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Abstract In this paper, we study an important problem in secret sharing that
determines the exact value or bound for the complexity. First, we used induced
subgraph complexity of the graph G with access structure Γ to obtain a lower
bound on the complexity of the graph G. Secondly, by applying decomposition
techniques we obtain an upper bound on the complexity of the graph G. We
determine the exact values of the complexity for each of the ten graph access
structures on seven participants. Also, we improve the value bound of the
complexity for the six graph access structures with seven participants.
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1 Introduction

A secret sharing scheme is a method which allows a secret K to be shared
among a set of participants P in such a way that only qualified subsets of par-
ticipants can recover the secret. The first secret sharing schemes considered by
Shamir[1] and Blakley[2], in their schemes any proper subset A of participants
set P that|A| ≥ t can recover the secret K and for every subset A of P that
|A| < t no one can obtain any information about the secret. Such schemes
called (t, n)−threshold schemes where t is threshold scheme, and n is the size
of participants set P.
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The access structure Γ of a secret sharing scheme defined on P, with secret
K, is the collection Γ of subsets of P that are desired to be able to reconstruct
the value of K from their pooled shares. In general an access structure Γ on the
set P considered to be monotone. This means that if A ∈ Γ and A ⊆ A′ ⊂ P
then A′ ∈ Γ . A subset of P that belongs to Γ , is called a qualified subset
and those that do not belong to Γ known as unqualified subset. A minimal
qualified subset A ∈ Γ is a subset of participants such that A′ /∈ Γ for all
A′ ⊂ A. The basis of Γ is the collection of all minimal qualified subsets of P,
which is denoted by [Γ ]

−
. We will say that a scheme is a perfect secret sharing

scheme realizing the access structure Γ provided the following two properties
are satisfied [8]:

1. If a qualified subset of participants A ⊆ P pool their shares, then they can
determine the value of K.

2. If an unqualified subset of participants A ⊆ P pool their shares, then they
can determine nothing about the value of K.

The efficiency of a perfect secret sharing schemes can be assessed in terms
of its complexity, which is the ratio between the size of the maximum size of the
shares given to any participant in P, and the size of the secret. The complexity
of an access structure Γ , denoted by σ (Γ ), is defined as the infimum of the
complexities of all secret sharing schemes with access structure Γ . A perfect
secret sharing scheme is called ideal if its complexity is equal to one. The graph
access structure, is an access structure that contains only minimal qualified
subset of cardinality two. The complexity of the graph access structures have
been studied in the literature by several authors since the 90s [3–10,12]. There
have been particular endeavours to determine the most efficient secret sharing
schemes for all graphs with a small number of vertices. In line with this, there
have been obtained lower bounds based on entropy considerations, as well as
upper bounds, using a decomposition or weighted decomposition technique for
constructing good schemes.

in [3], Jackson and Martin studied the complexity of connected graph ac-
cess structures on five participants. Van Dijk studied the complexity of the
112 graph access structures on six participants and in 94 cases, determined
the exact values of the complexity [4]. With results obtained in [14–16], the
complexity in several cases out of 18 cases of secret sharing schemes which re-
mained unsolved for connecting graphs with six participants were determined.
in [9,10], Song and Wang studied the complexity of connected graph access
structures on seven participants with six, seven, eight, nine and ten edges.
They determined the exact values of the complexity for 189 cases. Also, Song
and et. in [12], studied the complexity of the 272 graph access structures on
nine participants with eight and nine edges and in 231 cases, determined the
exact values of the complexity.

In [9], the complexity of the 111 connected graph access structures on seven
participants with six, seven and eight edges are studied among which the exact
value of 91 cases are determined and the other cases provided the upper and
lower bound. With results obtained in [11], the complexity in four cases out
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of 20 cases of secret sharing schemes which remained unsolved for connecting
graphs with seven participants were determined. In this paper, we obtain the
exact value of the complexity to 10 connected graph access structures from the
remaining 16 cases by using the following method. First, a six-vertex graph
access structure is reached by removing the vertex appropriate to its edges of
the seven-vertex graph access structure. Because the complexity of the most
six-vertex graph access structures are determined in [4,14–16], we obtain the
lower bound for complexity of the seven-vertex graph access structure. On
the other hand, by using decomposition techniques, we get an upper bound
equals to the lower bound. In addition to the above method we improve the
value bound of the complexity for the six graph access structures with seven
participants.

