
Scalable Private Set Intersection Based on OT Extension∗

Benny Pinkas† Thomas Schneider‡ Michael Zohner‡

September 26, 2016

Abstract

Private set intersection (PSI) allows two parties to compute the intersection of their sets without
revealing any information about items that are not in the intersection. It is one of the best studied
applications of secure computation and many PSI protocols have been proposed. However, the variety
of existing PSI protocols makes it difficult to identify the solution that performs best in a respective
scenario, especially since they were not compared in the same setting. In addition, existing PSI protocols
are several orders of magnitude slower than an insecure naive hashing solution which is used in practice.

In this work, we review the progress made on PSI protocols and give an overview of existing pro-
tocols in various security models. We then focus on PSI protocols that are secure against semi-honest
adversaries and take advantage of the most recent efficiency improvements in OT extension and propose
significant optimizations to previous PSI protocols and to suggest a new PSI protocol whose run-time
is superior to that of existing protocols. We compare the performance of the protocols both theoreti-
cally and experimentally, by implementing all protocols on the same platform, give recommendations on
which protocol to use in a particular setting, and evaluate the progress on PSI protocols by comparing
them to the currently employed insecure naive hashing protocol. We demonstrate the feasibility of our
new PSI protocol by processing two sets with a billion elements each.

Keywords: PSI, Secure Computation

1 Introduction

Private set intersection (PSI) allows two parties P1 and P2 holding sets X and Y , respectively, to identify
the intersection X ∩ Y without revealing any information about elements that are not in the intersection.
The basic PSI functionality can be used in applications where two parties want to perform JOIN operations
over database tables that they must keep private, e.g., private lists of preferences, properties, or personal
records of clients or patients. PSI was used in several research projects for privacy-preserving computation
of functionalities such as relationship path discovery in social networks [47], botnet detection [51], testing
of fully-sequenced human genomes [4], proximity testing [54], or cheater detection in online games [11].
∗This paper is a combined and extended version of [61] (USENIX 2014) and [59] (USENIX 2015) with substantial improve-

ments summarized in §1.4. This work was supported by the European Union’s 7th Framework Program (FP7/2007-2013) under
grant agreement n. 609611 (PRACTICE). We thank Oleksandr Tkachenko for extending our implementation to allow processing
sets with a billion elements.
†Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel. Supported by the Israel Ministry of Science and

Technology (grant 3-10883), and by a Magneton grant of the Israeli Ministry of Economy. benny@pinkas.net.
‡Department of Computer Science, TU Darmstadt, Darmstadt, Germany. Supported by the DFG as part of project E3 within the

CRC 1119 CROSSING, by the German Federal Ministry of Education and Research (BMBF) within EC SPRIDE and CRISP, and
by the Hessian LOEWE excellence initiative within CASED. {thomas.schneider,michael.zohner}@crisp-da.de.

1

PSI has been a very active research field, and there have been many suggestions for PSI protocols. The
large number of proposed protocols makes it non-trivial to perform comprehensive cross-evaluations. This is
further complicated by the fact that many protocol designs have not been implemented and evaluated, were
analyzed under different assumptions and observations, and were often optimized w.r.t. overall run-time
while neglecting other relevant factors such as communication. Furthermore, even though several PSI pro-
tocols have been introduced, practical applications that need to compute the intersection of privacy-sensitive
lists often use insecure solutions. The reason for the poor acceptance of secure solutions is, among others,
the poor efficiency of existing schemes, which have more than two orders of magnitude more overhead than
insecure solutions.

In this paper, we give an overview on existing efficient PSI protocols, optimize exiting PSI protocols, and
describe a new PSI protocol based on efficient oblivious transfer extensions. We compare both the theoretical
and empirical performance of all protocols on the same platform and evaluate their cost compared to the
insecure hash-based solution used in practice. We show that our new PSI protocol achieves a reasonable
overhead compared to solutions used in practice.

1.1 Motivating Applications

The motivation for our work comes from several practical applications which require the PSI functionality.
In the following, we list three of these applications:

Measuring ad conversion rates Online advertising, which is a huge business, typically measures the
success of ad campaigns by measuring the success of converting viewers into customers. A popular way of
measuring this value is by computing the conversion rate, which is the percentage of ad viewers who later
visit the advertised site or perform a transaction there. For banner ads or services like Google Adwords it
is easy to approximate this value by measuring ad click-throughs. However, measuring click-throughs is
insufficient in other online advertising settings. One such setting is mobile advertising, which is becoming
a dominating part of online advertising. Even though mobile ads have a great effect, click-throughs are
an insufficient measure of their utility, since it is unlikely, due to small displays and the casual nature of
mobile browsing, that a user will click on an ad and, say, purchase a car using his mobile device. Another
setting where click rate measurement is unsatisfactory is advertising of offline goods, like groceries, where
the purchase itself is done offline.1

An alternative method of measuring ad performance is to compare the list of people who have seen
an ad with those who have completed a transaction. These lists are held by the advertiser (say, Google
or Facebook), and by merchants, respectively. It is often possible to identify users on both ends, using
identifiers such as credit card numbers, email addresses, etc. A simple solution, which ignores privacy, is
for one side to disclose its list of customers to the other side, which then computes the necessary statistics.
Another option is to run a PSI protocol between the two parties. (The protocol should probably be a variant
of PSI, e.g. compute total revenues from customers who have seen an ad. Such protocols can be derived from
basic PSI protocols.) In fact, Facebook is running a service of this type with Datalogix, Epsilon and Acxiom,
companies which have transaction records for a large part of loyalty card holders in the US. According to
reports2, the computation is done using a variant of the insecure naive hashing PSI protocol. Our results
show that it can be computed using secure protocols even for large data sets.

1See, e.g., http://www.reuters.com/article/2012/10/01/us-facebook-ads-idUSBRE8900I
120121001.

2See, e.g., https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats
-actually-getting-shared-and-how-you-can-opt.

2

http://www.reuters.com/article/2012/10/01/us-facebook-ads-idUSBRE8900I120121001
http://www.reuters.com/article/2012/10/01/us-facebook-ads-idUSBRE8900I120121001
https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt
https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt

Security incident information sharing Security incident handlers can benefit from information sharing
since it provides them with a global view during incidents. However, incident data is often sensitive and po-
tentially embarrassing. The shared information might reveal information about the business of the company
that provided it, or of its customers. Therefore, information is typically shared rather sparsely and protected
using legal agreements. Automated large scale sharing will improve security, and there is in fact work to
that end, such as the IETF Managed Incident Lightweight Exchange (MILE) effort. Many computations
that are applied to the shared data compute the intersection and its variants. Applying PSI to perform these
computations can simplify the legal issues of information sharing. Efficient PSI protocols will enable it to
be run often and in large scale.

Private contact discovery When a new user registers to a service it is often essential to identify current
registered users who are also contacts of the new user. This operation can be done by simply revealing
the user’s contact list to the service, but can also be done in a privacy preserving manner by running a PSI
protocol between the user’s contact list and the registered users of the service. This latter approach is used
by the TextSecure and Secret applications, but for performance reasons they use the insecure naive hashing
PSI protocol.3

In these cases each user has a small number of records n2, e.g., n2 = 256, whereas the service has
millions of registered users (in our experiments we use n1 = 16,777,216). It therefore holds that n1 � n2.
In our best PSI protocol, the client needs only O(n2 log n1) memory, O(n2) symmetric cryptographic oper-
ations and O(n1) cheap hash table lookups, and the communication is O(n1 log n1). (The communication
overhead is indeed high as it depends on n1, but this seems inevitable if brute force searches are to be
prevented.)

1.2 Classification of PSI Protocols

Securely intersecting two sets without leaking any information but the result of the intersection is one of the
most prominent problems in secure computation. Several techniques have been proposed that realize the PSI
functionality, such as the efficient but insecure naive hashing solution, protocols that require a semi-trusted
third party, or two-party PSI protocols. The earliest proposed two-party PSI protocols were special-purpose
solutions based on public-key cryptography. Later, solutions were proposed using circuit-based generic
techniques for secure computation, that are mostly based on symmetric cryptography. The most recent
development are PSI protocols that are based on oblivious transfer (OT) alone, and combine the efficiency
of symmetric cryptographic primitives with special purpose optimizations.

A naive solution When confronted with the PSI problem, most novices come up with a solution where
both parties apply a cryptographic hash function to their inputs and then compare the resulting hashes.
Although this protocol is very efficient, it is insecure if the input domain is small or does not have high
entropy, since one party could easily run a brute force attack that applies the hash function to all items that
are likely to be in the input set and compare the results to the received hashes. (When inputs to PSI have
high entropy, a protocol that compares hashes of the inputs can be used [52].)

Third Party-Based PSI Several PSI protocols have been proposed that utilize additional parties, e.g., [5].
In [30], a trusted hardware token is used to evaluate an oblivious pseudo-random function. This approach

3See https://whispersystems.org/blog/contact-discovery/ and https://medium.com/@davidbyt
tow/demystifying-secret-12ab82fda29f, respectively.

3

https://whispersystems.org/blog/contact-discovery/
https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f
https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f

was extended to multiple untrusted hardware tokens in [21]. Several efficient server-aided protocols for PSI
were presented and benchmarked in [36].

Public-Key-Based PSI A PSI protocol based on the Diffie-Hellmann (DH) key agreement scheme was
presented in [46] (related ideas were presented in [67, 34]). Their protocol is based on the commutative
properties of the DH function and was used for private preference matching, which allows two parties to
verify if their preferences match to some degree.

Freedman et al. [25] introduced PSI protocols secure against semi-honest and malicious adversaries
in the standard model (rather than in the random oracle model assumed in the DH-based protocol). This
protocol was based on polynomial interpolation, and was extended in [23], which presents protocols with
simulation-based security against malicious adversaries, and evaluates the practical efficiency of the pro-
posed hashing schemes. We discuss the proposed hashing schemes in §3. A similar approach that uses
oblivious pseudo-random functions to perform PSI was presented in [24]. A protocol that uses polynomial
interpolation and differentiation for finding intersections between multi-sets was presented in [38].

Another PSI protocol that uses public-key cryptography (more specifically, blind-RSA operations) and
scales linearly in the number of elements was presented in [15] and efficiently implemented and bench-
marked in [16]. In [17], a family of Bloom filter-based PSI protocols was introduced that realize PSI, PSI
cardinality and authenticated PSI functionalities. These protocols also use public-key operations, linear in
the number of elements.

Circuit-Based PSI Generic secure computation protocols have been subject to substantial efficiency im-
provements in the last decade. They allow the secure evaluation of arbitrary functions, expressed as Arith-
metic or Boolean circuits. Several Boolean circuits for PSI were proposed in [32] and evaluated using the
Yao’s garbled circuits framework of [33]. The authors showed that their Java implementation scales very
well with increasing security parameter and outperforms the blind-RSA protocol of [15] for larger security
parameter. We reflect on and present new optimizations for circuit-based PSI in §4.

OT-Based PSI A recent PSI protocol of [20] uses Bloom filters [9] and OT extension [35] to obtain very
efficient PSI protocols with security against semi-honest and malicious adversaries. Recently in [43, 64], it
was shown that the Bloom filter-based protocol is insecure with respect to malicious adversaries. The authors
of [64] showed how to fix the malicious secure Bloom filter-based protocol and gave the first implementation
of a malicious secure PSI protocol, which computes the intersection of two sets with a million elements each
in ∼ 200 s.

In [63], our OT-based PSI protocol of [61] was extended to security against weakly malicious adversaries
and used as a building block in a batch dual-execution Yao’s garbled circuits protocol. In [43], our OT-based
PSI protocol of [59] was secured against a semi-honest P1 and malicious P2. An improved version of our
OT-based PSI protocol in [59] is given in [40], which presents an efficient construction of an oblivious
pseudo-random function (OPRF) using the OT extension protocol of [39] (cf. §2.2.3). The main observation
of the authors is that the [39] OT extension does not require an error correcting code but can instead use
a pseudo-random code, which can be generated from a pseudo-random generator. The authors then apply
their efficient OPRF construction to our [59] protocol and thereby achieve performance independent of the
bit-length of elements σ. The OPRF construction of [40] is similar to our new OPRF construction described
in §5. The idea of both works is to instantiate the OPRF that is implicitly used in the [59] OT-based PSI
protocol using larger codes. However, while [40] replace the error correcting code with a pseudo-random
code, we keep the error correcting code. Thereby, our OPRF construction achieves better communication for

4

smaller σ when using custom-tailored error correcting codes but does not achieve performance independent
of σ. In addition, the work of [40] can also benefit from our improved hashing analysis of §3.

1.3 Our Contributions

We survey existing PSI protocols that are secure against semi-honest adversaries as well as solutions that
employ a trusted third party. We then describe in detail the semi-honest secure PSI protocols and sug-
gest how to improve the performance of some protocols using carefully analyzed features of OT exten-
sion. We introduce a new OT-based PSI protocol, perform a detailed experimental comparison of the
most promising semi-honest secure PSI protocols, and evaluate their overhead compared to the insecure
naive hashing protocol that is currently used in real-world applications. Our implementations for se-
lected protocols are available online at http://github.com/encryptogroup/PSI and http:
//github.com/encryptogroup/ABY. In the following, we detail our contributions.

Concrete Parameter Estimation for Hashing In [25] the use of hashing-to-bins was suggested in the
context of PSI to reduce the overhead for pairwise-comparisons. However, their analysis of the involved
parameters was only asymptotic. In §3, we empirically analyze the hashing-to-bins techniques that were
suggested in [25] and identify concrete parameters for the schemes. In addition, in §3.3 we utilize the
permutation-based hashing techniques of [2] to reduce the bit-length of the representations that are stored in
the bins. This improves the performance of PSI protocols that require an overhead linear in the bit-length of
elements, e.g., the protocols in §4.3 and §5.

