
Cryptography with Updates

Prabhanjan Ananth
UCLA

prabhanjan@cs.ucla.edu

Aloni Cohen
MIT

aloni@mit.edu

Abhishek Jain
Johns Hopkins University
abhishek@cs.jhu.edu

Abstract

Starting with the work of Bellare, Goldreich and Goldwasser [CRYPTO’94], a rich line of
work has studied the design of updatable cryptographic primitives. For example, in an updatable
signature scheme, it is possible to efficiently transform a signature over a message into a signature
over a related message without recomputing a fresh signature.

In this work, we continue this line of research, and perform a systematic study of updatable
cryptography. We take a unified approach towards adding updatability features to recently
studied cryptographic objects such as attribute-based encryption, functional encryption, wit-
ness encryption, indistinguishability obfuscation, and many others that support non-interactive
computation over inputs. We, in fact, go further and extend our approach to classical protocols
such as zero-knowledge proofs and secure multiparty computation.

To accomplish this goal, we introduce a new notion of updatable randomized encodings that
extends the standard notion of randomized encodings to incorporate updatability features. We
show that updatable randomized encodings can be used to generically transform cryptographic
primitives to their updatable counterparts.

We provide various definitions and constructions of updatable randomized encodings based
on varying assumptions, ranging from one-way functions to compact functional encryption.

0

Contents

1 Introduction 2
1.1 Our Results . 4
1.2 Our Techniques . 8

1.2.1 Construction of UGC . 8
1.2.2 Construction of URE . 11

1.3 Related Work . 13

2 Preliminaries 14
2.1 Randomized Encodings . 14
2.2 Private-Key Functional Encryption . 16
2.3 Updatable Circuits . 18

3 Updatable Randomized Encodings 19
3.1 Sequential Updating . 21
3.2 IND to SIM-Security . 23
3.3 On the Necessity of 1-Key Secret Key Compact FE 25

3.3.1 Intermediate Tool: XiO . 25
3.3.2 Output-Compact URE implies XiO . 26

4 Output-Compact URE from FE 26
4.1 Construction . 26
4.2 Proof of Security . 30

5 Updatable Garbled Circuits 36
5.1 Definition of Updatable Garbled Circuits . 36
5.2 Puncturable Proxy Re-encryption Scheme . 38

5.2.1 Definition of Puncturable Symmetric Proxy Re-encryption 38
5.2.2 Building Block: Puncturable, Almost Key-Homomorphic PRFs 41
5.2.3 Construction of Puncturable Symmetric Proxy Re-encryption 42

5.3 Construction of UGC . 44
5.3.1 Proof of Theorem 9 . 45

6 Updatable Cryptography 48
6.1 Dynamic Circuit Compilers . 48
6.2 Updatable Non-Interactive Zero Knowledge . 51

6.2.1 Construction of UNIZK . 53
6.3 Updatable Multiparty Computation . 55

6.3.1 Construction of UMPC . 57

A Other Definitions of URE 63
A.1 Parallel Updating . 64
A.2 Connection between Parallel URE and Reusable Garbled Circuits 66

B Achieving Update Hiding Generically 66

C Reducing the State of Authority 68

1

1 Introduction

The last decade has seen the advent of a vast array of advanced cryptographic primitives such as
attribute-based encryption [SW05, GPSW06], predicate encryption [BW07, SBC+07, KSW08,
GVW15a], fully homomorphic encryption [Gen09], fully homomorphic signatures [ABC+07,
BF11, GVW15b], functional encryption [SW05, BSW11, O’N10, GGG+14], constrained pseu-
dorandom functions [BW13, BGI14, KPTZ13], witness encryption [GGSW13, GLW14], witness
PRFs [Zha16], indistinguishability obfuscation [BGI+01, GGH+13], and many more. Most of
these primitives can be viewed as “cryptographic circuit compilers” where a circuit C can be
compiled into an encoding 〈C〉 and an input x can be encoded as 〈x〉 such that they can be
evaluated together to compute C(x). For example, in a functional encryption scheme, circuit
compilation corresponds to the key generation process whereas input encoding corresponds to
encryption. Over the recent years, cryptographic circuit compilers have revolutionized cryptog-
raphy by providing non-interactive means of computing over inputs/data.

A fundamental limitation of these circuit compilers is that they only support static compi-
lation. That is, once a circuit is compiled, it can no longer be modified. In reality, however,
compiled circuits may need to undergo several updates over a period of time. For example,
consider an organization where each employee is issued a decryption key SKP of an attribute-
based encryption scheme where the predicate P corresponds to her access level determined by
her employment status. However, if her employment status later changes, then we would want
to update the predicate P associated with her decryption key. Known schemes, unfortunately,
do not support this ability.

Motivated by the necessity of supporting updates in applications, in this work, we study
and build dynamic circuit compilers. In a dynamic circuit compiler, it is possible to update a
compiled circuit 〈C〉 into another compiled circuit 〈C ′〉 by using an encoded update string whose
size only depends on the “difference” between the plaintext circuits C and C ′. For example, if
the difference between C and C ′ is simply a single gate change, then this should be reflected in
the size of the encoded update. Note that this rules out the trivial solution of simply releasing
a new compiled circuit at the time of update.

Background: Incremental Cryptography. The study of cryptography with updates
was initiated by Bellare, Goldreich and Goldwasser [BGG94] under the umbrella of incremental
cryptography. They studied the problem of incremental digital signatures, where given a signa-
ture of a message m, it should be possible to efficiently compute a signature of a related message
m′, without having to recompute the signature of m′ from scratch. Following their work, the
study of incremental cryptography was extended to other basic cryptographic primitives such as
encryption and hash functions [BGG94, BGG95, Mic97, Fis97, BM97, BKY01, MPRS12], and
more recently, indistinguishability obfuscation [GP15, AJS15b].

Our Goal. In this work, we continue this line of research, and perform a systematic study
of updatable cryptographic primitives. We take a unified approach towards adding updatability
features to recently studied primitives such as attribute-based encryption, functional encryption
and more generally, cryptographic circuit compilers. We, in fact, go further and also study
updatability for classical protocols such as zero-knowledge proofs and secure multiparty com-
putation.

To accomplish this goal, we introduce a new notion of updatable randomized encodings that
extends the standard notion of randomized encoding [IK00] to incorporate updatability fea-
tures. We show that updatable randomized encodings can be used to generically transform
cryptographic primitives (discussed above) to their updatable counterparts.

2

Updatable Randomized Encodings. The notion of randomized encoding [IK00] allows
one to encode a “complex” computation C(x) into a “simple” randomized function Encode(C, x; r)
such that given its output 〈C(x)〉, it is possible to evaluate a public Decode algorithm to re-
cover the value C(x) without learning anything else about C and x. The typical measure of
“simplicity” studied in the literature dictates that the parallel-time complexity of the Encode
procedure be smaller than that of computing C(x). Such randomized encodings are known to
exist for general circuits based on only one-way functions [AIK07] (also referred to as Yao’s
garbled circuits [Yao86], where the encoding complexity is in NC1).

In this work, we study updatable randomized encodings (URE): given a randomized encoding
〈C(x)〉 of C(x), we want the ability to update it to an encoding 〈C ′(x′)〉 of C ′(x′), where C ′

and x′ are derived from C and x by applying some update u. We require that the update u
can be encoded as 〈u〉 which can then be used to transform 〈C(x)〉 into 〈C ′(x′)〉, a randomized
encoding of C ′(x′). A bit more precisely, a URE scheme consists of the following algorithms:

• Encode(C, x) takes as input a circuit C and input x, and outputs an encoding 〈C(x)〉 and
secret state st.

• GenUpd(st,u) taking as input an update u, and outputting an encoded update 〈u〉 and a
possibly updated state st′.

• ApplyUpd (〈C(x)〉, 〈u〉) taking as input a randomized encoding 〈C(x)〉 and an update en-
coding 〈u〉, and outputting an updated randomized encoding 〈C ′(x′)〉.

• Decode (〈C(x)〉), taking as input a (possibly updated) randomized encoding 〈C(x)〉, and
outputting the value y = C(x).

The key efficiency requirement is that the running time of the GenUpd algorithm must be
a fixed polynomial in the security parameter and the size of the update, and independent of
the size of the circuit and input being updated. This, in particular, implies that the size of an
update encoding 〈u〉 is also a fixed polynomial in the security parameter and the size of u.

We define correctness and security of URE for the case of multiple updates. Let 〈C0(x0)〉
denote an initial randomized encoding. Let u1, . . . ,un denote a sequence of updates and let
〈ui〉 denote an encoding of ui. In a URE scheme for multiple updates, 〈C0(x0)〉 can be updated
to 〈C1(x1)〉 using 〈u1〉. The updated randomized encoding 〈C1(x1)〉 can then be updated into
〈C2(x2)〉 using 〈u2〉, and so on, until we obtain 〈Cn(xn)〉. We allow n to be an arbitrary
polynomial in the security parameter.

To define security, we can consider two notions:

I. URE with multiple evaluations: In the first definition, each updated encoding 〈Ci(xi〉 can
be decoded to obtain Ci(xi). The security requirement is that given an initial randomized
encoding 〈C0(x0)〉 and a sequence of updates {〈ui〉}ni=1, an adversary can only learn the outputs
{Ci(xi)}ni=0, and nothing else. Here, for every i ∈ [n], (Ci, xi) is derived from (Ci−1, xi−1) using
the ith update ui.

II. URE with single evaluation: We also consider a weaker definition where only the final encod-
ing 〈Cn(xn)〉 can be decoded. To enable this, we can consider an augmented decoding algorithm
that additionally requires an “unlocking key.” We provide this unlocking key after all the up-
dates are completed s.t. it allows the user to decode the final encoding and prevents her from
decoding any previous encodings. More specifically, the security requirement is that given an
initial randomized encoding 〈C0(x0)〉 and a sequence of updates {〈ui〉}ni=1), an adversary can
only learn the final output Cn(xn), and nothing else.

For convenience of presentation, we in fact consider an alternative but equivalent formulation
of single-evaluation URE that we refer to as updatable garbled circuits (UGC). Recall that a
garbled circuit [Yao86] is a decomposable randomized encoding where a circuit C and an input
x can be encoded separately. In an updatable garbled circuit scheme, given an encoding 〈C0〉
of a circuit C0 and a sequence of update encodings 〈u1〉, . . . , 〈un〉, it is possible to compute

3

updated circuit encodings 〈C1〉, . . . , 〈Cn〉, where Ci is derived from Ci−1 using ui. Once all the
updates are completed, an encoding 〈x〉 for an input x is released. This input encoding can
then be used to decode the final circuit encoding 〈Cn〉 and learn Cn(xn). Intuitively, the input
encoding can be viewed as the unlocking key in single-evaluation URE.

It is easy to see that UGC is a weaker notion than multi-evaluation URE. In particular, since
UGC only allows for decoding “at the end,” it remains single-use, while multi-evaluation URE
captures reusability.

We view our notions of URE and UGC to be of independent interest from a purely complexity-
theoretic perspective. Further, as we discuss later, they have powerful applications to updatable
cryptography.

URE vs Reusable Garbled Circuits. Note that our definition of URE allows for se-
quential updates. One may also consider an alternative model of parallel updates, where each
update 〈ui〉 is applied in parallel to the original encoding 〈C0(x0)〉. It turns out that URE
with parallel updates implies the notion of reusable garbled circuits defined by Goldwasser et
al [GKP+13]. In fact, we can also show a reverse implication from reusable garbled circuits to
URE with parallel updates. We refer the reader to Appendix A for further discussion on this
subject.

1.1 Our Results

In this work, we initiate the study of updatable randomized encodings. We study both sim-
ulation and indistinguishability-based security definitions and obtain general positive results.
We showcase URE as a central object for the study of updatable cryptography by demonstrat-
ing applications to other updatable cryptographic primitives. The technical ideas we develop
for our constructions are quite general, and may be applicable to future works on updatable
cryptography.

I. URE for General Updates. We first state our results for multi-evaluation URE for
general circuits. We allow for a general family of updates, i.e., an update can modify the circuit
arbitrarily, with the only restriction that the size of the circuit remains unchanged. Below, we
separately consider the case of unbounded updates and (a priori) bounded updates separately.

URE with Unbounded Updates from Secret-key Compact FE. Our first result is a
construction of multi-evaluation URE for general circuits that supports an unbounded polynomial
number of sequential updates. The underlying assumption is a secret-key compact functional
encryption scheme for general circuits that supports a single function key query.

Theorem 1 (Informal). Let C be a family of general circuits where each circuit is of the same
size. Let U be a family of general updates with a public update algorithm Update s.t. for any
C ∈ C, input x for C, u ∈ U , and (C ′, x′)← Update(C, x,u), we have that C ′ ∈ C. Assuming the
existence of a secret-key compact functional encryption scheme for general circuits that supports
a single key query, there exists a multi-evaluation URE scheme for C that supports an arbitrary
polynomial number of sequential updates from U .

A compact functional encryption is one where the running time of the encryption algorithm
for a message m is a fixed polynomial in the size of m and the security parameter, and in-
dependent of the complexity of the function family supported by the FE scheme. A recent
work of Bitansky et al. [BNPW16] shows that secret-key compact functional encryption implies
exponentially-efficient indistinguishability obfuscation (XIO) [LPST16a]. Put together with the
results of [LPST16a] and [AJ15, BV15a], it shows that sub-exponentially secure secret-key com-
pact FE that supports a single function key query together with the learning with errors (LWE)
assumption implies indistinguishability obfuscation.

4

In contrast, in Theorem 1, we require secret-key compact FE with only polynomial security.
Such an FE scheme can be based on polynomial-hardness assumptions on multilinear maps
using the results of [GGHZ14] and [BV15a, AJS15a].

URE with Bounded Updates from One-Way Functions. For the case of polynomially
bounded updates, we can, in fact, relax our assumption to only one-way functions. We obtain
this result by using a single-key compact secret-key FE scheme for an a priori bounded number
of ciphertexts that is constructed from one-way functions [SS10, GVW12].

To the best of our knowledge, such an FE scheme has not been explicitly stated in the
literature. However, it follows easily from prior work. Very roughly, a modified version of [SS10]
FE scheme where the encryption and key generation algorithms are “flipped” yields a compact
secret-key FE scheme with security for a single ciphertext based on one-way functions. This
can then be amplified to achieve security for polynomially bounded number of ciphertexts by
applying a “flipped” version of the transformation in [GVW12], without adding any further
assumptions and preserving the compactness of ciphertexts. We note, however, that the size
of each ciphertext in this scheme grows with the total number of ciphertexts supported by the
scheme.

Plugging in such an FE scheme in Theorem 1 yields a URE scheme for an a priori bounded
polynomial number of updates.

Theorem 2 (Informal). Let C and U be as in Theorem 1. Assuming one-way functions, for any
fixed polynomial p, there exists a multi-evaluation URE scheme for C that supports p sequential
updates from U . The size of each update grows with the total number of updates p.

An update encoding in the above construction consists of an FE encryption of the plaintext
update. Since the FE scheme obtained from [SS10, GVW12] (as described above) has ciphertexts
whose size depends on the total number of ciphertexts supported by the scheme, our construction
inherits this inefficiency in the size of an update.

From URE to Compact FE. We next investigate whether our assumption of secret-key
compact FE is necessary for building multi-evaluation URE with unbounded updates. In this
regard, we show that if a (multi-evaluation) URE scheme is output compact, then it implies XIO.
Put together with the result of [LPST16a], we have that a URE scheme with output compactness
together with LWE implies a public-key compact FE scheme that supports a single key query.

Theorem 3 (Informal). Assuming LWE, a multi-evaluation URE scheme with unbounded output-
compact updates implies a public-key compact FE scheme that supports a single key query.

In an output-compact URE scheme, the running time of the GenUpd algorithm is independent
of the output length of the updated circuit. We remark that the URE scheme obtained from
Theorem 1 is, in fact, output compact. Thus, our assumption in theorem 1 is essentially tight.

Discussion on Output Compactness. We study both indistinguishability and simulation-
based security notions for URE. In the context of FE, it is known from [AGVW13, CIJ+13]
that simulation-secure FE with output compactness is impossible for general functions. We
observe that the same ideas as in [AGVW13, CIJ+13] can be used to establish impossibility of
simulation-secure URE with output compact updates.

However, when we consider indistinguishability-based security, URE with output compact up-
dates is indeed possible. The results in Theorems 1 and 2 are stated for this case. Furthermore,
using the trapdoor circuits technique of [CIJ+13], one can generically transform output-compact
URE with indistinguishability security to non-output-compact URE with simulation-based secu-
rity.

II. UGC for Bit-wise Updates. We next state our results for single-evaluation URE,
a.k.a updatable garbled circuits. We consider the family of bit-wise updates, where an update

5

u can modify any number of bits in the bit-wise representation of a circuit, such that the size
of u grows with the number of bits being updated. Below, we consider the case of unbounded
updates and bounded updates separately.

UGC with Unbounded Updates from Lattice Assumptions. Our first result is a con-
struction of UGC for general circuits that supports an unbounded number of sequential updates
from the family of bit-wise updates. We build such a scheme from worst-case lattice assumptions.

Theorem 4 (Informal). Let C be a family of general circuits and let U be a family of bit-
wise updates. Assuming the hardness of approximating either GapSVP or SIVP to within sub-
exponential factors, there exists a UGC scheme for C that supports an unbounded polynomial
number of sequential updates from U .

At the heart of this result is a new notion of puncturable symmetric proxy re-encryption
scheme that extends the well-studied notion of proxy re-encryption [BBS98]. In a symmetric
proxy re-encryption scheme, for any pair of secret keys SK1, SK2, it is possible to construct a
re-encryption key RK1→2 that can be used to publicly transform a ciphertext w.r.t. SK1 into
a ciphertext w.r.t. SK2. In our new notion of puncturable proxy re-encryption, re-encryption
keys can be “disabled” on ciphertexts CT∗ (w.r.t. SK1) s.t. the semantic security of CT∗ holds

even if the adversary is given the punctured key RKCT∗

1→2 and SK2. We give a construction
of such a scheme based on the hardness of approximating either GapSVP or SIVP to within
sub-exponential factors.

Given the wide applications of proxy re-encryption (see, e.g., [AFGH05] for a discussion), we
believe that our notion of puncturable proxy re-encryption is of independent interest and likely
to find new applications in the future. Later in this section, we discuss one such application to
oblivious RAM with forward security.

UGC with Bounded Updates from One-Way Functions. For the case of polynomially
bounded updates, we can relax our assumption to only one-way functions. We obtain this result
by using a puncturable PRF scheme that can be based on one-way functions [GGM86, SW14].

Theorem 5 (Informal). Let C and U be as in Theorem 4. Assuming one-way functions, for
any fixed polynomial p, there exists a UGC scheme for C that supports p sequential updates from
U . The size of the initial garbled circuit as well as each update encoding is independent of p.
However, the initial circuit garbling time and update generation time grows with p.

The construction of this scheme is quite simple and does not require a puncturable proxy re-
encryption scheme. We provide an informal description of this scheme in the technical overview
section 1.2.1.

III. Applications. We next discuss applications of our results and the underlying tools.

Updatable Primitives with IND security. We start by discussing application of multi-
evaluation URE to dynamic circuit compilers. Here, we demonstrate our main idea by a concrete
example, namely, by showing how to use URE to transform any (key-policy) attribute-based en-
cryption (ABE) scheme into updatable ABE. The same idea can be used in a generic way to
build dynamic circuit compilers and obtain updatable functional encryption, updatable indis-
tinguishability obfuscation, and so on. We refer the reader to Section 6.1 for the general case.

We briefly describe a generic transformation from any ABE scheme to one where the policies
associated with secret keys can be updated. The setup and encryption algorithms for the
updatable ABE scheme are the same as in the underlying ABE scheme. The key generation
algorithm in the updatable ABE scheme works as follows: to compute an attribute key for a
function f , we compute a URE 〈Cf 〉 of a circuit Cf where C runs the key generation algorithm
of the underlying ABE scheme using function f and outputs a key SKf . To decrypt a ciphertext,
a user can first decode 〈Cf 〉 to compute SKf and then use it to decrypt the ciphertext.

6

In order to update an attribute key for a function f to another key for function f ′, we can
simply issue an update encoding 〈u〉 for 〈Cf 〉 where u captures the modification from f to f ′.
To compute the updated attribute key, a user can first update 〈Cf 〉 using 〈u〉 to obtain 〈Cf ′〉,
and then decode it to obtain an attribute key SKf ′ for f ′.

Let us inspect the efficiency of updates in the above updatable ABE scheme. As in URE, we
would like the size (as well as the generation time) of an update encoding here to be independent
of the size of the updated function. Note, however, that the output of the updated function
Cf ′ is very large – an entire attribute key SKf ′ ! Thus, in order to achieve the aforementioned
efficiency, we require that the URE scheme has updates with output compactness.