2 Definitions and basic properties

In this section, we introduce definitions and theorems which are used to deter-
mine the exact values of the complexity of the connected graph access strucrure
with seven vertices.

Theorem 1 ([4]). Let G = (V, E) be a graph with vertices a, b ∈ V . For
d ∈ V , ad is an edge iff bd is an edge. Define G′ by deleting vertex a and edges
ad for all vertices d. Then σ (ΓG) = σ (ΓG′).

Definition 1 Let G be a graph with vertex set V and edge set E. If V1 ⊆ V ,
then the induced subgraph G [V1] is defined to have vertex set V1 and edge set
{vw ∈ E (G) : v, w ∈ V1}.

Definition 2 Let G be a connected graph with vertex set V. Suppose that V
can be partitioned into subsets V1, . . . , Vn such that the edges in G are defined
by all pairs of vertices from different subsets. Then G is called a complete
multipartite graph.

Theorem 2 ([5]). The access structure Γ based on a connected graph G is
ideal if and only if G is a complete multipartite graph.

Theorem 3 ([6]). If G is not multipartite graph then σ (G) ≥ 3
2 .

Theorem 4 ([6]). Suppose G is a graph and G′ is an induced subgraph of G.
Then σ (ΓG′) ≤ σ (ΓG).

Definition 3 ([8]). Suppose Γ is an access structure having basis [Γ ]
−

. Let
λ ≥ 1 be an integer. A λ− decomposition of [Γ ]

−
consists of a collection (i.e.

a multiset)
{
Γ 1, . . . , Γ t

}
such that the following properties are satisfied:

1. Γh ⊆ [Γ ]
−

for 1 ≤ h ≤ t.
2. For each A ∈ [Γ ]

−
, there exist λ indices 1 ≤ i1 < · · · < iλ ≤ t such that

A ∈ Γ ij for 1 ≤ j ≤ λ.
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Theorem 5 ([8]). Let P = {Pi : 1 ≤ i ≤ n} be the set of n participants and
Γ be an access structure having basis [Γ ]

−
. If the collection

{
Γ 1, . . . , Γ t

}
be a

λ− decomposition of [Γ ]
−

such that for 1 ≤ h ≤ t, Γh is ideal and

R = max {|{h : pi ∈ Ph}| : 1 ≤ i ≤ n}

then σ (Γ ) ≤ R
λ .

Example 1 The 2-decomposition for the graph Γ12 shown in Figure 1. Accord-
ing to Theorem 5, we have σ (Γ ) ≤ 3

2 .

Fig. 1 The 2-decomposition for the graph Γ12.

Definition 4 ([14]) A weighted access structure for a secret sharing scheme,
denoted by Γw, is a set

{
(X,W (X))|W (X) ≥ 0,W (X) ∈ Z,X ∈ 2P

}
. The

weight of Γw is defined by W (Γw) = max
{
W (X)|X ∈ 2P

}
.

A secret sharing scheme for a weighted access structure Γw is a method
which allows W (Γw) secrets of the same size to be shared among a set of
participants P in such a way that each subset of participants, X, can exactly
recover W (X) secrets out of the W (Γw) secrets. It is obvious that if X ⊆ X ′ ⊆
P , then W (X) ≤W (X ′).

Consider a weighted graph G(V,E) with weights We (G) (We (G) ≥ 1) and
W (G) = max {We(G) |e ∈ E } for e ∈ E, is a perfect secret shrring scheme
which satisfies the following requirements:

1. Any pair of participants corresponding to an edge e of G can obtain We(G)
secrets out of the W (G) secrets.

2. Any subset of participants containing no edge of G has no information on
the W (G) secrets.

Example 2 Consider the weighted graph G that is showen in Figure 2, later
on given the perfect secret sharing scheme for it, assume the secret s = (s1, s2)
is selected randomly from (GF (q))2, where q is a prime number.
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Fig. 2 Graph G.