Optimizations of Existing Protocols We improve the circuit protocols using recent optimizations for OT
extension [3]. In particular, in §4 we evaluate the circuit-based solution of [32] on a secure evaluation of
the GMW protocol, and utilize features of random OT (cf. §2.2) to optimize the performance of multi-
plexer gates (which form about two thirds of the circuit). Furthermore, in §4.3 we outline how to use the
permutation-based hashing techniques to improve the performance of circuit-based PSI even further.

A Novel OT-Based PSI Protocol We present a new PSI protocol that is based on OT (§5) and directly
benefits from improvements in efficient OT extensions [39, 3]. Our PSI protocol uses an efficient oblivious
pseudo-random function that is instantiated based on the

(
N
1

)
-OT extension protocol of [39] and uses the

hashing techniques from §3 to reduce the communication overhead from O(n2) to O(n). The resulting
protocol has very low computation complexity since it mostly requires symmetric key operations and has
even less communication than some public-key-based PSI protocols, which had the lowest communication
before.

A Detailed Comparison of PSI Protocols We implement the most promising candidate PSI protocols
using state-of-the-art cryptographic techniques and compare their performance on one platform. As far as
we know, this is the first time that such a wide comparison has been made, since previous comparisons were
either theoretical, compared implementations on different platforms or programming languages, or used
implementations without state-of-the-art optimizations. Our implementations and experiments are described
in detail in §6. Certain experimental results were unexpected. We give a partial summary of our results in
Tab. 1. We briefly describe our most prominent findings next.

5

http://github.com/encryptogroup/PSI
http://github.com/encryptogroup/ABY
http://github.com/encryptogroup/ABY

PSI Protocol Hashing Server-Aided Public Key Circuit OT+Hashing
[36] [46] PWC §4.3 / OPRF §4.4 §3+§5

Equal set sizes n1 = n2 = 220

Runtime (s) 0.7 1.3 818.3 83.9 5.6
Comm. (MB) 10 20 74 9,170 107

Unequal set sizes 224 = n1 � n2 = 212

Runtime (s) 6.1 7.6 12,712.3 7.3 35.1
Comm. (MB) 160 160 593 947 362

Table 1: Runtime and transferred data for private set intersection protocols on sets with 220 σ = 32-bit
elements and 128-bit security with a single thread over Gigabit LAN.

• The Diffie-Hellman-based protocol [46], which was the first PSI protocol, is actually the most efficient
w.r.t. communication (when implemented using elliptic-curve crypto). Therefore it is suitable for
settings with distant parties which have strong computation capabilities but limited connectivity.
• Generic circuit-based protocols [32] are less efficient than the newer, OT-based constructions, but they

are more flexible and can easily be adapted for computing variants of the set intersection functionality
(e.g., computing whether the size of the intersection exceeds some threshold). Our experiments also
support the claim of [32] that circuit-based PSI protocols are faster than the blind-RSA-based PSI
protocol of [15] for larger security parameters and given sufficient bandwidth.
• Compared to the insecure naive hashing solution, previous PSI protocols are at least two orders of

magnitude less efficient in run-time or communication. Our OT-based PSI protocol reduces this over-
head to only one order of magnitude in both run-time and communication.
• When intersecting sets with unequal sizes (n1 � n2), the run-time difference between most protocols

remains similar to the run-time difference for equal set sizes (n1 = n2). The only exception is the
circuit-based oblivious pseudo-random function protocol (§4.4), which achieves similar performance
as the naive hashing and server-aided solutions.

1.4 Additions to Conference Versions

This journal article is a significantly extended and improved version of the conference publications [61]
and [59]. Compared to the conference papers, we add the following contributions:

Broader scope We broadened the scope of the work by describing and benchmarking the circuit-based
OPRF protocol of [60] in §4.4.

Extended Hashing Parameter Analysis We extend the hashing parameter analysis for schemes that are
using pairwise comparison. In our previous works, we only bounded the hashing failure for one particular
set of parameters that is tailored to one use-case. However, the hashing parameters for which PSI protocols
perform well change depending on the settings (unequal set sizes, different networks, etc.). We show a
trade-off between different parameters, resulting in a large variety of parameters which perform well for
different settings.

Optimizations In previous works, our OT-based PSI protocol scaled linear in the bit-length of the inputs,
which decreased its performance on arbitrary input data. We now outline how to achieve performance inde-
pendent of the bit-length in §5 by using more efficient instantiations of underlying primitives (cf. §2.2.3).

6

Comparison We extend the theoretical and empirical comparison between the protocols. In §6.1 we
perform a broader theoretical comparison between the protocols and discuss their implementation features.
Furthermore, we extended our analysis to cover multi-threading (§6.3).

Unequal Set Sizes We extend the focus of the work to unequal set sizes where n1 � n2. This setting
is relevant for use-cases where, e.g., an end user wants to compare its data (few hundred elements) to a
company’s database (several million elements). We show how to modify the circuit-based protocols (§4.4)
as well as our OT-based protocol (§3.2.2) to efficiently extend to this setting, and perform experiments for
the protocols (§6.2.3).

Scalability The largest sets on which secure two-party PSI protocols were evaluated until now were of
size 224 [59]. We demonstrate the scalability of our novel OT-based PSI protocol by processing two sets of
a billion σ = 128-bit elements each (§6.4).

2 Preliminaries

We give our notation and security definitions in §2.1, review recent relevant work on oblivious transfer
in §2.2, and outline how to hash large inputs into smaller domains in §2.3.

2.1 Notation and Security Definitions

We denote the parties as P1 and P2, and their respective input sets asX and Y with |X| = n1 and |Y | = n2.
We refer to elements from X as x and elements from Y as y and each element has bit-length σ (cf. §2.3
for the relation between n and σ). We write b[i] for the i-th element of a list b, denote the bitwise-AND
between two bit strings a and b of equal length as a ∧ b and the bitwise-XOR as a ⊕ b. We denote a
constant string of m zeros (or ones) as 0m (or 1m). We refer to a correlation resistant one-way function
as CRF, to a pseudo-random generator as PRG, to a pseudo-random permutation as PRP, and to an oblivious
pseudo-random function as OPRF (see definitions below). We write

(
N
1

)
-OTm` for m parallel 1-out-of-

N oblivious transfers on `-bit strings, and write OTm` for
(
2
1

)
-OTm` . In a similar fashion, we denote the

random OT functionality (cf. §2.2.2), where the functionality choosesmN -tuples of random `-bit strings as(
N
1

)
-ROTm` . We fix the key sizes according to the NIST guideline [56]: the symmetric security parameter as

κ = 128, the asymmetric security parameter as ρ = 3,072, the statistical security parameter as λ = 40, and
the elliptic curve size ϕ = 284 for Koblitz curve K-283 when using point compression (this is the number
of bits for one coordinate and a sign-bit). We denote and fix the hashing failure parameter which affects the
correctness of some protocols as η = 30, meaning that hashing failures occur with probability < 2−30.

Adversary definition The secure computation literature considers two types of adversaries with different
strengths: A semi-honest adversary tries to learn as much information as possible from a given protocol
execution but is not able to deviate from the protocol steps. The semi-honest adversary model is appropriate
for scenarios where execution of the intended software is guaranteed via software attestation or where an
untrusted third party is able to obtain the transcript of the protocol after its execution, either by stealing it or
by legally enforcing its disclosure. The stronger, malicious adversary extends the semi-honest adversary by
being able to deviate arbitrarily from the protocol.

7

Most protocols for private set intersection, as well as this work, focus on solutions that are secure against
semi-honest adversaries. PSI protocols for the malicious setting exist, but they are considerably less efficient
than protocols for the semi-honest setting (see, e.g., [25, 14, 64]).

The random oracle model As most previous works on efficient PSI, we use the random oracle model to
achieve more efficient implementations [8]. The security of cryptographic constructions can be proven in the
standard model, or in the “random oracle model”, which is based on modeling a hash function as a random
function [8]. There are many criticisms about the random oracle model, and in the theory of cryptography
proofs in this model are considered heuristic. Yet, protocols in the random oracle are often more efficient
than protocols that are proven in the standard model.

The efficiency gain in using the random oracle model is particularly true with regards to protocols for
private set intersection. The only semi-honest protocol that we describe that is in the standard model is the
protocol based on oblivious polynomial evaluation by [25, 23], but that protocol is less efficient than the
other protocols that we present. The public-key-based protocols (based on Diffie-Hellman and blind-RSA)
use a hash function H() that must be modeled as a random oracle, or modeled using another non-standard
assumption. The other protocols (the generic protocol, as well as the protocol based on Bloom filters and the
new OT-based protocol) can be implemented without a random oracle assumption, but in order to speedup
the computation of OT in these protocols we must use random OT extension, whose efficient implementation
relies on a function that must be modeled as a random oracle.

Correlation-robustness A correlation robust one-way function (CRF)H : {0, 1}κ 7→ {0, 1}` is a function
for which, given uniformly and randomly chosen t1, ..., tm, s, an adversary is unable to computationally
distinguish the outputs H(t1 ⊕ s) , ..., H(tm ⊕ s) from uniform distribution. It is a weaker assumption than
the random oracle model and is used in OT extension as well as Yao’s garbled circuit protocol. Traditionally,
many implementations use a hash function (e.g., SHA) to increase the performance. An instantiation of the
CRF in Yao’s garbled circuit protocol which uses fixed-key AES and greatly improves performance was
proposed in [7] and refined in [69] for use in the half-gates scheme. In this paper, we use both optimizations.

Oblivious Pseudo-Random Functions An oblivious pseudo-random function (OPRF) [24] is a function
F : ({0, 1}κ, {0, 1}σ) 7→ (⊥, {0, 1}`) that, given a key k from P1 and an input element e from P2, computes
and outputs Fk(e) to P2. P1 obtains no output and learns no information about e while P2 learns no infor-
mation about k. OPRFs can be used for PSI by first evaluating the OPRF protocol on the set of P2 and then
having P1, who knows the secret key k, evaluate the OPRF locally on its own set, and send the OPRF output
to P2, who computes a plaintext intersection. There exist several instantiations for OPRFs, described in [24]:
based on generic secure computation techniques (using an AES circuit [60]), based on the Diffie-Hellman
assumption, or based on OT. In §4.4 we analyze the efficiency of generic secure computation-based OPRF
instantiations and in §5 we give a more efficient OT-based instantiation.

2.2 Oblivious Transfer

Oblivious transfer (OT) is a major building block for secure computation. When executing m invocations
of 1-out-of-2 OT on `-bit strings (denoted

(
2
1

)
-OTm`), the sender S holds m message pairs (xi0, x

i
1) with

xi0, x
i
1 ∈ {0, 1}`, while the receiver R holds an m-bit choice vector b. At the end of the protocol, R

receives xib[i] but learns nothing about xi1−b[i], and S learns nothing about b. Many OT protocols have

8

been proposed, most notably (for the semi-honest model) the Naor-Pinkas OT [53], which uses public-key
operations and has amortized complexity of 3m public-key operations when performing m OTs.

OT extension [6, 35] reduces the number of expensive public-key operations for OTm` to that of only OTκκ,
and computes the rest of the protocol using more efficient symmetric cryptographic operations which faster
by are orders of magnitude. The security parameter κ is essentially independent of the number of OTs m,
and can be as small as 128. Thereby, the computational complexity for performing OT is reduced to such an
extent, that the network bandwidth becomes the main bottleneck [22, 3].

Recently, the efficiency of OT extension protocols has gained a lot of attention. In [39], an efficient(
N
1

)
-OT extension protocol was shown, that has sub-linear communication in κ for short messages. Another

protocol improvement is outlined in [3, 39], which decreases the communication from R to S by half.
Additionally, several works [3, 55] improve the efficiency of OT by using an OT variant, called random
OT. In random OT, (xi0, x

i
1) are chosen uniformly and randomly within the OT and are output to S, thereby

removing the final message from S to R. Random OT is useful for many applications, and we show how it
can reduce the overhead of PSI.

We describe the OT extension protocol of [3, 35], the random OT functionality, and the
(
N
1

)
-OT exten-

sion protocol of [39] in more detail next.

2.2.1 1-out-of-2 OT Extension

In [35], a
(
2
1

)
-OT extension protocol was outlined that extends OTκκ (κ OTs of κ bits) to OTm` (m OTs of `

bits). We describe the OT extension protocol of [35] with optimizations of [3, 39] in Prot. 1.

PROTOCOL 1 (OT Extension Protocol of [35])

• Input of P1: m pairs of `-bit strings (xi0, xi1), 1 ≤ i ≤ m.
• Input of P2: A choice vector b ∈ {0, 1}m.
• Common Input: Symmetric security parameter κ.
• Oracles and cryptographic primitives: Both parties have access to an OTκκ oracle, a PRG G : {0, 1}κ 7→
{0, 1}m, and a CRF H : {0, 1}κ 7→ {0, 1}`.

1. P1 initializes a random vector s ∈ {0, 1}κ and P2 chooses κ random key pairs (ki0, k
i
1) ∈ {0, 1}2κ, for

1 ≤ i ≤ κ.

2. The parties invoke the OTκκ oracle where, in the i-th OT, P1 plays the receiver with input s[i] and P2 plays the
sender with inputs (ki0, ki1).

3. P2 computes ti = G(k0i) and ui = ti ⊕ G(k1i) ⊕ b, and sends ui to P1, for 1 ≤ i ≤ κ. Let T = [t1|...|t`]
denote a random m × ` bit matrix that is generated by P2 where the i-th column is ti and the j-th row is tj ,
for 1 ≤ i ≤ ` and 1 ≤ j ≤ m.

4. P1 defines qi = (s[i] · ui)⊕G(k
s[i]
i) (note that qi = (s[i] · b⊕ ti).

5. Let Q = [q1|...|qκ] denote the m× κ bit matrix where the i-th column is qi. Let qj denote the j-th row of the
matrix Q (note that qj = (b[j] · s)⊕ tj .