Recall that URE with output compact updates is only possible with indistinguishability-
based security. As such, the above idea is only applicable to cryptographic primitives with
indistinguishability-based security.

Updatable Primitives with SIM security. Next, we discuss applications of URE to cryp-
tographic primitives with simulation-based security. In the main body of the paper, we describe
two concrete applications, namely, updatable non-interactive zero-knowledge proofs (UNIZK)
and updatable multiparty computation (UMPC). A notable feature of these constructions is that
they only require a URE scheme with non-output-compact updates and simulation-based security.
Below, we briefly describe our main idea for constructing UNIZKs.

Let (x,w) denote an instance and witness pair for an NP language L. Let u denote an
update that transforms (x,w) to another valid instance and witness pair (x′, w′). In a UNIZK
proof system for L, it should be possible for a prover to efficiently compute an encoding 〈u〉 of
u that allows a verifier to transform a valid proof π for x into a proof π′ for x′ and verify its
correctness.

We now briefly describe our transformation. A proof π for (x,w) in the UNIZK scheme is
computed as follows: we first compute a URE 〈Cx,w〉 for a circuit Cx,w that checks whether
(x,w) satisfies the NP relation associated with L and outputs 1 or 0 accordingly. Furthermore,
we also compute a regular NIZK proof φ to prove that 〈Cx,w〉 is computed “honestly.” To verify
π = (〈Cx,w〉, φ), a verifier first verifies φ and if the check succeeds, it decodes 〈Cx,w〉 and outputs
its answer.

In order to update a proof π, we can simply issue an update encoding 〈u〉 for the randomized
encoding 〈Cx,w〉, along with a regular NIZK proof φ′ that 〈u〉 was computed honestly. Upon
receiving the update (〈u〉, φ′), a verifier can first verify φ′ and then update 〈Cx,w〉 using 〈u〉 to
obtain 〈Cx′,w′〉. Finally, it can decode the updated URE 〈Cx′,w′〉 to learn whether x′ is in the
language L or not.

It should be easy to see that the above idea can, in fact, be also used to make interactive
zero-knowledge proofs updatable. Finally, we note that the above is a slightly oversimplified
description and we refer the reader to Sections 6.2 and 6.3 for further details on UNIZK and
UMPC, respectively.

Forward-Secure Oblivious RAM. Our notion of puncturable proxy re-encryption, when
supplemented with a stronger efficiency property, can be used to build an oblivious RAM
(ORAM) scheme [Gol87, Ost90, GO96] with strong forward security [Gün89, DvOW92, BM99].
Recall that in an ORAM scheme, the database is initially encrypted using a standard semanti-
cally secure encryption scheme with the secret-key known only to the client. Roughly speaking,
in a forward secure ORAM, we want the ability to “evolve” the secret-key with every update
(i.e., a read or write operation) such that if the secret key SKi after the ith update is leaked,
then all the previous updates < i remain hidden from the adversary.

We now describe our idea for constructing forward secure ORAM starting from any ORAM
scheme where the database is encrypted in a bit-by-bit (or block-by-block) manner. We note that
this requirement holds for all known ORAM schemes. Now, suppose that we instantiate such
an ORAM scheme with a puncturable re-encryption scheme as opposed to standard encryption.
We now describe how the client can perform a write operation. For simplicity of exposition, let

7

we assume that a write query consists of a single block update, but it should be easy to see that
the solution extends to the general case.

Suppose that the ith write query of the client corresponds to updating the `th database block.
Let CT`i−1 be the ciphertext corresponding to that block stored at the server, where CT`i−1 is
an encryption w.r.t. secret key SKi−1. Now, in order to perform the write operation, the

client releases a new ciphertext CT`i along with a punctured re-encryption key RK
CT`

i−1

i−1,i . Upon

receiving this, the server can replace CT`i−1 with CT`i , and use the punctured re-encryption key

RK
CT`

i−1

i−1,i to transform all the other ciphertexts from encryptions w.r.t. SKi−1 to encryptions
w.r.t. SKi.

Let us first inspect the security of this scheme. Clearly, since we are starting with an
ORAM scheme, the resulting scheme is also an ORAM. More importantly, however, by using
the puncturable re-encryption scheme, we achieve a strong forward security property where if
the secret key SKi after the ith update query is leaked, then all the previous updates < i remain
hidden from the adversary.

Finally, note that in order to achieve non-trivial ORAM efficiency, we would require that
re-encrypting n ciphertext blocks takes time only sublinear (and ideally, only poly-logarithmic)
in n. Our construction of puncturable re-encryption does not satisfy this property; however, it
seems conceivable that such re-encryption schemes may exist. We leave this as an intriguing
open question for future research.

1.2 Our Techniques

We start with the construction of UGC and present the main ideas underlying the construction.
We then build upon the intuition developed in the construction of UGC, to construct (multi-
evaluation) URE.

1.2.1 Construction of UGC

A Lock-and-Release Mechanism for Single Update. Let us first start with the
simpler goal of building a UGC scheme that supports a single bit-wise update. Consider a
universal circuit U that takes two inputs: the first input corresponds to a binary representation
of a circuit C and the second input corresponds to a string x. On an input pair (C, x), U outputs
C(x). Our starting idea towards a UGC scheme with single update is as follows: in order to
garble a circuit C, we simply compute a garbling Ũ (using a standard garbling scheme such
as [Yao86]) of the universal circuit U and output this along with encryptions of every wire key
wC1

, . . . , wCn
corresponding to the circuit C = C1, . . . , Cn.

Now, suppose we wish to update garbling of C to garbling of C ′ where C ′ only differs from
C in the first bit. That is, C ′i = Ci for every i 6= 1. Then, a natural idea to implement this is
to release a decryption key that only decrypts the ciphertexts corresponding to the wire-keys
wC2

, . . . , wCn
(but not wC1

), along with the wire key wC′1 in the clear. Using this information,
the receiver can recover the wire keys wC′ = (wC′1 , . . . , wC′n) (recall that C ′i = Ci for every
i 6= 1). After this update, the garbler can release the input wire keys wx = (wx1

, . . . , wxk
) for

any input x = x1, . . . , xn. Using all of this information, the receiver can evaluate the garbled
circuit Ũ using the wire keys wC′ and wx to learn C ′(x).

The main remaining question is how to implement the aforementioned conditional decryption
mechanism. A naive way to achieve this is to encrypt each wire key wCi

using a fresh encryption
key and then release the decryption key for every position i 6= 1. However, note that in this
naive solution, the size of the update encoding is proportional to n, i.e., the length of the (binary
representation of the) circuit C. This violates our efficiency requirement from UGC. Instead,
we want that the size of an update encoding 〈u〉 for an update u only grows with the size of u
and the security parameter.

8

In order to achieve this desired efficiency, our idea is to instead use a puncturable encryption
scheme where it is possible to compute punctured decryption keys that allow for conditional
decryption of the above form. Roughly speaking, we require that for any ciphertext CT, it is
possible to compute a decryption key SKCT that allows one to decrypt all ciphertexts except
CT. From an efficiency viewpoint, we require that the size of SK ~CT that is punctured on a set of

ciphertexts ~CT only depends on | ~CT| (and the security parameter). Such an encryption scheme
can be built from puncturable pseudorandom functions [SW14, BGI14, BW13, KPTZ13] (c.f.
Waters [Wat15]) which in turn can be based on one-way functions. It is easy to verify that given
such an encryption scheme, we can achieve the desired efficiency in the above construction for
a single update.

We find it instructive to abstract the above idea as a lock-and-release mechanism. Roughly
speaking, the encryption of the wire keys corresponding to C constitutes the locking step, while
the dissemination of the punctured decryption key constitutes the (conditional) release step.
We find this abstraction particularly useful going forward, in order to develop our full solution
for an unbounded number of updates.

Multiple Updates: Main Challenges. Unfortunately, the above solution completely
breaks down as soon as we consider multiple updates. In fact, the above solution does not offer
any security even for two updates. This is for multiple reasons: first, the above solution allows
the adversary to learn both the wire keys wCi and wC̄i

if Ci is updated twice. The security of
a standard garbling scheme completely breaks down in this case. Secondly, the above scheme
does not “connect” the two updates in any manner. In particular, an adversary could choose
to ignore the first update and simply use the second update (or vice-versa), or she could apply
both the updates, but in the wrong order.

A Layered Lock-and-Release Mechanism for Bounded Updates. To address the
above problem, we first consider the case of an a priori bounded number of updates. Our solution
for this case already yields Theorem 5. In a nutshell, our main idea to address the above issues
for the bounded update case is to use layered punctured encryption, or alternatively, a layered
lock-and-release mechanism.

Suppose we wish to handle L number of updates. Then, in the solution for single update,
instead of encrypting the wire key set wC = {wC1

, . . . , wCn
} using a punctured encryption

scheme, we instead use of L “onion” layers of a punctured encryption scheme. For simplicity, let
us assume that each update ui changes a single bit of C. Further, for notational convenience,
let us assume that ui corresponds to a bit position from 1 to n and the actual update simply
flips the ui-th bit of C. Then the initial garbling of C consists of a garbling Ũ of the universal
circuit U (as before) and L-layer encryptions of the wire keys wC = {wC1

, . . . , wCn
}, where

each layer of encryption is computed w.r.t. a fresh key corresponding to a punctured encryption
scheme. Now, the encoding of the first update u1 simply corresponds to releasing a decryption
key for the outermost encryption layer that is punctured at the u1-th ciphertext (out of the
n ciphertexts), along with a layer (L − 1) encryption of wC`

, where ` = u1. More generally,
an encoding of the i-th update ui corresponds to releasing a punctured decryption key for i-th
encryption layer along with a layer (i− 1) encryption of the wire key corresponding to Cui

.
The above idea of layered (punctured) encryption ensures that the receiver cannot “skip”

any update, and instead must apply all the updates one-by-one to “peel-off” all the encryption
layers from the wire keys. Furthermore, since the encryption layers can only be peeled off in a
prescribed order, we can now also ensure that the receiver applies the updates in order. Finally,
after all the decryption operations, the receiver only obtains a single wire key for every bit
position of the (updated) circuit, and therefore, we can rely upon the security of the underlying
garbled circuit.

9

We now briefly argue that the above construction satisfies the efficiency properties stated
in Theorem 5. We first note that punctured encryption scheme in the above construction can
simply correspond to a one-time pad where the randomness for computing the ith ciphertext,
for every i ∈ |C|, is generated by evaluating a puncturable PRF over the index i. The PRF
key (i.e., the secret key for the punctured encryption scheme) is different for every layer. With
this instantiation, note that the size of the initial garbled circuit as well as every update is
independent of the total number of updates L; however, the garbling time as well as update
generation time depends on L.

The main problem of the above solution is that it inherently requires the number of updates
to be a priori bounded. Indeed, it is not immediately clear how to extend the above solution to
an unbounded number of updates.

A Relock-and-Eventual-Release Mechanism for Unbounded Updates. To-
wards that end, our main insight is to develop a relock-and-eventual-release mechanism
as opposed to the layered lock-and-release mechanism discussed above. That is, instead of
removing a lock at every step, our idea is to change the lock at every step. In encryption ter-
minology, our idea is to replace the layered encryption in the above approach with a symmetric
re-encryption scheme [BBS98]. In a symmetric re-encryption scheme, given two encryption keys
SK1 and SK2, it is possible to issue a re-encryption key RK1→2 that transforms any ciphertext
w.r.t. SK1 into a ciphertext w.r.t. SK2. In order to allow for updates, we, require the re-
encryption scheme to support key puncturing. That is, we require that it is possible to compute
a punctured re-encryption key RKCT∗

1→2 that allows one to transform any ciphertext w.r.t. SK1

into a ciphertext w.r.t. SK2, except the ciphertext CT∗ (computed under SK1). From a secu-
rity viewpoint, we require that the semantic security of CT∗ should hold even if the adversary
is given RKCT∗

1→2 and the terminal secret key SK2. We refer to such an encryption scheme as
a puncturable symmetric re-encryption scheme. While the above description only refers to a
“single-hop” puncturable re-encryption scheme, we in fact consider a “multi-hop” scheme.

Armed with the above insight, we modify the previous solution template as follows: the
garbling of a circuit C consists of Ũ as before. The main difference is that the wire keys
wC = {wC1 , . . . , wCn} corresponding to the circuit C are now encrypted w.r.t. a puncturable
re-encryption scheme. Let SK0 denote the secret key used to encrypt the wire keys. In order
to issue an update encoding for an update ui, we release (a) a re-encryption key RKCT

i−1→i that
is punctured at ciphertext CT, where CT is the encryption of wC`

w.r.t. SKi−1 and ` is the
position associated with update ui, along with (b) an encryption of wC̄`

w.r.t. SKi. For the
final update L, we simply release the Lth secret key SKL.

We argue the security of the construction by using the security of the puncturable re-
encryption scheme and the garbling scheme (see the technical sections for details). We note,
however, that this construction does not hide the location of the updates. Indeed, the correct-
ness of the above scheme requires the evaluator to know the locations that are being updated.
To address this, we provide a generic transformation from any UGC scheme (or in fact, any URE
scheme) that does not achieve update hiding into one that achieves update hiding. Our trans-
formation uses non-interactive oblivious RAM in the same manner as in [GP15]. Finally, we
note that while the above only discusses single-bit updates, our construction handles multi-bit
updates as well.

The only missing piece in the above solution is a construction of a puncturable symmetric
re-encryption scheme. We discuss it next.

Puncturable Symmetric Re-encryption from Worst-case Lattice Assump-
tions. The work of [BLMR13] constructs re-encryption schemes from key-homomorphic PRFs,
which have the property that for all x, K1, and K2, PRF(K1, x)+PRF(K2, x) = PRF(K1+K2, x),
where the keys and outputs of the PRF lie in appropriate groups. A secret key for the encryp-

10

tion scheme is simply a PRF key, and the encryption of a message m with secret key K1 and
randomness r is CT = (r,m+ PRF(K1, r)).

A re-encryption key between between secret keys K1 and K2 is simply their difference:
RK1→2 = K2 −K1. The key-homomorphism suggests a natural way to re-encrypt ciphertexts,
as (r,m + PRF(K1, r) + PRF(RK1→2, r)) = (r,m + (K2, r)) is a ciphertext w.r.t K2. Observe
that successful re-encryption of a ciphertext with randomness r relies on the ability to compute
PRF(RK1→2, r).

We construct puncturable proxy re-encryption scheme following the above approach, but
instantiated with constrained key-homomorphic PRFs [BV15b]. A punctured re-encryption key

RKCT∗

1→2 for a ciphertext CT∗ with randomness r∗ is the PRF key K2 − K1 punctured at the
input r∗. This key, which can be used to evaluate PRF(K2 −K1, r) for all r 6= r∗, enables the
re-encryption of all ciphertexts except for the ciphertext CT∗.

For security, we require that the semantic security of CT∗ holds given both RKCT∗

1→2 and K2.
We reduce to the security of the constrained PRF, which guarantees that y∗ := PRF(K2−K1, r

∗)
is pseudorandom. The key idea is that (partial information about) y∗ can be computed given
CT∗, K2, and (partial information about) the message m.

1.2.2 Construction of URE

We now shift our focus on building multi-evaluation URE.

Relock-and-Release Mechanism. Recall that the main difference between UGC and
URE is that UGC only allows for a single evaluation after a sequence of updates, while URE
allows for evaluation after every update. As such, the relock-and-eventual-release mechanism
that we discussed above does not suffice for building URE. Our starting insight is to instead
develop a relock-and-release mechanism that performs both relocking and release at every
step. Intuitively, relocking allows us to “carry over” the updates, while the release mechanism
allows us to evaluate the updated randomized encoding at every step.

Starting Idea: Garbled RAM with Persistent Memory. A natural starting ap-
proach to implement such a relock-and-release mechanism is via the use of garbled RAMs with
persistent memory [LO13, GHL+14]. In a garbled RAM scheme, it is possible to encode a
database D0 and later issue encodings for RAM programs M1, . . . ,Mn. Each RAM program

encoding M̃i updates the database encoding from D̃i−1 to D̃i, and outputs the result of some
computation on Di.

Given this description, it is not difficult to see why such a notion is useful for our purpose.
Starting from a garbled RAM scheme and a standard randomized encodings scheme without
updates [Yao86], we can build a candidate construction of multi-evaluation URE as follows:

- We set the initial database D0 in garbled RAM to the initial circuit and input pair (C0, x0)
in the URE scheme. The initial updatable randomized encoding of (C0, x0) is an encoding
of D0, computed under garbled RAM scheme, along with an encoding of (C0, x0) computed
under the standard randomized encoding scheme.

- In order to compute an encoding 〈ui〉 for an update ui, we compute an encoding M̃i of
a machine Mi w.r.t. the garbled RAM scheme where the machine Mi has ui hardcoded
in it. The machine Mi on input Di−1 = (Ci−1, xi−1) first updates the database to Di =
(Ci, xi), where (Ci, xi)← Update(Ci−1, xi−1; ui), and outputs a fresh standard randomized
encoding of (Ci, xi).

Let us inspect the above solution closely; specifically, the complexity of the machine Mi cor-
responding to an update ui. Since Mi computes a fresh (standard) randomized encoding “on-
the-fly,” in order to achieve the necessary efficiency guarantee for URE, we will require that the

11

encoding time for Mi is independent of its running time. Such a garbled RAM scheme is called
a succinct garbled RAM scheme [BGL+15, CHJV15]. Furthermore, since the output of Mi

consists of a fresh randomized encoding, we will also require that the time of encode Mi is inde-
pendent of its output length. Such a garbled RAM scheme is referred to as output-compressing
[AJ15, LPST16b].

Recent works [AJ15, LPST16b] show that output-compressing succinct garbled RAM (with
sub-exponential security) imply indistinguishability obfuscation (iO). Furthermore, the only
known constructions for such a garbled RAM scheme are based on iO, which, in turn seems to
require sub-exponential hardness assumptions. Our goal, however, is to obtain a solution for
URE using polynomial hardness assumptions. As such, the above is not a viable solution for us.

Garbled RAM meets Delegation of Computation. Towards that end, our next
idea is to instantiate the above approach using a non-succinct garbled RAM scheme where the
size of the encoding of a machine Mi depends on the running time and the output length of
Mi. Such garbled RAM schemes are known to exist based on only one-way functions. At first,
it is not clear how to make this approach work since the efficiency requirements of URE are
immediately violated.

Towards that end, our next idea is to delegate the computation of the encoding of Mi

to the receiver. We implement this idea by using secret-key functional encryption [SW05,
BSW11, O’N10]. Roughly speaking, the initial encoding of C0(x0) now corresponds to a database
encoding of D0 = (C0, x0) w.r.t. a non-succinct garbled RAM scheme along with FE functional

key for a circuit P that takes as input an update string ui and outputs an encoding M̃i of
the machine Mi (as described before). Encoding of an update ui now corresponds to an FE
encryption of ui.

In order to achieve the necessary efficiency guarantee of URE, we require that the secret-key
FE scheme used above is compact, i.e., where the running time of the encryption algorithm
on a message m is a fixed polynomial in the length of m and the security parameter, and in
particular, independent of the size complexity of any function f in the function family supported
by the FE scheme. Indeed, if this were not the case, then the encoding time for an update ui
in the above solution would depend on the size of the circuit C, which in turn depends on the
running time and output length of Mi. Therefore, if the FE scheme were not compact, then the
efficiency requirements of URE would once again be violated.

As discussed earlier, a secret-key compact FE scheme with polynomial hardness can be built
from polynomial hardness assumptions on multilinear maps using using the results of [GGHZ14]
and [BV15a, AJS15a].

Challenges in Proving Security. While the above construction seems to achieve cor-
rectness, it is not immediately clear how to argue security. Note that the circuit P computed
by an FE key in the above construction contains the garbling key of the garbled RAM scheme
hardwired inside it. Indeed, this is necessary for it to compute the encodings corresponding to
machines Mi as discussed above. In order to leverage security of garbled RAM, one approach is
to remove the garbling key from the FE function key. However, in order to maintain functional-
ity, this would require hardwiring the output of P , either in the FE key, or in the FE ciphertext.
We cannot afford to hardwire the output in the ciphertext since that would violate the efficiency
requirements of URE. Thus, our only option is to hardwire the output in the FE key. Note,
however, that in the setting of multiple updates, we have to deal with multiple outputs. In
particular, the above approach would require hardwiring all the outputs (one corresponding to
each update) in the FE key. Doing so “at once” would require putting a bound on the number
of updates.

A better option is to hardwire the outputs “one-at-a-time,” analogous to many proofs in
the iO literature (see, e.g., [GLSW14, AJ15, BV15b]). Implementing this idea, however, would

12

require puncturing the garbling key. Such a notion of key puncturing is not supported by
standard garbled RAM schemes.

