
Breaking Web Applications Built On Top of Encrypted Data
Paul Grubbs

Cornell University
pag225@cornell.edu

Richard McPherson
UT Austin

richard@cs.utexas.edu

Muhammad Naveed
USC

mnaveed@usc.edu

Thomas Ristenpart
Cornell Tech

ristenpart@cornell.edu

Vitaly Shmatikov
Cornell Tech

shmat@cs.cornell.edu

ABSTRACT
We develop a systematic approach for analyzing client-server
applications that aim to hide sensitive user data from un-
trusted servers. We then apply it to Mylar, a framework
that uses multi-key searchable encryption (MKSE) to build
Web applications on top of encrypted data.

We demonstrate that (1) the Popa-Zeldovich model for
MKSE does not imply security against either passive or ac-
tive attacks; (2) Mylar-based Web applications reveal users’
data and queries to passive and active adversarial servers;
and (3) Mylar is generically insecure against active attacks
due to system design flaws. Our results show that the prob-
lem of securing client-server applications against actively
malicious servers is challenging and still unsolved.

We conclude with general lessons for the designers of sys-
tems that rely on property-preserving or searchable encryp-
tion to protect data from untrusted servers.

1. INTRODUCTION
Many modern Web and mobile applications are built us-

ing the client-server architecture: users interact with the
application’s clients in users’ browsers or devices, while the
server is responsible for centralized storage and management
of users’ data. This design offers attractive scalability and
performance but if the server is compromised, the attacker
gains access to every user’s data. Even if this data is en-
crypted at rest but decrypted when the server operates on
it, it is potentially exposed to a persistent or lucky attacker.

Client-side encryption can mitigate the damage from server
compromise by ensuring that the server only sees encrypted
users’ data and never decrypts it. Unfortunately, if the
server acts as a“dumb”storage and communication medium,
all operations on the data must be performed by the clients,
sacrificing most of the advantages of the client-server model.

A new class of client-server systems aims to solve this
conundrum [16,28,33,34,47,48,51,54,59]. We call these sys-
tems BoPETs (“Building on Property-revealing EncrypTion”).
The main idea behind BoPETs is to encrypt users’ data
before uploading it to the server using special property-
revealing encryption (PRE). The server can then execute
its part of the application’s functionality on encrypted data.

Our contributions. We develop a new approach for sys-
tematic security analysis of BoPETs. Unlike previous work
which focused on PRE schemes in isolation [9,26,30,42], we
take a more holistic approach to analyzing these schemes in
the context of the systems where they are deployed.

We first define a taxonomy of real-world threats to the
server: snapshot passive (a one-time,“smash and grab”snap-
shot of the server’s state), persistent passive (observing all

activity on the server but not interfering with its opera-
tions), and active attacks involving arbitrary malicious be-
havior. We then work backwards from these adversarial
capabilities to models. This approach uncovers significant
challenges and security-critical decisions faced by the de-
signers of BoPETs: how to partition functionality between
the clients and the server, which data to encrypt, which ac-
cess patterns can leak sensitive information, and more.

We then apply our methodology to a recent BoPET called
Mylar [48]. Mylar is an extension to a popular Web applica-
tion framework called Meteor [39]. Unlike similar commer-
cial systems [59], Mylar is open-source, enabling a thorough
analysis. In Mylar, client data deemed sensitive is encrypted
using multi-key searchable encryption (MKSE) [49], a PRE
that supports sharing and keyword search at a low perfor-
mance cost. The MKSE scheme at the heart of Mylar is
accompanied by cryptographic proofs based on the formal
model of security defined by Popa and Zeldovich in [49].
In [48], Popa et al. explicitly claim that Mylar is secure
against actively malicious servers (excluding a particular
type of passive attacks, as explained in Section 2.2).

We start by showing that the Popa-Zeldovich security def-
initions for MKSE do not imply the confidentiality of queries
even against a passive server. Adapting a well-known coun-
terexample from [17], we construct an MKSE scheme that
meets the Popa-Zeldovich definitions but trivially leaks any
queried keyword. This shows that the proofs of security for
MKSE do not imply any meaningful level of security, but
does not yet mean that the actual scheme fails.

We then go on to assess Mylar itself, using the imple-
mentation released by Popa et al. as our reference, along
with four diverse Meteor apps: kChat (online chat), MDaisy
(medical appointments), OpenDNA (analysis of genetic data),
and MeteorShop (e-commerce). kChat was released with
Mylar, the other three we ported with minimal changes.

We show that all four applications suffer from one or more
attacks within each of our threat models—see the summary
in Table 1. Even a “smash-and-grab” attacker can compro-
mise users’ privacy by analyzing the names, sizes, static link
structure, and other unencrypted metadata associated with
encrypted objects. A persistent passive attacker can ex-
tract even more information by observing the application’s
access patterns and objects returned in response to users’ en-
crypted queries. In our case-study applications, this reveals
users’ medical conditions, genomes, and contents of shop-
ping carts. Even if this leakage is inevitable, our approach
helps guide investigation into its implications.

The most damaging attacks are application-independent
and involve Mylar’s search when the server—and possibly
some of the users—are actively malicious. We describe two



Threat type Description Found attacks
Snapshot passive Attacker captures a one-

time snapshot of server
• kChat: names of principals leak information about chat room topics
• MDaisy: metadata about relationships between documents leaks pa-
tients’ medical information; size of users’ profiles leaks their roles
• OpenDNA: size of encrypted DNA leaks which risk groups the user is
searching for

Persistent passive Attacker records server
operations over a period
of time

• MDaisy: server can cluster patients by their medical procedures; if one
patient reveals information, entire cluster is compromised
•MeteorShop: users’ recently viewed items leak what they added to their
encrypted shopping carts

Active Server can arbitrarily
misbehave, collude with
users

• Any Mylar app: malicious server can perform brute-force dic-
tionary attacks on any past, present, or future search query over
any server-hosted content
• OpenDNA: malicious server can search users’ DNA for arbitrary SNPs

Table 1: Threat models and the corresponding attacks on Mylar apps.

methods that a malicious server can use to obtain a user’s
keyword search token for a document under the server’s con-
trol, along with the ability to convert it to other documents.

The first method involves the server forcibly giving the
user access to a document. The Mylar paper suggests a
mechanism for users to exclude documents from searches,
but it’s broken in the reference implementation. Fixing this
problem runs into challenges that appear, for Mylar’s in-
tended collaborative applications, inherent and intractable.
The second method involves the server colluding with a ma-
licious user who shares a document with an honest user.

In both cases, an honest user ends up sharing a document
with the adversary. If the user’s keyword search matches this
document, the adversary learns the keyword. This generic
attack was described in [48], but not its full impact. In
fact, Mylar explicitly claims to protect the confidentiality
of the honest user’s other documents, those that cannot be
accessed by the malicious users. But honest users’ searches
are performed over all of their documents, thus the adver-
sary learns partial information about documents to which
the malicious users do not have access.

The above attack is generic for MKSE, but we dramati-
cally increase its power by exploiting a basic design flaw in
Mylar—the unsafe partitioning of functionality between the
client and the server. For efficiency, Mylar trusts the server
to convert search tokens. Given a keyword token for a doc-
ument for which it knows the key, the server can “cancel”
the client’s secret key from the token, enabling an efficient
dictionary attack which is fundamentally different from the
generic attack mentioned in [48]. Most importantly, this at-
tack only needs the search token and does not rely on the
server’s ability to observe matches of the user’s queries to
the existing documents. Even if Mylar completely hid all
access patterns, perhaps by running on top of ORAM [24]
or any other oblivious storage, it would remain vulnerable
to our query recovery attack.

In our simulations for kChat with real-world chat logs, the
dictionary attack recovers all user queries and nearly 70% of
the keywords in all chats stored on the server. The attacks
were experimentally confirmed using the publicly available
Mylar and kChat codebase.

Our results show that the problem of securing client-server
systems against persistent passive and active attackers on
the server is very challenging and still unsolved. We con-
clude with general lessons for the designers of BoPET sys-
tems and outline open research problems.