6. P1 sends (y0j , y
1
j) for every 1 ≤ j ≤ m, where:

y0j = x0j ⊕H(qj) and y1j = x1j ⊕H(qj ⊕ s)

7. P2 computes xb[j]j = y
b[j]
j ⊕H(tj), for 1 ≤ j ≤ m.

8. Output: P1 has no output; P2 outputs (x1b[1], ..., x
m
b[m]).

9

Efficiency Overall, when using OT extension, the sender in OTm` has to evaluate 2m CRFs and m PRGs,
and send 2m` bits, while the receiver has to evaluate m CRFs and 2m PRGs, and send mκ bits. (In
addition, there is a preprocessing cost of OTκκ public-key-based OTs, which is negligible compared to the
main protocol if κ� m.)

2.2.2 Random OT Extension

To improve efficiency of OT extension protocols in specific settings, several works [55, 3] use a special
purpose OT functionality, called random OT. In a random OT, (xi0, x

i
1) are chosen uniformly and randomly

during the OT and are output to P1. A random OT extension protocol can be obtained by leaving out the
last message from P1 to P2, containing (yi0, y

i
1). More detailed, P1 has no input to the protocol and sets

(xj0 = H(qj), x
j
1 = H(qj⊕s)) in Step 6 in Prot. 1 while P2 sets xib[j] = H(tj) in Step 7. P1 then outputs m

pairs of `-bit strings (xj0, x
j
1) and P2 outputs xjb[j]. This random OT extension protocol reduces the bits that

P1 has to send from 2m` to 0 at the expense of the stronger assumption that H is modeled as a RO instead
of a CRF.

2.2.3 1-out-of-N OT Extension

In [39], an efficient
(
N
1

)
-OT extension protocol was introduced which allows to transfer short messages

with sublinear communication in κ. The protocol builds on the original OT extension protocol of [35] and
encodes the choices of R using an error correcting code CN = c0, ..., cN−1, which encodes dlog2Ne-bit
words with p-bit codewords that have at least κ Hamming distance from each other. More detailed, in the
i-th

(
N
1

)
-OT, S inputs xi0, ..., x

i
N−1 and R inputs bi ∈ [0...N − 1]. The parties perform p base-OTs such

that S holds s ∈R {0, 1}p and kjs[j] and R holds kj0 and kj1 (p is a security parameter, see below). R then

computes m × p matrices T and U as tj = G(kj0) and uj = G(kj1) and transfers vi = ti ⊕ ui ⊕ cb[i]
(note that we address v and t row-wise instead of column-wise as in the original OT extension protocol).
As in the original protocol, S then generates a m × p bit-matrix Q as qj = vjs[j] ⊕ G(k

j
s[j]) and transfers

yiw = xiw ⊕H(qi ⊕ (s ∧ cw)) to R, where ∧ is the bitwise-AND and 0 ≤ w < N . Finally, R obtains his
output xib[i] = yib[i] ⊕H(ti).

Two things are noteworthy in this
(
N
1

)
-OT extension protocol. Firstly, we can also use the random OT

extension functionality by having S set xiw = H(qi⊕(s∧cw)) andR set xib[i] = H(ti). Secondly, in order to

achieve the same computational security level κ = 128 as in the original
(
2
1

)
-OT extension protocol of [35],

the parties have to increase the number of base-OTs to the codeword length p of the underlying code, which
depends on N (cf. [39]). The reason for the increase in base-OTs is that the Hamming distance between the
codewords has to be at least κ. For 2 < N ≤ 2κ, [39] proposes to use the Walsh-Hadamard code, which
encodes up to 2κ words to codewords of length 2κ with relative Hamming distance κ. However, in our
OT-based PSI protocol, we use σ-bit elements as input to the

(
N
1

)
-OT protocol of [39] and hence need to

handle 2σ = N � 2κ. In order to process such a σ-bit element, we need to find an error correcting code
that processes 2σ input elements with codewords of relative Hamming distance 128-bit and short codesize.
As an example, when processing σ = 13-bit elements, we could use a code of size 271-bit, as given in [66].

In the remainder of the paper and for ease of presentation, we fix a linear BCH code, generated from [49],
which encodes up to 277 words to codewords of length 512 with relative Hamming distance κ, which is
denoted as a [277, 512, 129] code. Using the permutation-based hashing techniques, outlined in §3.3, and
assuming a statistical security of λ = 40 bit, this allows us to process sets with up to 100 billion (237)
elements independently of their bit-length σ, which suffices for most applications.

10

Efficiency Evaluating one
(
N
1

)
-ROT using the

(
N
1

)
-OT extension protocol of [39] and our linear BCH

code requires 512 bits of communication and N CRF evaluations. Note that, although the high number
of CRF evaluations for the

(
N
1

)
-OT seems prohibitive for large N , we only need to perform a constant

number (say 3) of CRF evaluations in our protocol. In comparison, naively building
(
N
1

)
-ROT from

(
2
1

)
-OT

extension would require logN
(
2
1

)
-OT invocations and hence require 128 logN bits of communication and

2 logN CRF evaluations. More concretely, when computing the intersection between two million element
sets using our OT-based PSI protocol in §5, we would have N ≈ 60 and hence would require 512 bit
communication using the

(
N
1

)
-OT extension protocol of [39] and 7,680 bits communication using the regular(

2
1

)
-OT extension protocol of [35] with most recent optimizations of [3, 39].

2.3 Hashing Inputs to a Smaller Domain

The performance of some PSI protocols depends on the length of the representation of their inputs. This
is particularly true for protocols that run an OT for each bit of the input representation, e.g., the protocols
described in §4.3 and §5.

When the original input representation is sparse, we can first use a hash function to map the identities of
the input items to identities from a smaller domain with a shorter representation. We then run the original
protocol on that representation, resulting in a more efficient execution. The size of the new domain should
be large enough so that no two different input items are mapped to the same value. The theoretical analysis
of this mapping, related to the birthday paradox, shows that when n items are mapped to a domain of size D
using a random hash function, the probability of experiencing a collision is p = 1− e−n·(n−1)/(2D), and can
be approximated as p ≈ n2/(2D) (see [50], p. 45).

Let us denote the length of the representation of items in D as d = logD. Then p ≈ n2/(2 · 2d), and
therefore

d = 2 log(n)− 1− log(p).

3 Hashing Schemes and PSI

Computing the plaintext intersection between two sets is often done using hashing techniques. The parties
agree on a publicly known random hash function to map elements to a hash table, which consists of multiple
bins. If an input element is in the intersection, both parties map it to the same bin. Hence, the parties only
need to compare the elements that are in the same bin to identify intersecting elements. Thereby, the average
number of comparisons between elements can be reduced from O(n2) to O(n) for pairwise comparisons.

In a similar fashion, PSI protocols that privately compute the equality between values can use hashing
techniques in order to reduce the number of comparisons [25, 23]. Examples for such private equality test
protocols are [25, 32, 13], the circuit-based protocol in §4.3 or our OT-based protocol in §5. When naively
using hashing techniques, if n items are mapped to n bins then the average number of items in a bin isO(1),
checking for an intersection in a bin takes O(1) work, and hence the total number of comparisons is O(n).
However, privacy requires that the parties hide from each other how many of their inputs were mapped to
each bin.4 As a result, we must calculate in advance the number of items that will be mapped to the most
populated bin (w.h.p.), and then set all bins to be of that size. (This can be done by storing dummy items
in bins which are not fully occupied.) This change hides the bin sizes but also increases the overhead of the

4Otherwise, and since the hash function is public, some information is leaked about the input. For example, if no items of P1

were mapped to the first bin by the hash function h, then P2 learns that P1 has no inputs in the set h−1(1), which covers about 1/n
of the input range.

11

protocol, since the number of comparisons per bin now depends on the size of the most populated bin (worst
case) rather than on the actual number of items in the bin (average case).

In fact, this worst case analysis is key to balancing security and efficiency. On the one hand, if the
estimation is too optimistic, the probability of a party failing to perform the mapping becomes intolerable.
As a result, the output might be inaccurate (since not all items can be mapped to bins), or one party needs to
request a new hash function (a request that leaks information about the input set of that party). On the other
hand, the number of performed comparisons and hence the protocol overhead can become prohibitive if the
analysis is too pessimistic. The work of [25, 23] gave asymptotic values for this analysis and of the resulting
overhead. They left the task of setting appropriate parameters for the hashing schemes to future work.

In this section, we revisit the simple hashing (§3.1) and Cuckoo hashing (§3.2) schemes, used in [25, 23].
We describe how to use both hashing schemes in the context of PSI and give a concrete parameter analysis
that balances security and efficiency. Finally, we show how the bit-length of the representations that are
stored in the bins can be reduced using permutation-based mapping, which improves the performance of
some PSI protocols (§3.3).

Note that, for our hashing failure analysis, we use a dedicated hashing failure parameter η, which is
different from the statistical security parameter λ. We use a dedicated parameter since our analysis requires
running empirical experiments for determining concrete numbers, which would have cost several hundred
thousand USD for 240 iterations in the Amazon EC2 cloud. Hence, we perform the experiments and give
concrete numbers for η = 30 and interpolate from these results to η = 40.

3.1 Simple Hashing

In the simplest hashing scheme, the hash table consists of b bins B1...Bb. Hashing is done by mapping
each input element e to a bin Bh(e) using a hash function h : {0, 1}σ 7→ [1, b] that was chosen uniformly
at random and independently of the input elements. An element is always added to the bin to which it is
mapped, regardless of whether other elements are already stored in that bin.

3.1.1 Simple Hashing for PSI

To apply simple hashing in the context of PSI, both parties map their elements to b bins. The intersection
is then computed by having both parties separately compare the items mapped to bin i ∈ [1, ..., b]. In order
to hide the number of elements that were mapped to a bin, the parties need to pad their bins using dummy
elements to containmaxb elements. This maximum bin size must ensure that except with probability< 2−η,
no bin will contain more than maxb real elements.

3.1.2 Simple Hashing Parameter Analysis

Estimating maxb has been subject to extensive research [28, 62, 48]. When hashing n elements to b = n
bins, [28] showed that maxb = lnn

ln lnn(1 + o(1)) w.h.p. In this case, there is a difference between the
expected and the maximum number of elements mapped to a bin, which are 1 and O(lnn

ln lnn), respectively.
Let us examine in more detail the probability of the following event, “n balls are mapped at random to b

12

bins, and the most occupied bin has at least k balls”:

Pr(∃bin with ≥ k balls) (1)

≤ b · Pr(bin #1 has ≥ k balls) (2)

≤ b
(
n

k

)(
1

b

)k
(3)

≤ b
(ne
k

)k (1

b

)k
(4)

= b
(en
bk

)k
. (5)

Case n = b We calculate maxb when mapping n ∈ {28, 212, 216, 220, 224} elements to b = n bins using
Eq. (5), choose the minimal value of k that reduces the failure probability to below 2−30 and 2−40 and depict
the results in Tab. 2.

Hash Failure Parameter φ 30 40

Set Size n 28 212 216 220 224 28 212 216 220 224

maxb (Eq. 5) 16 17 18 19 20 17 18 19 20 21

Table 2: The bin sizes maxb that are required to ensure that no overflow occurs when mapping n items to
b = n bins, according to Eq. (5).

Case n� b In certain settings, the server P1 has a much larger set than the client P2. For simple hashing,
this translates to the number of elements n being much larger than the number of bins b. Later in the paper,
we perform experiments for this setting (cf. §6.2.3), where P2 has a set of size n2 ∈ {28, 212}, while P1 has
a set of size n1 ∈ {216, 220, 224} and both map n = 2n1 elements into b = 2.4n2 bins. To determine maxb
in this setting, we evaluate Eq. 5 with these set sizes and depict maxb for hashing failure probabilities 2−30

and 2−40 in Tab. 3. From the results, we can observe that as the fraction n1/n2 grows, the maximum number
of bin grows closer to the expected number of bins.

Set Size n2 28 212

Set Size n1 216 220 224 216 220 224

Hash Failure Parameter η = 30

maxb (Eq. 5) 607 9,306 148,482 60 610 9,309

Hash Failure Parameter η = 40

maxb (Eq. 5) 614 9,313 148,489 65 616 9,316

Table 3: The bin sizes maxb that are required to ensure that no overflow occurs when mapping n = 2n1
items to b = 2.4n2 bins for n1 � n2, according to Eq. (5).

3.2 Cuckoo Hashing

Cuckoo hashing [57] uses k hash functions h1, ..., hk : {0, 1}σ 7→ [1, b] to map m elements to b = εn
bins. The scheme avoids collisions by relocating elements when a collision is found using the following
procedure: An element e is inserted into a bin Bh1(e). Any prior contents o of Bh1(e) are evicted to a

13

new bin Bhi(o), using hi to determine the new bin location, where hi(o) 6= h1(e) for i ∈ [1...k]. The
procedure is repeated until no more evictions are necessary, or until a threshold number of relocations has
been performed. In the latter case, the last element is put in a special stash. A lookup in this scheme is very
efficient as it only compares e to the k items in Bh1(e), ..., Bhk(e) and to the s items in the stash. The size
of the hash table depends on the number of hash functions k as well as on the stash size s. The higher k is
chosen, the more likely it is that the insertion process succeeds and hence the smaller the number of bins b
becomes. On the other hand, the higher s is chosen, the more insertion failures can be tolerated.

3.2.1 Cuckoo Hashing for PSI

A major problem occurs when using Cuckoo hashing for PSI: every item can be mapped to one of k bins,
and therefore it is unclear with which of P1’s bins should P2 compare its own input elements. Furthermore,
the protocol must hide from each party the choice of bins made by the other party to store an element, since
that choice depends on other input elements and might reveal information about them. The solution to this
is that P2 uses Cuckoo hashing whereas P1 maps each of its elements using simple hashing with each of
the k hash functions. In addition, for Cuckoo hashing, we must ensure that the hashing succeeds except with
probability < 2−η, since a hashing error on the side of P2 reveals information about its set or results in an
incorrect result. As in PSI with simple hashing (cf. §3.1), P1 will need to pad its bins to size maxb using
dummy elements d1 6= d2.