Using Cascaded Garbled Circuits. Towards that end, we take a step back and revisit
our requirements from the garbled RAM scheme. Our first observation is that in the above
solution template, machine Mi need not be a RAM since we are already requiring it to read the
entire database! Instead, the key property of garbled RAM with persistent memory that is used
in the above template is its ability to maintain updated state in the form of encoded database.

We now discuss how to implement this property in a more direct manner by “downgrad-
ing” the garbled RAM to a cascaded garbled circuit. Along the way, we will also address the
security issues discussed above. Very briefly, we modify the above construction as follows: con-
sider a circuit Qi that has an update string ui hardwired in its description. It takes as input
(Ci−1, xi−1) and outputs two values. The first value is a fresh randomized encoding of Ci(xi)
where (Ci, xi)← Update(Ci−1, xi−1; ui), and the second value is a set of wire keys for the string
(Ci, xi) corresponding to a garbling of the circuit Qi+1 (that is defined analogously to Qi). The
initial encoding of C0(x0) now corresponds to the input wire keys for the string (C0, x0) cor-
responding to a garbling of circuit Q1 as defined above, as well as an FE key for a function f
that takes as input ui and outputs a garbling a circuit Qi. The encoding of an update ui now
corresponds to an FE encryption of ui as before.

We prove the security of the above construction with respect to indistinguishability-based
security definition. Simulation-based security can be argued via a generic transformation follow-
ing [CIJ+13]. Let C0

0 , C
1
0 , x be the initial circuits and input submitted by the adversary in the

security proof. And let, (u0
1,u

1
1), . . . , (u0

q,u
1
q) be the tuple of updates. There are two “chains”

of updating processes with the 0th chain starting from C0
0 and 1st chain starting from C1

1 . The
ith “bead” on 0th (resp., 1st) chain corresponds to update u0

i (resp., u1
i).

In the security proof, we start with the real experiment where challenge bit 0 is used. That
is, the 0th chain is active in the experiment. In the next step, we introduce the 1st chain, along
with the already present 0th chain, into the experiment. However even in this step, 0th chain is
still active – that is, generating the randomized encoding at every step is performed using the
0th chain. In the next intermediate hybrids, we slowly switch from 0th chain being activated to
1st chain being activated. In the ith intermediate step, the first i beads on 1st chain are active
and on the 0th chain, all except the first i beads are active – this means that the first i updated
randomized encodings are computed using the 1st chain and the rest of them are computed
using 0th chain. At the end of these intermediate hybrids, we have the 1st chain to be active
and 0th chain to be completely inactive. At this stage, we can remove the 0th chain and this
completes the proof.

The two chains described above are implemented in a sequence of garbled circuits, that we
call cascaded garbled circuits. That is, every ith garbled circuit in this sequence produces wire
keys for the next garbled circuit. Every garbled circuit in this sequence is a result of ApplyUpd
procedure and encapsulates, for some i, the ith beads on both the chains. In order to move from
the ith intermediate step to (i+ 1)th intermediate step, we use the security of garbled circuits.
But since these garbled circuits are not given directly, but instead produced by a FE key, we
need to make use of security of FE to make this switch work.

1.3 Related Work

Incremental Cryptography. The area of incremental cryptography was pioneered by
Bellare, Goldreich and Goldwasser [BGG94]. While their work dealt with signature schemes,
the concept of incremental updates has been subsequently studied for other basic cryptographic
primitives such as hash functions, semantically-secure encryption and deterministic encryp-
tion [BGG95, Mic97, Fis97, BKY01, MPRS12]. To the best of our knowledge, all of these works

13

only consider bit-wise updates.
While our work shares much in spirit with these works, we highlight one important difference.

In incremental cryptography, update operation is performed “in house,” e.g., in the case of
signatures, the entity who produces the original signature also performs the update. In contrast,
we consider a client-server scenario where the client simply produces an update encoding, and
the actual updating process is performed by the server. This difference stipulates different
efficiency and security requirements. On the one hand, incremental cryptography necessarily
requires efficient updating time for the notion to be non-trivial, while we consider the weaker
property of efficient update encoding generation time. On the other hand, our security definition
is necessarily stronger since we allow the adversary to view the update encodings – a property
not necessary when the updating is done “in house.”

Incremental/Patchable Obfuscation. Recently, [GP15] and [AJS15b] study the notion
of updatability in the context of indistinguishability obfuscation. The work of [GP15] considers
incremental (i.e., bit-wise) updates, while [AJS15b] allow for arbitrary updates, including those
that may increase the size of the program (modeled as a Turing machine).

We note that one of our results, namely, URE with unbounded updates can be derived from
[AJS15b] at the cost of requiring sub-exponentially secure iO. In contrast, we obtain our result
by using polynomially secure secret-key compact FE.

Malleable NIZKs. Our notion of updatable NIZKs should be contrasted with the notion
of malleable NIZKs proposed by Chase et al. [CKLM12]. In a malleable NIZK, it is possible
to publicly “maul” a proof string π for a statement x into a a proof string π′ for a related
statement x′. In contrast, our notion of UNIZK only allows for privately generated updates.
To the best of our knowledge, malleable NIZKs are only known either for a limited class of
update relations from standard assumptions [CKLM12], or for general class of update relations
based on non-falsifiable assumptions such as succinct non-interactive arguments [CKLM13]. In
contrast, we show how to build UNIZK for unbounded number of general updates from compact
secret-key FE and regular NIZKs, and for a bounded number of general updates from regular
NIZKs.

Updatable Codes. The concept of updating was also studied in the context of error cor-
recting codes by [CKO14]. In this context, it is difficult to model the problem of updating – we
should be able to change few bits of the code to correspond to a codeword of a different message
and at the same time we want the distance between codewords of different messages to be far
apart. We refer the reader to their work for discussion on this seemingly contradictory require-
ment. In a subsequent work, [DSLSZ15] studied this problem in the context of non-malleable
codes.

2 Preliminaries

We denote the security parameter by λ.

2.1 Randomized Encodings

The notion of randomized encodings studied by Ishai-Kushilevitz [IK00] allows for encoding a
“complex” computation using a “simpler” function. The measure of simplicity varies according
to the context. In our work, we consider encoding circuits where the encoding function has a
smaller depth compared to the original circuit. The algorithms associated with a randomized
encoding RE are:

14

• C̃(x) ← RE.Encode(1λ, C, x): On input circuit C, x, it outputs the randomized encoding

C̃(x).

• C(x) ← RE.Decode
(
C̃(x)

)
: This is a deterministic algorithm. On input the randomized

encoding C̃(x), it outputs the value C(x).

The correctness property says that the output of the decode algorithm on input a valid encoding
of (C, x) is C(x). The efficiency property states that RE.Encode can be represented by a circuit
that has depth “smaller” than the depth of C. Typically, we have C to be an arbitrary circuit
and we require Encode to be in NC1. We present the security definition below.

Definition 1 (Randomized Encodings). We say that RE is secure if there exists a simulator
Sim such that the following holds for every circuit C, x:

{ RE.Encode(1λ, C, x) } ≈c { Sim(1λ, φ(C), C(x)) },

where φ(C) denotes the topology of the circuit C.

Garbled Circuits. Another object of interest for our work is the notion of garbled cir-
cuits. Garbled circuits is a type of randomized encoding where the input and the circuit are
encoded separately. We present a modified formalization of garbled circuits from [BHR12].
A garbled circuit scheme for a class of circuits C = {Cλ}λ∈N is a tuple of algorithms GC =
(Gen,GrbCkt,GrbInp,EvalGC) has the following syntax.

• Circuit Garbling,
(
〈C〉gc, st

)
← GrbCkt(1λ, C ∈ Cλ): On input security parameter λ,

circuit C, output a garbled circuit 〈C〉gc and state st.

• Input Garbling, 〈x〉gc ← GrbInp(st, x ∈ {0, 1}λ): On input state st, input x, it produces
an input encoding 〈x〉gc.

• Evaluation, α ← EvalGC
(
〈C〉gc, 〈x〉gc

)
: On input garbled circuit 〈C〉gc, input encoding

〈x〉gc, output the decoded value α.

The correctness property states that the output of EvalGC, on input (〈C〉gc, 〈x〉gc), is C(x) if
〈C〉gc is a garbled circuit C and 〈x〉gc is an encoding of x computed according to the above
scheme.

The efficiency requirement states that the algorithms GrbCkt and EvalGC are polynomial
time in the input length and the security parameter λ, and the time to generate (and the size
of) the garbled input 〈x〉gc is poly(λ, |x|) for some fixed poly. In particular, it is independent of
|C|.

Projective Schemes: In many schemes, the st encodes |x|-many pairs of tokens which we call
input wire labels, and the garbled input 〈x〉gc consists of one input wire label from each pair,
selected according to the value of xi ∈ {0, 1}. We call such schemes projective. More formally,
there exists an algorithm GrbInputWire : (st, i ∈ [`in]) 7→ (L0, L1) that maps a garbling state st
and an input index i to a pair of input wire labels L0, L1, such that

GrbInp(st, x1, . . . , x`in) = GrbInputWire(st, 1)x1
, . . . ,GrbInputWire(st, `in)x`in

Security. There are two security notions one can consider.

Simulation-Based Security. This security definition states that a garbled circuit of C and input
encoding of x can be simulated by just knowing the output C(x).

15

Definition 2. A garbling scheme GC = (Gen,GrbCkt,GrbInp,EvalGC) for a class of circuits
C = {Cn}n∈N is said to be secure if there exists a simulator SimGrb such that for any C ∈ Cn,
any input x ∈ {0, 1}n, the following two distributions are computationally distinguishable.

1.
{
SimGrb

(
1λ, φ(C), C(x)

) }
, where φ(C) denotes the topology of the circuit C.

2.
{

(〈C〉gc, 〈x〉gc)
}

, where (〈C〉gc, st) ← GrbCkt(1λ, C ∈ Cλ) and 〈x〉gc ← GrbInp(st, x ∈
{0, 1}λ).

Indistinguishability-Based Security. We define the indistinguishability-based privacy guarantee
PrivINDφ by means of a security game. We denote the challenger by Ch and the PPT adversary
by A.1 The security is defined with respect to deterministic side-information function φ, which
captures what information is leaked by the garbled circuits. For example, the side-information
function in the original garbling scheme of Yao is φtopo, the function that outputs the circuit
topology, including size, number of inputs, and number of outputs.2

ExptGCA,Ind(1
λ, b ∈ {0, 1}):

• A sends circuits C0, C1 ∈ Cλ, inputs x0, x1 ∈ {0, 1}λ to Ch. If φtopo(C
0) 6= φC(C1), abort

and return ⊥. Otherwise, Ch sends 〈Cb〉gc, where (〈Cb〉gc, st)← GrbCkt(1λ, Cb), to A.

• If C0
s (x0) 6= C1

s (x1), abort and return ⊥. Otherwise, Ch sends GrbInp(sts, 〈xb〉gc) to the
adversary.

• A’s output is returned by ExptUGC
A,Ind(1

λ, b).

Definition 3 (PrivINDφ). A garbling scheme GC is PrivINDφ-secure if for any PPT adversary
A and some negligible function negl∣∣∣∣Pr[1← ExptGCA,Ind(1

λ, 0)
]
− Pr

[
1← ExptGCA,Ind(1

λ, 1)
]∣∣∣∣ ≤ negl(λ).

Yao [Yao86, LP09] presented a construction of garbled circuits based on one-way functions.
Under suitable assumptions, such as DDH, LWE, the garbling algorithms in this construction
can be implemented by NC1.

2.2 Private-Key Functional Encryption

A private-key functional encryption (FE) scheme FE over a message space M = {Mλ}λ∈N
and a function space F = {Fλ}λ∈N is a tuple (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) of PPT
algorithms with the following properties:

• FE.Setup(1λ): The setup algorithm takes as input the unary representation of the security
parameter, and outputs a secret key FE.MSK.

• FE.KeyGen(FE.MSK, f): The key-generation algorithm takes as input the secret key FE.MSK
and a function f ∈ Fλ, and outputs a functional key FE.SKf .

• FE.Enc(FE.MSK,m): The encryption algorithm takes as input the secret key FE.MSK and
a message m ∈Mλ, and outputs a ciphertext CT.

• FE.Dec(FE.SKf ,CT): The decryption algorithm takes as input a functional key FE.SKf
and a ciphertext CT, and outputs m ∈Mλ ∪ {⊥}.

1In fact, a stronger simulation-based notion is achived, but we require only indistinguishability.
2For further discussion on side-information, see [BHR12].

16

In terms of correctness, we require that there exists a negligible function negl(·) such that for
all sufficiently large λ ∈ N, for every message m ∈ Mλ, and for every function f ∈ Fλ it holds
that

FE.Dec(FE.KeyGen(FE.MSK, f),FE.Enc(FE.MSK,m)) = f(m)

with probability at least 1 − negl(λ), where FE.MSK ← FE.Setup(1λ), and the probability is
taken over the random choices of all algorithms.

Function privacy. We present the function privacy security definition of a secret-key FE
scheme. The notion of function privacy is modeled as a game between the challenger and the
adversary. In this game, a function query made by the adversary is a pair of functions and in
response it receives a functional key corresponding to either of the two functions. As long as
both the functions are such that they do not split the challenge message-pairs, the adversary
should not be able to tell which function was used to generate the functional key. That is, the
output of the left function on the left message should be the same as the output of the right
function on the right message.

We incorporate the notion of function privacy in the selectively-secure FE and adaptively-
secure FE definitions given earlier. First, we define the notion of function-private selective
security.

Definition 4 (Function-private selectively-secure FE). A private-key functional encryption
scheme FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) over a function space F = {Fλ}λ∈N
and a message space M = {Mλ}λ∈N is a function-private selectively-secure private-key
FE scheme if for any PPT adversary A there exists a negligible function negl(λ) such that for
all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (λ, b), modeled as a game between the
challenger and the adversary A, is defined as follows:

1. The challenger first executes FE.Setup(1λ) to obtain FE.MSK.

2. Message queries: The adversary submits the message-pairs ((m
(0)
1 , . . . ,m

(0)
q), (m

(1)
1 ,

. . . ,m
(1)
q)) to the challenger, where q is the number of the message queries (which is a

polynomial in the security parameter λ) made by the adversary. The challenger then sends

(c∗1, . . . , c
∗
q) to A, where c∗i is the output of FE.Enc(FE.MSK,m

(b)
i).

3. Function queries: The adversary then makes functional key queries. For every function-
pair query (f0, f1), the challenger sends FE.skfb to the adversary, where Ad.skfb is the

output of FE.KeyGen(FE.MSK, fb), only if f0(m
(0)
i) = f1(m

(1)
i), for all i ∈ [q]. Otherwise,

it aborts.

4. The output of the experiment is b′, where b′ is the output of A.

Compact FE. A secret keys functional encryption scheme is said to be compact if the
encryption complexity is independent of the complexity of the function family. More formally,

Definition 5 ([AJ15, BV15a]). Let p be a polynomial. A secret key FE scheme FE = (FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec) is said to be compact if the running time of FE.Enc(FE.MSK,m)
is p(λ, |m|), where FE.MSK← FE.Setup(1λ).

In particular, a compact FE scheme allows for generating functional keys for circuits whose size
and output-length are not fixed in the setup phase.

17

In this work, we require a single-key secret key compact FE scheme in order to construct
updatable randomized encodings. Currently, we know how to build this either from concrete
assumptions on multilinear maps [GGHZ14] or based on iO [GGH+13, Wat15]. Although sub-
exponentially secure, compact public-key FE is known to imply iO [AJ15, BV15a], the current
approaches don’t extend to the secret key setting (see [BV15a]). We emphasize that we only
require polynomially-secure, secret key compact FE for this work.

2.3 Updatable Circuits

A boolean circuit C is an directed acyclic graph of in-degree at most 2 with the non-leaf nodes
representing ∨ (OR), ∧ (AND) and ¬ (NOT) gates and the leaf nodes representing the input
variables and constants 0,1. The nodes with no outgoing edges are designated to be output
gates. The size of a circuit |C| is the number of nodes in the graph. Each node is labeled
with a different index between 1 and |C|. The evaluation of C on input x is performed by
first substituting the leaf nodes with the value x and then evaluating gate-by-gate till we reach
the output gates. The joint value of all the output gates determine the output of the circuit.
Circuit C is said to represent a function f : {0, 1}λ → {0, 1}`(λ) if for every x ∈ {0, 1}λ we
have C(x) = f(x). We assume that the class of all boolean circuits for every fixed size |C| and
n inputs has an efficient binary representation binary(C) ∈ {0, 1}O(|C|). That is, there is an
efficient algorithm that computes C 7→ (n, |C|, binary(C)), and its inverse.

We define the notion of updatable circuits next. A family of updatable circuits C has as-
sociated with it a class of updates U . Given any circuit C ∈ C we can transform this circuit
into another circuit C ′ ∈ C with the help of an update u ∈ U . The updating process could, for
instance, change one of the output gates from ∨ to ¬, change all the gates to ∧ gates and so on.
Formally,

Definition 6 (Updatable Circuits). Consider a circuit family C = {Cλ}λ∈N, where Cλ contains
poly(λ)-sized boolean circuits C : {0, 1}λ → {0, 1}`(λ). Consider a set system of strings U =
{Uλ}λ∈N, where Uλ is a set of strings of length poly(λ). We define C to be (Upd,U)-updatable
if C ′ ← Upd(C,u ∈ Uλ) is also a boolean circuit with input domain {0, 1}λ and output domain
{0, 1}`(λ).

The size of update u could potentially be much smaller than the size of the circuit C. For
instance, the length of the instruction to change all the gates in C to ∧ gate is in fact independent
of |C|.

In this work, we only consider updates which change the underlying binary representation of
the circuit, which we term “bitwise” updating (ex: setting the 6th bit of the circuit representation
to 1). As we will see later, this in itself suffices for many interesting applications. For example,
in many natural circuit representations this captures the ability to change the functionality of
individual gates of the circuit. We can also consider more general updates (ex: adding gates, or
changing every ∧-gate occurring in even positions to ∨) which we leave as a direction to future
exploration.

Definition 7 (Bit-wise updatable circuits). A family of circuits C is bit-wise updatable if it
is (Updbit,Ubit)-updatable, where:

• Ubit = {(i, b) ∈ Z≥0 × {0, 1}}.
• Updbit (C, (i, b)) takes as input a circuit C ∈ C and a update (i, b) ∈ Ubit indicating the

bit index in the circuit representation binary(C) to be changed, and a new bit. If i > |C|,
then Updbit outputs ⊥. Otherwise, output the circuit that is essentially binary(C) except
that the ith location now contains the bit b. Formally, output the circuit binary(C) ⊕
0i−1 b 0|binary(C)|−i which results from changing bit i of binary(C) to b.

18

3 Updatable Randomized Encodings

We define the notion of updatable randomized encodings (URE) next. Since this notion deals
with transforming circuits, this notion will be associated to a class of updatable circuits. But
to also capture the joint updatability of both the circuit and the input together, we introduce
the notion of hardwired circuits below.

Hardwired Circuits. A hardwired circuit, associated to a circuit C and input x, takes no
input but upon evaluation yields a fixed output C(x).

We provide the formal definition of hardwired circuits below.

Definition 8 (Hardwired Circuit). Consider a circuit C : {0, 1}λ → {0, 1}`(λ) and x ∈ {0, 1}λ.
We define a hardwired circuit, denoted by C[x], to be a circuit such that,

• it takes no input.
• upon evaluation (always) outputs C(x).

We interchangeably use C[x] to denote the circuit as well as the output C(x) it computes.

Two hardwired circuits C0[x0] and C1[x1] are equivalent if and only if C0(x0) = C1(x1) and
|C0| = |C1|. If C0[x0] and C1[x1] are equivalent then they are denoted by C0[x0] ≡ C1[x1]. We
can generalize this notion and define a class of hardwired circuits as stated below.

Definition 9. Consider a circuit family C = {Cλ}λ∈N. We define a hardwired circuit family
{C[X]λ}λ∈N where C[X]λ comprises of hardwired circuits of fixed input length and is associated
with a bijective function φ : Cλ×{0, 1}λ → C[X]λ such that if φ (C ∈ Cλ, x) = C then the output
of the hardwired circuit C is C(x).

We can now talk about updatability of hardwired circuits. Note that this captures joint updating
of both the circuit as well as the input hardwired into it.