2. BACKGROUND

2.1 BoPETs
We use the term BoPETs generically to refer to client-

server applications that encrypt clients’ data so that the
server cannot decrypt it, yet rely on special properties of
the encryption scheme to retain some of the application’s
original server functionality. BoPETs are based on one or
more property-revealing encryption (PRE) schemes, which
is the term we use for schemes that, in this setting, re-
veal to servers some plaintext properties to facilitate server-
side processing over ciphertexts. PRE schemes include so-
called property-preserving encryption (PPE) schemes whose
ciphertexts publicly reveal plaintext properties, such as equal-
ity [6] and order [2,7,8], as well as encryption schemes that
reveal plaintext properties only when given both a ciphertext
and a token derived from the secret key—e.g., searchable en-
cryption [17,55] and multi-key searchable encryption [49].

BoPETs gained popularity in industry before they were
studied formally by academics. As early as 2009, prod-
ucts from Ciphercloud [16] and Navajo Systems [41] were
using hand-crafted encryption schemes to enable searching
and sorting in software-as-a-service (SaaS) cloud applica-
tions. Newer entrants to this rapidly growing market in-
clude Perspecsys [46] and Skyhigh Networks [54]. Overnest’s
Gitzero [22] is a secure Git repo that stores encrypted code
on an untrusted server and enables search using searchable
encryption. PreVeil [51] is “a version of Mylar for certain
kinds of applications” [58]. Kryptnostic [59] built Kodex,
a collaboration and chat platform that supports document
sharing and search on shared documents using MKSE. Ze-
roDB is an encrypted database system which, according to
section 3 of their whitepaper [18], uses a proxy re-encryption
scheme inspired by Mylar’s MKSE to share content encryp-
tion keys between users.

The academic literature focused on PRE schemes as iso-
lated primitives until BoPET systems such as CryptDB [47],
ShadowCrypt [28], Mimesis Aegis [34], and Mylar [48] sought
to incorporate PREs into complete client-server systems.

2.2 Mylar
Mylar [48] extends the Meteor Web application frame-

work [39]. Meteor apps include clients and servers, both
implemented in JavaScript. Meteor uses MongoDB [40] for
server-side storage. MongoDB stores data in documents
which are organized into collections. Each document con-



sists of one or more key-value pairs called fields.

Principals. A principal in Mylar is a name and a pub-
lic/private key pair that is used to encrypt and decrypt con-
fidential data. Each principal is thus a unit of access control.
In addition to the principals used to encrypt documents, ev-
ery user has a principal.

The app developer specifies which fields in a MongoDB
collection are confidential and which principals are used to
encrypt and decrypt these fields. A principal may be used for
only one document (e.g., in MDaisy, each appointment is en-
crypted by a unique principal) or multiple documents (e.g.,
in kChat, every message sent to a chat room is encrypted
with the key of that room’s principal). Unencrypted confi-
dential data exists only in users’ browsers and is ostensibly
never sent to or stored on the server.

Mylar uses certificates to protect the binding between
users’ identities and their keys. The root of Mylar’s certifi-
cate graph can be either a certificate from a trusted third-
party identity provider (IDP) or a static principal whose
keys are hard-coded into the Mylar application.

Mylar also includes integrity protections and code verifi-
cation, but we omit them for brevity. Our attacks do not
involve breaking these protections.

Sharing and searching encrypted data. If Alice wants
to share encrypted data with Bob, she needs to give him
the keys of the corresponding principal. To do this, Alice
encrypts these keys with Bob’s public key and uploads the
resulting wrapped keys to the database. By downloading and
decrypting them, Bob gains access to the principal.

A user may have access to multiple principals, thus Mylar
needs to support keyword search over documents encrypted
with different keys. A straightforward approach is to have
the user submit a separate search token for each principal it
has access to, but this is expensive with many principals.

For efficiency, Mylar relies on the server to generate tokens
for searching over multiple principals. The user submits a
single token, for documents encrypted with the user’s prin-
cipal. The server then uses a client-generated delta value to
convert this token to another token for documents encrypted
with a different principal. Whenever a user is given access
to a new principal, their client automatically sends the delta
associated with that principal to the server.

Threat model. Mylar claims to protect confidentiality of
users’ data and queries against actively malicious servers,
including servers that collude with malicious users, under
the assumption that honest users never have access to any
document controlled by the adversary. As we explain in
Section 8, this assumption is not enforced by the reference
implementation of Mylar, nor do we believe that it can be
enforced in realistic collaborative applications.

Mylar explicitly does not hide access or timing patterns,
even though in any real-world deployment they are visible
to an adversarial server. In Section 7, we show what these
patterns reveal to a persistent passive attacker. In Section 8,
we show how an active attacker can break the confidentiality
of Mylar-protected data without exploiting access patterns.

3. SECURITY MODEL FOR MKSE
Mylar is based on a multi-key searchable encryption (MKSE)

scheme invented by Popa and Zeldovich [49]. In [48], Popa
et al. argue that Mylar is secure by appealing to the cryp-
tographic proofs of security for this scheme.

In this section, we show that the theoretical definitions
of security for MKSE proposed by Popa and Zeldovich [49]
fail to model security even against a passive adversary. To
this end, we construct an artificial scheme that satisfies their
definition but trivially leaks all keywords queried by a user,
which also reveals the corresponding plaintexts.

This shows that the proofs in [48, 49] are not useful for
arguing any meaningful level of security. It does not (yet)
imply that the Mylar MKSE scheme is vulnerable to attack.
In the rest of this paper, we demonstrate practical attacks
on Mylar when using this MKSE scheme as designed and
implemented by Popa et al.

3.1 Mylar MKSE
A multi-key searchable encryption scheme (MKSE) allows

efficient keyword search over encrypted keywords. We focus
here on the construction by Popa and Zeldovich [49]. For
simplicity assume that all keywords are of the same length,
call it ` bits. The scheme relies on bilinear pairings. Let
G1,G2,GT be groups, all of the same order p. Let n ∈ N
be a security parameter. We associate to these groups an
efficiently computable pairing function e : G1 × G2 → GT
that enjoys the property that for all g1 ∈ G1, g2 ∈ G2, gT ∈
GT and any α, β ∈ Zp it holds that e(gα1 , g

β
2 ) = gαβT . The

scheme also uses hash functions H : {0, 1}∗ → G1 and
H2 : {0, 1}n ×GT → {0, 1}`+n, modeled as random oracles.

Figure 1 shows the details of the scheme. After generat-
ing parameters and keys (MK.Setup and MK.Kg), the client
uses MK.Enc to (separately) encrypt each keyword of a doc-
ument. To enable the server to convert search tokens for
documents encrypted under different keys, the client gen-
erates an appropriate delta value (MK.Delta) and sends it
to the server. To perform keyword search over encrypted
documents, the client generates a token (MK.Token) and
sends it to the server. The server uses the delta value to ad-
just the token (MK.Adjust) and determines if an encrypted
document matches the keyword (MK.Match).

Note that MK.Match assumes an adjusted token. One
can run MK.Delta on k1 = k2, allowing one to “adjust” a
token generated for one key into an “adjusted” token for the
same key. Correctness requires that: (1) for all keywords w,
MK.Match(tk′, c) returns 1 with probability overwhelmingly
close to one if tk′ is a search token for w and c is an encryp-
tion of w, and (2) for all keywords w 6= w′, MK.Match(tk′, c)
returns 0 with probability overwhelmingly close to one if tk′

is a search token for w′ but c is an encryption of w.
The scheme implemented in Mylar is a variant of the one

described above, in which the same randomness r is reused
for all keywords from the same document. Only one cipher-
text is generated for each unique keyword, and ciphertexts
are stored in the order in which the keywords appear in
the document. This reuse of randomness does not seem to
impact security relative to the Popa-Zeldovich definitions,
although analysis would require some change in semantics
to accommodate encrypting whole documents at once rather
than individual keywords. We omit the details and focus on
the simpler scheme shown in the figure. All attacks in the
rest of the paper work regardless of which version of the
scheme is used, except where mentioned otherwise.