3.2.2 Cuckoo Hashing Parameter Analysis

Cuckoo hashing has three parameters that affect the hashing failure probability: the stash size s, the number
of hash functions k, and the number of bins b = εn [37]. It was shown in [37] that Cuckoo hashing of n
elements into (1 + ζ)n bins with ζ ∈ (0, 1) for any k ≥ 2(1 + ζ) log(eζ) and s ≥ 0 fails with probability
O(n(1−k)(s+1)). The constants in the big “O” notation are unclear, which makes it hard to compute a
concrete failure probability given a set of parameters.

In the following, we empirically determine the failure probability given the stash size s, the number of
hash functions k, and the number of bins b. We analyze the effect of all three parameters separately. We first
fix the number of bins b = 2.4n and hash functions k = 2 (as was done in [37]) and determine the necessary
stash sizes s. In order to improve performance, we increase the number of hash functions k and determine
the number of bins b for which no stash is required (i.e., s = 0). While both approaches achieve good
overhead when n1 = n2, they perform poorly when the parties have unequal set sizes n1 � n2. Hence, in
the last step, we show how to obtain a low values for the stash size s and a low number of hash functions k
by increasing the number of bins b = εn, which results in a collection of trade-offs for unequal set size
applications.

Adjusting the Stash Size s In the following, we identify the exact stash size s that ensures that the hashing
failure probability is smaller than a given 2−η. To obtain concrete numbers, we ran 230 repetitions of Cuckoo
hashing, where we mapped n items to b = εn = 2.4n bins, for n ∈ {211, 212, 213, 214}, using k = 2 hash
functions and recorded the stash size s that was needed for Cuckoo hashing to be successful. We fix ε = 2.4
as was done in the original Cuckoo hashing with a stash paper [37]. The solid lines in Fig. 1 depict the
probability that a stash of size s prevented a hashing failure.

From the results we can observe that, to achieve 2−30 failure probability of Cuckoo hashing, we require
a stash of size s = 6 for n = 211, s = 5 for n = 212, and s = 4 for both n = 213 and n = 214

elements. However, in our experiments we need the stash sizes for smaller as well as larger values of n to

14

achieve a Cuckoo hashing failure probability of 2−30. To obtain the failure probabilities for larger values
of n, we extrapolate the results using linear regression and illustrate the results as dotted lines in Fig. 1.
We give the extrapolated stash sizes for achieving a hashing failure probability of 2−30 and 2−40 for n ∈
{28, 212, 216, 220, 224} in Tab. 4. We observe that the stash size for achieving a failure probability of 2−30 is
drastically reduced for higher values of n: for n = 216 we need a stash of size s = 4, for n = 220 we need
s = 3, and for n = 224 we need s = 2. This observation is in line with the asymptotic failure probability
of O(n−s).

−100

−80

−60

−40
−30
−20
−10

−18 10 12 14 16 18 20 22 24

E
rr

or
 P

ro
ba

bi
lit

y
(2

y)

Number of Elements (2x)

 s=1
s=2
s=3
s=4
s=5
s=6

Figure 1: Error probability when mapping n elements
to 2.4n bins using Cuckoo hashing with k = 2 hash
functions for stash sizes 1 ≤ s ≤ 6. The solid lines
correspond to actual measurements, the dashed lines
were extrapolated using linear regression.

Elements n 28 212 216 220 224

Stash s (η = 30) 8 5 3 2 1

Stash s (η = 40) 12 6 4 3 2

Table 4: Required stash sizes s to achieve 2−η

failure probability when mapping n elements
into 2.4n bins.

Adjusting the Number of Hash Functions k The original Cuckoo hashing procedure [58] fixed the num-
ber of hash functions k = 2. It was later shown in [19] that increasing the number of hash functions k > 2
achieves much better utilization of bins in the hash table. I.e., while the average utilization for k = 2 hash
functions is around 50%, the utilization increases to 91.8% for k = 3, 97.7% for k = 4, and 99.2% for
k = 5. Hence, higher values of k allow us to drastically decrease the number of bins. However, similar to
the previous stash allocation, the analysis in [19] was only asymptotic and does not allow to compute the
concrete hashing failure probability.

In order to determine the concrete failure probability, we again perform 230 iterations of Cuckoo hashing
on n = 1,024 elements using k ∈ {3, 4, 5} hash functions. Our goal in this analysis is to determine the
minimum number of bins bmin = εminn for which the hashing procedure succeeds without a stash except
with probability 2−30. In order to determine the value of bmin, we run Cuckoo hashing on an initialization
value εmin = 1.0 and increase εmin by 0.1 each time more than one hashing failure has occurred. An
interesting observation that we made during the experiments with multiple hash functions was that after a
certain threshold value, the hashing failure probability decreased drastically. E.g., only increasing ε by as
little as 0.1 when using k = 5 hash functions could reduce the required stash size from s = 2 to s = 0.
Overall, we determined the following bin sizes that resulted in a hashing failure probability of < 2−30:
εmin = 1.20 for k = 3, εmin = 1.07 for k = 4, and εmin = 1.04 for k = 5.

15

A consequence of increasing the number of hash functions is that the party P1, who uses simple hashing,
needs to increase the maximum bin size maxb. This is due to two factors: on the one hand P1 needs to map
each element k times to its hash table. On the other hand, the parties decrease the number of bins due to the
reduced ε. We re-compute the maximum bin size of P1 given the increased number of hash functions using
Eq. 5 and give the results in Tab. 5. Given these results, we can compute the total number of comparisons
by multiplying the number of bins b with maxb. From these results, we observe that k = 3 achieves the best
performance.

Hash Failure Parameter η 30 40

Set Sizes n1 =n2 28 212 216 220 224 28 212 216 220 224

maxb for k=2 (b = 2.4n2, n = 2n1) 15 16 17 18 19 17 18 19 20 21

maxb for k=3 (b = 1.2n2, n = 3n1) 23 24 25 26 28 26 27 28 29 30

maxb for k=4 (b = 1.07n2, n = 4n1) 28 29 30 32 33 31 32 34 35 36

maxb for k=5 (b = 1.04n2, n = 5n1) 31 33 34 36 37 35 36 38 39 40

Table 5: The bin sizes maxb that are required to ensure that no overflow occurs when mapping n items to b
bins using k hash functions, according to Eq. (5).

Adjusting the Number of Bins b The required stash sizes for b = 2.4n bins and k = 2 hash functions
are relatively large for small set sizes (e.g., s = 8 for n = 256). In case of equal set sizes n1 = n2, this
does not impact the performance of the protocols much. In the case of unequal set sizes n1 � n2, however,
large stash sizes will greatly decrease the performance, since each element in the stash needs to be compared
with each item in the large set with possibly millions of elements. Furthermore, even when increasing the
number of hash functions k > 2 to remove the stash, P1 would need to map each of its million elements k
times into its hash table, which increases maxb and hence incurs a great overhead.

To improve the performance for unequal set sizes, we fix the stash sizes s ∈ {0, 1, 2, 3, 4} and the
number of hash functions to k = 2 and try to identify the number of bins b = εn such that the hashing
failure probability is less than 2−η. Similarly to the previous experiments, we ran 230 repetitions of Cuckoo
hashing, mapping n items to b = εn bins, for n = 256 and ε = {2.4, 3, 4, 5, 6, 7, 8, 9, 10, 20, 100, 200}, and
recorded the stash size s that was needed for Cuckoo hashing to be successful. We chose n = 256 since it
is a good approximation of the number of contacts in a user’s addressbook and it is used in our experiments
in §6.2.3.

The results of our experiments are depicted as solid lines in Fig. 2. From the results, we can observe that
the probability of requiring a stash size of s decreases logarithmically with growing ε: while for small ε the
probabilities decrease quickly, they decrease slower for large ε. E.g., when increasing ε from 2.4 to 4, the
hashing failure probability for a stash of size s = 0 decreases from 2−6 to 2−12. If, on the other hand, ε is
increased from 20 to 100, the hashing failure probability for s = 0 only decreases from 2−21 to 2−28. Since
we are interested in identifying ε such that the probability of requiring a stash of size s decreases below 2−η,
we use regression via a logarithmic function to extrapolate the probabilities. These estimated probabilities
are depicted as dotted lines in Fig. 2 and the smallest ε for which the hashing failure probability decreases
below 2−30 and 2−40 is given in Tab. 6.

The estimations indicate that, in order to reduce the stash size to s = 0, we would need to set ε = 166 to
guarantee 2−30 hashing failure probability and to ε = 2,500 to guarantee 2−40 hashing failure probability.
When allowing a bigger stash size s = 1, ε decreases drastically, allowing us to set ε = 7.8 for 2−30

hashing failure probability and ε = 16 for 2−40 hashing failure probability. In our experiments, the exact

16

choice of ε and s depends on the difference between the set sizes n1 and n2 as well as the protocol that is
used (cf. §6.2.3). I.e., if n2 is only a few hundred while n1 is several million, it can be more efficient to
choose ε = 166 to achieve stash size s = 0.

−100

−80

−60

−40

−30

−20

−10

−1 2.4 4 6 10 20 50 100 200 5001000

E
rr

or
 P

ro
ba

bi
lit

y
(2

y)

Epsilon

 s=0
s=1
s=2
s=3
s=4

Figure 2: Error probability when mapping 256 ele-
ments to b = 256ε bins using Cuckoo hashing with
k = 2 hash functions for stash sizes 0 ≤ s ≤ 4.
The solid lines correspond to actual measurements,
the dashed lines were extrapolated using logarithmic
regression.

Stash Size s 0 1 2 3 4
ε (η = 30) 166 7.8 4.2 3.4 3
ε (η = 40) 2,500 16 6.2 4.4 3.8

Table 6: Required number of bins b = 256ε
to achieve < 2−η hashing failure probabil-
ity given a fixed stash size s.

3.3 Permutation-based Hashing

The overhead of our circuit-based PSI protocols in §4 and of the OT-based PSI protocol in §5 depends on
the bit-length σ of the items that the parties map to bins. The bit-length of the stored items can be reduced
based on a permutation-based hashing technique that was suggested in [2] for reducing the memory usage
of Cuckoo hashing. That construction was presented in an algorithmic setting to improve memory usage.
As far as we know this is the first time that it is used in secure computation or in a cryptographic context.

The construction uses a Feistel-like structure. Let x = xL|xR be the bit representation of an input item,
where |xL| = log b, i.e. is equal to the bit-length of an index of an entry in the hash table. (We assume here
that the number of bins b in the hash table is a power of 2. It was shown in [2] how to handle the general
case.) Let f() be a random function whose range is [0, b − 1]. Then item x is mapped to bin xL ⊕ f(xR).
The value that is stored in the bin is xR, which has a length that is shorter by log b bits than the length of
the original item. This is a great improvement, since the length of the stored data is significantly reduced,
especially if |x| is not much greater than log b. As for the security, it can be shown based on the results in [2]
that if the function f is k-wise independent, where k = polylog n, then the maximum load of a bin is log n
with high probability.

The structure of the mapping function ensures that if two items x, x′ store the same value in the same bin
then it must hold that x = x′: if the two items are mapped to the same bin, then xL⊕ f(xR) = x′L⊕ f(x′R).
Since the stored values satisfy xR = x′R it must also hold that xL = x′L, and therefore x = x′.

As a concrete example, assume that |x| = 32 and that the table has b = 220 bins. Then the values

17

that are stored in each bin are only 12 bits long, instead of 32 bits in the original scheme. Note also that
the computation of the bin location requires a single instantiation of f , which can be implemented with a
medium-size lookup table. Note that, when mapping an element into a bin using multiple hash functions,
e.g., when using Cuckoo hashing, the index of the hash function needs to be added to the representation in
the bin to preserve uniqueness. This observation was also pointed out in [43].

A comment about an alternative approach An alternative, and more straightforward approach for re-
ducing the bit-length could map x using a random permutation p() to a random |x|-bit string p(x). The first
log b bits of p(x) are used to define the bin to which x is mapped, and the value stored in that bin holds the
remaining |x| − log b bits of p(x). This construction, too, has a shorter length for the values that are stored
in the bins, but it suffers from two drawbacks: From a performance perspective, this construction requires
the usage of a random permutation on |x| bits, which is harder to compute than a random function. From a
theoretical perspective, it is impossible to have efficient constructions of k-wise independent permutations,
and therefore we only know how to prove the log nmaximum load of the bins under the stronger assumption
that the permutation is random.

4 Circuit-Based PSI

Unlike special purpose PSI protocols, the protocols that we describe in this section are based on generic
secure computation techniques that can be used for computing arbitrary functionalities. We first briefly out-
line the two most prominent generic secure computation protocols in the semi-honest model: the Goldreich-
Micali-Wigderson protocol [27] and Yao’s garbled circuits protocol [68] (§4.1). We outline the sort-compare-
shuffle (SCS) circuit of [32] a Boolean circuit of sizeO(n log n) for computing the PSI functionality (§4.2).
We then show how to use the hashing methods described in §3 to achieve better complexity than the SCS
circuit using a naive pairwise-comparison circuit (§4.3). Finally, we revisit the method of [60] where generic
secure computation techniques are used to instantiate an OPRF (cf. §2.1), which is used to process the input
elements of one party (§4.4).

The usage of generic protocols has the advantage that the functionality of the protocol can easily be
extended, without having to change the protocol or the security of the resulting protocol. For example,
it is straightforward to change the SCS and PWC protocols to compute the size of the intersection, or a
function that outputs if the intersection is greater than some threshold, or compute a summation of values
(e.g., revenues) associated with the items that are in the intersection. Computing these variants using other
PSI protocols is non-trivial.