Definition 10 (Updatable Hardwired Circuits). Consider a family of hardwired circuits {C[X]λ}λ∈N,
where C[X]λ contains poly(λ)-sized boolean circuits C[X] : ⊥ → {0, 1}`(λ). Consider a set sys-
tem of strings U = {Uλ}λ∈N, where Uλ contains a set of strings of length poly(λ). We define
C[X] to be (Upd,U)-updatable if C ← Upd (C[x],u), where C[x] ∈ C[X]λ,u ∈ Uλ, then C is
also a hardwired circuit.

We study the notion of updatable randomized encodings with respect to a class of updatable
hardwired circuits. In our construction of URE, we restrict our attention to a restricted class
of updates, namely, bit-wise updates. We define this notion below.

As in the case of standard circuits, we assume that there is a an efficient binary representation
for every hardwired circuit denoted by binary(C[x]) ∈ {0, 1}O(|C|). That is, there is an efficient
algorithm that computes C[x] 7→ (n, |C|, binary(C[x])), and its inverse.

Definition 11 (Bit-wise Updatable Hardwired Circuits). A family of hardwired circuits C[X]
is bit-wise updatable if it is (Updbit,Ubit)-updatable, where:

• Ubit = {(i, b) ∈ Z≥0 × {0, 1}}.
• Updbit (C[x], (i, b)) takes as input a hardwired circuit C[x] ∈ C[X] and a update (i, b) ∈ Ubit

indicating the bit index in the circuit representation binary(C[x]) to be changed, and a
new bit. If i > |C|, then Updbit outputs ⊥. Otherwise, output the circuit that is essentially
binary(C[x]) except that the ith location now contains the bit b. Formally, output the circuit
binary(C[x])⊕ 0i−1 b 0|binary(C[x])|−i which results from changing bit i of binary(C[x]) to b.

We now proceed to give a formal definition of URE.

19

Syntax. A scheme URE = (Encode,GenUpd,ApplyUpd,Decode) for a (Upd,U)-updatable class
of circuits C = {Cλ}λ∈N is defined below. We denote C[X] to be the corresponding updatable
hardwired circuit family.

• Encode, (〈C[x]〉ure, st) ← Encode
(
1λ, C, x

)
: On input security parameter λ, circuit C ∈

Cλ, input x ∈ {0, 1}λ, it outputs the joint encoding 〈C[x]〉ure and state st.

• Generating Secure Update, (〈u〉ure, st′) ← GenUpd (st,u): On input state st, update
u ∈ Uλ, output the secure update 〈u〉ure along with the new state st′.

• Apply Secure Update, 〈C ′[x′]〉ure ← ApplyUpd (〈C[x]〉ure, 〈u〉ure): On input random-
ized encoding 〈C[x]〉ure, secure update 〈u〉ure, output the updated randomized encoding
〈C ′[x′]〉ure.

• Evaluation, α ← Decode (〈C[x]〉ure): On input randomized encoding 〈C[x]〉ure, output
the decoded value α.

We associate the above scheme with efficiency, correctness and security properties. We first talk
about the efficiency requirement. Modeling of correctness and security properties is tricky and
we will deal with them in a separate subsection.

Efficiency. We lay out different efficiency properties associated with the above scheme.

• Encoding Time: This property requires that the encoding time of (C, x) is significantly
“simpler” than computing C(x). The efficiency aspect can be quantified in many ways –
in this work, we define encoding to be efficient if the depth of Encode circuit is smaller
than C.

• Secure Update Generation Time: This property requires that the runtime of GenUpd (st,u)
is p(λ, |u|), where p is an a priori fixed polynomial. In other words, the update generation
time is independent of the size of the encoded circuit.

• State Size: This property requires that the size of the state maintained by the authority is
a fixed polynomial in the security parameter. That is, the size of st output by Encode and
GenUpd is always poly(λ) independent of the size of the machines and the update sizes.

• Secure Update Size: This property states that the size of the secure version of the update
should solely depend on the size of the update. Formally, we have the size of the secure
update to be |〈u〉ure| = p(λ, |u|), where (〈u〉ure, st′)← GenUpd (st,u). Note that any URE
scheme that satisfies the above secure update generation time property also satisfies this
property.

• Runtime of Update: Informally, this property states that the time to update the secure
encoding incurs a polynomial overhead in the time to update the plaintext circuit. For-
mally, the runtime of ApplyUpd(〈C[x]〉ure, 〈u〉ure) is p(λ, t, |u|), where t is the time taken to
execute Upd(C[x],u).

Our constructions achieve a restricted version of the above properties. On the positive side, our
construction in Section 4 achieves the ‘Encoding Time’ property and ’Secure Update Generation
Time’ properties. We use a term to define a URE scheme that satisfies the secure update
generation time property – we call it output compact URE.

Definition 12 (Output Compact URE). An URE scheme that is said to be output compact
if it satisfies ‘Secure update generation time’ property.

20

In the case of indistinguishability security, our construction will be output-compact, i.e., the
updates will be independent of the output length of the circuit. In the case of simulation-based
security, our construction will not achieve output compactness. This is, in fact, inherent and
a formal lower bound to this effect can be established along the same lines as in [AGVW13,
CIJ+13]. On the flip side, our construction does not satisfy ‘Runtime of Update’ property.

In Appendix C, we provide a transformation from any URE scheme that satisfies the ‘Secure
Update Generation Time’ property to one that additionally satisfies the ‘State Size’ property.
This transformation uses non-succinct garbled RAMs, and assumes only one-way functions.

3.1 Sequential Updating

We first consider sequential updating process that will be the main focus of this work. For
alternate updating processes, refer to Appendix A. Sequential Updating process allows for up-
dating a randomized encoding using multiple patches in a sequential manner. That is, given
secure updates 〈u1〉ure, . . . , 〈u`〉ure, we can update a randomized encoding 〈C[x]〉ure by first ap-
plying 〈u1〉ure on 〈C[x]〉ure to obtain the updated encoding 〈C1[x1]〉ure; next we apply 〈u2〉ure on
〈C1[x1]〉ure to obtain the updated encoding 〈C2[x2]〉ure and so on. After all the updates, we end
up with the updated encoding 〈C`[x`]〉ure.

Correctness of Sequential Updating. Intuitively, the correctness property states that
computing the randomized encoding 〈C[x]〉ure, applying the secure updates 〈u1〉ure, . . . , 〈u`〉ure
sequentially and finally decoding yields the same result as the output of the circuit obtained by
updating the hardwired circuit C[x] by applying the updates u1, . . . ,u` sequentially. We give
the formal description below.

Consider a circuit C ∈ Cλ, input x ∈ {0, 1}λ. Consider a vector of updates U ∈ (Uλ)
q
, where

q(λ) is a polynomial in λ. Consider the following two processes:

Secure updating process:

1. (〈C[x]〉ure, st0)← Encode
(
1λ, C, x

)
.

2. For every i ∈ [q]; (〈ui〉ure, sti)← GenUpd (sti−1,ui), where ui is the ith entry in U.

3. Let 〈C0[x0]〉ure := 〈C[x]〉ure. For every i ∈ [q]; 〈Ci[xi]〉ure ← ApplyUpd (〈Ci−1[xi−1]〉ure , 〈ui〉ure).
Insecure updating process:

1. Let (C0, x0) := (C, x). For every i ∈ [q], we have Ci[xi] ← Upd(Ci−1[xi−1],ui). The
output of Cq[xq] is Cq(xq).

We have,

Decode
(
〈Cq[xq]〉ure

)
= Cq(xq)

Security of Sequential Updating. We consider two different security notions of sequen-
tial updatable RE. First, we consider simulation-based notion and then we consider the weaker
indistinguishability-based notion.

Our security notions attempt to capture the intuition that an updateable randomized en-
coding 〈C0[x0]〉ure and a sequence of updates 〈u1〉ure, . . . , 〈uq〉ure should reveal only the outputs
C0(x0), C1(x1),. . .Cq(xq) where Ci and Xi are defined as in the preceding correctness definition.
In addition to hiding the circuits and inputs as in traditional randomized encodings, a URE ad-
ditionally hides the sequence of updates. Our URE construction satisfies this update-hiding
property.

We could instead consider a relaxed notion, in which updates are partially or wholly revealed
(modifying the definitions appropriately). Indeed, this is what we will do in the context of

21

updatable garbled circuits (Section 5). In Appendix B, we provide a generic transformation
from an update-revealing URE scheme to an update-hiding URE scheme, assuming only the
existence of one-way functions.

Simulation-Based Security. We adopt the real world/ ideal world paradigm in formal-
izing the simulation-based security definition of sequential updatable RE. In the real world,
the adversary receives a randomized encoding and encodings of updates. All the encodings are
generated honestly as per the description of the scheme. In the ideal world, the adversary is
provided simulated randomized encodings and encodings of updates. These simulated encodings
are generated as a function of the outputs and in particular, the simulation process does not
receive as input the circuit, input or the plaintext updates. A sequential updatable RE scheme
is secure if an efficient adversary cannot tell apart real world from the ideal world.

The ideal world is formalized by considering a simulator Sim that runs in probabilistic
polynomial time. Sim gets as input the output of circuit C(x), the length of C and produces
a simulated randomized encoding. We emphasize that Sim does not receive as input C or x.
After this, Sim simulates the update encodings. On input length of update ui, value Ci(xi),
it generates a simulated encoding of ui. Here, Ci(xi) is obtained by first updating Ci−1[xi−1]
using ui to obtain Ci[xi], whose output is Ci(xi) and also, C0[x0] is initialized with C[x]. For
this discussion, we consider the scenario where the circuit, input along with the updates are
fixed at the beginning of the experiment. This is termed as the selective setting. We describe
the formal experiment in Figure 1.

We present the formal security definition below.

Definition 13 (SIM-secure Sequential URE). A sequential URE scheme URE for (Upd,U)-
updatable class of circuits C = {Cλ}λ∈N is said to be SIM-secure if for every PPT adversary
A, for every circuit C ∈ Cλ, updates u1, . . . ,uq ∈ Uλ, there exists a PPT simulator Sim such
that the following holds for sufficiently large λ ∈ N,∣∣∣Pr [0← IdealExptA

(
1λ, C, x, {ui}i∈[q]

)]
− Pr

[
0← RealExptA

(
1λ, C, x, {ui}i∈[q]

)]∣∣∣ ≤ negl(λ),

where negl is a negligible function.

Experiment IdealExptA(1λ, C, x, {ui}i∈[q]):

1. (〈C[x]〉ure, st0)← Sim(1λ, 1|C|, C(x)).

2. C0[x0] := hardwired circuit of (C, x).

3. ∀i ∈ [q], Ci[xi]← Upd(Ci−1[xi−1],ui).
Let Ci−1(xi−1) be the output of Ci−1[xi−1].

4. ∀i ∈ [q], (〈ui〉ure, sti)← Sim(sti−1, 1
|ui|, Ci(xi)).

Output A
(
〈C[x]〉ure, 〈u1〉ure, . . . , 〈uq〉ure

)
.

Experiment RealExptA(1λ, C, x, {ui}i∈[q]):

1. (〈C[x]〉ure, st0)← Encode
(
1λ, C, x

)
.

2. ∀i ∈ [q], (〈u〉ure, sti)← GenUpd (sti−1,ui).

Output A
(
〈C[x]〉ure, 〈u1〉ure, . . . , 〈uq〉ure

)
.

Figure 1: Selective Simulation-Based Definition of Sequential URE.

22

Indistinguishability-Based Security. We formulate a game-based definition between
the challenger and the adversary. The adversary makes circuit query (C0, C1) along with input
x to the challenger. The challenger picks a bit b at random and encodes (Cb, x). This challenge
encoding is sent to the adversary. The adversary also queries for secure updates. That is, it
sends the pair (u0

i ,u
1
i) to the challenger who responds with encoding of ubi . The adversary is

restricted to “valid” update queries: it should hold that C0
i (x0

i) = C1
i (x1

i) for every i, where
C0
i [x0

i] ← Upd(C0
i−1[xi−1],u0

i) and C1
i [x1

i] ← Upd(C1
i−1[xi−1],u1

i). Furthermore, C0
i (x0

i) (resp.,
C1
i (x0

i)) is the output of C0
i [x0

i] (resp., C1
i [x1

i]). The update process is initialized by setting
C0

0 [x0
0] = C0[x] and C1

0 [x1
0] = C1[x]. If the adversary makes any invalid update queries, the

challenger aborts the experiment. In the end, the adversary is required to guess the bit b. We
say that the sequential URE scheme is IND-secure if the adversary succeeds with negligible
advantage (i.e., with probability negligibly close to 1/2).

We can consider different flavors of IND-based security depending on the order of circuit and
update queries made by the adversary. We consider the simplest setting where the adversary is
supposed to declare all his queries in the beginning of the game. We call this selective setting.
We can also consider the adaptive setting where the adversary can chose the update and the
circuit queries adaptively.

ExptSUREA (1λ, b):

• A sends circuits (C0, C1) ∈ Cλ, input x ∈ {0, 1}λ to Ch.

• A then makes a series of update queries. For i ∈ [q], it sends the ith update query

(u0
i ,u

1
i) to Ch. Challenger first checks if the following condition holds: letting Cβi [xβi] ←

Upd(Cβi−1[xβi−1],uβi) for β ∈ {0, 1} and i ∈ [q]:(
C0(x) = C1(x)

)
and

(
∀i ∈ [q] : C0

i (x0
i) = C1

i (x1
i)
)
.

Here, C0
i (x0

i) (resp., C1
i (x1

i)) is the output of C0
i [x0

i] (resp., C1
i [x1

i]). Also, C0
0 [x0

0] = C0[x]
and C1

0 [x1
0] = C1[x]. If the condition is not satisfied, Ch aborts the experiment.

• Ch sends
〈
Cb[x]

〉
ure

to A, where (
〈
Cb[x]

〉
ure
, st0)← Encode(1λ, Cb, x), to A. Ch also sends,

for every i ∈ [q], the secure update encoding (〈ubi 〉ure, sti)← GenUpd(sti−1,u
b
i).

• A outputs b′.

We state the formal definition of the indistinguishability-based security notion below.

Definition 14 (IND-secure Sequential URE). A sequential URE scheme is IND-secure if for
any PPT adversary A, bit b, we have Pr[b′ = b : b′ ← ExptSUREA (1λ, b)] ≤ 1

2 + negl(λ), for some
negligible function negl.

3.2 IND to SIM-Security

We show how to transform IND-secure URE into SIM-secure URE generically. In the resulting
SIM-secure scheme, the size of the updates depends on the output length of the circuit being
encoded, even if we start with a IND-secure URE scheme where the size of the updates is
independent of the output length of the circuit. That is, suppose (C, x) be the circuit-input pair
initially encoded then the size of the secure updates in the resulting SIM-secure scheme depend
on the output length of C.

Let UREIND = (Encode,GenUpd,ApplyUpd,Decode) be an IND-secure URE scheme. We de-
note the resulting SIM-secure URE scheme to be URESIM. The following transformation follows
the same template as that of de Caro et. al. [CIJ+13], which was studied in the context of
functional encryption.

23

• Encode
(
1λ, C, x

)
: On input security parameter λ, circuit C ∈ Cλ, input x ∈ {0, 1}λ, it

computes the encoding of circuit-input pair (C∗, x∗) with respect to UREIND. That is, it
computes the joint encoding w.r.t IND-secure scheme as follows,(

〈C∗[x∗]〉INDure , stIND
)
← UREIND.Encode

(
1λ, C∗, x∗

)
Here, x∗ = (x, 0, 0) and C∗ is a circuit that takes input (y, o, b) and outputs C(y) if b = 0,
else if b = 1 it outputs o, else if b = 2 it outputs ⊥.

Output the encoding 〈C[x]〉ure = 〈C∗[x∗]〉INDure and state st = (stIND, 1
`), where ` is the

output length of C.

• GenUpd (st,u): On input state st = stIND, update u ∈ Uλ, compute the secure updates for
j ∈ [0, ` + 1], where ` is the output length of C. In the following, we assign vj = u for
every j ∈ [`]. We set v0 as the update that changes the mode b to value 2 and v`+1 as
the update that changes the mode b to value 0. Looking ahead, in the proof, vj would
correspond to the jth output bit of the (updated version of) C. For j ∈ [0, `+ 1];

(〈vj〉INDure , st
j
IND)← UREIND.GenUpd

(
stj−1

IND ,vj

)
In the above, st−1

IND = stIND and denote st′IND by st`IND. Output the secure update 〈u〉ure =

{〈vj〉INDure }j∈[0,`+1] and new state st′ = st′IND.

• ApplyUpd (〈C[x]〉ure, 〈u〉ure): On input randomized encoding 〈C[x]〉ure, secure update 〈u〉ure =

{〈vj〉INDure }j∈[`], compute the following for every j ∈ [0, ` + 1], where ` denotes the output
length of C.

〈Cj [xj]〉ure ← UREIND.ApplyUpd
(
〈Cj−1[xj−1]〉ure, 〈vj〉

IND
ure

)
In the above, 〈C−1[x−1]〉ure = 〈C[x]〉ure. Denote 〈C ′[x′]〉ure = 〈C`+1[x`+1]〉ure.

• Decode (〈C[x]〉ure): Execute the evaluation algorithm Decode of the underlying scheme
UREIND on input 〈C[x]〉ure and output the result of the evaluation process.

The correctness of the above scheme follows essentially from the correctness of UREIND: Suppose
we have computed an updatable randomized encoding of (C, x). Applying the update v0 makes
the randomized encoding to output ⊥. Applying the updates v1, . . . ,v` in sequence is equivalent
to just applying the update u, where v1 = · · · = v` = u. Finally applying v`+1 results in a
randomized encoding of (C ′, x′), where (C ′, x′) is the circuit-input pair obtained by updating
(C, x) with u.

To see why the above scheme is secure, lets take a simple scenario where the adversary only
requests for one update. The adversary receives 〈C[x]〉ure = 〈C∗[x∗]〉ure and update encoding

〈u〉ure = (〈v0〉INDure , . . . , 〈v`+1〉INDure). If 〈u〉ure is computed honestly then vj is set to be u for
all j ∈ [`]. Now, the IND-security of UREIND guarantees the following changes to the initial
randomized encoding and the secure update encodings are computationally indistinguishable:

• We modify x∗ to be (⊥, o, 0), where o = C(x). Recall that x∗ was originally (x, 0, 0).

• Let (C ′, x′) be the hardwired circuit obtained by updating (C, x) using u. Let o′ = C ′(x′).
We modify vj , for j ∈ [`] to now update the input x∗ from (⊥, o′1|| · · · ||o′j−1||∗, 2) to the
new input (⊥, o′1|| · · · ||o′j ||∗, 2). The update v0 is left intact (i.e., it changes the mode b
to 2), while the update v`+1 now changes the mode b to value 1.

Note that the circuit C, x and u are “erased” from the system and hence, the above (modified)
encodings can be simulated. The security thus follows.

24

3.3 On the Necessity of 1-Key Secret Key Compact FE

We show that any output-compact updatable randomized encoding scheme tolerating unbounded
number of updates implies 1-key compact functional encryption scheme. We build upon a recent
beautiful work of Bitansky et al. [BNPW16] to obtain this result.

We first show how to obtain ε-XiO [LPST16b] starting from any output-compact updatable
randomized encodings scheme. Once we get XiO, we can apply the transformation of [LPST16b]
to obtain 1-key compact public key compact FE. This additionally requires the learning with
errors (LWE) assumption. Thus, overall, we conclude that assuming LWE, output-compact
updatable randomized encodings imply 1-key public-key compact FE, which also implies 1-key
secret-key compact FE.

Below, we start by recalling the notion of XiO and then present our transformation from
output-compact updatable randomized encodings to XiO. As stated above, this suffices to obtain
our result.

3.3.1 Intermediate Tool: XiO

We recall the definition of XiO introduced in the work of Lin, Pass, Seth and Telang [LPST16b].
Before that, we first recall the definition of indistinguishability obfuscation.

Indistinguishability Obfuscation (iO). The notion of indistinguishability obfuscation
(iO), first conceived by Barak et al. [BGI+01], guarantees that the obfuscation of two circuits are
computationally indistinguishable as long as they both are equivalent circuits, i.e., the output
of both the circuits are the same on every input. Formally,

Definition 15 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm
iO is called an indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of
circuits C of the form C : {0, 1}n → {0, 1} with n = n(λ), if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}n, we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function
negl(·) such that the following holds: for all sufficiently large λ ∈ N, for all pairs of
circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all inputs x ∈ {0, 1}n and |C0| = |C1|,
we have: ∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

• Polynomial Slowdown: For every λ ∈ N, every C ∈ Cλ, we have that |iO(λ,C)| =
poly(λ,C).

Exponentially-Efficient iO (XiO). We recall the notion of XiO defined in [LPST16b].
XiO is an indistinguishability obfuscation with the weaker efficiency requirement that dictates
that the size of the obfuscated circuit should be sublinear in the size of the truth table associated
with the circuit.