The shares are given as follows:

a : (r2),
b : (r2 + s2, r1),
c : (r1 + s1, r2),
d : (r1),
e : (r1 + r2),

where r1 and r2 are selected randomly from (GF (q)) and all operations are
calculated at (GF (q)). The sets {a, b} , {c, d} , {b, e} , {c, e} obtain s2, s1, s2 and
s1 respectively. Also, participants set {b, c} can obtain the secrets s1 and s2.

Definition 5 ([14]). Suppose Γ is an access structure. A λ−weighted decom-
position of Γ consists of a collection

{
Γ 1, . . . , Γ t

}
such that the following

requirements are satisfied.

1. Each Γh is a weighted access structure, for 1 ≤ h ≤ t.
2. For each X ∈ Γ ,there exists some indices, say i1 < · · · < ik, such that∑

ij
W
(
X;Γ ij

)
≥ λ, where W

(
X;Γ ij

)
is the weight of X in Γ ij , for

1 ≤ j ≤ k.
3. For each X /∈ Γ ,

∑t
h=1W

(
X;Γh

)
= 0.

Theorem 6 ([14]). WDC for graph. Let G be a graph of access structure on n
participants, and suppose that

{
G1, . . . , Gt

}
is a λ−weighted decomposition

of G. Assume that for each weighted graph Gh, 1 ≤ h ≤ t there exists a perfect
secret sharing scheme with complexity σih for each pi ∈ Ph. Then, there exists
a perfect secret sharing scheme for G with complexity

σ (Σ) = max

{∑
{h:pi∈Ph}W

(
Gh
)
σih

λ
: 1 ≤ i ≤ n

}
.

Example 3 The weighted decomposition construction for the graph Γ106 with
seven participants is shown in Figure 3.
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Fig. 3 3-weighted decomposition for the graph Γ106.

So, the secret sharing scheme for Γ106 is setup as follows. Let the secret
K = (K1,K2,K3) be taken randomly from (GF (q))3, where q is a prime
power. Let f(x) = K1 +K2x+K3x

2 (modq) . The value yis computed from
f(x) are as follows: yi = f(i) (modq) , for i = 1, . . . , 9. It is clear that given
four yis, f(x) can be determined uniquely, and hence, the secret K can be
recovered. On the contrary, one who does not have any knowledge of these
yis obtains no information on the secret K. The shares for a, b, c, d, e, f, g are
assigned as follow:

Sa : (r2, r3, r4 + y4, r5 + y5, r6)
Sb : (r2, r3, r4 − y4, r5+, r6 + y6)
Sc : (r2, r3, r9)
Sd : (r1, r7, r8)
Se : (r1 + y1, r2, r3, r7 + y7, r8 + y8)
Sf : (r1 + r2, r3, r7, r8, r9)
Sg : (r1, r2 + y2, r3 + y3, r4, r9 + y9)

Thus,

{a, b} can recover y4, y5, y6,
{a, g} can recover y2, y3, y4,
{b, g} can recover y2, y3, y4,
{c, g} can recover y2, y3, y9,
{d, e} can recover y1, y7, y8,
{e, f} can recover y1, y7, y8,
{e, g} can recover y1, y2, y3,
{f, g} can recover y2, y3, y9,

Therefore, all above pairs can obtain three yis, and they can recover the
secret K. On the contrary, no other pair can obtain any information on yis. It
is clear that the complexity for these shares are σa = 5

3 , σb = 5
3 , σc = 1, σd =

1, σe = 5
3 , σf = 5

3 and σg = 5
3 . Hence, the complexity for the constructed secret

sharing scheme is 5
3 . Thus, According to the definition of the complexity of

the access structure, we have σ (Γ106) ≤ 5
3 .
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3 The results

The purpose of this section is to determine the exact value of the complex-
ity of the following graph access structures with seven participants P =
{a, b, c, d, e, f, g}:

[Γ12]
−

= {ab, ag, bc, cd, de, ef, fg} , [Γ43]
−

= {ab, af, ag, bc, bf, de, ef} ,
[Γ47]

−
= {ab, af, ag, bf, bc, cd, de, ef} , [Γ60]

−
= {ab, af, ag, be, cd, de, ef, fg} ,

[Γ65]
−

= {ab, ag, bc, bd, bf, df, ef, fg} , [Γ70]
−

= {ab, ac, bc, cd, cg, de, ef, fg} ,
[Γ83]

−
= {ab, ag, cd, de, df, dg, ef, fg} , [Γ85]

−
= {ab, bc, cd, cf, cg, de, df, fg} ,

[Γ106]
−

= {ab, ag, bg, cg, de, ef, eg, fg} , [Γ108]
−

= {ab, ad, ag, bc, bd, de, df, ef} ,

and improve the value bound of the complexity of the following graph access
structures with seven participants P = {a, b, c, d, e, f, g}:

[Γ61]
−

= {ab, ae, ag, bc, be, cd, de, ef} , [Γ62]
−

= {ab, af, ag, bc, cd, cf, ef, fg} ,
[Γ63]

−
= {ab, ag, bc, bg, cd, cf, ef, fg} , [Γ64]

−
= {ab, ac, ag, ce, cf, de, ef, fg} ,

[Γ68]
−

= {ab, af, ag, bc, be, cd, df, ef} , [Γ94]
−

= {ab, bc, bg, cd, ce, cg, ef, eg} .

The lower bound and upper bound obtained for the complexity of the above
graph access structures are listed in table 1. see[9]

Γi σ (Γi) Γi σ (Γi) Γi σ (Γi) Γi σ (Γi)

Γ12
3
2 ∼

11
7 Γ43

5
3 ∼ 2 Γ47

5
3 ∼ 2 Γ60

5
3 ∼ 2

Γ61
5
3 ∼ 2 Γ62

3
2 ∼ 2 Γ63

5
3 ∼ 2 Γ64

5
3 ∼ 2

Γ65
5
3 ∼ 2 Γ68

3
2 ∼ 2 Γ70

5
3 ∼ 2 Γ83

5
3 ∼ 2

Γ85
5
3 ∼ 2 Γ94

5
3 ∼ 2 Γ106

3
2 ∼ 2 Γ108

5
3 ∼ 2

Table 1: Upper and lower bounds provided for the complexity of the 16
remaining access structure in [9].

For seven-vertex graph access structure Γ12, from Theorem 3, we can get
the lower bound of σ (Γ12) to be 3

2 , and with using 2-decomposition in the
provided example 1, we get the upper bound for σ (Γ12) is equal to 3

2 , so
σ (Γ12) = 3

2 .
For the seven-vertex graph access structures Γ43 and Γ47 by removing the

vertex d and edges connected to it, we get the six-vertex graph access structure
Γ9 with the exact value of complexity is 7

4 [14]. Theorem 4, implies that the
lower bound of σ (Γ43) and σ (Γ47) are at least 7

4 . Theorem 6 together with
4-weighted decomposition in the appendix, imply the upper bound for σ (Γ43)
and σ (Γ47) are equal to 7

4 , then σ (Γ43) = σ (Γ47) = 7
4 .

We remark that the result for Γ43, can be obtained by using of the complex-
ity graph access structure with nine-vertex Γ257 or Γ268 in [12] and Theorem
1. We can see that σ (Γ43) = 7

4 .
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For the seven-vertex graph access structure by removing the vertex c in
Γ60, we can obtain the six-vertex graph access structure Γ31 that σ (Γ31) = 5

3 ,
[4]. For the seven-vertex graph access structure by removing the vertex a in
Γ70, we can recived the six-vertex graph access structure Γ18 that σ (Γ18) = 5

3 ,
[4]. We conclude that the complexity of Γ60 and Γ70 are at least 5

3 . Using
3-decomposition in the appendix and from Theorem 5, we can get the upper
bound for σ (Γ60) and σ (Γ70) are equal to 5

3 , then σ (Γ60) = σ (Γ70) = 5
3 .