Security definitions. Popa and Zeldovich introduced two
notions of security for MKSE: data hiding and token hiding.
We will only sketch them informally and refer the interested
reader to the whitepaper [49] for the formal definitions.



• MK.Setup(1n):
return pars = (n, p,G1,G2,GT , e, g1, g2, gT )

• MK.Kg(pars): return k ← Zp

• MK.Delta(k1, k2): return ∆ = g
k2/k1
2 ∈ G2

• MK.Token(k,w): return H(w)k ∈ G1

• MK.Enc(k,w): Draw a random r ← {0, 1}n. Compute
c′ = H2(r, e(H(w), g2)k). Output c = 〈r, c′〉.

• MK.Adjust(tk,∆): return tk′ = e(tk,∆) ∈ GT .

• MK.Match(tk′, c): Let c = 〈r, c′〉. Return 1 if H2(r, tk′) =
c′ and 0 otherwise.

Figure 1: The MKSE scheme analyzed in [49].

Data hiding is formalized via a game involving a challenger
Ch and an adversary A. The game starts by having Ch run
parameter generation. A then chooses an access graph that
specifies which keys can have their search tokens converted
to which other keys; A can choose any keys except one dis-
tinguished key k0 generated honestly by Ch. Ch generates
an adjustment delta for each edge in the graph, and gives
these values to A. Then A picks two keywords w0, w1, gives
them to Ch and receives back encryption MK.Enc(k0, wb)
for randomly chosen b. A can make adaptive queries to an
encryption oracle (that uses k0) and a search token oracle
(for any key). It cannot, however, make a query to the
search token oracle for w0 or w1 if it is for a key with an
edge to k0 in the access graph. This restriction is critical,
as removing it leads to a vacuous definition (no scheme can
meet it), but our counter-example below exploits it. The
adversary outputs a guess b′ and wins if it equals b.

Token hiding attempts to capture the desired security for
keyword queries. The adversary A again generates an access
graph with a special challenge user with key k0. A picks all
other keys. The challenger Ch then generates delta values
for all edges in the graph and gives them to A. Then A can
make adaptive queries to an encryption oracle and search
token oracle for any of the keys, as well as output a pair
w0, w1 of keywords for which Ch returns MK.Token(k0, wb)
for randomly chosen b. Throughout the game A cannot
make an encryption query or search token query on w0 or
w1 for keys that do not have a path to them from k0. In
words, the adversary can either perform queries on keywords
unrelated to the challenge pair, or can query them but only
for keys unrelated to k0 via delta values. Finally, A outputs
b′ and wins if b′ = b.

3.2 Counterexample
Popa and Zeldovich assume that if a scheme is both data-

hiding and token-hiding, then no efficient adversary can dis-
tinguish encryptions of keywords or distinguish tokens of
keywords (i.e., the outputs of MK.Enc and MK.Token, re-
spectively) non-negligibly better than a random guess. In
this section, we show that this is false.

The Popa-Zeldovich approach of using two distinct no-
tions for data hiding and token hiding was previously consid-
ered for single-key symmetric searchable encryption (SSE)
by Curtmola et al. in 2006 [17], building on a data-hiding
definition from [23]. Curtmola et al. showed that achieving
both data hiding and token hiding does not imply that a
single-key SSE scheme hides queries. We adapt their coun-

terexample in a straightforward way to the MKSE setting.
The counterexample version of the Mylar MKSE scheme

has the same MK.Setup, MK.Kg, MK.Token and MK.Adjust
algorithms. We modify encryption and matching as follows:
• MK.Enc′(k,w): Draw a random r ← {0, 1}n. Com-

pute c′ = H2(r, e(H(w), g2)k) ⊕ (w‖0n). Output c =
〈r, c′〉.
• MK.Match′(tk′, c): Let c = 〈r, c′〉. Return 1 if the bit

string H2(r, tk′) ⊕ c′ ends with ` zeros and return 0
otherwise.

Below, we prove that this scheme is secure according to
the Popa-Zeldovich definitions. Yet, given a search token
H(w)k and an encryption c = 〈r, c′〉 of a keyword (where
c′ = H2(r, e(H(w), g2)pr) ⊕ (w||0`)), the malicious server
can remove the pseudorandom pad and reveal the word w.

We conclude that the proofs of security for Mylar based
on the Popa-Zeldovich MKSE model do not imply anything
about the actual security of Mylar.

Correctness. The probability that MK.Match′(tk′, c) = 1
is one when tk′ is a token for a keyword w and c is an
encryption of w. Now consider the probability of an in-
correct match, where tk′ = e(H(w′), g2)k but c = 〈r, c′〉
with c′ = H2(r, e(H(w), g2)k) ⊕ (w‖0n). If H is collision
resistant, then H(w′) 6= H(w) with all but negligible prob-
ability and, in turn, the probability that the low n bits of
H2(r, e(H(w′), g2)k)⊕c′ are all zero is at most 2−n assuming
H2 is a random oracle.

Data hiding. Intuitively, the modified Mylar scheme is
data-hiding because H2 is a random oracle, so the value c′

that is XORed with w||0n acts like a pseudorandom one-time
pad. Therefore, the only way to distinguish the two chal-
lenge keywords is to run MK.Match and see which challenge
keyword-ciphertext it matches. According to the Popa-Zeldovich
data-hiding definition, however, the adversary cannot query
to obtain a token for either of the challenge keywords be-
cause of the restrictions on queries in the game. Thus, the
adversary cannot distinguish the challenge keywords.

We now sketch a more detailed proof. Given a data-hiding
adversary A against the counterexample scheme, we con-
struct a data-hiding adversary B against the original Mylar
scheme. B proceeds through the five stages of the data-
hiding game as follows. (1) It runs A and outputs in the
first stage the same access graph G as output by A. (2) B
gets a list of delta values, which it gives to A. (3) When A
outputs two challenge keywords (w0, w1), B chooses a bit d
at random and outputs as its challenge (U,wd) for U drawn
uniformly from the message space. It gets back a ciphertext
〈r, c′〉 and gives back to A the ciphertext 〈r, c′ ⊕ (wd‖0n)〉.
(4) B answers oracle queries by A using its own oracles.
Note that any token queries by A cannot be on w0 or w1

for a user u for which (u, 0) ∈ G (i.e., for which the delta
between user u and 0 is in the graph). Thus B will never
make such a token query on wd. The probability that one of
A’s token queries is on U is negligible for sufficiently large
|U |. Thus B satisfies the query restrictions of the game with
all but negligible probability. (5) Finally, A outputs bit b′,
and B checks if b′ = d. If so, it outputs 1 and otherwise it
outputs 0.

To complete the proof, it suffices to show that B’s success
upper bounds that of A. If B’s challenge is b = 1, then
the environment that B simulates for A is exactly the data-
hiding game for the modified Mylar scheme. If B’s challenge



is b = 0, then the probability that A outputs d is 1
2

be-
cause A receives no information about d. Thus twice B’s
advantage is an upper bound on A’s advantage.

Combining this with the data-hiding proofs for the origi-
nal scheme [49] implies the data-hiding security of the mod-
ified scheme under the same bilinear pairing assumptions.

Token hiding. Intuitively, token-hiding is satisfied be-
cause the adversary receives a token for user key k0 of ex-
actly one of the challenge keywords and can never request
the token of either keyword under k0 or any other “non-free”
user key, meaning the adversary has a delta which can ad-
just the search token to search over a document whose key it
specified in setup. It can also never receive an encryption of
either of the challenge keywords under any “non-free” doc-
ument key, which is a key to a document that is accessible
by k0 or any users that can access any documents also ac-
cessible to k0. Without either of these values, it cannot run
MK.Match and distinguish the challenge token.