Definition 16. (Exponentially-Efficient iO (XiO)) For a constant γ < 1, a machine XiO is
a γ-compressing exponentially-efficient indistinguishability obfuscator (XiO) for a circuit class
{Cλ}λ∈N if it satisfies the functionality and indistinguishability in Definition 15 and the following
efficiency requirements:

• Non-trivial efficiency: For every λ ∈ N, every C ∈ Cλ, we have that |iO(λ,C)| ≤
2nγpoly(λ,C), where n is the input length of C.

25

3.3.2 Output-Compact URE implies XiO

We now present our transformation from output-compact updatable randomized encodings to
XiO. We build upon the ideas used in the recent work of [BNPW16].

Let URE be an output-compact URE scheme. Let c be a constant be such that the size of en-
coding of (C, x) with respect to URE scheme is |C|c·poly(λ). We construct an XiO scheme below.

XiO.Obf(1λ, C): To obfuscate circuit C, compute a randomized encoding (〈G[y]〉ure, st1) ←
URE.Encode(1λ, G, y), where y is a string of length dn(1− 1

2c)e and initially set y = 0. Here, G

is defined as follows: G on input y outputs {C(i||y)}
i∈

[
2b

n
2c
c
]. Then for every i ∈

[
2dn(1− 1

2c)e
]
,

compute (〈ui+1〉ure, sti+1 ← GenUpd(sti,ui), where ui sets y = i in the hardwired circuit G[y].
Output the following:

C ′ = (〈G[y]〉ure, {〈ui〉ure}i∈[2?])

XiO.Eval(C ′, x): On input x, first compute the truth table of the circuit obfuscated in C ′ as
follows:

• Set 〈G0[y0]〉ure = 〈G[y]〉ure.

• For every i ∈
[
2dn(1− 1

2c)e − 1
]
, compute 〈Gi+1[yi+1]〉ure ← ApplyUpd(〈Gi[yi]〉ure, 〈ui〉ure).

• For every i ∈
[
2dn(1− 1

2c e
]
, evaluate 〈Gi[yi]〉ure to obtain the truth table of C.

• Let the output of the truth table on input x be α.

Output α.

The correctness of the underlying URE scheme implies the correctness of the above XiO scheme.
Given any two functionally equivalent circuits C0 and C1, we can use the security of the updat-
able randomized encodings scheme to argue that the obfuscations of C0 and C1 are computa-
tionally indistinguishable.

We remark about the efficiency of the XiO scheme.

Size of Obfuscated circuit C ′. We now remark about the size of the obfuscated circuit.
We first calculate the number of updates issued as part of the obfuscated circuit – there are
2dn(1− 1

2c)e ciphertexts with each one of them of size a fixed polynomial in the security parameter.
The size of the randomized encoding of (G, y) is (2b

n
2c c)c ·poly(λ) = (2b

n
2 c) ·poly(λ). Thus, total

size of the obfuscated circuit is max{2dn(1− 1
2c)e · poly(λ), (2b

n
2 c) · poly(λ)} ≤ 2nβ · poly(λ) for

some β < 1.

4 Output-Compact URE from FE

In this section, we present our construction of updatable randomized encodings satisfying output
compactness properties.

4.1 Construction

Our goal is to construct an updatable randomized encoding scheme, URE = (Encode,GenUpd,
ApplyUpd,Decode) for C. The main tools we use in our construction are the following. We refer
the reader to the preliminaries for the definitions of these primitives.

• Randomized Encoding scheme, RE = (RE.Enc,RE.Dec) for the same class of circuits C.
• Compact, Function-private, Single-Key, Secret-key functional encryption (FE) scheme,

FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

26

• Garbling Scheme for circuits, GC = (Gen,GrbCkt,GrbInp,EvalGC).

We assume, without loss of generality, that all randomized algorithms require only λ-many
random bits. We use the above tools to design the algorithms of URE as given below.

The updatable randomized encoding of (C, x) will consist of a (standard) randomized encod-
ing (C, x) and some additional information necessary to carry out the updating process. This
additional information consists of a garbled input encoding of C and x with respect to GC,
and a FE secret key for a function that takes as input an update and outputs a garbled circuit
mapping C and x to a new randomized encoding and new garbled circuit input encodings of C ′

and x′, which are the updated values. Henceforth, we denote by s the size of the representation
of the harwired circuit C[x].

Encode
(
1λ, C, x

)
: On input security parameter λ, perform the following operations.

1. Execute the setup of FE, FE.MSK← FE.Setup(1λ).

2. Compute a functional key FE.SKRRGarbler ← FE.KeyGen(FE.MSK,RRGarbler), where RRGarbler
is as defined in Figure 3.

3. In the next step, generate a randomized encoding of input (C, x). That is, compute
RE.Enc(1λ, C, x) to obtain 〈C[x]〉re.

4. As stated earlier, let s be the size of the representation of C[x]. Generate a garbled circuit
input encoding of (C[x],⊥) by evaluating 〈C[x],⊥〉gc ← GrbInp(C[x],⊥; rgc), where rgc is
the randomness used to garble the input. Here we view (C[x],⊥) as an input (to the circuit
RelockRelease).

5. Output as the randomized encoding the tuple,

〈C[x]〉ure =
(
FE.SKRRGarbler, 〈C[x]〉re, 〈C[x],⊥〉gc

)
and set the state to be st = (FE.MSK, rgc).

GenUpd (sti, ui+1): It takes as input the state sti = (FE.MSK, rgc,i) and update ui+1.

1. Sample random coins rre,i+1 and rgc,i+1. Let mode = 0.

2. Generate the FE ciphertext,

CTi+1 ← FE.Enc (FE.MSK, (ui+1, ⊥, rgc,i, rgc,i+1, rre,i+1, mode))

3. Set the new state sti+1 = (FE.MSK, rgc,i+1).

4. Output 〈ui+1〉ure = CTi+1.

ApplyUpd (〈Ci[xi]〉ure, 〈ui+1〉ure): On input circuit encoding 〈Ci[xi]〉ure and update encoding

〈ui+1〉ure = CTi+1, execute the following.

1. Parse the circuit encoding as:

〈Ci[xi]〉ure =
(
FE.SKRRGarbler, 〈Ci[xi]〉re, 〈Ci[xi],⊥〉gc

)
2. Execute the FE decryption, FE.Dec(FE.SKRRGarbler,CTi+1) to obtain 〈RelockReleasei+1〉gc.

27

RelockReleasei+1

Input: C0
i [x0

i], C
1
i [x1

i]
Hard-coded values: u0

i+1, u1
i+1, rgc,i+1, rre,i+1, and mode

• Update both the hardwired circuits Cbi [x
b
i] using ubi+1:

Cbi+1[xbi+1]← Upd(Cbi [x
b
i],u

b
i+1)

• Encode the updated hardwired circuit Cmode
i+1 [xmode

i+1 :

〈Cmode
i+1 [xmode

i+1]〉
re
← RE.Enc

(
Cmode
i+1 [xmode

i+1]; rre,i+1

)
• Compute the randomized encoding of the input

(
C0
i+1[x0

i+1], C1
i+1[x1

i+1]
)
:

〈C0
i+1[x0

i+1], C1
i+1[x1

i+1]〉
gc
← GrbInp

((
C0
i+1[x0

i+1], C1
i+1[x1

i+1]
)

; rgc,i+1

)
• Output

(
〈Cmode

i+1 [xmode
i+1]〉

re
, 〈C0

i+1[x0
i+1], C1

i+1[x1
i+1]〉

gc

)
Figure 2:

RRGarbler

Input: (u0
i+1, u1

i+1, rgc,i, rgc,i+1, rre,i+1, mode)

Compute the garbled circuit encoding of RelockReleasei+1, which is defined in Figure 2:

〈RelockReleasei+1〉gc ← GrbCkt
(
RelockReleasei+1; rgc,i

)
Output 〈RelockReleasei+i〉gc.

Figure 3:

3. Execute the decode algorithm of the garbling scheme,

(〈Ci+1[xi+1]〉re, 〈Ci+1[xi+1],⊥〉gc)← EvalGC(〈RelockReleasei+1〉gc, 〈Ci[xi]〉gc)

That is, the decode algorithm outputs the randomized encoding of updated hardwired
circuit Ci+1[xi+1] and also wire keys of (Ci+1[xi+1],⊥) that will be input to the next level
garbled circuit.

4. Output
(
FE.SKRRGarbler, 〈Ci+1[xi+1]〉re, 〈Ci+1[xi+1],⊥〉gc

)
.

Decode (〈Ci[xi]〉ure): On input encoding 〈Ci[xi]〉ure = (FE.SKRRGarbler, 〈Ci[xi]〉re, 〈Ci[xi],⊥〉gc),
decode the encoding 〈Ci[xi]〉re by executing RE.Dec(〈Ci[xi]〉re) to obtain α. Output the value α.

We first prove that the above construction satisfies the correctness and efficiency properties.

28

Correctness. Consider a circuit C ∈ Cλ, input x ∈ {0, 1}λ. Consider a vector of updates
U ∈ (Uλ)

q
, where q(λ) is a polynomial in λ. Consider the following two processes:

Secure updating process:

1. (〈C[x]〉ure, st0)← Encode
(
1λ, C, x

)
.

2. For every i ∈ [q]; (〈ui〉ure, sti)← GenUpd (sti−1,ui), where ui is the ith entry in U.

3. Let 〈C0[x0]〉ure := 〈C[x]〉ure. For every i ∈ [q]; 〈Ci[xi]〉ure ← ApplyUpd (〈Ci−1[xi−1]〉ure , 〈ui〉ure).
Insecure updating process:

1. Let (C0, x0) := (C, x). For every i ∈ [q], we have Ci[xi] ← Upd(Ci−1[xi−1],ui). The
output of Cq[xq] is Cq(xq).

We need to show,

Theorem 6. Decode
(
〈Cq[xq]〉ure

)
= Cq(xq)

Proof. We first define the following notation: We say that 〈G〉gc is a valid garbled circuit of G if
there exists randomness r such that 〈G〉gc ← GrbCkt(G; r). Further, we say that 〈z〉gc is a valid
garbled input encoding of z if there is randomness r′ such that 〈z〉gc ← GrbInp(z; r′). Consider
the following claim.

Claim 1. For every i ∈ [q], the output of FE decryption, FE.Dec(FE.SKRRGarbler,CTi+1); 〈RelockReleasei+1〉gc
is a valid garbled circuit of RelockReleasei+1.

The proof of the above claim follows from the correctness of FE.

Claim 2. The output of evaluation of garbling scheme,(
〈Ci+1[xi+1]〉re, 〈Ci+1[xi+1],⊥〉gc

)
← EvalGC

(
〈RelockReleasei+1〉gc, 〈Ci[xi]〉gc

)
yields a randomized encoding of Ci+1[xi+1] and a valid garbled input encoding 〈Ci+1[xi+1],⊥〉gc
of Ci+1[xi+1].

Proof. We prove this by induction. Initially, the user is given a valid input encoding of
(C0[x0],⊥), i.e., 〈C0[x0],⊥〉gc. From Claim 1, the output of FE.Dec(FE.SKRRGarbler,CT1) is a valid
garbled circuit 〈RelockRelease1〉gc of RelockRelease1 (this circuit corresponds to the first update).
From the correctness of garbling schemes, it follows that the evaluation of 〈RelockRelease1〉gc on
the input encoding 〈C0[x0],⊥〉gc is a valid garbled input encoding 〈C1[x1],⊥〉gc and a randomized
encoding of C1[x1]. This proves the base case.

Suppose the statement is true for some i ∈ [q]. From Claim 1, it follows that the output of
FE.Dec(FE.SKRRGarbler,CTi+1) is a valid garbled circuit 〈RelockReleasei+1〉gc of RelockReleasei+1.
From the correctness of garbling schemes, it follows that the output of evaluation of 〈RelockReleasei+1〉gc
on the input encoding 〈Ci[xi],⊥〉gc) is a valid garbled input encoding 〈Ci+1[xi+1],⊥〉gc and a
randomized encoding of Ci+1[xi+1]. This proves the claim.

From the above claim, we have that the output of Decode
(
〈Cq[xq]〉ure

)
is Cq(xq).

Efficiency. We show that the above scheme satisfies the following properties:

1. State Size: The size of st output by Encode is a fixed polynomial in λ.

2. Secure Update Generation Time: The time to generate a secure update u takes time
polynomial in (λ, |u|). This follows from the compactness property of the underlying FE
scheme – this guarantees that the running time of an encryption of m is a fixed polynomial
in (|m|, λ). Note that this property also shows that that the size of the secure update is a
fixed polynomial in (λ, |u|).

29

Since the URE scheme satisfies both the encoding time and the secure update generation time
properties, it is output compact (Definition 12).

The algorithm Encode can be implemented in NC1 if we additionally assume: (i) the FE scheme
we employ has key generation in NC1 and, (ii) RE has an encode algorithm in NC1 and, (iii) GC
has garbled input encoding algorithm in NC1. We can instantiate (ii) and (iii) under standard
cryptographic assumptions such as decisional Diffie-Helman and learning with errors. We can
base (i) on the existence of a function-private collusion-resistant secret key FE. This follows
from the works of [AJ15, BV15a, AJS15a].

4.2 Proof of Security

We prove the security of URE with respect to indistinguishability-based security definition. Let
C0

0 , C
1
0 , x be the initial circuits and input submitted by the adversary in the security proof. And

let, (u0
1,u

1
1), . . . , (u0

q,u
1
q) be the tuple of updates. There are two “chains” of updating processes

with the 0th chain starting from C0
0 and 1st chain starting from C1

1 . The ith “bead” on 0th

(resp., 1st) chain corresponds to update u0
i (resp., u1

i).
In the security proof, we start with the real experiment where challenge bit 0 is used. That

is, the 0th chain is active in the experiment. In the next step, we introduce the 1st chain, along
with the already present 0th, into the experiment. However even in this step, 0th chain is still
active – that is, generating the randomized encoding at every step is performed using the 0th

chain. In the next intemediate hybrids, we slowly switch from 0th chain being activated to 1st

chain being activated. In the ith intermediate step, the first i beads on 1st chain are active and
on the 0th chain, all except the first i beads are active – this means that the first i updated
randomized encodings are computed using the 1st chain and the rest of them are computed
using 0th chain. At the end of these intermediate hybrids, we have the 1st chain to be active
and 0th chain to be completely inactive. At this stage, we can remove the 0th chain and this
completes the proof.

The two chains described above are implemented in a sequence of garbled circuits, that we
call cascaded garbled circuits. That is, every ith garbled circuit in this sequence produces wire
keys for the next garbled circuit. Every garbled circuit in this sequence is a result of ApplyUpd
procedure and encapsulates, for some i, the ith beads on both the chains. In order to move
from the ith intermediate step to (i + 1)th intermediate step, we use the security of garbled
circuits. But since these garbled circuits are not given directly, but instead produced by a FE
key, we need to make use of security of FE to make this switch work. With this high level proof
overview, we present the formal proof below.

Before we present the hybrids, we first introduce two lemmas relevant to the security of FE
and garbled circuits that will be useful later.

FE Distributional lemma. In the security proof, we will make frequent use of the fol-
lowing lemma (which is implicit in many previous works). In the context of secret key, function
private, semantically secure functional encryption, the lemma gives us a way to switch from a
secret key of some function f0 and an encryption of a randomized message M (0) to a secret
key of a different function f1 and encryption of a different randomized message M (1), even
when f0(M (0)) may not equal f1(M (1)). Whereas the security definition of (function private)
functional encryption only makes explicit guarantees, we leverage the indistinguishability of
the distributions f0(M (0)) and f1(M (1)), where the randomness is taken over the choice of the
message, to switch from one to the other.

We state the lemma in the presence of some auxiliary information about M (0) and M (1),
along with additional FE-ciphertexts for (randomized) messages M2,. . . ,Mq. We first introduce
some notation.

30

Definition 17 (Admissible Functions). A function family F is said to be admissible if f ∈ Fλ
and y is in the co-domain of f , then the hard-coded function fy is also contained in Fλ, where

fy(m) =

{
y if m = ⊥
f(m) otherwise.

Armed with the above definition, we state the FE distributional lemma next.

Lemma 1 (FE Distributional Lemma). Let FE = (FE.Setup, FE.KeyGen, FE.Enc, FE.Dec) be a
1-collusion, function-private, selectively secure functional encryption scheme over a admissible
function space (Definition 17) F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N.

• For each λ ∈ N, let M
(0)
1 , M

(1)
1 , and M2, . . . ,Mq be random variables over Mλ, where

joint distribution is publicly known.

• Let (f0, f1) ∈ Fλ be public functions such that Pr[f0(Mi) = f1(Mi)] = 1 for all i ≥ 2.

• For b ∈ {0, 1}, let Auxb be a random variable over {0, 1}∗ drawn from some joint distri-

bution with (M
(b)
1 ,M2, . . . ,Mq).

Suppose thatMλ contains a special message ⊥ that is not in the support of any of the random
variables M3. Then it holds that: If(

f0(M
(0)
1),Aux0

)
≈c
(
f1(M

(1)
1),Aux1

)
then: (

FE.SK0,FE.CT
(0)
1 ,FE.CT2, . . . ,FE.CTq,Aux0

)
≈c
(
FE.SK1,FE.CT

(1)
1 ,FE.CT2, . . . ,FE.CTq,Aux1

)
where the probabilities are taken over the choice of M

(0)
1 , M

(1)
1 , M2, . . . ,Mq, and the following

probability experiment:

FE.MSK← FE.Setup(1λ)

FE.SKb ← FE.KeyGen(FE.MSK, fb) ∀b ∈ {0, 1}

FE.CT
(b)
1 ← FE.Enc(FE.MSK,M

(b)
1) ∀b ∈ {0, 1}

FE.CTi ← FE.Enc(FE.MSK,Mi) ∀i ∈ [2, q]

Proof. The proof of the lemma proceeds by first hardwiring the output of the function f0(M
(0)
1)

in the functional key FE.SK0. Once this is done, the message in FE.CT0 can be switched to ⊥
since this does not change the output of the function. After this, the hardwiring can be switched

from f0(M
(0)
1) to f1(M

(1)
1) (along with auxiliary information). The next steps mimics the above

steps in a backward fashion. We present the hybrids below. In the hybrids, we just describe the
distributions received by the adversary.

Hybrid H0:
(
FE.SK0,FE.CT

(0)
1 ,FE.CT2, . . . ,FE.CTq,Aux0

)
3This requirement along with requirement that the scheme be defined for admissible functions will be used in

the proof of the lemma. Existing work in functional encryption (and obfuscation) that use similar arguments often
make explicit use of “padding” – arbitrarily increasing the description size of the underlying function to allow for
hardcoding. Exactly this type of padding construction can be used to imbue FE with this “closure under hardcoding”
property, but we find it conceptually simpler to state the requirement explicitly.

31

Hybrid H1:
(
FE.SKY0

0 ,FE.CT
(0)
1 ,FE.CT2, . . . ,FE.CTq,Aux0

)
where Y0 = f0(M

(0)
1) and FE.SKY0

0 ←
FE.KeyGen(FE.MSK, fY0

0).
Indistinguishability from H0 follows from the function-privacy of FE, because the function-

alities agree on all encrypted inputs.

Hybrid H2:
(
FE.SKY0

0 ,FE.CT
(⊥)
1 ,FE.CT2, . . . ,FE.CTq,Aux0

)
where FE.CT

(⊥)
1 ← FE.Enc(FE.MSK,

⊥).

Indistinguishability follows from the selective security of FE, as f
M

(0)
1

0 agrees on M
(0)
1 and ⊥.

Hybrid H3:
(
FE.SKY1

0 ,FE.CT
(⊥)
1 ,FE.CT2, . . . ,FE.CTq,Aux1

)
where Y1 = f1(M

(1)
1) and FE.SKY1

0 ←
FE.KeyGen(FE.MSK, fY1

0).
This follows from the indistinguishability of (Y0,Aux0) and (Y1,Aux1).

Hybrid H4:
(
FE.SKY1

1 ,FE.CT
(⊥)
1 ,FE.CT2, . . . ,FE.CTq,Aux1

)
where FE.SKY1

1 ← FE.KeyGen(FE.MSK,

fY1
1).

Indistinguishability from H3 follows from the function-privacy of FE, because the function-
alities agree on all encrypted inputs.

Hybrid H5:
(
FE.SK1,FE.CT

(1)
1 ,FE.CT2, . . . ,FE.CTq,Aux1

)
by an argument mirroring the in-

distinguishability of H0 and H2.
This completes the proof.

Cascaded Garbled Circuits We start by explaining the notion of cascaded circuits. It is
a sequence of circuits, initialized with an input, where the ith circuit in the sequence produces
input to the (i+1)th circuit. Every circuit also produces additional output that will not be part
of the input to the next circuit in the sequence. We define this notion formally below.