4.1 A comparison between GMW and Yao

In the following, we give a high level comparison between the GMW protocol and Yao’s garbled circuits
protocol. We first outline the differences in the pre-computing setup phase and then detail differences in the
online phase, where the circuit is evaluated.

Setup Phase The pre-computation complexity of GMW and Yao’s protocol is measured by the circuit’s
size, i.e., the number of AND gates. Both protocols require 2κ bits communication per AND gate using
OT extension for GMW [3] and the Half-Gates optimization for Yao’s protocol [69]. The computational
workload in GMW is dominated by the OT extension routine, where each party performs six symmetric key
operations per AND gate and which can be pre-computed in parallel and independently of the function being

18

evaluated. In contrast, in Yao’s protocol, the party that generates the garbled circuit performs four symmetric
key operations per AND gate, cf. [7]. To pre-compute the garbled circuit, the circuit garbler has to know the
specific function and the size of the inputs in advance. Using fixed-key AES garbling [7] or other optimized
instantiations of the CRF [29], the time for evaluating these symmetric cryptographic operations for both
protocols can be significantly decreased. GMW allows efficient evaluation of multiplexer circuits using the
vector multiplication triple optimization [18].

Online Phase In the online phase of the GMW protocol, the parties only evaluate one-time-pad operations
and the main bottleneck of the protocol is its round complexity, which is linear in the circuit’s depth, i.e.,
the highest number of AND gates on a path from any input to any output. In [65] it was shown that using
circuits with smaller depth and larger size can be more efficient for GMW. In contrast, the round complexity
of Yao’s protocol is constant, but the evaluator has to perform two symmetric cryptographic operations per
gate in the online phase [69].

Overall The GMW protocol is suited for use in the pre-processing model due to its function-independent
pre-processing but requires multiple communication rounds in the online phase. Yao’s garbled circuits
protocol has a constant round online phase but requires the function and input sizes to be in the setup phase.
A more detailed comparison between both protocols can be found in [18].

4.2 Sort-Compare-Shuffle Circuit for PSI

A Boolean circuit for PSI that hasO(n log n) size is the sort-compare-shuffle (SCS) circuit described in [32].
(We refer here to the SCS circuit that uses the Waksman permutation for shuffling). The SCS circuit com-
putes the intersection between two sets by first sorting both sets into a single sorted list, then comparing
all neighboring elements for equality, and finally shuffling the intersecting elements to hide any information
that could be obtained from the resulting order.

The overall size of the SCS circuit for inputs of bit-length σ is σ(3n log2 n+4n)−n AND gates, which
is the sum of 2σn log2(2n) AND gates for the sort circuit, σ(3n−1)−n AND gates for the compare circuit,
and σ(n log2 n − n + 1) for the shuffle circuit. It is important to note that approximately 2/3 of the AND
gates in the circuit are due to multiplexers. These multiplexer gates can be efficiently evaluated in GMW
using vector multiplication triples [18], reducing the pre-computation cost in GMW from σ AND gates to
the equivalent of 1 AND gate for a σ-bit multiplexer.

Instantiation For our experiments in §6, we used GMW to evaluate a depth-optimized variant of the SCS
circuit, where the comparison gates have 3σ − log2(σ) − 2 AND gates instead of σ but have a depth of
log2 σ instead of σ for σ-bit values (cf. [65]). Consequently, the size of the SCS circuit is increased from
approximately 3nσ log2 n to 5nσ log2 n, but its depth is decreased from σ log2 n to log2(n) log2(σ). Using
the vector multiplication-triple optimization of [18], the size of the depth-optimized SCS circuit is again
decreased back to approximately 3nσ log2 n.

4.3 Pairwise Comparison (PWC) and Hashing

A simpler circuit for performing the PSI functionality is a pairwise-comparison (PWC) circuit, where each
element in the set of P1 is compared to each element in the set of P2. However, this circuit would scale
with O(n1n2), making it impractical for larger sets. Using the hashing methods from §3, we can drastically
reduce the number of comparisons. The circuit processes elements as follows:

19

• Both parties use a table of size b = O(n2) to store their elements. Our analysis (§3.2.2) shows that
setting b = εn2 reduces the error probability to be negligible for reasonable input sizes (28 ≤ n2 ≤
224) when setting the stash size accordingly (cf. §3.2).
• P2 maps its input elements to b bins using Cuckoo hashing with k hash functions and a stash; empty

bins are padded with a dummy element d2.
• P1 maps its input elements into b bins using simple hashing. The size of the bins is set to be maxb,

a parameter that is set to ensure that no bin overflows (cf. §3.1.2). The remaining slots in each bin
are padded with a dummy element d1 6= d2. The analysis described in §3.1.2 shows how maxb is
computed and is set to a value smaller than log n2.
• The parties securely evaluate a circuit that compares the element that was mapped to a bin by P2 to

each of the maxb elements mapped to it by P1.
• Finally, each element in P2’s stash is checked for equality with all n1 input elements of P1 by securely

evaluating a circuit computing this functionality.
• To reduce the bit-length of the elements in the bins, and respectively the circuit size, the protocol uses

permutation-based hashing as described in §3.3. (Note that using this technique is impossible with
SCS circuits of [32].)

Efficiency Let m be the number of element comparisons that are performed in the circuit with m =
b · maxb + sn1, i.e., for each of the b bins, the parties perform maxb comparisons per bin as well as n1
comparisons for each of the s positions in the stash. Each element is of length σ′ bits, which is the reduced
length of the elements after being mapped to bins using permutation-based hashing, i.e. σ′ = σ − log2 b. A
comparison of two σ′-bit elements is done by computing the bitwise XOR of the elements and then a tree of
σ − 1 OR gates, with depth dlog2 σ′e. The topmost gate of this tree is a NOR gate. Afterwards, the circuit
computes the XOR of the results of all comparisons involving each item of P2. (Note that at most one of
the comparisons results in a match, therefore the circuit can compute the XOR, rather than the OR, of the
results of the comparisons.) Overall, the circuit consists of about m · (σ′ − 1) ≈ n1 · (maxb + s) · (σ′ − 1)
non-linear gates and has an AND depth of dlog2 σe.

Advantages The PWC circuit offers several advantages over the SCS circuit:
• Compared to the number of AND gates in the SCS circuit, which is 3nσ log n, and recalling that
σ′ < σ, and that maxb was shown in our experiments to be no greater than 2 log n (and not greater
than log n asymptotically), the number of non-linear gates in the PWC circuit is smaller by more than
a factor 1.5 compared to the number of non-linear gates in the SCS circuit (even though both circuits
have the same big “O” asymptotic sizes).
• The main advantage of the PWC circuit is the low AND depth of log2 σ, which is also independent

of the number of elements n. This affects the overhead of the GMW protocol that requires a round of
interaction for every level in the circuit.
• Another advantage of the PWC circuit is its simple structure: The same small comparison circuit is

evaluated for each bin. This property allows for a SIMD (Single Instruction Multiple Data) evaluation
with a very low memory footprint and easy parallelization.
• Finally, the efficiency of the SCS circuit is tailored for equal set sizes. For unequal set sizes, the circuit

size does not scale well. The PWC circuit, on the other hand, scales much better for unequal set sizes.

20

4.4 Secure Evaluation of an OPRF

Another method for circuit-based PSI was outlined in [24, 60] and uses an OPRF (cf. §2.1). In this protocol,
the parties use secure computation to evaluate a pseudo-random function Fk(y) = z, which takes as input
a random key k from P1 and an element y from P2 and returns the output z to P2. The use of secure
computation guarantees the obliviousness, i.e., that P1 learns no information about y or z while P2 learns no
information about k. The PSI functionality can then be achieved by evaluating the OPRF on each element in
the set of P2 and having P1 locally evaluate and send Fk(xi) for all elements xi ∈ X . P2 can then identify
the intersection by computing the plaintext intersection between his output of the OPRF with the elements
sent by P1.

Efficiency The efficiency of the circuit-based OPRF construction depends mainly on the instantiation of
the pseudo-random function F . While it is possible to instantiate F with a cipher that is optimized for
use in secure computation such as [1], we consider an AES-based instantiation in our efficiency analysis,
since the security of AES is better established. The number of AND gates in the AES circuit is 5,120
and its multiplicative depth is 60 [10]. In total, we have to perform n2 parallel oblivious AES evaluations,
resulting in a total of 5,120n2 AND gates and a depth of 60. P1, on the other hand, can perform a plaintext
AES evaluation on his elements and only needs to send n1 collision-resistant strings length of ` = λ +
log(n1) + log(n2) bit. Hence, due to the large constants, the OPRF-based approach is less efficient in
concrete terms than the SCS or PWC circuits, even though it scales with O(n) while both other circuits
scale with O(n log n). However, if the set sizes of the parties greatly differ, i.e., for the mobile messenger
application where n1 � n2, the OPRF-based approach can be more efficient than other circuit constructions
and in fact more efficient than even all other PSI protocols, since the elements in the much larger set of P1

can be processed at very low cost (cf. §6.2.3).

5 Private Set Intersection via OT

In this section, we describe our new OT-based PSI protocol, of which an earlier version appeared in [61, 59].
In contrast to the conference versions, we improve our protocol such that its complexity is now independent
of the bit length σ for realistic set sizes. The core of our OT-based PSI protocol is an efficient OPRF (cf. §2.1)
instantiation using recent OT extension techniques, in particular the random OT functionality [55, 3] and
the

(
N
1

)
-OT of [39]. Our protocol operates in three steps: the parties hash their elements into hash tables,

mask their elements using the OPRF, and compute the plaintext intersection of these masks to identify the
intersecting elements. In the hashing step we use the methods from §3 for hashing the elements to bins. In
the following, we describe the OPRF construction (§5) in more detail.

In the first step of our OT-based PSI protocol, the parties have mapped their elements into hash tables T1
and T2 where the elements in the tables have bit-length µ = σ − log2 b + log2 k due to permutation-based
mapping (cf. §3.3). P1 has used simple hashing and hence its hash table T1 has two dimensions, where the
first dimension addresses the bins and the second dimension addresses the elements in the bins. P2 has used
Cuckoo hashing and hence its hash table T2 has only one dimension, which addresses the bins. Our OT-
based PSI protocol then evaluates an OPRF F (cf. §2.1) where, for each bin, P1 samples a random key and
P2 inputs the µ-bit element in bin T2[i] and obtains the resulting mask M2[i] = Fki(T2[i]), for 1 ≤ i ≤ b.
The OPRF must ensure that P1 learns no information on the input of P2 and that P2 learns no information
except the outputs that correspond to its elements.

The main observation is that we can instantiate an OPRF for µ-bit inputs using one random 1-out-of-2µ

21

PROTOCOL 2 (Our OT-based PSI Protocol)

• Input of P1: X = {x1, ..., xn1}.
• Input of P2: Y = {y1, ..., yn2}.
• Common Input: Bit-length of elements σ; number of bins b = εn2 (cf. §3.2.2); k random hash func-

tions {h1, ..., hk} : {0, 1}σ 7→ [1...b]; reduced bit-length of items in the hash table µ = σ − log2 b +
log2 k (cf. §3.3); symmetric security parameter κ; statistical security parameter λ; mask-length ` = λ +
log2(kn1) + log2(n2); N = 2µ; dummy element d2; stash size s.

• Oracles and cryptographic primitives: Both parties have access to a
(
N
1

)
-ROT1

` functionality.

1. Hashing:

(a) P1 maps the elements in its set X into a two-dimensional hash table T1[][] using simple hashing and k
hash functions {h1, ..., hk}. The first dimension has size b and addresses the bin in the table while the
second dimension addresses the elements in the bins.

(b) P2 maps the elements in its set Y into a one-dimensional hash table T2[] and stash S[] using Cuckoo
hashing and k hash functions {h1, ..., hk}. The hash table has size b and the stash has size s. P2 then
fills all empty entries in T2 and S with d2.

Let |T1[i]| be the number of elements that are stored in the i-th bin of the hash table T1 and µ be the bit-length
of these elements for 1 ≤ i ≤ b.

2. OPRF evaluation (via OT):
For each bin 1 ≤ i ≤ b, the parties perform the following steps:

(a) Let vj = T1[i][j] and w = T2[i] for 1 ≤ j ≤ |T1[i]|.
(b) The parties evaluate an OPRF using the

(
N
1

)
-ROT1

` functionality, where P1 has no inputs and obtains a
random N -entry look-up table L and P2 inputs w as choice bits and obtains a random mask L[w].

(c) P1 computes M1[i][j] = L[vj] and P2 computes M2[i] = L[w].

Stash: For each element in the stash S, the parties repeat the same steps where, for the i-th stash position, P1

evaluates the OPRF on his whole input set X and obtains n1 masks MS1 [i] while P2 evaluates the OPRF on
S[i] and obtains one masks MS2 [i].

3. Plaintext Intersection

(a) Let
⋃

1≤i≤b,1≤j≤|T1[i]|M1[i][j]. P1 randomly permutes V and sends it to P2.

(b) P2 computes the intersection Z = {T2[i]|M2[i] ∈ V }.

Stash: The parties perform the same operation to identify whether an element on the stash is in the intersection:
P1 permutes and sends MS1 [i] to P2, who adds S[i] to the intersection Z if MS2 [i] ∈MS1 [i].