As with data hiding, we can reduce the token-hiding se-
curity of the modified Mylar MKSE scheme to the original
one. Because token generation is the same in both games,
the reduction simply simulates encryption query responses
appropriately (by xor-ing in w‖0n to values).

3.3 Limitations of formal models
Our counterexample highlights a critical problem with the

Popa-Zeldovich formal model for MKSE. In the literature on
(single-key) symmetric searchable encryption (SSE), it has
long been known that simultaneously meeting separate data-
hiding and token-hiding definitions is insufficient. Curtmola
et al. [17] give a stronger, all-in-one simulation-based no-
tion of security for SSE, and one could conceivably craft a
similar model for MKSE. But designing a model that ad-
dresses the full spectrum of attacks from an actively mali-
cious server—which is the explicit goal of Mylar—requires
dealing with a number of other, more challenging issues.

One issue is how to formalize active adversaries. In
the cryptographic literature, “active” is often interpreted as
the adversary’s ability to make adaptive queries, i.e., choose
later encryption or token queries as a function of the earlier
ones. Query adaptivity is handled by many simulation-based
notions for SSE, starting with [17], and the Popa-Zeldovich
definitions allow some query adaptivity as well.

Another issue affecting the modeling of active adversaries
is whether the set of documents subject to keyword search
is fixed and never changed, or if documents can be deleted,
added, or updated. Web applications, including those for
which BoPETs such as Mylar are designed, are inherently
dynamic. Modern SSE definitions [10, 31, 43] model a dy-
namic document corpus and an adversary that can make
dynamic changes. Modeling a dynamic corpus for MKSE
would be more complex. An accurate definition must incor-
porate dynamic changes to the access graph. This includes
user nodes and document nodes being added, as well as ac-
cess edges being added between user and document nodes.

In the implementation of Mylar, a malicious server can
easily add a document and give any user access to it. The
Mylar paper [48] proposes a defense but it has not been
implemented, nor is it clear how to implement it in collab-
orative applications. In Section 8, we show how to exploit
this gap to break the confidentiality of data and queries.

Even if the system could be proved secure relative to an
all-in-one simulation-based model for MKSE that addresses

both query adaptivity and dynamic changes to the docu-
ment corpus, this is not enough to prevent passive or active
attacks based on search access patterns, query [9] or file
injection [9,64], or passive or active attacks against the non-
search portions of the BoPET system (such as metadata).
Mylar excludes access patterns from its threat model, but
this will be small consolation for the users of the applications
whose access patterns leak sensitive information to a persis-
tent passive attacker on the server. We show how to exploit
metadata and access patterns in Mylar-based applications
in Sections 6 and 7, respectively.

4. THREAT MODELS FOR BOPETS
In the rest of this paper, we turn to the security analysis of

BoPETs and Mylar in particular. We consider three types
of attacks, in the increasing order of attacker capabilities.

A snapshot passive attack is a one-time compromise of the
server that gives the attacker a complete snapshot of the
server’s state at the time of the attack. This is the classic
“smash and grab” attack that involves an attacker breaking
in and stealing all encrypted data, unencrypted data, and
metadata stored on the server.

A persistent passive attack involves an attacker who can
fully observe the server’s operations over a period of time.
This attacker does not change the server’s actions but can
watch applications’ dynamic behavior, access patterns, and
interactions with users. Unlike a snapshot passive attacker,
a persistent passive attacker can observe how the server
evolves over time in response to interactions with users. We
propose the persistent passive attacker as a realistic model
for an honest-but-curious BoPET server.

An active attack involves an arbitrarily malicious attacker
who can tamper with messages to and from clients and per-
form any operation on the server. It can also collude with
one or more users in order to compromise confidentiality of
the other users’ data and can adapt its strategy over time.

Comparison to prior threat models. Commercial BoPETs
all encrypt data before uploading to a server but are vague
about their adversary models. We believe that they pri-
marily attempt to defend against snapshot passive attackers
and network eavesdroppers. (We do not consider the latter
in this paper.) We are unable to determine if they claim
security against persistent passive or active attackers.

Some academic BoPETs claim security against active (and
therefore passive) attacks with the important caveat of ex-
cluding attacks based on access patterns or metadata [28,34,
47, 48]. This restriction stems from the fact that the state-
of-the-art PRE schemes upon which BoPETs are based leak
this information for the sake of efficiency.

This leakage may be inevitable, but we need methodolo-
gies for assessing the damage it can cause. Obviously, in a
real-world deployment, a malicious or compromised server
can take advantage of all available information, even the
information the designers of the system opted to “exclude”
from the security model. Our analyses reflect this approach,
and the passive attacks against Mylar in Sections 6 and 7
exploit what would be considered out of scope by previous
work. We believe similar attacks apply to other BoPETs.
On the other hand, the attacks in Section 8 fall squarely
within the threat model considered in [48].



5. BUILDING WEB APPLICATIONS
ON TOP OF ENCRYPTED DATA

It is difficult to evaluate the security of an application
framework in isolation, without considering specific applica-
tions, since leakage can vary dramatically from application
to application depending on what data they store on the
server, what operations they perform on the data, etc.

Mylar can support a wide variety of Web applications,
but only a simple chat application called kChat is publicly
available. In addition to kChat, we ported three open-source
Meteor apps representing different types of functionality (see
Section 5.2). We used an “updated” implementation of My-
lar [57] linked from the Mylar project website, but all issues
we found are present in the original code, too.

5.1 Porting apps to Mylar
Since the main motivation for Mylar is to preserve the

structure of the original app, our porting process is parsi-
monious and follows these principles: (1) maintain user ex-
perience of the original app; (2) follow the app’s data model
unless changes are required to encrypt confidential data; (3)
change as few of the relationships between data structures
as feasible. We believe that this process reflects what devel-
opers would do when porting their Meteor apps to Mylar.
Except for a few cases explained in the relevant sections,
none of the vulnerabilities uncovered by our analysis arise
from the decisions we made while porting our sample apps.

All of Mylar’s changes to Meteor are done through plug-
and-play modules called packages. After adding the Mylar
packages to the app, the developer needs to mark which
fields to encrypt, which principals to use to encrypt them,
and add principal creation to the code.

Creating, viewing, and updating documents with encrypted
fields must be handled by the client. If an app accesses the
database through Meteor methods on the server, this func-
tionality needs to be moved to the client. The developer
needs to add code allowing users to share their encrypted
data and change the app to use Mylar’s encrypted search.
This is straightforward but requires creation of search filters
restricting what encrypted data a given user can search over.

Security decisions. Deciding how to create access-control
principals and which field to encrypt with which principal
requires an understanding of how data is used and shared
within the app. These decisions are the most subtle and
critical parts of the porting process.

For apps where multiple documents are encrypted with
the same key, we created principals associated with the doc-
uments’ common feature. For example, all messages in a
chat room should be encrypted with the same key, thus prin-
cipals are associated with chat rooms. If each document is
encrypted with its own key, principals correspond to indi-
vidual documents. For example, each medical appointments
in MDaisy has its own principal.

If functionality is moved from the server to the client, the
developer may need to update user permissions for the data,
which is notoriously challenging [25]. The user must be given
enough permissions for the app to work correctly, without
enabling him to access another user’s private data.

We conjecture that many developers will struggle to make
these decisions correctly and that independently developed
Mylar apps will contain vulnerabilities caused by developers’
mistakes. Even the authors of Mylar made a security error

when porting kChat to Mylar (see Section 6.2).

5.2 Sample apps
kChat for Mylar is a chat room app released by the Mylar

authors. A user can create rooms, add other users to the
rooms they created, send messages, and search for keywords
over all messages in all rooms that he belongs to.

To find other case-study apps, we searched the DevPost
software project showcase and GitHub for open-source Me-
teor apps that (1) work with potentially sensitive data, (2)
contain non-trivial server functionality, such as searching
over sensitive data and/or sharing between multiple users,
and (3) are straightforward to port to Mylar.