Definition 18 (Cascaded Circuits). Let C1,. . . ,Cq be circuits mapping {0, 1}n to {0, 1}m for
some m > n. We parse the output as Ci(xi) = xi+1‖yi where xi+1 ∈ {0, 1}n and yi ∈ {0, 1}m−n.
We say that (x1, C1, . . . , Cq) are cascaded circuits if they are evaluated as follows:

x2, y1 ←C1(x1)

x3, y2 ←C2(x2)

...

xq+1, yq ←Cq(xq)

The output of cascaded circuits is defined to be (y1, . . . , yq).

Using the above notion, we can define the concept of cascaded garbled circuits. It is a sequence
of garbled circuits, where the ith garbled circuit in the sequence produces wire keys to the
(i+ 1)th garbled circuit. As before, every garbled circuit also produces additional output.

Definition 19 (Cascaded Garbled Circuits). Let GC = (Gen,GrbCkt,GrbInp,EvalGC) be a cir-
cuit garbling scheme. Let C1,. . . ,Cq be circuits mapping {0, 1}n to {0, 1}m for some m > n.
For a circuit Ci and a garbling key r ← Gen(1λ), define the circuit G[Ci, r] on input xi to be:

G[Ci, r](xi) = GrbInp(r, xi+1)‖yi.

32

For the cascaded circuits (x1 ∈ {0, 1}n, C1, . . . , Cq), we define cascaded garbled circuits to
be (
〈x1〉gc, 〈G1〉gc, 〈G2〉gc, . . . , 〈Gq〉gc

)
sampled according to

(GrbInp(r1, x1),GrbCkt(r1, G1),GrbCkt(r2, G2), . . . ,GrbCkt(rq, Gq))

where ri ← Gen(1λ) and Gi = G[Ci, ri+1]. The output of cascaded garbled circuits is defined to
be (y1, . . . , yq).

Each Gi outputs a garbled input for the next garbled circuit 〈Gi+1〉gc, along with some
additional output yi. Namely, the cascaded garbled circuit is evaluated analogously to the
cascaded circuits:

〈x2〉gc, y1 ←EvalGC(〈G1〉gc, 〈x1〉gc)
〈x3〉gc, y2 ←EvalGC(〈G2〉gc, 〈x2〉gc)

...

〈xq+1〉gc, yq ←EvalGC(〈Cq〉gc, 〈xq〉gc)

and the output is defined to be (y1, . . . , yq).
We are now ready to state a lemma about the security of cascaded garbled circuits. This

lemma implicitly in several different contexts such as secure computation on the web [HLP11,
GHV10], garbled RAMS [LO13, GHL+14, GLOS15, GLO15], indistinguishability obfuscation
for Turing machines [BGL+15] and adaptive garbled circuits [HJO+15].

Lemma 2 (SIM-security of Cascaded Garbled Circuits). Suppose that GC is a SIM-secure gar-
bled circuits scheme (Definition 2). Let SimGC be the PPT simulator associated with GC. Then
there exists a PPT simulator Sim such that for all cascaded circuits (x1, C1, . . . , Cq) with output

(y1, . . . , yq), the distribution over the cascaded garbled circuit
(
〈x1〉gc, 〈G1〉gc, 〈G2〉gc, . . . , 〈Gq−1〉gc, 〈Gq〉gc

)
is computationally indistinguishable from the output distribution of Sim

(
1λ, φ(C1), . . . , φ(Cq), y1, . . . , yq

)
,

where φ(Ci) denotes the topology of Ci.

Proof. We define the simulator Sim using the simulator of garbled circuits, Simgc. The simulator
Sim takes as input (y1, . . . , yq) and does the following:

• Let ` be the output length of Gq. Let (xsimq+1, G
sim
q+1)← Simgc(0

`).

• For i from q to 1, let (xsimi , Gsim
i)← Simgc(x

sim
i+1, yi).

• Output
(
xsim1 , Gsim

1 , . . . , Gsim
q

)
.

The proof of computational indistinguishability proceeds by a sequence of hybrids. The initial
hybrid is the real cascaded garbled circuit, and the final hybrid is the simulated cascaded garbled
circuit. The intermediate hybrids are defined by simulating the garbling of x1, along with the
first i circuits G1, . . . , Gi, while using GC to garbled the remaining circuits Gi+1, . . . , Gq. The
final reduction uses the SIM security of GC to establish that each adjacent pair of hybrids are
indistinguishable. We briefly describe the hybrids below.

Hybrid H1:
(
〈x1〉gc, 〈G1〉gc, 〈G2〉gc, . . . , 〈Gq−1〉gc, 〈Gq〉gc

)
- All the garbled circuits are com-

puted according to GC.

Hybrid H2.i:
(
xsim1 , Gsim

1 , Gsim
2 , . . . , Gsim

i , 〈Gi+1〉gc, . . . , 〈Gq−1〉gc, 〈Gq〉gc
)

- the first i garbled

circuits are simulated and the rest are computed according to GC.

33

H2.0 is identical to H1. The indistinguishability of H2.i and H2.i+1 follows from the security
of garbled circuits.

Hybrid H3:
(
xsim1 , Gsim

1 , . . . , Gsim
q

)
- All the garbled circuits are simulated.

The hybrid H2.q+1 is identical to H3.

Main hybrids. We prove that the above is a IND-secure Sequential URE scheme. We now
present the main sequence of hybrids, and only then demonstrate their indistinguishability. Let
q be the number of update queries (u0

i ,u
1
i) the adversary makes in the IND security game in

Definition 14.
The first hybrid corresponds to the IND-experiment ExptSUREA (1λ, 0) given in Definition 14.

Then we move to a hybrid in which the security experiment is run using modified versions of
Encode and GenUpd, with outputs corresponding to updatable randomized encoding of circuit
C0, input x0, and updates u0

i .
We then proceed to change the encodings one-by-one until all all the encodings correspond

to circuit C1, input x1, and updates u1
i . Finally we revert to the unmodified versions of Encode

and GenUpd, yielding an experiment corresponding to the IND-experiment ExptSUREA (1λ, 1).

H0
real: Run the indistinguishability experiment ExptSUREA (1λ, 0).

H0
proof : Run the indistinguishability experiment as before, but replacing Encode(1λ, C0, x0) with

Encode0
proof(1

λ, C0, x0, C1, x1) (see Figure 4), and replacing all executions of GenUpd(sti,u
0
i+1)

with GenUpd0(sti,u
0
i+1,u

1
i+1) (see Figure 5).

H0: As above, except replacing Encode0
proof(1

λ, C0, x0, C1, x1) with Encode1
proof(1

λ, C0, x0, C1, x1).
Here we still use GenUpd0.

Hh for 1 ≤ h ≤ q: As above, except using GenUpdh.

H1
real: Run the indistinguishability experiment ExptSUREA (1λ, 1). That is, replace Encode1

proof(1
λ, C0, x0,

C1, x1) with Encode(1λ, C1, x1) and all executions of GenUpdq(sti,u
0
i+1,u

1
i+1) with GenUpd(sti,u

1
i+1).

Encodebproof

(
1λ, C0, x0, C1, x1

)
:

On input security parameter λ, perform the following operations.

1. Execute the setup of FE, FE.MSK← FE.Setup(1λ).

2. Compute a functional key FE.SK ← FE.KeyGen(FE.MSK,RRGarbler), where RRGarbler is as defined in
Figure 3.

3. In the next step, generate a randomized encoding of input (Cb, xb). That is, compute RE.Enc(1λ, Cb, xb)
to obtain 〈Cb[xb]〉re.

4. Generate a garbled circuit input encoding of (C0[x0], C1[x1]) by evaluating 〈C0[x0], C1[x1]〉gc ←
GrbInp(C0[x0], C1[x1]; rgc), where rgc is the randomness used to garble the input.

5. Output as the randomized encoding the tuple 〈C[x]〉ure =
(
FE.SK, 〈Cb[xb]〉re, 〈C0[x0], C1[x1]〉gc

)
and

set the state to be st = (FE.MSK, rgc).

Figure 4:

34

GenUpdh
(
sti, u0

i+1, u1
i+1

)
:

It takes as input the state sti = (FE.MSK, rgc,i) and update ui+1.

1. If i+ 1 ≤ h, let mode = 1. Otherwise, let mode = 0.

2. Sample random coins rre,i+1 and rgc,i+1.

3. Generate the FE ciphertext CTi+1 ← FE.Enc
(
FE.MSK,

(
u0
i+1,u

1
i+1, rgc,i, rgc,i+1, rre,i+1,mode

))
.

4. Set the new state sti+1 = (FE.MSK, rgc,i+1).

5. Output 〈ui+1〉ure = CTi+1.

Figure 5:

Indistinguishability of Hybrids. The differences between H0
real and H0

proof are exactly

mirrored in the differences between hybrids Hq and H1
real, but with the bit b ∈ {0, 1} swapped

in ExptSUREA (1λ, b), Encodeb, and the setting of mode used by GenUpd. The indistinguishability
of Hq and H1

real follows essentially the same argument as we now present for H0
real and H0

proof .

Moving from H0
real to H0

proof involves two changes which we take in turn. First, when

generating the initial updatable randomized encoding, we switch from using Encode(1λ, C0, x0)
to using Encode0(1λ, C0, x0, C1, x1). The resulting change in the actual URE encoding is that
initial garbled input is changed from w = 〈C0[x0],⊥〉gc to w′ = 〈C0[x0], C1[x1]〉gc. This causes
cascading changes to the garbled inputs as each update is generated and applied, but everything
else remains unchanged: the garbled RelockReleasei circuits, the FE secret key, and all the RE
encodings of the updated C0

i [x0
i]. We first observe that(

〈C0[x0]〉re, w, 〈RelockRelease1〉gc, . . . , 〈RelockReleaseq〉gc
)

≈c
(
〈C0[x0]〉re, w

′, 〈RelockRelease1〉gc, . . . , 〈RelockReleaseq〉gc
)

(1)

by a direct application of Lemma 2: the outputs of the cascaded garbled circuits are unchanged.
Now a simple application of Lemma 1 establishes indistinguishability: Aux0 and Aux1 are the
two tuples above respectively. The function f is RRGarbler and the messages Mi are those
corresponding to the ciphertexts 〈ui〉ure = FE.CTi.

The second step in switching from H0
real to H0

proof is to switch GenUpd to GenUpd0, ultimately

changing each of the URE encoded updates from 〈ui〉ure = FE.CTi to 〈u′i〉ure = FE.CT′i containing
both u0

i and u1
i . While the FE key for RRGarbler is unchanged, the new ciphertexts result in

output garbled circuits 〈RelockRelease′i〉gc, each of which now has both u0
i and u1

i hard-coded.
This results in changes to the garbled input after each update is applied, but the all of the RE
encodings 〈C0

i [x0
i]〉re output by RelockReleasei are exactly the same. Therefore, by Lemma 2,

for each j ∈ [q]:(
〈C0[x0]〉re, w

′,
〈RelockRelease1〉gc, . . . , 〈RelockReleasej〉gc,
〈RelockRelease′j+1〉gc, . . . , 〈RelockRelease

′
q〉gc

)

≈c

(
〈C0[x0]〉re, w

′,
〈RelockRelease1〉gc, . . . , 〈RelockReleasej−1〉gc,
〈RelockRelease′j〉gc, . . . , 〈RelockRelease

′
q〉gc

)
For each j, we apply Lemma 1 to switch 〈uj〉ure to 〈u′j〉ure, thereby establishing the indistin-

guishability of H0
real and H0

proof .

The indistinguishability of H0
proof and H0 is much simpler. Changing Encode0 to Encode1

35

switches the initial URE encoding from
(
FE.SK, 〈C0[x0]〉re, 〈C0[x0], C1[x1]〉gc

)
to(

FE.SK, 〈C1[x1]〉re, 〈C0[x0], C1[x1]〉gc
)

, and all URE encoded updates 〈ui〉ure are unchanged. No-

tice that the randomness used to generate 〈Cb[xb]〉re is independent of everything in the adver-
sary’s view except for 〈Cb[xb]〉re itself. Given 〈Cb[xb]〉re, along with C0, C1, x0, and x1, the view
of the adversary can be exactly simulated. Therefore, the security of RE enables the switch from
〈C0[x0]〉re to 〈C1[x1]〉re that we require.

It remains now only to show for all h ∈ [q − 1] that Hh ≈c Hh+1. In the latter hybrid,
GenUpdh+1 is used, while GenUpdh is used in the former. The only change in the view of the
adversary is therefore the mode bit’s setting in 〈uh+1〉ure = FE.CTh+1, which is set to 0 in the
former and 1 in the latter. When evaluated using the FE functional key FE.SK for RRGarbler,
this results in the garbled RelockReleaseh+1 outputting a randomized encoding 〈C1

h+1[x1
h+1]〉

re

of C1
h+1[x1

h+1] instead of C0
h+1[x0

h+1]; all other URE-encoded updates (FE ciphertexts) are un-
changed. Recall in Defintion 14 we require that C0

h+1(x0
h+1) = C1

h+1(x1
h+1). This requirement,

along with the security of RE, guarantees that(
〈C1

0 [x1
0]〉re, . . . , 〈C

1
h[x1

h]〉re, 〈C
0
h+1[x0

h+1]〉
re
, 〈C0

h+2[x0
h+2]〉

re
, . . . , 〈C0

q [x0
q]〉re

)
≈c
(
〈C1

0 [x1
0]〉re, . . . , 〈C

1
h[x1

h]〉re, 〈C
1
h+1[x1

h+1]〉
re
, 〈C0

h+2[x0
h+2]〉

re
, . . . , 〈C0

q [x0
q]〉re

)
Applying Lemma 2 followed by Lemma 1 establishes indistinguishability of Hh and Hh+1.

5 Updatable Garbled Circuits

In this section, we present definitions and a construction of updatable garbled circuits for
the family of bit-wise updates. The main tool in our construction is a puncturable proxy
re-encryption scheme, a notion that we define and construct in this section.

We start by giving a formal definition of updatable garbled circuits in Section 5.1. Next,
in Section 5.2 we define and a construct a puncturable proxy re-encryption scheme based on
puncturable (almost) key-homomorphic PRFs of [BV15b]. Finally, in Section 5.3, we give our
construction of updatable garbled circuits for bit-wise updates from a puncturable proxy re-
encryption scheme.

5.1 Definition of Updatable Garbled Circuits

Syntax. A scheme UGC = (GrbCkt,GrbInp,GenUpd,ApplyUpd,EvalGC) for a (Upd,U)-updatable
class of circuits C = {Cλ}λ∈N is defined below.

• Circuit Garbling, 〈C〉gc, st ← GrbCkt(C ∈ Cλ): On input circuit C, output the garbled
circuit 〈C〉gc.

• Generate Secure Update, 〈u〉gc, st′ ← GenUpd (st,u ∈ Uλ): On input state st, update
u, output the secure update 〈u〉gc.

• Apply Secure Update, 〈C ′〉gc ← ApplyUpd
(
〈C〉gc, 〈u〉gc

)
: On input the (old) garbled

circuit 〈C〉gc, secure update 〈u〉gc, output the updated garbled circuit 〈C ′〉gc.

• Input Garbling, 〈x〉gc ← GrbInp(st, x ∈ {0, 1}λ): On input state st, input x ∈ {0, 1}λ,
output the garbled input 〈x〉gc.

• Evaluation, α ← EvalGC(〈C〉gc, 〈x〉gc): On input garbled circuit 〈C〉gc, garbled input
〈x〉gc, output the result α.

36

Efficiency. We desire the same efficiency properties as in the definition of URE, except with
the requirement on garbling (encoding) time modified appropriately to the setting of garbled
circuits.

• Garbling Time: We require that the time to generate (and thus the size of) the garbled
input 〈x〉gc should be polynomial in |x| and λ, and independent of the size of C and the
number of updates. The time to generate the garbled circuit 〈C〉gc should be polynomial
in |C| and λ.

• Secure Update Generation Time, Secure Update Size, Runtime of Update, and State Size:
Same efficiency goals as URE.

While we would like to achieve all the efficiency goals simultaneously, in our construction of
UGC presented in Section 5.3, the ‘Runtime of Update’ and the secret ‘State Size’ will both
depend on |C|. Using the transformation described in Appendix C, it is possible to remove the
dependence on |C| for the state size.

Sequential Updating. The notion of sequential updating for updatable garbled circuits
closely mirrors the URE notion. The key difference is that in the UGC setting, the encoded
input is released only after all the encoded updates. Below, we define correctness and security
of sequential updating.

Correctness of Sequential Updating. Let C ∈ Cλ, x ∈ {0, 1}λ. Let (u1, . . . ,us) ∈
(Uλ)

s
, where s(λ) is a polynomial in λ. Consider the following two processes:

Secure updating process:

1. Let 〈C〉gc0
, st0 ← GrbCkt(C).

2. For i ∈ [s], let 〈u〉gci, sti ← GenUpd(ui, sti−1)

3. For i ∈ [s], let 〈C〉gci ← ApplyUpd(〈C〉gci−1
, 〈u〉gci).

4. Let 〈x〉gc ← GrbInp(sts, x).

Insecure updating process:

1. Let C0 = C.

2. For i ∈ [s], let Ci = Upd(Ci−1,ui).

We have,
EvalGC(〈C〉gcs, 〈x〉gc) = Cs(x)

IND-Security of Sequential Updating. As in the case of URE, we can consider two
ways of defining the security notion. We only define the indistinguishability-based security
notion below. The simulation-based definition can be appropriately defined. We denote the
challenger by Ch and the PPT adversary by A. The security is defined with respect to deter-
ministic side-information functions φu, which capture what information is leaked by the encoded
updates.

In our construction of updatable garbled circuits for bitwise updates u = (i, b), the side-
information function φu(i, b) = i will leak the bit of the circuit representation being updated

ExptUGC
A,Ind(1

λ, b ∈ {0, 1}):

37

• A sends circuits C0, C1 ∈ Cλ, inputs x0, x1 ∈ {0, 1}λ to Ch. Ch sends 〈Cb〉ugc, where

(〈Cb〉ugc, stugc)← GrbCkt(1λ, Cb), to A.

• Update Query Phase. A then makes a series of update queries. For i ∈ [q(λ)], it sends
the ith pair of updates (u0

i ,u
1
i) to Ch. If φu(u0

i) 6= φu(u1
i), abort and return ⊥. Ch sends

〈ubi 〉ugc to A where 〈ubi 〉ugc, stiugc ← GenUpd(ubi , st
i−1
ugc).

• Ch keeps local copies both circuits C0 and C1 up-to-date with respect to the updates
queried. That is, letting C0

0 = C0 (respectively, C1
0), Ch computes C0

i ← Upd(C0
i−1,u

0
i)

(resp. C1
i).

• If C0
q (x0) 6= C1

q (x1), abort and return ⊥. Otherwise, Ch sends GrbInp(stqugc, 〈xb〉ugc) to the
adversary.

• A’s output is returned by ExptUGC
A,Ind(1

λ, b).

We give the formal definition of the security notion below.

Definition 20. A scheme UGC satisfies indistinguishability of sequential updating with
leakage φu if for any PPT adversary A and some negligible function negl∣∣∣∣Pr[1← ExptUGC

A,Ind(1
λ, 0)

]
− Pr

[
1← ExptUGC

A,Ind(1
λ, 1)

]∣∣∣∣ ≤ negl(λ).

We say the scheme is update-hiding if φu(u) = ⊥.

We remark that our initial construction of UGC in Section 5.3 will not be update-hiding.
In particular, to execute ApplyUpd, the evaluator will have to know which bit of the circuit
representation is being modified (though the old and new values of this bit will remain secret).
In Appendix B, we describe a generic transformation from a non-update-hiding UGC scheme
into one that achieves update hiding using a (non-interactive) oblivious RAM.

5.2 Puncturable Proxy Re-encryption Scheme

En route to constructing updatable garbled circuits, we introduce a tool called puncturable
symmetric proxy re-encryption scheme. As in a standard proxy re-encryption scheme, our notion
allows for generation of re-encryption keys. However, unlike a standard proxy re-encryption
scheme, our notion allows for puncturing of re-encryption keys on ciphertexts such that the
re-encryption mechanism fails on the punctured ciphertexts.

We begin by defining puncturable symmetric proxy re-encryption, along with identifying a
number of additional properties our construction will satisfy that are useful in the construction
of updatable garbled circuits. We then present a construction of such a re-encryption scheme
from puncturable, almost key-homomorphic PRFs, which in turn can be based on hardness of
approximating either GapSVP or SIVP to within sub-exponential factors.

5.2.1 Definition of Puncturable Symmetric Proxy Re-encryption

We give a formal definition of puncturable symmetric proxy re-encryption scheme below. This
definition is tailored to our needs, and is not intended to be the most general definition of
puncturable proxy re-encryption schemes.