• Output: P1 has no output; P2 outputs Z = X ∩ Y .

random OT on `-bit strings (
(
2µ

1

)
-ROT1

`), where P1 plays the sender and obtains a 2µ-dimensional lookup-
table L : {0, 1}µ 7→ {0, 1}` while P2 plays the receiver who inputs T2[i] and obtains L[T2[i]]. P1 can then
evaluate the OPRF on the elements in its bin T1[i] locally by computingM1[i][j] = L[T [i][j]], for 1 ≤ i ≤ b
and 1 ≤ j ≤ |T1[i]|. After P1 has evaluated the OPRF for all bins i, it collects the OPRF outputs M1[i]
for all |T1[i]| elements in a bin to a set V and permutes and sends V . P2 identifies whether T2[i] is in the
intersection by checking whetherM2[i] matches any element in V . If the element T2[i] matches any element
in T1[i], their OPRF outputs will be equal. If T2[i] matches no element in T1[i], their OPRF outputs will
differ except with probability |T1[i]| · 2−`. The elements in the stash of P2 are processed independently in
a similar fashion: both parties evaluate the OPRF, P2 obtains the output for the elements in its stash, and P1

evaluates the OPRF locally on each element of its set and sends the permuted outputs to P2, who identifies
the intersection.

22

Efficiency The main computation and communication overhead comes from the OPRF evaluation. The
efficiency of the OPRF depends greatly on the underlying instantiation. We instantiate the OPRF that maps
µ-bit inputs to `-bit outputs using the

(
2µ

1

)
-ROT1

` protocol of [39] with the linear BCH code [277, 512, 129],
generated by [49] (cf. §2.2.3). Overall, the parties perform s + b OPRF evaluations, which correspond
to

(
2µ

1

)
-ROTs+b` , where the stash size s and the number of bins b = εn2 are chosen to achieve negligible

Cuckoo hashing error probability (cf. §3.2.2). Regarding the communication, P2 sends 512(s+b) bits for the(
2µ

1

)
-ROT, while P1 sends k`n1 bits for the permuted OPRF output, where k is the number of hash functions

used for Cuckoo hashing (cf. §3.2.2) and ` = log2(kn1) + log2(n2) + λ. Regarding the computation, note
that in a naive

(
2µ

1

)
-OT evaluation the sender P1 would need to perform 2µ CRF evaluations, one for each

message. However, since P1 only needs to obtain the output for actual elements in its bins, it only needs to
perform (k + s)n1 CRF evaluations, which is independent of µ.

Correctness In the following, we analyze the correctness of the scheme. We assume that in Step 1 in
Prot. 2, P1 has used simple hashing to map each element k times into the hash table T1 while P2 has used
Cuckoo hashing to map each element once into the hash table T2.

If x = y then P1 and P2 will have the same item in a bin in their hash tables (P2 has mapped the item to
one of k bins while P1 has mapped the item to all k bins). For this bin, P2 obtains Mx = L[x] as output of
the OPRF and P1 can locally compute My = L[y] with Mx =My, and P2 successfully identifies equality.

If x 6= y then the probability that Mx =My is 2−`. However, we require that all OPRF outputs M2 for
elements in the hash table T2 of P2 are distinct from all outputs M1 for elements in the hash table T1 of P1,
which happens with probability kn1n22−`. Thus, to achieve correctness with probability 1-2−λ, we must
increase the bit-length of the OTs to ` = λ+ log2(kn1) + log2(n2).

Security P2’s security is obvious, since the only information that P1 learns are the random values chosen
in the random OT, which are independent of P2’s input.

As for P1’s security, note that P2’s view in the protocol consists of its outputs M2 of the
(
N
1

)
-ROT

protocols, and of the values M1 sent by P1. If there are two elements x ∈ X and y ∈ Y with x = y, then
there are outputs Mx = My. Otherwise, for x 6= y, these values are uniformly distributed and P2 can gain
no information about Mx, which is guaranteed by the properties of the

(
N
1

)
-ROT protocol. In both cases,

the view of P2 can be easily simulated given the output of the protocol (i.e., knowledge whether x = y).
The protocol is therefore secure according to the common security definitions of secure computation [26].

6 Experimental Evaluation

In the following, we experimentally evaluate the most promising PSI protocols that were outlined before.
We first discuss their implementational features and compare them theoretically (§6.1). We then give an
empirical performance comparison between the protocols for different settings (§6.2). Throughout the eval-
uation, we divide the PSI protocols into four categories, depending on whether the protocol is based on
public-key operations, circuits, OT, or provides limited security and mark the best result of each category in
bold.

6.1 Theoretical Evaluation

Before evaluating the empirical performance of the PSI protocols, we discuss implementational features of
the protocols such as their suitability for large-scale PSI on sets with several million elements (§6.1.1) or the

23

ability of the schemes for parallelization (§6.1.2), and give their asymptotic computation and communication
complexities (§6.1.3).

6.1.1 Suitability for Large-Scale PSI

Although hardly discussed, memory consumption poses a very big problem when implementing crypto-
graphic schemes that operate on large amounts of data. As such, many of the implemented PSI protocols
quickly exceeded the main memory, requiring more engineering effort and a more careful implementation to
allow for PSI on larger sets. In fact, even computing the plaintext intersection for sets of billions of elements
becomes a tedious problem, since at least one set needs to be fully stored at one point during the execution.
In this case, one can store the data on disk, which decreases performance greatly when arbitrary look ups
are performed.

Limited Security & Public-Key-Based PSI The naive-hashing, server-aided, and public-key-based PSI
schemes are very memory efficient, since they operate only on single elements and can be easily pipelined,
allowing PSI on millions of elements even on standard PCs.

Circuit-Based PSI The circuit-based PSI schemes have a very high memory consumption. In our im-
plementations we evaluate and delete gates if they will not be used anymore to decrease the memory con-
sumption. Yao’s garbled circuits has a higher memory consumption than GMW, since κ-bit keys have to
be stored for each wire instead of single bits. A pipelined circuit generation and evaluation, as is done in
VMCRYPT [44], FastGC [33, 31], or PCF [42] would allow us to perform PSI on larger sets. The main
memory limitation of our Yao and GMW implementation comes from the circuit having to be fully built and
stored in memory. To decrease the memory footprint of the circuit, we build circuits that are evaluated many
times in parallel in a SIMD fashion, which evaluates the circuit on multiple values in parallel. This SIMD
evaluation especially benefits the PWC (§4.3) and OPRF (§4.4) circuits, since the same circuit is evaluated
on all elements in parallel.

OT-Based PSI The garbled Bloom filter and random garbled Bloom filter PSI protocols of [20, 61] have
to store the full Bloom filter in memory to identify the intersecting elements. The garbled Bloom filter holds
1.44nκ entries of at least λ-bit shares, resulting in at least 875 MB for sets of one million elements. In
addition, the parties have to perform arbitrary element look ups, which greatly decrease the performance if
the Bloom filter is outsourced to the hard disk.

The main memory limitation of our OT-based PSI protocol (§5) are the hash tables, in particular the
Cuckoo hash table. While the hash table for simple hashing can be easily stored on disk, the Cuckoo
hash table needs to perform arbitrary look ups when evicting elements. The Cuckoo hash table holds 1.2n
elements of at most ` = λ+log(n1)+log(n2)-bit length, resulting in 12 MB for sets of one million elements
and hence scales much better than the Bloom filter-based protocols.

6.1.2 Parallelizability of Schemes

The experiments we perform in the empirical evaluation only consider execution using a single thread.
However, if more computational resources are available, the schemes can be run using multiple threads
in order to improve their performance. Note, however, that the bottleneck for many protocols (i.e., all
except the public-key-based protocols) quickly shifts from computation to communication, since symmetric

24

cryptographic operations can be evaluated very efficiently using AES-NI. In the following we discuss the
ability of the schemes to be parallelized.

Limited Security & Public-Key-Based PSI The naive-hashing, server-aided, and public-key-based PSI
schemes can easily be parallelized since the elements are processed independently of each other. The main
bottleneck for parallelization in all these schemes is the plaintext intersection of hash values that is done at
the end of each protocol.

Circuit-Based PSI The circuit-based PSI protocols parallelize differently depending on the underlying
secure computation protocol. The GMW protocol uses OT extension to pre-compute multiplication triples.
This step presents the main computational workload and can be parallelized well. However, the circuit
evaluation of GMW requires a number of sequential interactions between the parties that is linear in the
depth of the circuit and which cannot be parallelized. Yao’s garbled circuits, on the other hand, is a constant
round protocol. Its ability to parallelize depends on the underlying circuit structure. Circuits that can be
split into many sub-circuits that are independent of each other, such as the PWC and OPRF circuits, can
be parallelized easily and efficiently while circuits where all gates are connected, such as the sort-compare-
shuffle circuit, require circuit-dependent methods for parallelization. For such circuits, an automatically
parallelizing compiler could be used [12].

OT-based PSI For all OT-based PSI protocols it holds that the underlying OT extension protocol can be
parallelized well. The main differences in parallelizability are due to the hashing scheme that is used to map
the elements into the corresponding structure. In the garbled Bloom filter-based PSI protocol of [20], P1

has to generate the garbled Bloom filter in advance, and this step does not parallelize well. This is improved
on by the random garbled Bloom filter protocol of [61], where the garbled Bloom filter is generated as an
output of OT extension and can hence be fully parallelized. In our OT-PSI protocol, the main bottleneck for
parallelization is the Cuckoo-hashing procedure. However, Cuckoo hashing can be pre-processed since no
input of the other party is required.

6.1.3 Asymptotic Performance Comparison

We depict the asymptotic computation complexity for the party with the majority of the workload and total
communication complexity of the PSI protocols in Tab. 7. The computation complexity is expressed as
the number of symmetric cryptographic primitive evaluations (sym) and the number of asymmetric crypto-
graphic primitive operations (pk). We assume 3 sym per OT (2.5 sym for the Bloom filter-based protocols),
4 sym per AND gate in Yao’s protocol, and 6 sym per AND gate in the GMW protocol.

The most crucial observation we make from the asymptotic complexities is that, asymptotically, the
performance amongst the schemes with the same type is nearly equal. The naive hashing and server-aided
protocol both require 1 sym operation per element, the public-key-based protocols all require 2 pk oper-
ations per element and need to send two ciphertexts and a hash value, the circuit-based protocols all have
to perform work linear in the number of AND gates in the circuit, and the Bloom filter-based protocols
both have to perform work linear in the size of the Bloom filter. The main discrepancy can be seen among
the OT-based protocols, where the communication complexity of the Bloom filter-based protocols scales
quadratically with the symmetric security parameter κ while our OT-based PSI protocol scales only linear
in the security parameter κ (we need 512-bit codewords to achieve relative Hamming distance κ, cf. §2.2.3).

25

Type Protocol Computation [#Ops sym/pk] Communication [bit]

Limited Security Naive Hashing m sym n1`
Server-aided [36] m sym t +|X ∩ Y |

Public-Key
DH FFC [46] 2t pk tρ+ n1`
DH ECC [46] 2t pk tϕ+ n1`
RSA [15] 2t pk tρ+ n1`

Circuit

Yao SCS [32] 12mσ logm+ 3mσ sym 6mκσ logm+ 2mκσ
GMW SCS [32] 18mσ logm sym 6m(κ+ 2)σ logm
Yao PWC (§4.3) σ(4εn2maxb + 4sn1 + 3εn2) sym 2εn2κmaxbσ + 3sn1κσ + 2εn2σ
GMW PWC (§4.3) 6σ(εn2maxb + sn1) sym 2(2 + κ)σ(εn2maxb + sn1)
Yao OPRF (§4.4) 21,760n2 + 3σn2 sym 10,880n2κ+ 2n2κσ + n1`
GMW OPRF (§4.4) 32,640n2 sym 10,880n2(κ+ 2) + n1`

OT Bloom Filter [20] 3.6mκ sym 1.44mκ(κ+ λ)
OT (§5) + Hashing (§3) 3εn2 + (k + s)n1 sym 512εn2 + (k + s)n1`

Table 7: Asymptotic complexities for PSI protocols (σ: bit size of set elements; t = n1 + n2; m =
max(n1, n2); pk: public-key operations; sym: symmetric cryptographic operations; ` = λ + log n1 +
log n2; κ, ρ, ϕ, λ: security parameters as defined in §2.1; ε, k, s,maxb: Hashing parameters as defined
in §3.1 and §3.2). Computation gives the number of operations that need to be performed in sequence.

6.2 Empirical Evaluation

We empirically evaluate and compare the performance of the presented semi-honest PSI protocols. We first
describe our benchmarking environment and outline our implementations (§6.2.1). We then benchmark the
protocols in a LAN and a WAN setting and give their concrete communication (§6.2.2). Finally, we evaluate
the performance on the parallelizability of PSI schemes (§6.3) as well as for large-scale PSI (§6.4).

6.2.1 Benchmarking Environment

We ran our experiments in a LAN and a WAN setting. The LAN setting consists of two PCs (Intel Haswell
i7-4770K CPU with 3.5 GHz and 16 GB RAM) that are connected via a Gigabit Ethernet. The WAN setting
consists of two Amazon EC2 m3.medium instances (Intel Xeon E5-2670 CPU with 2.6 GHz and 3.75 GB
RAM) that are located in North Virginia (US east coast) and Frankfurt (Europe) with an average bandwidth
of 98 MBit/s and an average round-trip time of 94 ms.

We evaluate the performance of the PSI protocols in two scenarios. In the first scenario, P1 and P2 hold
the same number of input elements n1, n2 ∈ {28, 212, 216, 220, 224}. In the second scenario, P1 has a larger
set than P2 and we set n1 ∈ {216, 220, 224} and n2 ∈ {28, 212}. Both parties are not allowed to perform
any pre-computation. For the sort-compare-shuffle and pairwise-comparison circuit-based protocols whose
complexity depends on the bit-length of elements σ, we fix σ = 32 (e.g., for PSI on IPv4 addresses).
We use the long-term security parameters as described in §2.1. We benchmarked the server-aided PSI
protocol of [36] by executing the trusted server on one machine and the two clients that wish to compute the
intersection on the second machine.