MDaisy. MDaisy is a medical appointment app. Every
user is either a patient or a member of the medical staff.
Staff create and manage appointments for patients. Each
appointment is associated with a procedure (e.g., MRI, CT
scan, etc.). Patients can view information about their ap-
pointments and the associated procedures.

Each appointment has its own principal that encrypts all
sensitive fields. The staff member creating the appointment
grants access to the patient. Information about different
types of procedures is stored separately from appointments.
Each procedure has its own principal that encrypts its data.
A patient is given access to the procedure principal if they
have an appointment involving that procedure.

OpenDNA. Single-nucleotide polymorphisms (SNPs) are
locations in human DNA that vary between individuals.
OpenDNA is a Meteor app that enables users to upload the
results from DNA sequencing and testing services such as
23andMe [1] to a server and check them for risk groups, i.e.,
combinations of SNPs that indicate susceptibility to certain
conditions or diseases such as Alzheimer’s or reveal ancestry.

In the original OpenDNA app, users’ DNA is stored un-
encrypted on disk (not in MongoDB) on the server. Risk
groups are crowd-sourced and can be uploaded by any user.
Each risk group consists of one or more SNPs-genotype pairs.
When a user wants to check their DNA, the server iterates
through all risk groups, compares them to the user’s DNA,
and returns the resulting matches. OpenDNA is an example
of an open system, where any user can contribute content
to be used in other users’ searches.

We modified OpenDNA to encrypt DNA with the user’s
principal and store it in MongoDB. Risk groups are public
and not encrypted. We modified the search functionality to
work over the encrypted DNA: the client requests all risk
groups from the server, submits encrypted search tokens for
each SNP-genotype pair to the server, the server uses these
tokens to search over the user’s DNA.

MeteorShop. MeteorShop is a sample e-commerce app. A
product has an image, description, and price; products are
organized into categories and subcategories. A user adds
products to a cart, which keeps track of them and the total
price. In the ported MeteorShop, every item in the cart is
encrypted with the user’s principal.

The original MeteorShop uses the potentially insecure au-
topublish package that would push the entire database to
client. We modified MeteorShop to only send the products
of the subcategory that the user is currently viewing.

6. EXPLOITING METADATA
Client-server applications need to store metadata on the



Figure 2: A graph showing the access patterns in MDaisy. Each of the three principals and their associated fields are in a different color.
Each encrypted field is marked with a lock the color of the principal that encrypted it.

server. At the very least, this includes information about
which keys are used to encrypt the data and which users
have access to which principals. In many apps, the data
structures created by the app inherently depends on users’
secrets, and even the names of data structures may reveal
sensitive information. This static metadata is available even
to a one-time, snapshot passive attacker.

6.1 Links between objects
In Mylar, every user, principal, and encrypted item is

stored in its own MongoDB document in the app’s database
on the server. Their relationships (e.g., user Foo has access
to principal Bar that was used to encrypt data Baz) form an
access graph, which is visible even to a snapshot attacker.

MDaisy. In MDaisy, each appointment is created by a
member of the medical staff and shared with only one pa-
tient. The details of the appointment are encrypted with
its unique principal, but the metadata representing the ac-
cess graph is not encrypted. Starting with an encrypted ap-
pointment, the server can find the appointment’s encrypting
principal and then, following that principal’s wrapped keys,
find the patients who can access the appointment. Figure 2
shows a graph of the connections from an appointment to
the patients who can access it.

Knowledge of the patients who have access to a particular
appointment can leak information about the encrypted data.
If patient Bob and doctor Alice have multiple appointments
spread over several weeks for a number of months and the
attacker knows that Alice is an oncologist, he can form a
strong hypothesis that Bob is being treated for cancer.

This leakage is inherent in any application where the se-
mantics of inter-user relationships reveal sensitive informa-
tion about users. Preventing it requires hiding the access
graph from the server—a complicated feat in its own right—as
well as hiding users’ interactions and data accesses. Tech-
niques like ORAM [24] might help protect users’ interactions
with the database at the cost of removing BoPET’s function-
ality and reducing it to dumb storage.

6.2 Names of objects
Every developer creating or using a BoPET needs to un-

derstand whether users’ assumptions align with those of the
developer. For example, every principal in Mylar has a name,
which is used to verify the authenticity of keys and thus in-
tentionally left unencrypted by the Mylar developers. The
names of user principals are automatically set to their user-
names or email addresses, but developers are responsible for
assigning names to all other principals. Using sensitive in-
formation when naming principals will leak this information
to a snapshot passive attacker.

kChat. kChat’s principals are chat rooms and users. Their

Figure 3: (From [48]) Bob and Alice are discussing a party in the
‘party’ chat room while Bob and Boss discuss work in the ‘work’
chat room. Bob doesn’t want his boss to find out about the party.

principal names are set to room names and usernames, re-
spectively. In general, principal names are assigned when
principals are created and users are not told how they were
chosen. Users normally cannot see the names of the rooms
that they have not been invited to and they might mistak-
enly assume that room names are encrypted on the server.
This can create a false sense of privacy in users who give
their rooms revealing names. In fact, room names are visi-
ble via the names of the corresponding principals.

The authors of Mylar intentionally gave human-under-
standable names to chat rooms in kChat. This breaks the
security of their own motivating example. One of the fig-
ures in [48] shows a kChat user expressing hope that another
user does not learn certain information—see Figure 3). But
principal names (i.e., Mylar’s unencrypted metadata) are
derived from room names (i.e., kChat’s metadata). Because
Mylar’s metadata is visible in plaintext on the server, the
server operator can easily learn the name of the chat room
and thus the secret that the users want to protect.

This internal inconsistency shows how difficult it is to
match user and developer expectations. The authors of My-
lar could have chosen nondescript principal names, but this
would have broken Mylar’s reliance on principal names when
verifying keys and identities.

6.3 Features not protected by encryption
Even secure encryption leaks many features of the data,

such relative sizes. If the data is searchable, Mylar also
reveals the count of unique words for each document because
it computes a search token for every word and stores these
tokens in the same document as the encrypted data.

OpenDNA. In OpenDNA, the combination of encrypted
data and search tokens exceeds the maximum MongoDB
document size of 16 MB, thus each user’s DNA must be
split into multiple MongoDB documents. Mylar provides no
guidance to help developers make these decisions.

One simple solution is to split the DNA by chromosomes,



with a separate document containing all SNPs for each chro-
mosome. Another simple solution is to split the DNA into
n documents, with an equal number of SNPs in each.

Splitting DNA into documents based on chromosomes en-
ables a persistent passive attacker to infer which risk groups
the user is searching for. For example, if a risk group matched
documents 1, 3, and 8, then the attacker can look for known
risk groups that are associated with SNPs in chromosomes
1, 3, and 8. Even if the encrypted chromosomes were stored
in random order in the database, the attacker could tell
which chromosome matched the risk group as the number
of SNPs differs greatly between chromosomes. For example,
one DNA test from 23andMe gives 1,700 SNPs in one chro-
mosome and 77,000 in another.1 These differences result
in large discrepancies in the size of the encrypted data and
number of encrypted words between documents.

Splitting DNA into equally sized documents also leaks in-
formation about the user’s queries. In the case of 23andMe,
the user is given a file with SNPs ordered by their chromo-
somes, and the ordering is preserved when the file is up-
loaded. So if the user’s DNA is split into, say, 5 documents,
the attacker can guess that chromosomes 1 and 2 are in doc-
ument 1, chromosome 3 is split between documents 1 and 2,
chromosomes 4-6 are in document 2, etc.

MDaisy. In MDaisy, medical staff members have only
their names stored in the database, while patients have their
name, date of birth, medical record number, and gender
stored. Knowing which users are patients and which are staff
helps a snapshot passive attacker infer sensitive information
(see Section 6.1). If the user’s role is encrypted, it can be
easily inferred from the number of encrypted fields (four for
patients, one for staff). Even if all of the user’s information
were stored in a single field, the size of that field would
distinguish patients from staff members.