Syntax A puncturable, symmetric proxy re-encryption scheme is a tuple of algorithms ReEnc =
(Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) with the following syntax.

Setup, PP← Setup(1λ): On input a security parameter λ in unary, output the public param-
eters PP of the ReEnc.

38

Key Generation, SK ← KeyGen(PP): On input the public parameters PP, sample a ReEnc
secret key SK.

Encryption, CT ← Enc(SK,m): On input a secret key SK and a message m ∈ M, output a
ciphertext CT.

Decryption, m ← Dec(SK,CT): On input a secret key SK and a ciphertext CT, output a
message m ∈M.

Punctured Re-encryption Key Generation, RKπ1,2 ← ReKeyGen(SK1,SK2, π): On input
two secret keys SK1 and SK2 and a boolean-valued circuit π whose input is the space of
ciphertexts, output a re-encryption key RKπ1,2. Informally, RKπ1,2 should only allow the
re-encryption of ciphertexts CT for which π(CT) = 1 to be re-encrypted from SK1 to
SK2. We overload the notation ReKeyGen, and will simply let ReKeyGen(SK1,SK2) :=
ReKeyGen(SK1,SK2,1) where 1 is the constant 1 circuit.

Re-encryption, CT2 ← ReEnc(RK1,2 , CT1): On input a re-encryption key RK1,2 ← ReKeyGen(SK1,
SK2) and a ciphertext CT1 ← Enc(SK1,m), output a ciphertext SK2.

Informally, RKπ1,2 should only allow the re-encryption of ciphertexts CT for which π(CT) = 1
to be re-encrypted from SK1 to SK2. We overload the notation ReKeyGen, and will simply let
ReKeyGen(SK1,SK2) := ReKeyGen(SK1,SK2,1) where 1 is the constant 1 circuit.

For our application, we will consider only a restricted class of constraint circuits π, described
immediately below.

Syntactic properties. Firstly, ciphertexts in ReEnc are of the form CT = (r, pl), where r
is the randomness used in the encryption algorithm, and pl is the “payload.” The randomness
comes from a finite set X with description length polynomial in the security parameter.4

Secondly, re-encryption preserves the randomness of the ciphertext. That is, for any re-
encryption key RK and ciphertext (r, pl), ReEnc(RK, (r, pl)) = (r, pl′) for some pl′.

Lastly, we restrict our attention to the constraint circuits of the following form:

πr∗(r, pl) =

{
0 if r = r∗

1 if r 6= r∗

We abuse notation and identify r∗ with the constraint π(r∗), and additionally primitives with
such constraints “punctured at r∗.”

Correctness. The re-encryption scheme ReEnc satisfies a modified correctness property that
reflects the informal goal that re-encryption keys punctured at r∗ should enable re-encryption
only of ciphertexts with randomness r 6= r∗.

Definition 21 (Ciphertext Punctured Re-encryption: Correctness). We will say the ciphertext
constrained re-encryption scheme ReEnc is correct if, under public parameters PP← Setup(1λ),
secret key SK← KeyGen(1λ), and for all m ∈M, two conditions hold:

• Dec(SK,Enc(SK,m)) = m

• For all T = poly(λ), and for any sequence of secret keys SK1, . . . ,SKT ← KeyGen(1λ),
and re-encryption keys RKrii,i+1 ← ReKeyGen(SKi,SKi+1, ri) for all i ∈ [1, T − 1], for
all messages m ∈ M, and all sequences of ciphertexts CT1 ← Enc(SK1,m), CT2 ←
ReEnc(RKr21,2,CT1), . . ., CTT ← ReEnc(RK

rT−1

T−1,T ,CTT−1) it holds that either:

1. Dec(SKT ,CTT) = m, or

2. ∃i ∈ [1, T − 1] such that r = ri, where r is the randomness of the ciphertext CT1 (and
thus of all ciphertexts CTj).

4Instantiating the PRF as we do, X will be the set of binary strings of appropriate length.

39

Security. The semantic security definition of [BLMR13] does not suffice for our needs. We
require a different, incomparable security definition that captures the power of the constrained
re-encryption keys. In formalizing our security requirement, we diverge significantly from
[BLMR13]. A security definition that both suffices for the application to updatable garbled
circuits and generalizes the [BLMR13] definition would unnecessarily complicate our discussion
and is outside the scope of this work. Below, we present a security definition that is tailored to
our requirements.

Informally, we wish to guarantee security when the adversary gets constrained re-encryption
keys and a terminal secret key, if the constraint prevents “honest re-encryption” of the challenge
ciphertext.5 In a very simplified form, this setting can be seen in the following game between
an adversary A and a challenger Ch:

• A chooses messages m0 and m1.

• Ch chooses a random bit b← {0, 1}, two random secret keys SK1,SK2 ← KeyGen(1λ), and
sends c∗ = (r∗, pl∗)← Enc(SK1,m

b).

• Ch generates RKr
∗

1,2, and sends both RKr
∗

1,2 and SK2 to A.

• A attempts to guess b with probability significantly better than 1/2.

Our actual security definition is somewhat more complex. The adversary will receive encryptions
of many messages, a chain of punctured re-encryption keys, and a single secret key. We also
introduce the additional complexity that the messages may originally be encrypted with any of
the secret keys SK0, . . . ,SKq. Lastly, we must impose a non-triviality condition – which we term
“validity” – described in the definition and further discussed below.

ExptReEncA (1λ, b ∈ {0, 1}):

• The challenger samples and sends PP← Setup(1λ) to A.

• The adversary selects two sequences of messages (m0
1, . . . ,m

0
`) and (m1

1, . . . ,m
1
`) for some

` = poly(λ), along with a sequence of q “punctured re-encryption key requests:” (p1, . . . , pq) ∈
[`], where each pj is distinct. Additionally, the adversary specifies a tuple of key-indices
(k1, . . . , k`) ∈ [q].

• The challenger checks the validity condition. If it is violated, the experiment aborts.

– For all i ∈ [`], if ∀j :
(
pj 6= i

)
∨
(
j < ki

)
, then m0

i = m1
i .

• The challenger samples secret keys SKi ← KeyGen(1λ) for i ∈ [q + 1], and sends the
following to the adversary:

– Ciphertexts CTi ← Enc(SKki ,m
b
i), for all i ∈ [`]. Let ri be the randomness used in

CTi.

– Punctured re-encryption keys RK
rpj
j,j+1 ← ReKeyGen(SKj ,SKj+1, rpj), for each j ∈ [q],

punctured to not work on CTpj .

– The final secret key SKq+1.

• The adversary outputs b′. The output of the experiment is 1 if b′ = b, and 0 if b′ 6= b.

Definition 22. A scheme ReEnc is secure if for any PPT adversary A and some negligible
function negl ∣∣∣∣Pr[1← ExptReEncA (1λ, 0)

]
− Pr

[
1← ExptReEncA (1λ, 1)

]∣∣∣∣ ≤ negl(λ).

Notice that the definition would be trivially unsatisfiable without the validity check. Unless a
re-encryption key after ki is punctured at the ciphertext, then given the re-encryption keys along
with SKq, the adversary can simply recover mb

i . Therefore, we require the additional condition
that for any such i, m0

i = m1
i .

5Corresponding to the last condition in the correctness properties above.

40

Fresh-stale indistinguishability Our scheme will enjoy one more security property: that
for secret keys SK1 and SK2 with re-encryption key RK1,2, “fresh” ciphertexts produced with
SK2 are indistinguishable from ciphertexts (of the same message) encrypted under SK1 and then
re-encrypted using RK1,2, even given SK1 and SK2.

Definition 23 (Fresh-stale indistinguishability). ReEnc is said to satisfy fresh-stale indistin-
guishability if, for all messages m and randomness r∗:(
Enc(SK2,m), SK1, SK2, PP, m, r∗

)
≈c
(
ReEnc(RKr

∗

1,2,Enc(SK1,m)), SK1, SK2, PP, m, r∗
)

where the probabilities are taken over PP ← Setup(1λ), SK1,SK2 ← KeyGen, RKr
∗

1,2 ←
ReKeyGen(SK1,SK2, r

∗), along with Enc and ReEnc.

Note that by a hybrid argument, fresh-stale indistinguishability as we defined for SK1 and
SK2 can be extended for any polynomial-length chain of secret keys. That is, a fresh encryption
under SKq is indistinguishable from q-many re-encryptions of a ciphertext through the keys
SK1,. . . ,SKq+1, even when given all the keys SK1, . . . ,SKq+1.

Looking ahead, fresh-stale indistinguishability will be useful in proving security (Defini-
tion 22). In Section 5.2.3, we construct a puncturable proxy re-encryption scheme as described
in this section from almost key-homomorphic puncturable PRFs. If we instead instantiated
our construction with (perfectly) key homomorphic PRFs, then our scheme would immediately
satisfy fresh-stale indistinguishability (in fact, the distributions would be equivalent).

5.2.2 Building Block: Puncturable, Almost Key-Homomorphic PRFs

We use puncturable almost key-homomorphic PRFs [BLMR13, BV15b] to build updatable gar-
bled circuits. In [BLMR13], the authors construct a symmetric proxy re-encryption scheme from
any almost key-homomorphic PRF. We similarly construct a puncturable, symmetric proxy re-
encryption scheme given a puncturable almost key-homomorphic PRF, which can be based on
worst-case lattice assumptions as shown in the recent work of [BV15b]. We now present a def-
inition of puncturable, almost key-homomorphic PRFs adapted from [BLMR13] and recall the
main theorem of [BV15b]. We restrict our attention to PRFs with the particular co-domain Zp
for some integer and p.

Definition 24 (Puncturable, γ-Almost Key Homomorphic PRF). Let PRF =
(PRF.Setup,PRF.KeyGen,PRF.Punct, F) be point-puncturable PRF family,6 with keyspace Kλ,
domain Xλ, and co-domain Zp, for λ ∈ N, and some integer p. Suppose that (Kλ,+) and (Y,+)
are groups. The puncturable PRF family is γ-almost key homomorphic if for all points x∗1, and
x∗2, and all keys K1 and K2, and all inputs x 6= X∗1 , x

∗, 2, there exists an e ∈ [0, γ] such that

F (PRF.Punct(K1, x1), x) + F (PRF.Punct(K2, x
∗
2), x) = F (K1 +K2, x)± e (mod p).

The security requirements of punctured PRFs vary from construction to construction (e.g.
the number of punctured keys, the selectivity / adaptivity of punctured points). In this work
we consider a weak security notion: selective security with respect to only a single punctured
key. Such PRFs were constructed in [BV15b].

Theorem 7 ([BV15b], Theorem 5.1). For c > 0, a single-key, selectively secure point-puncturable,
2-almost key homomorphic PRF with domain {0, 1}n and co-domain Zp can be constructed based

on the hardness of approximating either GapSVP or SIVP to within a factor of 2Õ(n1/c), where

n = (λ log λ)c, p = 2Õ(n1/c).

6A puncturable PRF family is a constrained PRF family (see [BW13, BV15b]) for the family of constraints which
are equal to 1 except at a single “punctured” point.

41

Proof. We observe that the family of circuits that check whether an input r ∈ {0, 1}λ is equal
to a specific r∗ can be uniformly generated, and each such circuit has depth O(log λ) and a
description of size λ (the description being r∗ itself).

Applying the choice of parameters in Section 5.2 of [BV15b], along with the observations in
Section 5.5 of that work yields the corollary.

Finally, we remark that this construction has a property that will be important for us in the
proof of security for ReEnc. Namely, for all PP← PRF.Setup(1λ), the following two distributions
over the keyspace Kλ are identical:

PRF.KeyGen(PP) ≡ Uniform(Kλ) (2)

5.2.3 Construction of Puncturable Symmetric Proxy Re-encryption

We now present a puncturable re-encryption scheme that satisfies all the properties discussed in
Section 5.2.1. Our construction is closely modeled on [BLMR13].7 The main ingredient in our
construction is a puncturable almost key-homomorphic PRF scheme that additionally satisfies
the property stated in equation 2. Using the PRF scheme from the previous section, we state
our main theorem for this section.

Theorem 8. Assuming the hardness of approximating either GapSVP or SIVP to within sub-
exponential factors, there exists a symmetric puncturable re-encryption scheme.

The rest of this subsection is dedicated to the proof of this theorem.

Construction. Let PRF be the family of puncturable, 2-almost key homomorphic PRFs from
Corollary 7. The domain and range of PRF are {0, 1}n and Zp respectively, where n = poly(λ).

Let B = λlog λ and let u be an integer such that bp/uc > 6B (recall that p = 2Õ(n1/c)).

Construction We define ReEnc = (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) to be an en-
cryption scheme with message space Zu as follows:

• Setup(1λ): Sample and output the public parameters of the PRF PP← PRF.Setup(1λ).

• KeyGen(1λ): Output a secret key SK← PRF.KeyGen(1λ).

• Enc(SK,m): Sample r ← {0, 1}n and noise η ← [−B,B], and output (r, pl) where pl =
m · bp/uc+ F (SK, r) + η.

• Dec(SK, (r, pl)): Output bpl − F (SK, r) (mod p)cu, where b·cu denotes rounding to the
nearest multiple of bp/uc.

• ReKeyGen(SK1,SK2, r
∗): Output RKr

∗

1,2 ← PRF.Punct(SK2 − SK1, r
∗).

• ReEnc(RK, (r, pl)): Output (r, pl + F (RK, r)).

Correctness Correctness follows in a straightforward manner from the γ-almost key-homomorphic
guarantee of PRF and the choice of u. This is because the magnitude of the total accumulated er-
ror (from T = poly(λ) re-encryptions and the encryption noise η) cannot exceed (2T +B) < 3B
and thus the error does not affect decryption correctness.

7As in that work, the scheme would be simplified by using key homomorphic PRFs, rather than almost key
homomorphic PRFs. Because only the latter are known to exist from lattice assumptions, we present only that
construction.

42

Fresh-stale indistinguishability We wish to show that for any m, SK1, SK2, and r∗ it is
infeasible to determine whether a given ciphertext CT = (r, pl) was generated according to CT =
CT2 ← Enc(SK2,m), or according to CT = CT1 ← ReEnc(ReKeyGen(SK1,SK2, r

∗),Enc(SK1,m)).
Note that in our scheme, both ReKeyGen and ReEnc are deterministic algorithms. Intuitively,
the error from re-encrypting the ciphertext instead of computing it fresh is drowned out by the
noise η added to the ciphertext during encryption.

Let c,B,∆ ∈ Zp such that B < p/4 and c < p/4. Let D2 be the uniform distribution over
[c−B,+B], and let D1 be uniform over [c−B+ ∆, c+B+ ∆]. The statistical distance of these
distributions is SD(D1, D2) = ∆/(2B + 1).

Fix any choice of randomness r for Enc, and any choice of SK1, SK2, r∗ and m. Let c =
m · bp/uc + F (SK2, r) and ∆ = |F (SK2, r)− (F (SK1, r) + F (PRF.Punct(SK2 − SK1, r

∗), r))| ≤
2γ. Consider the distribution (induced by the choice of noise η ∈ [−B,B]) over ciphertexts
CT1 = (r, pl1) and CT2 = (r, pl2) defined as above. CT1 is distributed according to D1 and CT2

is distributed according to D2. Therefore, the distributions over CT1 and CT2 induced by the
choice of noise η by Enc have statistical distance bounded by 2γ/(2B+ 1). Because B is chosen
to be superpolynomial, this statistical distance is negligible.

Security Suppose for contradiction that there existed an adversaryA for which ExptReEncA (1λ, 0)
and ExptReEncA (1λ, 1) were distinguishable. First, we observe that fresh-stale indistinguishability
implies that, without loss of generality we may assume that for all i ∈ [`], ki = 0 (i.e. all the
messages mb

i are originally encrypted under SK1 instead of SKki). This follows directly from the
observation that fresh-stale indistinguishability extends to chains of secret keys of polynomial
length (see note after Definition 23), along with the requirement that if pj = i, then j > i. If
some ki > 0, then the view of that adversary can be indistinguishably simulated by using k′i = 1,
getting the encryption of mb

i , then using the re-encryption keys to compute a ciphertext with
respect to key SKki . Because the re-encryption keys RK1,2, . . . ,RKi−1,i are not punctured at the
ciphertext CTi (by the restriction on pj previously mentioned), this simulation will succeed.

Second, by a simple hybrid argument, we may also assume without loss of generality that
the sequences of messages (m0

1, . . . ,m
0
`) and (m1

1, . . . ,m
1
`) differ at exactly 1 index i∗. For all

i 6= i∗, let mi = m0
i = m1

i . We may also assume that there exists j∗ ∈ [q] such that pj∗ = i∗;
otherwise A’s challenge is invalid and the challenger aborts.

We use A to violate the single-key, selective security of the punctured PRF, yielding a
contradiction. Given the public parameters PP of PRF, sample a uniform PRF input r∗, and
receive in turn the punctured PRF challenge: a punctured key Kr∗ and y∗, which is either
F (K, r∗) or a uniformly random value in the co-domain Zp.

Pass along the public parameters to A and receive in return (m1, . . . ,mi∗−1,m
0
i∗ ,m

1
i∗ ,

mi∗+1, . . . ,m`), and (p1, . . . , pq) with pj∗ = i∗.
For j 6= j∗, sample PRF keys RKj,j+1 ← PRF.KeyGen(PP) (which we identify with re-

encryption keys), and a final PRF key SKq+1 ← PRF.KeyGen(PP) (interpreted as the terminal

secret key in the ReEnc security game). Lastly, set RKr
∗

j∗,j∗+1 = Kr∗ , the challenge punctured
PRF key.

For each i 6= i∗, sample encryption randomness ri uniformly and compute the ciphertext
CTq+1

i = Enc(SKq+1,mi; ri). Then, compute

CTi = CTq+1
i − F (RKr

∗

j∗,j∗+1, ri)−
∑
j 6=j∗

F (RKj,j+1, ri) (3)

For i∗, pick b ← {0, 1} uniformly, and compute the ciphertext CTq+1
i = Enc(SKq+1,m

b
i ; ri).

Then compute

CTi∗ = CTq+1
i∗ − y

∗ −
∑
j 6=j∗1

F (RKj,j+1, ri∗)

43

Finally, compute the punctured re-encryption keys RK
rpj
j,j+1 ← PRF.Punct(RKj,j+1, rpj).

As in the security definition for punctured proxy re-encryption, return to A the CTi for
all i, RK

rpj
j,j+1 for all j, and SKq+1. By Equation 2, the re-encryption keys RK

rpj
j,j+1 and the

secret key SKq+1 are distributed exactly as in the actual ReEnc security game. On the other
hand, the ciphertexts CTi are not distributed like honest ciphertexts, even for i 6= i∗. This is
because the PRF is only almost key-homomorphic – there’s no guarantee that F (

∑
RKj,j+1, ri)

is indistinguishable from
∑
F (RKj,j+1, ri) when also given the (punctured) re-encryption keys.

We again use fresh-stale indistinguishability. If instead of generating the CTq+1
i as we did by

encrypting directly using SKq+1, the CTq+1
i had been generated as re-encryptions of ciphertexts

CTi ← Enc(SK1,mi) using the punctured re-encryption keys (i.e. if the CTq+1
i were “stale”),

then the transformation we compute in (3) would exactly recover the fresh ciphertexts CTi.
On the other hand, the reduction used in the proof uses “fresh” ciphertexts CTq+1

i . Therefore
an adversary A who could distinguish its view in the proof, where the CTi are generated as
in (3) from fresh encryptions CTq+1

i ← Enc(SKq+1,mi) could be used to violate fresh-stale

indistinguishability. Given a fresh-or-stale ciphertext CTq+1
i and all the secret keys SKj , it is

easy to generate the re-encryption keys in the view of the adversary.

Therefore, we are able to conclude that the view of the adversary in this proof of ReEnc security
is indistinguishable from the real-world view, and the adversary (by assumption) must succeed
with non-negliglbe probability. Now, if punctured PRF challenge value y∗ = F (K, r∗), then the
view of the adversary is indistinguishable from its view in ExptReEncA (1λ, b) with random b. On
the other hand, if y∗ is random, then CTi∗ is distributed uniformly, and hides the value of the

bit b. Therefore, if
∣∣∣Pr[1← ExptReEncA (1λ, 0)]− Pr[1← ExptReEncA (1λ, 1)]

∣∣∣ is non-negliglbe, we are

able to distinguish the case when y∗ = F (K, r∗) or is random, violating the security of PRF and
completing the proof.

5.3 Construction of UGC

We now present our construction of UGC for general circuits and the family of bit-wise updates.
We proceed in two steps:

1. First, we present a construction of UGC for general circuits and bit-wise updates that does
not achieve update hiding.