Implementations The implementation of the blind-RSA-based [15] and garbled Bloom filter [20] proto-
cols were taken from the authors, but we used a hash-table to compute the last step in the blind-RSA protocol
that finds the intersection (the original implementation used pairwise comparisons with quadratic run-time
overhead) and the OT extension implementation of [3] for the Bloom filter protocol. We use the state-of-
the-art Yao’s garbled circuits and GMW protocol implementations in the C++ ABY framework [18], which
implements point-and-permute [45], half-gates [69], free-XOR [41], fixed-key garbling [7], and OT exten-
sion [3]. For Yao’s garbled circuits protocol, we evaluated a size-optimized version of the sort-compare-
shuffle circuit (comparison circuits of size and depth σ) while for GMW we evaluated a depth-optimized

26

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

C
o
m

m
u
n
ic

a
ti
o
n
 (

M
B

y
te

s
)

Run−time (s)

Naive

Server Aided

OT+Hash

GBF

DH−ECC

DH−FFC

RSA

GMW PWC

Figure 3: Run-time in s and communication in MBytes of PSI protocols for n = 220 elements and κ = 128-
bit security. Detailed results are given in Tab. 8 and Tab. 9.

version (comparison circuits of size 3σ and depth log2 σ) for σ-bit input values [65]. We instantiated the
PRP of the server-aided PSI protocol in [36] and the CRF in the

(
2
1

)
-OT extension with AES, and instantiated

the RO and the CRF in the
(
N
1

)
-OT extension with SHA-256.

We implemented FFC (finite field cryptography) using the GMP library (v. 5.1.2), ECC using the Miracl
library (v. 5.6.1), symmetric cryptographic primitives using OpenSSL (v. 1.0.1e), and used the OT extension
implementation of [3]. We perform all operations in FFC in a subgroup of order q, where |q| = 2κ-bits.

We argue that we provide a fair comparison, since all protocols are implemented in the same program-
ming language (C/C++), run on the same hardware, and use the same underlying libraries for cryptographic
operations.

For each protocol we measured the time from starting the program until the client outputs the intersecting
elements. All runtimes are averaged over 10 executions.

6.2.2 Empirical Comparison

We evaluate the empirical performance of the PSI protocols in the LAN setting and give the concrete com-
munication of the protocols. While the LAN setting does not necessarily represent a real-world setting for
PSI, it allows us to benchmark the protocols in an almost ideal network setting and hence focus on the
computation complexity of the protocols. We give a classification for n = 220 element sets in Fig. 3 and
depict the detailed run-time in Tab. 8 and communication in Tab. 9. We now compare the performance of
the different types of PSI protocols and then compare the PSI protocols of the same type.

Comparison between Types From Fig. 3, we can observe that PSI protocols of the same type have a
similar run-time and communication with the exception of the OT-based PSI protocols. The insecure naive
hashing protocol and server-aided PSI protocol outperform the other PSI protocols by at least an order
of magnitude in computation and communication. The public-key-based PSI protocols require only little
communication (especially the DH-ECC protocol), but have the highest run-time. The circuit-based PWC
protocol has a faster run-time than the public-key-based protocols but requires two orders of magnitude
more communication and does not scale well to large sets. Finally, the OT-based PSI protocols differ in

27

performance: the GBF protocol of [20] has a similar run-time and communication as the circuit-based PWC
protocol and our OT-based PSI protocol has a faster run-time than the public-key and circuit-based protocols
and require at least an order of magnitude less communication compared to the circuit-based protocols.
Among all PSI protocols, our novel OT-based PSI protocol is the fastest and requires about the same amount
of communication as public-key-based PSI protocols.

Limited Security-Based PSI The naive hashing protocol outperforms the server-aided protocol by factor
of 2 in run-time and communication. However, these protocols have weaker security guarantees than the
other protocols that we describe.

Public-Key-Based PSI For the public-key-based PSI protocols, we observe that the DH-based protocol
of [46] outperforms the RSA-based protocol of [15] when using finite field cryptography (FFC). The elliptic
curve cryptography (ECC) instantiation of the DH-based protocol becomes even more efficient and outper-
forms the FFC instantiation by a factor of 2. The advantage of the ECC-based protocol is its communication
complexity, which is lowest among all PSI protocols (cf. Tab. 9). We note that a major advantage of these
protocols is their simplicity, which makes them relatively easy to implement.

Circuit-Based PSI Here we compare the sort-compare-shuffle (SCS) circuit of [32], our PWC circuit (§4.3),
and the OPRF circuit (§4.4), evaluated using Yao’s garbled circuits and GMW. The results can be summa-
rized as follows:

The GMW protocol is around factor 2 faster than Yao’s garbled circuits protocol, which is due to the
balanced communication. The PWC circuit scales better than the SCS and OPRF circuits with increasing
set sizes and is at least 3 times more efficient for sets of 216 elements. Due to its simple functionality, the
PWC circuit can scale up to much larger set sizes and can even process two sets of 220 elements sets using
GMW.

OT-Based PSI Our OT-based PSI protocol has a higher run-time than the Bloom filter-based protocol
for small set sizes since the number of base-OTs (and hence public-key operations) that are required for
the

(
N
1

)
-OT extension is four times higher. However, this workload is linear in the security parameter and

amortizes with increasing set sizes. For larger set sizes of n ≥ 212, our OT-based PSI protocol is up to 15
times more efficient in terms of run-time than the garbled Bloom filter protocol and has between factor 20x
and 45x less communication.

6.2.3 PSI with Unequal Set Sizes

In many applications of PSI, the set sizes of the parties are not equal. In fact, often a client with a small
set of only a few hundred elements wants to perform PSI with a server, which holds a database of millions
of records. We perform PSI with unequal set sizes n1 ∈ {216, 220, 224} and n2 ∈ {28, 216} using the
previously best performing protocols of each category: naive hashing, the server-aided protocol of [36], the
DH-ECC protocol of [46], the PWC and OPRF circuits in §4.3 and §4.4, and our OT-based PSI protocol
in §5. We evaluate their performance in the LAN and WAN setting and give the resulting run-times in Tab. 11
and concrete communication in Tab. 12. For the circuit PWC protocol and our OT-based PSI protocol, which
both use hashing techniques, we used the parameters given in Tab. 10.

The results are similar to the equal set size experiments with one notable exception: the OPRF circuit
performs extremely well and achieves a similar run-time as the server-aided protocol and even outperforms

28

Type
Setting LAN WAN
Set Size n 28 212 216 220 224 28 212 216 220

Limited Naive Hashing 1 3 38 665 12,368 51 119 886 7,277
Security Server-aided [36] 1 5 78 1,250 20,053 124 248 1,987 15,578

Public-Key
DH FFC [46] 386 5,846 88,790 1,418,772 22,681,907 3,577 56,786 880,075 11,557,061
DH ECC [46] 231 3,238 51,380 818,318 13,065,904 1,949 28,686 466,606 5,007,681
RSA [15] 779 12,546 203,036 3,193,920 50,713,668 10,508 166,453 1,356,757 21,094,586

Circuit

Yao SCS [32] (σ = 32) 320 3,593 74,548 - - 2,763 20,826 518,136 -
GMW SCS [32] (σ = 32) 361 1,954 40,872 - - 5,929 14,415 187,750 -
Yao PWC (§4.3, σ = 32) 304 1,647 19,080 - - 3,115 12,189 121,198 -
GMW PWC (§4.3, σ = 32) 325 905 7,085 83,889 - 2,086 5,881 42,253 337,851
Yao OPRF (§4.4) 968 12,518 - - - 6,001 65,156 - -
GMW OPRF (§4.4) 690 6,672 101,231 - - 6,939 27,660 386,243 -

OT
Bloom Filter [20] 105 448 4,179 75,218 - 1,248 5,424 31,581 345,484
OT (§5) + Hashing (§3) 309 339 658 5,680 83,739 2,211 2,809 7,857 56,738

Table 8: Run-times in ms for PSI protocols with one thread in the LAN and WAN setting. σ: bit-length of
elements. “-” indicates that the execution ran out of memory.

Type Set Size n 28 212 216 220 224

Limited Security
Naive Hashing 0.002 0.031 0.600 10.000 176.000
Server-aided [36] 0.003 0.063 1.133 20.125 354.000

Public-Key
DH-based FFC [46] 0.195 3.125 50.000 800.000 12,800.000
DH-based ECC [46] 0.020 0.280 4.560 74.000 1,200.000
RSA-based [15] 0.195 3.125 50.000 800.000 12,800.000

Circuit

Yao SCS [32] (σ = 32) 7.522 168.590 3,484.751 - -
GMW SCS [32] (σ = 32) 7.319 162.851 3,348.011 - -
Yao PWC (§4.3, σ = 32) 6.923 93.371 1,220.194 - -
GMW PWC (§4.3, σ = 32) 4.320 57.864 749.421 9,169.917 -
Yao OPRF (§4.4) 44.033 704.210 - - -
GMW OPRF (§4.4) 43.193 690.890 11,054.050 - -

OT
Garbled Bloom Filter [20] 1.037 17.314 288.560 4,801.639 -
OT (§5) + Hashing (§3) 0.055 0.424 6.500 107.000 1,757.000

Table 9: Concrete communication in MB for PSI protocols. σ: bit-length of elements. “-” indicates that the
execution ran out of memory.

naive hashing for n2 = 28 and n1 = 224. This good performance of the OPRF circuit can be explained by the
asymmetric costs for processing the sets of the client and server. While each element in the set of the client
is encrypted by securely evaluating an AES circuit using generic secure computation techniques, the server
only needs to encrypt each element in his set using AES with a fixed key and send the resulting ciphertext to
the client. Since the set size of the client is small, the overhead for the generic secure computation techniques
does not impact the overall run-time significantly.

6.3 Multi-Threaded PSI

We evaluate the parallelizability of the best performing PSI protocol in each category by running up to four
threads in parallel and depict the results in Tab. 13. We benchmark the FFC instantiation of the DH-based
protocol instead of the ECC instantiation since the Miracl library does not allow for easy parallelization.
Of special interest is the last column, which shows the ratio between the runtimes with four threads and
a single thread, for an input of 220 elements. The DH-based protocol, which is very simple and is easily

29

Server Set Size n1 216 220 224

Client set size n2 = 28

Parameter k ε s maxb k ε s maxb k ε s maxb
Circuit PWC (§4.3, σ = 32) 2 7.8 1 205 2 7.8 1 2,884 2 7.8 1 45,707

OT (§5) + Hashing (§3) 3 1.2 0 0 2 166 0 0 2 166 0 0

Client set size n2 = 212

Parameter k ε s maxb k ε s maxb k ε s maxb
Circuit PWC (§4.3, σ = 32) 3 1.2 0 136 2 7.8 1 208 2 7.8 1 2,886

OT (§5) + Hashing (§3) 3 1.2 0 0 3 1.2 0 0 2 166 0 0

Table 10: Parameters for circuit PWC and our OT-based protocol used for the unequal set size experiments.

Type
Setting LAN WAN
Client Set Size n2 28 212 28 212

Server Set Size n1 216 220 224 216 220 224 216 220 216 220

Limited Naive Hashing 30 362 5,965 31 362 6,126 59 1,066 179 1,139
Security Server-aided [36] 63 515 7,267 65 524 7,571 170 1,871 267 1,989

Public-Key DH ECC [46] 52,073 814,839 12,705,815 52,057 815,715 12,712,287 156,068 2,451,092 158,159 2,486,141

Circuit

Yao PWC (§4.3, σ = 32) 8,776 - - 11,075 - - 46,310 - 62,789 -
GMW PWC (§4.3, σ = 32) 3,536 46,011 - 6,873 46,249 - 18,206 17,104 21,861 175,789
Yao OPRF (§4.4) 996 1,194 3,882 11,414 11,764 14,347 6,636 7,947 64,418 67,284
GMW OPRF (§4.4) 692 821 3,425 6,283 6,394 8,975 5,730 7,545 31,653 33,593

OT OT (§5) + Hashing (§3) 598 2,492 31,906 630 3,138 35,054 2,208 8,601 2,485 10,701

Table 11: Run-times in ms for PSI protocols with unequal set sizes n1 � n2 in the LAN and WAN setting.
σ: bit length of elments. “-” indicates that the execution ran out of memory.

parallelizable, achieves a speedup of 2.8 as computation is the performance bottleneck. The GMW protocol
achieves a speedup of about 1.97 at 2 threads already and, for 3 and 4 threads, does not decrease much due
to the communication bottleneck. The OT-based protocols achieve a moderate speedup of about 1.4, also
due to communication and hashing to bins being the bottleneck.

6.4 PSI on Billion Element Sets

Finally, we demonstrate the scalability of our OT-based PSI protocol by evaluating it on sets of a billion
σ = 128-bit elements each. For these sizes, the input elements require 15 GB of storage, which exceeds
the main memory of our local servers. Instead, the servers store the elements and intermediate values on
their respective solid state drive (SSD). We also benchmark the naive hashing protocol as a baseline for
performance. We refrained from adding more main memory to process these sets, even though it is the most
simple solution, since we are interested in the performance of the protocols if data needs to be stored on the
SSD.

To compute the intersection between two sets of a billion elements, naive hashing requires 74 min, of
which 19 min (26%) are spent on hashing and transferring data and 55 min (74%) are spent on computing the
plaintext intersection. Our OT-based PSI protocol requires 34.2 hours in total, of which 30.0 hours (88%)
are spent on simple hashing (Cuckoo hashing runs in parallel and requires 16.3 hours), 3 hours (9%) are
spent on computing the OT routine, and 1.2 hours (4%) are spent on computing the plaintext intersection.

30

Type
Client Set Size n2 28 212

Server Set Size n1 216 220 224 216 220 224

Limited Naive Hashing 0.500 9.000 144.000 0.563 9.000 160.000
Security Server-aided [36] 0.502 9.002 144.002 0.598 9.040 160.040

Public-Key DH ECC [46] 2.329 30.017 592.008 2.582 37.545 592.270

Circuit

Yao PWC (§4.3, σ = 32) 533.472 - - 689.871 - -
GMW PWC (§4.3, σ = 32) 356.271 4,941.319 - 437.225 5,134.144 -
Yao OPRF (§4.4) 40.965 49.402 184.402 646.674 655.112 790.112
GMW OPRF (§4.4) 41.454 49.891 187.441 654.564 663.001 798.001

OT OT (§5) + Hashing (§3) 1.549 20.612 290.612 2.018 27.331 361.518

Table 12: Concrete communication in MB for PSI with unequal set sizes n1 � n2. σ: bit-length of elements.
“-” indicates that the execution ran out of memory.

