
time before T1. We now show that indeed T1 > T0. Observe that since T ≥ Tepoch and Tepoch ≥ 3ω,
and that for small enough ε0, 2ε0κ

g0
< 0.5ω, it clearly holds that T1 > T0.

Lemma 6 (Simulator respects ∆-network delivery). For any compliant p.p.t. (A,Z) pair, there
exists a negligible function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to ∆-failure
]
≤ negl(κ)

Proof. Fix some view← EXECΠhyb(SA,Z, κ) where none of the bad events related to chain growth,
chain quality, and consistency happen. Suppose that a node i alert at t sends a chainti at time t in
view. Due to the Πsnowwhite-compliance of (A,Z), for every node that is alert at t+ ∆, A will ask
S to deliver chainti to node j at some tj ∈ [t, t+ ∆].

Clearly, chainti ∈ F̃punctual starting at time t in view. Due to consistency, for any node j that
is alert at sometime s ∈ [t, t + ∆], including ones that might have just waken up from a light
sleep, it must hold that chainsj [: −κ0] ≺ chainti. Therefore, j’s real-world checks will not cause j to

reject chainti had j received chainti at any s ∈ [t, t+ ∆]. As a result, S will not drop this message
chainti.

Lemma 7 (Compliant corruptions). For any compliant p.p.t. (A,Z) pair, there exists a negligible
function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to corruption-failure
]
≤ negl(κ)

Proof. Suppose that A issues (corrupt, i, t′) at some time t. Since (A,Z) is Πsnowwhite-compliant,
it must hold that t′ − t > τ . We now show that by time t, S cannot have called F̃punctual.setpids
for any time during [t′ −W,∞].

Notice that the only way S could have called F̃punctual.setpids(s, ) by time t is if there is a node
i honest at t such that chainti[: −ε∗κ] contains a block B such that B.time > rnddown(s) − 2ω >
s − Tepoch − 2ω. This means that S can only have called F̃punctual.setpids(s, ) by time t if
t ≥ s−Tepoch−2ω. If s ≥ t′−W , this means that t ≥ t′−W −Tepoch−2ω. However, we also know
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that t < t′ − τ . Since τ > W + Tepoch + 2ω, it cannot be the case that t ≥ t′ −W − Tepoch − 2ω;

and therefore S cannot have called F̃punctual.setpids(s, ) for any time s ∈ [t′ −W,∞].
Similarly, suppose that A issues (sleep, i, t′) at some time t. Since (A,Z) is Πsnowwhite-

compliant, it must hold that t′ − t > τ . we can similarly show that S cannot have called
F̃punctual.setpids for any time during [t′,∞].

Lemma 8 (Parameter preservation). For any compliant p.p.t. (A,Z) pair, there exists a negligible
function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to param-failure
]
≤ negl(κ)

Proof. Straightforward to verify.

10.4 All Real-World Valid Chains are in F̃punctual

In this section, we show that for any chain that would have been accepted by an honest node by
the real-world verification algorithm, S must succeed in adding it to F̃punctual if the chain does not

exist in F̃punctual already.

Lemma 9 (Unforgeability of signatures). For any compliant p.p.t. (A,Z) pair, there exists a
negligible function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to signature-failure
]
≤ negl(κ)

Proof. Straightforward reduction to the security of the signature scheme. Conditioned on no hash
collision, if there is ever signature-failure, the adversary A must have forged a signature on a new
message that the simulator S has not sent A. We can easily leverage such an adversary A to build
a reduction to break signature security. Note also that Gsign is a global functionality, however, the
environment Z cannot query Gsign for signatures pertaining to the challenge session identifier —
this is important for the reduction to work.

Simulation valid chains. Given a view of the simulated execution, we say that a chain is
simulation valid w.r.t. time t in view if it is valid as defined in the real-world protocol, but where
the hash function H is replaced by hash queries to the simulator S. The simulator S answers these
hash queries in the same way it answers A’s hash queries.

Sufficiently long honest prefix. Given a view of the simulated execution, we say that a simu-
lation valid chain (w.r.t. t) has a sufficiently long honest prefix at time t in view, iff

There exists a prefix chain0 ≺ chain such that chain0[−1].time > t − ω, and moreover, there
exists s ≤ t and a node i alert at time s, such that chain0 ≺ chainsi [: −ε∗κ].

Claim 4. Let chain be simulation valid in view at time t, and suppose that chain has a sufficiently
long honest prefix at t. It holds that the following two ways for determining whether a public key
pk is a leader in any time r ≤ t are equivalent in the simulated execution:

1. Using the real-world eligibler(chain, pk) function where H is implemented by S; and
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2. Calling F̃punctual.leader(noncer,P, r) where noncer denotes the nonce previously chosen by S
for time step r, and P is the party identifier corresponding to pk (as determined by S’s stored
mapping) — if no such mapping is found, then P is simply ⊥.

Proof. Recall that if the simulation does not abort, there is no duplicate-key-failure. If r < Tepoch,
pks0 will be selected as the committee by the real-world algorithm, and recall that S has registered
with F̃punctual the party identifiers for pks0 as the initial committee.

The more interesting case is when r ≥ Tepoch ≥ 3ω. In this case, since chain0[−1].time > t− ω,
the prefix that determines the committee or hash for any r ≤ t must be contained in chain0. Due
to consistency and the definition of S, it holds that the committee for any r ≤ t determined by the
real-world algorithm based on chain must agree with what S committed to F̃punctual. Similarly, S
must have committed to F̃punctual the same nonce for each r ≤ t as what the real-world algorithm
would output as the nonce for each r ≤ t based on chain.