Preventing inference from relative ciphertext sizes may
very well be impossible in practice. Data can be padded
to a pre-defined size, but this introduces large overheads in
computation and storage. Without application-specific in-
formation about data sizes, a BoPET cannot generically hide
the size. Protecting against other attacks such as frequency
analysis is tied directly to the cryptography and functional-
ity of the BoPET and may be a fundamental limitation.

7. EXPLOITING ACCESS PATTERNS
BoPETs involve rich client-server interactions. Clients

fetch, send, and update documents in the server’s database
and interact with each other through the server. By design,
searchable encryption leaks whether a match succeeded. Fur-
thermore, in systems like Mylar, keywords are encrypted in
order, thus the order of the tokens leaks information, too.

A persistent passive or active attacker on the server can
infer users’ secrets from these access patterns. This leakage
is fundamental in any non-trivial BoPET because the ser-
vices that a BoPET provides to different users depend on
these users’ inputs into the system.

The designers of Mylar acknowledge that Mylar does not
hide access patterns, and in the BoPETs literature it is typ-
ical to exclude this leakage [28, 33, 34, 47]. Of course, a ma-
licious server can easily observe these patterns. To fully
understand the limits of BoPETs’ security in realistic sce-

1We found similar percentage breakdowns in 1,900 user-
released 23andMe reports from openSNP [44].

narios, we must analyze what sensitive information can be
inferred from access patterns in concrete applications.

MDaisy. If two different patients access the same en-
crypted procedure information, a persistent passive attacker
can infer that both are undergoing the same procedure.
Given more users and more appointments, this attacker can
cluster users and begin to understand how procedures relate
to one another (e.g., “if a user goes in for procedure Foo,
they will typically come back two weeks later for procedure
Bar”). The attacker does not know what the procedures are,
but this confidentiality is very brittle. If a single user dis-
closes their procedure (either publicly or by colluding with
the server), everyone who underwent the same procedure
during the attacker’s observations will lose their privacy.

MeteorShop. Our ported MeteorShop app encrypts every
item in the user’s cart. Items prices stored in the cart are
encrypted, too, lest the server identifies the items by solving
a knapsack problem given the total price.

A persistent passive attacker can assume that when an
encrypted item is added to the user’s cart, it came from the
list of products most recently requested by the user. This
leakage is mitigated somewhat by the fact that MeteorShop
does not have individual pages for products. Instead, when
a user clicks on a subcategory, the client fetches all products
in that subcategory from the server and displays them. The
server thus learns only the item’s subcategory.

If a shopping app listed each product on its own page, the
server would be able to infer the exact item added to the
cart. Even if product information were fully encrypted on
the server and the attacker were somehow prevented from
using the app as a user, the server could infer the products
from the images requested by the client.

OpenDNA. In OpenDNA, if the risk groups being searched
for as well as the search order are known to the server, the
server learns sensitive information about the user’s DNA
based on whether a query matched a group or not. If the
server knows only which risk groups are associated with dis-
eases, the actual risk group might not matter as the match
reveals that the user is at risk for something.

DNA documents in OpenDNA preserve the original order.
If a query returns a match, the server will know which en-
crypted data was matched and can use its location to figure
out which SNPs were searched for. From this, the server can
infer the SNP values and the risk group searched for.

8. ACTIVE ATTACKS
BoPETs are efficient only insofar as they rely on an un-

trusted server to execute the application’s server function-
ality. These operations must be verified by the client lest
they become an avenue for active attacks by a malicious
server. In this section, we use Mylar as a cautionary case
study to demonstrate how a malicious server can exploit his
unchecked control over security-critical operations to break
the confidentiality of users’ queries.

First, we show how the server can obtain the delta value
that enables searches over a “tainted” principal whose keys
are known to the server. Then, we show how the design
of Mylar’s MKSE allows the server to perform dictionary
attacks on all search keywords, not just those that occur
in the tainted principal. This enables efficient brute-force
attacks on all of the victim’s queries, past or future, over
any principal in the system. Using chat as our case study,



we demonstrate how this leads to the effective recovery of
the information that Mylar was supposed to protect.

8.1 Forcing users into a tainted principal
As explained in Section 2.2, sharing of documents between

users in Mylar is implemented using wrapped keys. For ex-
ample, suppose Alice wants to invite Bob into her new chat
room. Alice generates a principal for the room, wraps it
with Bob’s public key, and adds the wrapped key to the
database. Finally, she adds this key’s id to the accessInbox

field in Bob’s principal. When Bob’s client is informed of
a new wrapped key in its accessInbox, it immediately and
automatically creates the delta for this key, enabling Bob to
search over the contents of Alice’s chat room.

A malicious server can create its own principal, for which
it knows the keys. We call such principals tainted. It can
then add the tainted principal’s wrapped keys to the vic-
tim’s accessInbox, and the victim’s client will automati-
cally generate the delta for keyword searches over the tainted
principal. To stay stealthy, the server can then immedi-
ately remove the principal, wrapped keys, and delta from
the database, ensuring that the victim will not notice. This
attack has been verified by executing it in Mylar.

Mylar uses a stateless IDP (identity provider) to certify
that keys claimed by users and principals actually belong to
them. In the above example, it prevents a malicious server
from substituting its own keys for other users’ and princi-
pals’ keys. It does not protect the user from being forcibly
added to any principal chosen by the server.

Fixes. The problem is fundamental and generic. BoPETs
aim to preserve server functionality, and in multi-user appli-
cations, the server is responsible for conveying to users that
there is a new document that they can now query. To foil
this attack, all server actions involving adding access rights
to users must be verified or performed by the client. This in-
volves changing the structure of the application and adding
non-trivial access-control logic on the client side.

The solution suggested by Popa et al. [48] is to require
users to explicitly accept access to shared documents (and,
presumably, check the IDP certificate of the document’s
owner, although this is not mentioned in [48]). The al-

lowSearch function in the Mylar implementation is responsi-
ble for enforcing this. It contains one line of code, which up-
dates an otherwise unused variable and calls what we believe
is an obsolete version of the MylarCrypto.delta method
without any of the needed parameters. It is never invoked
in any publicly available Mylar or application code. For ex-
ample, in kChat, anyone can add a user to their chat room
without that user’s consent.

We do not believe that this solution, even if implemented
properly, would work for realistic applications. The seman-
tics of allowSearch are highly counter-intuitive: when the
user is told that someone shared a document with him and
asked“Do you want to be able to search this document?,” the
user must understand that answering “Yes” can compromise
all of his queries over his own documents, including those
that are not shared with anyone. Also, whenever different
documents have different access rights, every document must
be a separate principal. Asking the user for a confirmation
for every document (e.g., email) to which he is given access
destroys user experience in many collaborative applications.

Collusion. The allowSearch defense does not prevent
collusion attacks. If the user voluntarily joins a malicious

principal—for example, receives an email from a user he
trusts but who is colluding with the server—the result is
exactly the same: the server obtains the delta for keyword
searches over a tainted principal.

Gap between models and practice. In the searchable
encryption literature, it is common to assume for simplicity
that the search index is static, i.e., fixed before a security
experiment begins and does not change. As explained in
Section 3.3, Mylar deals with a more complicated access-
controlled search abstraction, where changes to the “index”
can take the form of document creation, user creation, or
access edge creation when an existing user is given access to
a document they did not previously have access to.

In the model claimed to provide the theoretical founda-
tion for Mylar [49], Popa and Zeldovich assume a static
access graph. Even if the model properly captured what
it means for MKSE to be secure (it does not—see Sec-
tion 3.2), the security of each user’s queries and documents
would critically depend on the user never touching any other
data—voluntarily or by accident—for which the adversary
knows the key. This model is not relevant for the practical
security of MKSE-based collaborative systems, such as chat
or email, where dynamic access graphs are the norm.

8.2 Expanding the attack
Any searchable encryption scheme that leaks access pat-

terns is generically vulnerable to the following attack: if the
user searches an adversarially chosen document, the adver-
sary learns whether the query matched one of the keywords
in that document. This attack, briefly mentioned in [48, sec-
tion 5.4], has been known in folklore since before the Mylar
paper was published.