Removing the vertex c from the seven-vertex graph access structure Γ65

and removing the vertex d and its connected edges from Γ106, we get the six-
vertex graph access structures Γ33 and Γ25 respectively, with exact complexity
value of 5

3 , [4]. Theorem 4 implies that the lower bound for Γ65 and Γ106 are
5
3 . Using of the Theorem 6 and 3-weighted decomposition in the appendix and
in the provided example 3, we get the upper bound for σ (Γ65) and σ (Γ106)
are equal to 5

3 , then σ (Γ65) = σ (Γ106) = 5
3 .

For the seven-vertex graph access structure Γ83 with removing vertex b
and for Γ85 removing vertex a and its connected edges, we can get to the
six-vertex graph access structure Γ22 that σ (Γ22) = 7

4 . For the seven-vertex
graph access structure Γ108 with removing vertex e and its connected edges,
we can get to the six-vertex graph access structure Γ9 that σ (Γ9) = 7

4 , [14,
15]. From Theorem 4, we conclude that the lower bound for σ (Γ83), σ (Γ85)
and σ (Γ108) are 7

4 . With use of the Theorem 6 and 4-weighted decomposition
in the appendix, we obtain the upper bound for σ (Γ83), σ (Γ85), σ (Γ108) be
7
4 , then σ (Γ83) = σ (Γ85) = σ (Γ108) = 7

4 .
For the seven-vertex graph access structures by removing the vertex d in

Γ61 and vertex f in Γ94, we can in order to obtain the six-vertex graph access
structures Γ9 and Γ22 that σ (Γ9) = σ (Γ22) = 7

4 , [13,15]. Theorem 4 implies
the complexity of Γ61 and Γ94 are at least 7

4 . Using 8-weighted decomposition
in the appendix and from Theorem 6, we can get the upper bound for σ (Γ61)
and σ (Γ94) are equal to 15

8 .
Removing the vertex e from the seven-vertex graph access structures Γ62

and removing the vertex f and its connected edges from Γ68, we get the six-
vertex graph access structures Γ31 and Γ4 respectively, with exact complexity
value of 5

3 , [4]. Theorem 4 implies that the lower bound for Γ62 and Γ68 are
5
3 . Using of the Theorem 6 and 4-weighted decomposition in the appendix for
Γ62 and Theorem 5 and 4-decomposition in the appendix for Γ68, we get the
upper bound for σ (Γ62) and σ (Γ68) are equal to 7

4 .
For the seven-vertex graph access structure by removing the vertex d in Γ63,

we can obtain the six-vertex graph access structure Γ31 that σ (Γ31) = 5
3 , [4].

Theorem 4 implies the complexity of Γ63 is at least 5
3 . Using 8- decomposition

in the appendix and from Theorem 5, we can get the upper bound for σ (Γ63)
is equal to 15

8 .
Removing the vertex d from the seven-vertex graph access structure Γ64,

we get the six-vertex graph access structure Γ31, with exact complexity value
of 5

3 , [4]. Theorem 4 implies that the lower bound for Γ64 is equal to 5
3 . Using

of the Theorem 6 and 4-weighted decomposition in the appendix for Γ64, we
get the upper bound for σ (Γ64) is equal to 7

4 .
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The results are given in Table 2.

Γi σ (Γi) Γi σ (Γi) Γi σ (Γi) Γi σ (Γi)

Γ12
3
2 Γ43

7
4 Γ47

7
4 Γ60

5
3

Γ61
7
4 ∼

15
8 Γ62

5
3 ∼

7
4 Γ63

5
3 ∼

15
8 Γ64

5
3 ∼

7
4

Γ65
5
3 Γ68

5
3 ∼

7
4 Γ70

5
3 Γ83

7
4

Γ85
7
4 Γ94

7
4 ∼

15
8 Γ106

5
3 Γ108

7
4

Table 2: The obtained results.

Remark: We point out that our results can be applied for some graph access
structures of nine participants with equal or more than 10 edges, by using
Theorem 1.

Appendix
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