Further, due to no predict-failure, consistency, and the way S answers H queries, it holds that
using H to elect leaders agrees with the random coins used by F̃punctual for electing leaders.

Claim 5. Let (A,Z) be Πsnowwhite-compliant. Given any view of EXECΠhyb(SA,Z, κ), let chain be
a simulation valid chain w.r.t. time t in view, and suppose that chain has a sufficiently long honest
prefix at t in view. Then if SA calls AddtoTree(chain) at time t in view, the call must succeed.

Proof. First, since chain0[−1].time > t−ω, and W > ω, and since timestamps must strictly increase
for a simulation valid chain, it is clear that none of the adversarial blocks at the end will be rejected
by F̃punctual due to staleness. The rest of proof follows in a straightforward manner due to Claim 4
and no signature-failure.

Claim 6. In the simulated execution, if S sends a chain to an alert node, then chain must be
simulation valid at t and have a sufficiently long prefix at t.

Proof. We now prove the above lemma. Recall that S simulates the real-world verification algorithm
for node i, and only forwards a chain to alert node i if the real-world checks succeed. It suffices to
prove that if the real-world checks pass, then the chain has a sufficiently long prefix.

There are three possible scenarios, and we analyze them one by one.

Case 1: A sends chain to a node i that has been alert. This case is very similar to Case 2,
except that the ∆̃ in Case 2 is now replaced with ∆. By our parameter admissible rules, it is not
hard to see that ∆ ≤ 1

2γ . The rest of the proof follows in the same way as Case 2.

Case 2: A sends chain to node i that has just waken up after a light sleep. Suppose that
at time t, A wants to send chain to honest node i who has waken up at time t after a short sleep,
and let s denote the most recent time node i went to sleep before t. By Πsnowwhite-compliance, we
know that t− s ≤ ∆̃.

We know that it must be the case chainsi [: −κ0] ≺ chain for chain to be accepted by node i’s
real-world checks. Also observe that by Claim 3, chainsi [−κ0].time > s− κ

g0
≥ t− ∆̃− κ

g0
≥ t− ω.
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Case 3: A sends a newly spawned node i an initialization message. Fix any view of
non-zero support in the execution EXECΠhyb(SA,Z, κ). All of the following statements are with
respect to this view. Given a set SL := {chaini}i∈L, we say that a chain is real-world admissible
w.r.t. SL if 1) chain is simulation valid; 2) chain ≺ chaini for some i ∈ L; and 3) let chain ′ be the
longest common prefix of any majority subset of S, it holds that chain ′ ≺ chain.

Suppose L is a node set the majority of whom are alert at time t. Suppose that chain is real-
world admissible w.r.t. SL. Now we take the set of honest nodes in L and compute the longest
prefix of their chains; and chainh denote this longest prefix. Suppose the aforementioned chain ′

is computed by taking a subset S′ ⊆ SL that comprise majority. Since the majority are alert at
time t in L, one alert node must exist in S′. Clearly chain ′ should be at least as long as chainh.
Therefore we conclude that chainh ≺ chain ′.

It suffices to argue that chainh[−ε∗κ].time > t−ω. Let i ∈ L be a node alert at time t, we know
that chainh ≺ chainti. Due to consistency, there cannot be more than ε1κ blocks after chainh in
chainti. Now the fact that chainh[−ε∗κ].time > t− ω follows from Claim 3.

Lemma 10 (Success of AddtoTree). For any compliant p.p.t. (A,Z) pair, there exists a negligible
function negl such that for every κ

Pr
[
view←$EXEC

Πhyb(SA,Z, κ) : view aborts due to extend-failure
]
≤ negl(κ)

Proof. Straightforward by Claim 5, Claim 6, and the definition of S.

10.5 Indistinguishability of the Real-World and Simulated Executions

Lemma 11 (Indistinguishability of the real-world and simulated executions). For any Πsnowwhite-
compliant p.p.t. pair (A,Z), conditioned on the simulated execution not aborting, then Z’s view
in the simulated execution and real execution are identically distributed.

Proof. We now prove this lemma.

Hybrid 1. Same as the simulated execution, but with the following modification: when the
an honest node needs to call the ideal-world F̃punctual.extend(chain, B), a real-world algorithm is
adopted for extending the chain: the honest node calls eligiblet(chain, pk) where H is implemented
by S. If the outcome is 1, add chain||B to F̃punctual.tree.

Claim 7. No p.p.t. Z can distinguish the simulated execution and Hybrid 1 except with negligible
probability.

Proof. It suffices to show that if an alert node tries to extend a chain at time t, then chain is
simulation valid and has a sufficiently long prefix at t. If this is true, then by Claim 4, using
the real-world algorithm to decide whether a node is leader is equivalent to what F̃punctual thinks.

Therefore, using the real-world algorithm to extend the chain rather than calling F̃punctual.extend
would be equivalent. Given Claim 6 and the definition of the simulated execution, it is not hard
to see that every chain an alert node tries to extend is simulation valid and has a sufficiently long
prefix.
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Hybrid 2. Same as Hybrid 1, but with the following modification: whenever an honest node
receives a chain ′ whose length is longer than its own chain, do real-world checks instead of calling
F̃punctual.verify.

Claim 8. No p.p.t. Z can distinguish Hybrid 1 and Hybrid 2 except with negligible probability.

Proof. Notice that S always performs real-world checks on behalf of an alert node i before forward-
ing any chain to an alert node i. Therefore, it is easy to see that the claim is true given that we
have proved Lemma 10.

Finally, to prove Lemma 11, it suffices to observe that Hybrid 2 is equivalent to the real-world
execution by a standard argument of redrawing algorithm boundaries.
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