Threads 1 2 3 4 Speedup
Naive Hashing 0.665 0.494 0.398 0.385 1.73
DH-based FFC [46] 1,418.772 961.123 659.895 509.990 2.78
GMW PWC (§4.3, σ = 32) 83.889 44.831 42.556 42.530 1.97
OT (§5) + Hashing (§3) 5.680 4.599 4.070 3.944 1.44

Table 13: Runtimes in seconds for PSI on sets with sizes n1 = n2 = 220 using multiple threads.

References

[1] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for MPC and FHE.
In Advances in Cryptology – EUROCRYPT’15, volume 9056 of LNCS, pages 430–454. Springer, 2015.

[2] Y. Arbitman, M. Naor, and G. Segev. Backyard cuckoo hashing: Constant worst-case operations with a
succinct representation. In Foundations of Computer Science (FOCS’10), pages 787–796. IEEE, 2010.

[3] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and extensions
for faster secure computation. In Computer and Communications Security (CCS’13), pages 535–548.
ACM, 2013.

[4] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Countering GATTACA: efficient
and secure testing of fully-sequenced human genomes. In Computer and Communications Security
(CCS’11), pages 691–702. ACM, 2011.

[5] R. W. Baldwin and W. C. Gramlich. Cryptographic protocol for trustable matchmaking. In Symposium
on Security and Privacy (S&P’85), pages 92–100. IEEE, 1985.

[6] D. Beaver. Correlated pseudorandomness and the complexity of private computations. In Symposium
on Theory of Computing (STOC’96), pages 479–488. ACM, 1996.

[7] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key blockcipher.
In Symposium on Security and Privacy (S&P’13), pages 478–492. IEEE, 2013.

[8] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient proto-
cols. In Computer and Communications Security (CCS’93), pages 62–73. ACM, 1993.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

31

[10] J. Boyar and R. Peralta. A new combinational logic minimization technique with applications to
cryptology. In Symposium on Experimental Algorithms (SEA’10), volume 6049 of LNCS, pages 178–
189. Springer, 2010.

[11] E. Bursztein, M. Hamburg, J. Lagarenne, and D. Boneh. OpenConflict: Preventing real time map hacks
in online games. In Symposium on Security and Privacy (S&P’11), pages 506–520. IEEE, 2011.

[12] N. Büscher and S. Katzenbeisser. Faster secure computation through automatic parallelization. In
USENIX Security Symposium 2015, pages 531–546. USENIX, 2015.

[13] H. Carter, C. Amrutkar, I. Dacosta, and P. Traynor. For your phone only: Custom protocols for efficient
secure function evaluation on mobile devices. Journal of Security and Communication Networks, 2013.

[14] E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols secure in
malicious model. In Advances in Cryptology – ASIACRYPT’10, volume 6477 of LNCS, pages 213–231.
Springer, 2010.

[15] E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity. In
Financial Cryptography and Data Security (FC’10), volume 6052 of LNCS, pages 143–159. Springer,
2010.

[16] E. De Cristofaro and G. Tsudik. Experimenting with fast private set intersection. In Trust and Trust-
worthy Computing (TRUST’12), volume 7344 of LNCS, pages 55–73. Springer, 2012.

[17] S. K. Debnath and R. Dutta. Secure and efficient private set intersection cardinality using bloom filter.
In Information Security Conference (ISC’15), volume 9290 of LNCS, pages 209–226. Springer, 2015.

[18] D. Demmler, T. Schneider, and M. Zohner. ABY – a framework for efficient mixed-protocol secure
two-party computation. In Network and Distributed System Security (NDSS’15). The Internet Society,
2015. Code: https://github.com/encryptogroup/ABY.

[19] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and M. Rink. Tight thresh-
olds for cuckoo hashing via XORSAT. In International Colloquium on Automata, Languages and
Programming (ICALP’10), volume 6198 of LNCS, pages 213–225. Springer, 2010.

[20] C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: An efficient and scalable
protocol. In Computer and Communications Security (CCS’13), pages 789–800. ACM, 2013.

[21] M. Fischlin, B. Pinkas, A.-R. Sadeghi, T. Schneider, and I. Visconti. Secure set intersection with
untrusted hardware tokens. In Cryptographers’ Track at the RSA Conference (CT-RSA’11), volume
6558 of LNCS, pages 1–16. Springer, 2011.

[22] T. K. Frederiksen and J. B. Nielsen. Fast and maliciously secure two-party computation using the GPU.
In Applied Cryptography and Network Security (ACNS’13), volume 7954 of LNCS, pages 339–356.
Springer, 2013.

[23] M. J. Freedman, C. Hazay, K. Nissim, and B. Pinkas. Efficient set intersection with simulation-based
security. Journal of Cryptology, 29(1):115–155, 2016.

32

https://github.com/encryptogroup/ABY

[24] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom
functions. In Theory of Cryptography Conference (TCC’05), volume 3378 of LNCS, pages 303–324.
Springer, 2005.

[25] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In Advances
in Cryptology – EUROCRYPT’04, volume 3027 of LNCS, pages 1–19. Springer, 2004.

[26] O. Goldreich. Foundations of Cryptography, volume 2: Basic Applications. Cambridge University
Press, 2004.

[27] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In Symposium on Theory of Computing (STOC’87), pages 218–229.
ACM, 1987.

[28] G. H. Gonnet. Expected length of the longest probe sequence in hash code searching. Journal of the
ACM, 28(2):289–304, 1981.

[29] S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast garbling of circuits under standard assumptions. In
Computer and Communications Security (CCS’15), pages 567–578. ACM, 2015.

[30] C. Hazay and Y. Lindell. Constructions of truly practical secure protocols using standard smartcards.
In Computer and Communications Security (CCS’08), pages 491–500. ACM, 2008.

[31] W. Henecka and T. Schneider. Faster secure two-party computation with less memory. In Symposium
on Information, Computer and Communications Security (ASIACCS’13), pages 437–446. ACM, 2013.

[32] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than custom
protocols? In Network and Distributed System Security (NDSS’12). The Internet Society, 2012.

[33] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits.
In USENIX Security Symposium 2011, pages 539–554. USENIX, 2011.

[34] B. A. Huberman, M. Franklin, and T. Hogg. Enhancing privacy and trust in electronic communities.
In ACM Conference on Electronic Commerce (EC’99), pages 78–86. ACM, 1999.

[35] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In Advances in
Cryptology – CRYPTO’03, volume 2729 of LNCS, pages 145–161. Springer, 2003.

[36] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian. Scaling private set intersection to billion-
element sets. In Financial Cryptography and Data Security (FC’14), volume 8437 of LNCS, pages
195–215. Springer, 2014.

[37] A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hashing with a stash.
SIAM J. Comput., 39(4):1543–1561, 2009.

[38] L. Kissner and D. Song. Privacy-preserving set operations. In Advances in Cryptology – CRYPTO’05,
volume 3621 of LNCS, pages 241–257. Springer, 2005.

[39] V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets. In Advances
in Cryptology – CRYPTO’13 (2), volume 8043 of LNCS, pages 54–70. Springer, 2013.

33

[40] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivious prf with appli-
cations to private set intersection. In Computer and Communications Security (CCS’16). ACM, 2016.
To be published. Online at http://eprint.iacr.org/2016/799.

[41] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In
International Colloquium on Automata, Languages and Programming (ICALP’08), volume 5126 of
LNCS, pages 486–498. Springer, 2008.

[42] B. Kreuter, B. Mood, A. Shelat, and K. Butler. Pcf: A portable circuit format for scalable two-party
secure computation. In USENIX Security Symposium 2013, pages 321–336. USENIX, 2013.

[43] M. Lambæk. Breaking and fixing private set intersection protocols. Cryptology ePrint Archive, Report
2016/665, 2016. http://eprint.iacr.org/2016/665.

[44] L. Malka. VMCrypt - modular software architecture for scalable secure computation. In Computer
and Communications Security (CCS’11), pages 715–724. ACM, 2011.

[45] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party computation system. In
USENIX Security Symposium 2004, pages 287–302. USENIX, 2004.

[46] C. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence of a contin-
uously available third party. In Symposium on Security and Privacy (S&P’86), pages 134–137. IEEE,
1986.

[47] G. Mezzour, A. Perrig, V. D. Gligor, and P. Papadimitratos. Privacy-preserving relationship path
discovery in social networks. In Cryptology and Network Security (CANS’09), volume 5888 of LNCS,
pages 189–208. Springer, 2009.

[48] M. D. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 12(10):1094–1104, 2001.

[49] Robert H Morelos-Zaragoza. The art of error correcting coding. John Wiley & Sons, 2006. Code
generation tools online at http://eccpage.com.

[50] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, New York, NY,
USA, 1995.

[51] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov. BotGrep: Finding P2P bots with
structured graph analysis. In USENIX Security Symposium 2010, pages 95–110. USENIX, 2010.

[52] M. Nagy, E. De Cristofaro, A. Dmitrienko, N. Asokan, and A.-R. Sadeghi. Do I know you? – efficient
and privacy-preserving common friend-finder protocols and applications. In Annual Computer Security
Applications Conference (ACSAC’13), pages 159–168. ACM, 2013.

[53] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SIAM Symposium On Discrete Algo-
rithms (SODA’01), pages 448–457. Society for Industrial and Applied Mathematics (SIAM), 2001.

[54] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh. Location privacy via private
proximity testing. In Network and Distributed System Security (NDSS’11). The Internet Society, 2011.

34

http://eprint.iacr.org/2016/799
http://eprint.iacr.org/2016/665
http://eccpage.com

[55] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure
two-party computation. In Advances in Cryptology – CRYPTO’12, volume 7417 of LNCS, pages 681–
700. Springer, 2012.

[56] NIST. NIST Special Publication 800-57, Recommendation for Key Management Part 1: General (Rev.
3). Technical report, National Institute of Standards and Technology (NIST), 2012.

[57] R. Pagh and F. F. Rodler. Cuckoo hashing. In European Symposium on Algorithms (ESA’01), volume
2161 of LNCS, pages 121–133. Springer, 2001.

[58] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.

[59] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection using permutation-
based hashing. In USENIX Security Symposium 2015, pages 515–530. USENIX, 2015. Full version:
http://eprint.iacr.org/2015/634.

[60] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is practical.
In Advances in Cryptology – ASIACRYPT’09, volume 5912 of LNCS, pages 250–267. Springer, 2009.

[61] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on OT extension. In
USENIX Security Symposium 2014, pages 797–812, 2014. Full version: http://eprint.iacr.
org/2014/447.

[62] M. Raab and A. Steger. "balls into bins" - a simple and tight analysis. In Randomization and Ap-
proximation Techniques in Computer Science (RANDOM’98), volume 1518 of LNCS, pages 159–170.
Springer, 1998.

[63] P. Rindal and M. Rosulek. Faster malicious 2-party secure computation with online/offline dual exe-
cution. In USENIX Security Symposium 2016. USENIX, 2016.

[64] Peter Rindal and Mike Rosulek. Improved private set intersection against malicious adversaries. IACR
Cryptology ePrint Archive, 2016:746, 2016.

[65] T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party computation with low depth
circuits. In Financial Cryptography and Data Security (FC’13), volume 7859 of LNCS, pages 275–
292. Springer, 2013.

[66] R. Schürer and W. Schmid. Monte Carlo and Quasi-Monte Carlo Methods 2004, chapter MinT: A
Database for Optimal Net Parameters, pages 457–469. Springer, 2006. Online: http://mint.sbg
.ac.at.

[67] A. Shamir. On the power of commutativity in cryptography. In International Colloquium on Automata,
Languages and Programming (ICALP’80), volume 85 of LNCS, pages 582–595. Springer, 1980.

[68] A. C. Yao. How to generate and exchange secrets. In Foundations of Computer Science (FOCS’86),
pages 162–167. IEEE, 1986.

[69] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole: Reducing data transfer in garbled
circuits using half gates. In Advances in Cryptology – EUROCRYPT’15, volume 9057 of LNCS, pages
220–250. Springer, 2015.

35

http://eprint.iacr.org/2015/634
http://eprint.iacr.org/2014/447
http://eprint.iacr.org/2014/447
http://mint.sbg.ac.at
http://mint.sbg.ac.at

	Introduction
	Motivating Applications
	Classification of PSI Protocols
	Our Contributions
	Additions to Conference Versions

	Preliminaries
	Notation and Security Definitions
	Oblivious Transfer
	1-out-of-2 OT Extension
	Random OT Extension
	1-out-of-N OT Extension

	Hashing Inputs to a Smaller Domain

	Hashing Schemes and PSI
	Simple Hashing
	Simple Hashing for PSI
	Simple Hashing Parameter Analysis

	Cuckoo Hashing
	Cuckoo Hashing for PSI
	Cuckoo Hashing Parameter Analysis

	Permutation-based Hashing

	Circuit-Based PSI
	A comparison between GMW and Yao
	Sort-Compare-Shuffle Circuit for PSI
	Pairwise Comparison (PWC) and Hashing
	Secure Evaluation of an OPRF

	Private Set Intersection via OT
	Experimental Evaluation
	Theoretical Evaluation
	Suitability for Large-Scale PSI
	Parallelizability of Schemes
	Asymptotic Performance Comparison

	Empirical Evaluation
	Benchmarking Environment
	Empirical Comparison
	PSI with Unequal Set Sizes

	Multi-Threaded PSI
	PSI on Billion Element Sets