In the rest of this section, we explain how the flawed de-
sign of Mylar makes it vulnerable to a much more powerful
attack. Once the malicious server obtains the token con-
version delta for a particular document, he can expand the
attack to all of the user’s documents (not just those that
the user shares with the adversary) and all search keywords,
including keywords that do not occur in any document stored
on the server.

If Mylar fully hid access patterns—for example, by utiliz-
ing some kind of oblivious storage or private information re-
trieval—the generic attack mentioned in [48] would be foiled
but Mylar queries would still be vulnerable to the brute-force
attack on search keywords described in Section 8.3 (but not
to the concomitant plaintext recovery attack, which requires
the server to observe which documents matched the user’s
search query).

All documents. Mylar claims that it “protects a data
item’s confidentiality in the face of arbitrary server com-
promises, as long as none of the users with access to that
data item use a compromised machine” [48]. This claim is
false. In fact, we are not aware of any searchable encryption
scheme that can guarantee this property.

For example, suppose Alice keeps her private files on the
server. Only she has access, and she is not using a com-
promised machine. Alice receives a server-hosted message
from Bob, who uses a compromised machine. Now, if Alice
searches Bob’s message for a particular keyword, a malicious
server will be able to search all of her private files for that
keyword—even though none of the users with access to these
files use a compromised machine. This is a generic feature of
all searchable encryption schemes, including Mylar’s MKSE.



In the implementation of Mylar, the situation is even
worse. As we explained in Section 8.1, a malicious server
can forcibly add any user to any document, thus expanding
the attack to all documents in the system.

All keywords. For efficiency, Mylar trusts the server to
convert search tokens between principals. In Section 8.3, we
show how this unique feature of Mylar’s MKSE enables the
server to perform dictionary attacks on all of the user’s
queries over any principal. The state-of-the-art attacks
on searchable encryption recover only the query keywords
that occur in adversary-controlled documents; increasing re-
covery ratios requires known-document or file-injection at-
tacks [9,64]. By contrast, Mylar allows a malicious server to
recover query keywords regardless of whether they occur in
adversary-controlled documents or not.

The basic design flaw (relying on the server to perform a
security-critical operation) is exacerbated in Mylar because
there is no way for the user to revoke a delta disclosed to the
server, nor prevent the server from using the delta to verify
his guesses of the user’s queries.

8.3 Brute-forcing query keywords
The attack in this section does not require online access.

The server can save the victim’s queries until the victim is
forced into or willingly joins a tainted principal.

Suppose the victim with key k1 has access to a tainted
principal with key k2. The server has the victim’s delta to

the principal key, ∆1 = g
k2/k1
2 . Knowing k2 and ∆1 the

server can compute ∆
1/k2
1 = g

k2/k1·1/k2
2 = g

1/k1
2 .

When the victim issues a search query for word w, it is

computed as H(w)k1 . The server can pair this with g
1/k1
2

to get e(H(w)k1 , g
1/k1
2 ) = e(H(w), g2). The pairing e, the

hash H, and the generator g2 are all public and known to the
server, thus it can pre-compute a dictionary of e(H(w), g2)
for every possible search query and, when the victim sub-
mits a query, immediately check it against the pre-computed
dictionary to uncover the word w.

If the victim has access to another principal k3, the server
can check if a document encrypted with k3 contains w. This
does not require knowing k3 and can thus be done for any
document the victim has access to, tainted or not.

This attack is dangerous in any setting, but it is espe-
cially severe in typical BoPET applications. Popa et al. use
a medical diary application as a case study for multi-key
search [48, section 5.4]. In this application, women suffering
from endometriosis can record their symptoms for a gyne-
cologist to monitor. Since there are many more patients
than gynecologists, all gynecologists are given access to one
staff principal which, in turn, has access to all patient in-
formation. In other words, there is one high-trust principal
shared by the doctors and many low-trust users (the pa-
tients). Once the server obtains a delta for the shared prin-
cipal from any gynecologist, the server can perform plaintext
recovery attacks on every record of encrypted symptoms.

8.4 Experiments
We simulated a brute-force attack on kChat using several

years’ worth of Ubuntu IRC logs [60] and a dictionary of
354,986 English words [19] (the biggest we could find).

We chose kChat as our target because it is the only appli-
cation whose code was released by Popa et al. as an example
of how to port Web applications to Mylar. The Mylar pa-

per [48] uses kChat extensively as a running example—along
with the claims that Mylar is secure against arbitrarily com-
promised servers—but the release notes of kChat say “The
app is secured against passive adversaries (adversaries who
read all data at the server, but do not actively change infor-
mation).” This disclaimer does not appear anywhere in the
Mylar paper [48] or Mylar website (see Section 12). In any
case, as we showed in Section 6.2, kChat does not protect
users’ privacy even against a snapshot passive attacker.

All experiments were run on a Dell Optiplex 7020 with
16 gigabytes of RAM and an Intel i7-4790 quad-core CPU,
clocked at 3.6GHz.

Setup. Our proof-of-concept code uses the “crypto mk”
and “crypto server” C++ libraries from Mylar. It accepts a
user’s search query H(w)k1 , a delta gk2/k1 , and a principal
key k2. This simulates a malicious server obtaining the prin-
cipal key for a document to which the user has access. Pre-
processing every word in our 354,986-word dictionary takes
roughly 15 minutes of wall-clock time. Afterwards, recover-
ing the keyword w from H(w)k1 takes less than 15 ms.

Using Java, we downloaded, parsed, and processed Ubuntu
IRC logs from 2013, 2014, and 2015. We used Tika [5] to
remove non-English words, the Stanford NLP library [56] to
create our “bag of words,” the Porter stemmer algorithm for
stemming [50], and the stopword list from Lucene [4].

Query distribution. We used different years for cross-
validation, attacking logs from one year with a keyword
query distribution generated from another year’s logs. We
experiment both with and without stemming (e.g., chang-
ing “running” to “run”) and stopword removal (e.g., “this”,
“the”, “that”). It is standard in practice to apply stemming
and stopword removal, although the kChat implementation
does neither. Following [9], queries were sampled with re-
placement and without removing duplicates to simulate two
users searching for the same term. If the chosen query was
in our dictionary [19], an adversary would be able to recover
the query keyword and all of its occurrences across all docu-
ments. The recovery rates were calculated as the number of
occurrences of the recovered queried keywords divided by the
total number of occurrences of all words in all documents.
For the stemming and stopword removal case, the recovery
rates were calculated as the number of occurrences of the
recovered queried stemmed keywords divided by the total
number of occurrences of non-stopwords in all documents.

Results. Figure 4 shows the results of our simulated ex-
periments. The upper curve is without stemming and stop-
word removal, the lower includes them. While we performed
cross-validation, the results of all experiments were nearly
identical, so we only present the average recovery rates over
20 trials of the same experiment. The 95% confidence inter-
val was between 4% and 6% in almost all experiments.

We simulated queries in increments of 100, starting with
100 and ending at 2,000. At 100 queries, our recovery rate is
20–25%, growing quickly to above 50% with 800–900 queries.
With 2,000 queries, we recover 65–69% of the entire corpus.

The implementation of Mylar does not randomize the or-
der of encrypted keywords. For data encryption, Mylar uses
MylarCrypto.text_encrypt() which calls the function to-

kenize_for_search() to split strings into lowercase tokens,
preserving order. The ordered tokens are then encrypted
and sent to the Mylar server. Therefore, in addition to key-
words, our attack recovers their order, revealing much more



Figure 4: Recovery rates for simulated query brute-force attacks
against Ubuntu IRC dataset.

than a bag of words. Figure 5 shows examples of recovered
messages without stopword removal or stemming for one of
the experiments using 2,000 queries.

The exact query distribution has a large effect on recovery
rates. Using uniformly sampled queries means that all but
a small fraction of the 180,000 unique keywords only appear
once in a given year’s log file. This would greatly reduce
the efficacy of the attack. Unfortunately, there has been no
systematic study of real query distributions in this setting
to guide our experiments. Therefore, we chose to sample
queries from the keyword frequency distribution, following
prior work [9] and because it is unlikely that real user queries
would be approximately uniform.

With stemming and stopword removal, the recovery rate
for 100 queries is almost 10% lower. This difference in re-
covery rates becomes smaller as the number of queries in-
creases. While less information is recovered in this case
(since we recover only prefixes of words and cannot recover
stopwords), it still represents a significant amount of partial
leakage about plaintexts.

The effect of stemming on query and plaintext recovery
is not well understood. Previous work [9] pointed out that
stemming, in some sense, makes the adversary’s job easier,
because recovering a stemmed query for a word like “run”
also recovers the words “running,”“runs,” and “ran.” Stem-
ming also changes the keyword distribution of a corpus of
documents, which could make inference attacks easier. It
is not known whether stemming affects the relative value of
recovering a particular query, because knowing that a stem
for, say, “run” exists in a document does not give the adver-
sary information about the exact keyword in that document.
We conjecture that recovering a stemmed keyword still re-
veals valuable information to an adversary since different
keywords with the same stem are semantically related.

Measuring the value of recovering a particular keyword is
an open problem. Certainly, recovering stopwords gives the
adversary little information about a corpus, but quantifying
the value of other, less frequent words is difficult and highly
distribution-dependent. In information retrieval, there are
techniques for quantifying the “relevance” of a keyword to a
particular document, but this is mostly in the context of re-
turning the best matches for a particular query and does not
capture the value of recovering, for example, the keyword
“malignant” or “benign” in a corpus of medical documents.

??? ??? don’t tell anyone because it might

diminish my manliness but disney rocks

dad in law is going to the hospital not sure if

he’s having an ??? reaction cough medicine

Figure 5: Examples of recovered plaintext data from our simu-
lated attacks on [60] . Unrecovered words are marked with “???”

8.5 Chosen-query attacks
In open applications, data contributed by one user can

influence other users’ queries. An active attacker can then
craft queries designed to leak information about the searcher’s
documents without the need for tainted principals.

For example, risk groups in OpenDNA are crowd-sourced
and shared between all users in plaintext. Each risk group
contains one or more SNP-genotype pairs. A malicious user
or server can upload custom risk groups to the database.
These could be as simple as SNP-genotypes pairs that cor-
respond to sensitive genetic information (such as ancestry
or predisposition to a certain disease), or as complex as risk
groups covering all possible genotypes for a given SNP. If
a malicious risk group is successfully found within a user’s
DNA, the server learns sensitive information. The server can
recover a user’s entire reported genetic information by brute
force with roughly 12 million queries. Admittedly, this is a
lot of queries, but note that the server is recovering 760,000
SNPs in this case.

9. RELATED WORK
BoPETs. Searchable encryption (SE) was explored by [11,
17,27,31,45,55]. Islam et al. [30] showed that the access pat-
terns of SE systems can be used to recover queries. Cash et
al. [9] investigated plaintext recovery attacks in SE schemes
similar to [28,34].

BoPETs include numerous commercial systems for en-
crypted cloud computation [16, 22, 46, 51, 54]. In particu-
lar, Kryptnostic [59] uses a multi-key searchable encryption
scheme very similar to Mylar’s. VC3 [53] relies on a trusted
processor to run MapReduce in an untrusted cloud.

CryptDB [47] adds encryption to databases while still sup-
porting various client queries. Naveed et al. [42] showed
that CryptDB’s deterministic (DTE) and order-preserving
encryption (OPE) schemes leak information. Mylar does not
use OPE and Mylar’s encrypted search scheme does not leak
word frequencies within documents, making DTE frequency
analysis and `p-optimization attacks impractical.

Privacy of Web apps. Client-side encryption in Web
apps was explored in [3, 15, 21, 28, 52]. Distribution and
revocation of access in encrypted file sharing systems was
studied in [61,62].

SUNDR [35] and Depot [38] address data integrity, SPORC
[20] adds confidentiality to SUNDR, Radiatus [14] isolates
individual users’ data. Verena [32] is a Meteor extension
that addresses integrity, not confidentiality.

Side channels in Web apps. Chen et al. [13] demon-
strated powerful side-channel attacks on HTTPS-protected
Web apps that exploit packet sizes and other features. These
vulnerabilities are “fundamental to Web 2.0 applications.”
Sidebuster [63], SideAuto [29], and the system by Chapam
and Evans [12] help discover side-channel vulnerabilities in



Web apps. Side channels can be mitigated by padding or
varying network traffic [36, 37]. All of these papers assume
a network adversary, as opposed to an untrusted server.

10. LESSONS AND CONCLUSIONS
The Mylar framework for building web applications on

top of encrypted data was claimed to be secure against ac-
tive attacks [48]. Mylar is based on a multi-key searchable
encryption (MKSE) scheme, which was proved secure in the
formal model proposed by Popa and Zeldovich [49]

Our first conclusion is that the Popa-Zeldovich model for
MKSE does not imply security against either passive, or
active attacks. Our second conclusion is that the security
claims made by Popa et al. in [48] are false: Mylar does
not protect a data item’s confidentiality if none of the users
with access to that data item use a compromised machine.
Furthermore, a basic system design flaw at the core of My-
lar—relying on an untrusted server to convert clients’ to-
kens—enables an efficient brute-force dictionary attack on
users’ queries. This attack recovers even the search key-
words that do not occur in adversary-controlled documents.

The most important lessons transcend Mylar and apply
generically to the entire class of BoPETs. First, we give
concrete illustrations of how encryption schemes designed
to be secure against snapshot passive adversaries end up
being completely insecure when deployed in a system re-
quiring security against an active adversary. Second, the
natural process for porting applications—encrypt all data
and adapt server operations so they can be performed over
ciphertexts—leaves metadata exposed. This reveals a lot of
sensitive information even to snapshot passive adversaries.

Another lesson is that BoPETs need to define realistic
threat models and then develop formal cryptographic defini-
tions that capture security in those threat models. Building
a scheme first and then crafting a cryptographic model in
which the scheme can be proved secure can result in schemes
whose security breaks down in practice.

The problem of building client-server application frame-
works that provide meaningful security against persistent
passive and active attackers on the server remains open. To
protect against persistent passive attacks, access patterns
must be hidden or securely obfuscated. To protect against
active attacks, every essential operation performed by the
server must be either executed or at least verified on the
client side of the application. This runs contrary to the en-
tire premise of BoPETs, since they aim to preserve the ex-
isting split of application functionality between clients and
servers with all concomitant benefits and rely on clever en-
cryption to protect data from untrusted servers. We con-
jecture that verifying or moving every server operation to
the client involves a substantial re-engineering of applica-
tion logic and is likely to incur high performance overheads.
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12. POSTSCRIPTUM
The published Mylar paper [48] claims that “Mylar al-

lows users to share keys and data securely in the presence
of an active adversary.” This statement was repeated on the
public Mylar website.2 At some point between April and
July of 2016, while this paper was undergoing peer review
and before it became public, all claims that Mylar protects
data and queries from active attacks were erased from the
Mylar website3 without any explanation of why they were
removed or acknowledgment that they were ever there. As
of this writing, the “Security guarantees and use cases” page
states that Mylar provides protection for users’ queries and
data only against a passive attacker. This directly contra-
dicts the published Mylar paper [48].

The page currently asserts that Mylar is secure against
active attacks when used in combination with Verena [32].
No evidence is provided for this assertion, and it is not men-
tioned anywhere in the Verena paper, which aims to pro-
tect the integrity of database queries and webpages returned
from the server but does not prevent the server from exe-
cuting other malicious code. Furthermore, neither Mylar,
nor Verena hides access patterns, therefore neither is secure
against persistent passive attacks.

2https://web.archive.org/web/20160422082354/http:
//css.csail.mit.edu/mylar/
3https://css.csail.mit.edu/mylar/
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