2. In Appendix B, we present a generic transformation from a non-update-hiding UGC scheme
into one that achieves update hiding. Applying this transformation on our UGC scheme
constructed in the first step, we obtain an update-hiding UGC scheme for general circuits
and bit-wise updates.

We prove the following theorem in this Section:

Theorem 9. Suppose ReEnc is a puncturable symmetric proxy re-encryption scheme and GC
is an efficient PrivINDφ-secure projective garbling scheme for all circuits. Then there exists an
IND-secure, sequentially updatable garbled circuits scheme UGC for the class C of updatable
circuits with bitwise updates (Updbit,Ubit), which is not update-hiding.

Applying the transformation in Appendix B, we obtain our main result of UGC:

Corollary 1. Under the same assumptions as Theorem 9, there is an update-hiding, IND-
secure, sequentially updatable garbled circuits scheme UGC for the same class of circuits and
updates.

The rest of this Section is devoted to the proof of Theorem 9.

44

5.3.1 Proof of Theorem 9

Let ReEnc be a puncturable symmetric proxy re-encryption scheme with the properties outlined
in Section 5.2.1, and let GC be an efficient, PrivINDφ-secure projective garbling scheme for all
circuits (Definition 3). We construct a non-update-hiding updatable garbling scheme UGC =
(GrbCkt,GrbInp,GenUpd,ApplyUpd,EvalGC) as follows.

GrbCkt(1λ, C): On input a circuit C, do the following.

1. Let U be the universal circuit of size, input- and output-length of C, and let binary(C) be
the corresponding representation of C. Let s = |binary(C)| be the length of the description
of C.

2. Generate the garbled circuit and state (〈U〉gc, stgc)← GC.GrbCkt(U).

3. Using stgc, generate the garbled input wire labels corresponding to the circuit description
binary(C): 〈binary(C)〉gc ← GC.GrbInp(stgc, binary(C)).8 Write 〈binary(C)〉gc as 〈binary(C)1〉gc,
. . . , 〈binary(C)s〉gc.

4. Sample randomness rreEnc = (r1, . . . , rs) for ReEnc encryption. Sample public parameters
PP ← ReEnc.Setup(1λ) and secret key SK ← ReEnc.KeyGen(PP) for the re-encryption
scheme.

5. For each i ∈ [s], encrypt CTi = Enc(SK, 〈binary(C)i〉gc; ri), using ri as the encryption
randomness.

6. Output 〈C〉ugc := (〈U〉gc,PP,CT1, . . . ,CTs) and stugc = (stgc,PP,SK, rreEnc).

GenUpd(stugc,u): On input a state st = (stgc,SK, rreEnc) and update u = (i, b), do the following.

1. Sample a fresh secret key SK′ ← KeyGen(1λ). Generate the re-encryption key RK ←
ReKeyGen(SK,SK′, ri), punctured at ri, the ith element of rreEnc.

2. Sample new randomness r′i for ReEnc.Enc. Let r′reEnc be rreEnc with ri replaced by r′i.

3. Compute the new garbled wire input label Li,b = GC.GrbInputWire(st, i)b, and encrypt the
new input wire label CT′i = Enc(SK, Li,b; r

′
i).

4. Output the garbled update 〈u〉ugc := (i,CT′i,RK
ri) and the updated state st′ugc = (stgc,SK

′, r′reEnc).

ApplyUpd(〈C〉ugc, 〈u〉ugc) : On input a UGC-garbled circuit 〈C〉ugc = (〈U〉gc,CT1, . . . ,CTs) and

a garbled update 〈u〉ugc = (i,CT′i,RK):

1. For each j 6= i, let CT′j = ReEnc(RK,CTj).

2. Output 〈C〉′ugc := (〈U〉gc,CT
′
1, . . . ,CT

′
s)

GrbInp(stugc, x): On input UGC state stugc = (stgc,SK, rreEnc) and an input x ∈ {0, 1}λ:

1. Using stgc, generate the garbled input 〈x〉gc ← GC.GrbInp(stgc, x).

2. Return 〈x〉ugc = (〈x〉gc,SK).

GC.EvalGC(〈C〉ugc, 〈x〉gc): On input input 〈C〉ugc = (〈U〉gc,CT1, . . . ,CTs) and 〈x〉ugc := (〈x〉gc,SK),
do as follows.

1. Using SK, let 〈C〉gc = (Dec(SK,CT1), . . . ,Dec(SK,CTs)).

2. Return EvalGC(〈U〉gc, 〈C〉gc ◦ 〈x〉gc) where ◦ denotes string concatenation.

8This is possible by because GC is projective, and therefore these input labels can be generated without knowledge
of the input x.

45

Correctness. Consider a circuit C ∈ Cλ, input x ∈ {0, 1}λ. Consider a vector of updates
U ∈ (Uλ)

q
, where q(λ) is a polynomial in λ. Consider the following two processes:

Secure updating process:

1. (〈C〉ugc, st0ugc)← GrbCkt
(
1λ, C

)
.

2. For every i ∈ [q]; (〈ui〉ugc, sti)← GenUpd
(
sti−1

ugc ,ui
)
, where ui is the ith entry in U. Each

garbled update includes a re-encryption key RKi,i+1 punctured at the index updates by
ui.

3. Let 〈C0〉ugc := 〈C〉ugc. For every i ∈ [q], let 〈Ci〉ugc ← ApplyUpd
(
〈Ci−1〉ugc, 〈ui〉ugc

)
.

4. 〈x〉ugc ← GrbInp(x, stqugc), where 〈x〉ugc = (〈x〉gc,SKq).
Insecure updating process:

1. Let C0 := C. For every i ∈ [q], we have Ci ← Upd(Ci−1,ui). The output is Cq(x).

We need to show that

Claim 3. EvalGC
(
〈Cq〉ugc, 〈x〉ugc

)
= Cq(x)

Proof. We define notation used in the secure updating process. The state for each i ∈ [q], stiugc =

(sti,SKi, r
i
reEnc). For each i, the ith garbled update consists of 〈ui〉ugc = (pi,CT

i
pi ,RK

ripi
i,i+1),

where pi ∈ [s] is the bit of C updated in ui, and ripi is the randomness rpi from rireEnc on which

RKi,i+1 is punctured, and CTip1 is an encryption of the new garbled wire label for the input pi
encrypted under the key SKi.

By the correctness of the circuit garbling scheme GC, it suffices to show that 〈Cq〉gc =

(Dec(SKq,CT
q
1), . . . ,Dec(SKq,CT

q
s)) computed during EvalGC are indeed the correct garbled

wire labels. CTq1 (respectively, for each ciphertext) is computed by a series of re-encryptions
using the various punctured re-encryption keys starting from an encryption under some earlier
key. This encryption may have been computed using SK0, or using SKj if uj altered the
first bit of binary(C). In any case, the original ciphertext encrypted the correct garbled label
L1 := 〈binary(C)1〉gc. Therefore we must show that the various re-encryptions, and the final
decryption with key SKq, do not introduce any errors.

Let r∗1 be the randomness used to encrypt the ciphertext under the earlier key. By the
correctness of the proxy re-encryption scheme ReEnc and because q is polynomially bounded,
Dec(SKq,CT

q
1) correctly outputs L1 as long as none of the re-encryption keys were punctured

at r∗1 .
With probability at least 1 − (s + q)/(2λ) = 1 − negl(λ), all choices of randomness r every

sampled for ReEnc.Enc are unique, where s+q is the total number of fresh encryptions computed.
We condition on this event occurring. Therefore, with high probability, none of the re-encryption
keys are punctured at r∗1 , completing the proof.

Efficiency. We lay out different efficiency properties associated with the above scheme.

• Garbling Time: The time to compute UGC.GrbCkt(1λ, C) is equal to TGrbCkt(1
λ, C) + |C| ·

poly(λ), where TGrbCkt(1
λ, C) is the time needed to garble the universal circuit for C, along

with the input wire labels for C. The second term captures the time to encrypt each of
the |C|-many garbled labels of C, each encryption taking poly(λ) time to compute. Note
that these encryption may be parallelized.

Using an underlying garbling scheme with GrbCkt in NC1 (for example, Yao’s garbling
scheme [Yao86]), and observing that |U | < |C|2, the parallel-time (depth) for computing
UGC.GrbCkt(1λ, C) is poly(λ, log |C|).

46

The time to compute UGC.GrbInp(stugc, x) is TGrbInp(stgc, x)+poly(λ), where TGrbInp(stgc, x)
is the time needed to garble the input x. Using Yao’s garbling scheme, the time to compute
the garbled input is poly(λ, |x|), independent of |C| and the number of updates.

• Secure Update Generation Time: The time to generate an update is poly(λ), independent
of the size of the circuit C.

• Secure Update Size: The size of a garbled update is |〈u〉ugc| = |u|+ poly(λ), independent
of |C| and the history of updates.

• State Size: The size of garbler’s state is |C| · poly(λ). Though it grows with |C|, it is
independent of the history of updates. Using the transformation described in Appendix C,
it is possible to remove the dependence on |C| for the state size.

• Runtime of Update: The runtime of ApplyUpd is poly(|C|, λ). It depends on |C|, but is
independent of the number of updates performed.

IND-Security. The security of UGC follows directly from the security of the proxy re-
encryption scheme ReEnc.

In the security game, the adversary sends circuits C0 and C1, inputs x0 and x1, and sequences
of updates {(u0

j ,u
1
j)}

q
j=1 such that the indices being updated match (i.e., φu(u0

j) = φu(u1
j) for

all j). In response, the adversary receives a sequence of ciphertexts, punctured re-encryption
keys, the secret key SKq, and a garbled input.

For each β ∈ {0, 1}, and i ∈ [s+λ] (i.e. s+λ = |binary(C)|+ |x|), let Li,β be the garbled wire
label for the ith input bit β of the universal circuit U . That is, Li,β = GC.GrbInputWire(st, i)β .
Then for each i ∈ [s], the adversary receives a series of encryptions of Li,0 and Li,1, one ciphertext
from the initial garbling GrbCkt, and subsequent ciphertexts generated by GenUpd whenever an
update u altered the ith bit of binary(C).

By construction, whenever an update for the ith bit of binary(C), it consists of a new en-
cryption of one of Li,0 or Li,1, along with a re-encryption key that is punctured at the previous
ciphertext corresponding to the input bit i. For every i, there is a single “most up-to-date”
ciphertext CT∗i of Li,binary(Cb

q)i of the label of the ith bit of the final circuit Cbq .
It suffices to show that the adversary’s view in the real security game is indistinguishable

from the view in a modified security game in which all other ciphertexts CT′i (those that are
not the most up-to-date) are in fact generated as CT′i ← Enc(SK, 0) as encryptions of 0.

That this is sufficient follows directly from the PrivINDφ security of the garbling scheme
GC. The adversary’s view in the modified game can be generated given 〈U〉gc ← GrbCkt1λ, U

and 〈Cbq , xb〉gc ← GrbInp(1λ, (Cbq , x
b)), where Cbq is Cb with all updates ubj applied. Because

C0(x0) = C1(x1), the PrivINDφ security of GC implies that the bit b is computationally hidden.
Indistinguishability of these two games follows from the security of ReEnc. Observe that

for any CT′i that is not the most up-to-date, there exists a later update that modifies the bit
i. By construction, when that update is issued, the corresponding re-encryption key will be
punctured at the ciphertext CT′i. Indistinguishability maps directly to the security of ReEnc.
One sequence of messages are the real sequence of labels used to generate the encryptions of
CT∗i and CT′i for each i, while the second is the sequence of labels where all but the most up-to-
date are replaced with 0. Similarly, the sequence of punctured key requests (p1, . . . , pq) and the
key-indices (k1, . . . , k`) (where ` = s+ q) as defined in Definition 22 correspond to the sequence
re-encryption keys and fresh encryptions generated by GenUpd.

47

6 Updatable Cryptography

We define the notion of updatability in the context of several cryptographic primitives. This
is done by first considering primitives based on IND-security notion and then we also consider
simulation based primitives.

In Section 6.1 view the primitives based on IND-security via the lens of circuit compilers
and to consider the context of updatability, we define the notion of dynamic circuit compilers.
We then remark how dynamic circuit compilers can be used to instantiate several IND-security
based cryptographic primitives.

We then move on to simulation based security notions. We first define the notion of updatable
non interactive zero knowledge in Section 6.2. We then define the notion of updatable multiparty
computation in Section 6.3.

6.1 Dynamic Circuit Compilers

We introduce the notion of circuit compilers below. It consists of the algorithms CC = (Gen,
Compile,Encode,Decode). Its associated with a class of circuits C.
• Generation of Parameters, Gen(1λ): On input security parameter λ, outputs parame-

ters (cktSK, inpSK) and public parameters pp.

• Circuit compilation, Compile(cktSK, C): On input secret parameters cktSK and circuit
C, it outputs an encoding of circuit 〈C〉 and state st.

• Input encoding, Encode(inpSK, x): On input parameters inpSK and input x, it outputs
an encoding of input 〈x〉.

• Evaluation, Eval(〈C〉 , 〈x〉): On input encodings 〈C〉 and 〈x〉, it outputs the decoded value
α.

There are two properties associated with a circuit compiler - correctness and security. We
consider sequential updating process. However these properties can also be studied for other
updating processes.

Correctness. Consider a circuit C and an input x. We require that the evaluation of en-
coding 〈C〉 on 〈x〉 yields C(x).

ρ-Security. The security property is associated with ρ-admissibility property. We consider
indistinguishability security notion but the same can also be defined with respect to a simulation
style definition.

We describe the game between the challenger and adversary below.

1. The adversary sends circuit pair (C0, C1), circuits (C1, . . . , C`f) and input pairs (x0
1, x

1
1), . . . , (

x0
`inp
, x1
`inp

). Denote this information as aux.

2. Challenger first executes ρ(aux). If the output is 0, it aborts. Else, it computes the param-
eters pp and (cktSK, inpSK). It then picks a bit b at random. It computes (

〈
Cb
〉
, st0) ←

Compile(cktSK, Cb). It computes (〈Ci〉 , sti,0) ← Compile(cktSK, Ci) for i ∈ [`f]. It com-
putes

〈
xbk
〉
← Encode(inpSK, xbk) for k ∈ [`inp]. It sends the following the adversary:(〈

Cb
〉
, {〈Ci〉}i∈[`f], {

〈
xbk
〉
}k∈[`inp]

)
3. Adversary outputs a bit b′.

48

We say that the circuit compiler scheme is secure if the following holds.

Definition 25 (Security). A circuit compiler scheme CC is secure if the probability that the
adversary outputs b′ = b in the above experiment with probability negligibly close to 1/2.

Instantiations. Several advanced cryptographic primitives can be seen in the form of circuit
compilers. We give a couple of examples.

• Attribute Based Encryption (ABE): In the case of ABE; Gen = Setup (setup), Compile =
KeyGen (key generation), Encode = Enc (encryption), Eval = Dec (decryption). Further-
more every circuit C ∈ C associated with this scheme is of the form: C(x = (attr,m)) := m
if and only if C ′(attr) = 1 for some circuit C ′ hardwired in C. Depending on whether the
ABE scheme we are considering is public key scheme or not, we can assign inpSK to be
either public parameters or secret key parameters.
In terms of security, ρ interprets xbi as (attrbi ,m

b
i) and checks if attr0

i = attr1
i . It also

checks if C0 = C1. If either of the checks fail, ρ outputs 0.

• Non Interactive Witness Indistinguishable Proof Systems (WI): Consider a non interactive
witness indistinguishable system WI = (P, V) associated with a NP relation R. We de-
note by P the circuit representing the prover. Suppose x is the NP instance and w is the
witness associated with x. Here, Gen = null(meaning that the algorithm Gen is not de-
fined), Compile = P (x,w; r) (prover circuit with instance, witness, randomness hardwired),
Encode = null, Eval = V (verifier circuit).

• Indistinguishability Obfuscation (iO): Here, Gen = null (meaning that the algorithm Gen
is not defined), Compile = Obf (obfuscate), Eval = iOEval (evaluation of obfuscation). In
terms of security, ρ checks if C0 ≡ C1 and Ci = ⊥ for i ∈ [`f], xk = ⊥ for k ∈ [`inp]. If the
check fails it outputs 0, else it outputs 1.

Dynamic Circuit Compilers. The notion of dynamic circuit compilers additionally have
the algorithms GenUpd (generation of secure update) and ApplyUpd (apply secure update) as-
sociated with it. It consists of the algorithms DCC = (Gen,Compile,Encode,GenUpd,ApplyUpd,
Decode). Its associated with a class of circuits C.
• Generation of Updates, GenUpd(cktSK, st,u): On input secret parameters cktSK, state

st, update u, it outputs an encoding of update 〈u〉 and an updated state st′.

• Apply Update, ApplyUpd(pp, 〈C〉 , 〈u〉): On input public parameters pp, circuit encoding
〈C〉, secure update 〈u〉, it outputs an updated circuit encoding 〈C ′〉.

Correctness. Consider a circuit C = C0, input x and a sequence of updates u1, . . . ,uq. Let
Ci be the circuit by updating Ci−1 using update ui. We require that the evaluation of encoding
〈Ci〉 on 〈x〉 yields Ci(x), where 〈Ci〉 is obtained by updating 〈Ci−1〉 using 〈ui〉 (encoding of ui)
and is associated with a new secret key CC.cktSKi. The encoding 〈x〉 is computed using the
new secret key CC.cktSKi.

Remark 1. We emphasize that once the circuit is updated, the secret key associated with the
compiled circuit could potentially change. Hence, we require that correctness to be satisfied only
for input encodings created using the new secret key.

ρ-Security. The security property is associated with ρ-admissibility property. We consider
indistinguishability security notion but the same can also be defined with respect to a simulation
style definition.

We describe the game between the challenger and adversary below.

49

1. The adversary sends circuit pair (C0, C1), circuits (C1, . . . , C`f), input pairs (x0
1, x

1
1), . . . , (x0

`inp
,

x1
`inp

) and update pairs (u0
1,u

1
1) . . . , (u0

q,u
1
q). Denote this information as aux.

2. Challenger first executes ρ(aux). If the output is 0, it aborts. Else, it computes the param-
eters pp and (cktSK, inpSK). It then picks a bit b at random. It computes (

〈
Cb
〉
, st0) ←

Compile(cktSK, Cb). It computes (〈Ci〉 , sti,0) ← Compile(cktSK, Ci) for i ∈ [`f]. It com-
putes 〈uj,b〉 ← GenUpd(cktSK, stj−1,uj) for j ∈ [q]. It computes

〈
xbk
〉
← Encode(inpSK, xbk)

for k ∈ [`inp]. It sends the following the adversary:(〈
Cb
〉
, {〈Ci〉}i∈[`f], {〈uj,b〉}j∈[q], {

〈
xbk
〉
}k∈[`inp]

)
3. Adversary outputs a bit b′.

We say that the dynamic circuit compiler scheme is secure if the following holds.

Definition 26 (Security). A dynamic circuit compiler scheme DCC is secure if the probability
that the adversary outputs b′ = b in the above experiment with probability negligibly close to 1/2.

Instantiations. We can consider the updatability versions of several cryptographic prim-
itives via the lens of dynamic circuit compilers. For example, we can consider the notion of
updatable ABE: In updatable ABE, an attribute key associated with a function, say skC , issued
can sequentially updated.

Remark 2. Since we consider dynamic circuit compilers, where only one circuit can be updated
in the security game, this correspondingly leads to defining updatable ABE scheme where only one
attribute key is updated in the security game. However, for other primitives such as updatable
indistinguishability obfuscation and updatable non interactive witness indistinguishable systems,
it suffices to just consider dynamic circuit compilers where only one circuit is updated.

We can also consider the more general setting where multiple circuits are updated simul-
taneously using the same sequence of updates. Such a setting was studied in the context of
indistinguishability obfuscation [AJS15b]. We do not deal with this setting in this work.

Construction of Dynamic Circuit Compilers. We sketch a construction of dynamic
circuit compilers using output-compact updatable randomized encodings. We start with circuit
compilers, not necessarily supporting updatability property, and show how to transform it into
a dynamic circuit compilers scheme. Let the circuit compilers scheme be denoted by CC =
(CC.Gen,CC.Compile,CC.Encode,CC.Eval). We construct DCC = (Gen,Compile,Encode,GenUpd,
ApplyUpd,Eval) as follows.

• Gen(1λ) executes CC.Gen(1λ) and also the setup of updatable randomized encoding scheme.
The parameters output by Gen is the joint parameters output by both CC.Gen and the
setup of URE.

• CC.Compile, on input secret parameters and circuit C, executes an (updatable) random-
ized encoding of Compile(·, ·; ·) and input (CC.cktSK, C, r), where CC.cktSK is the secret
parameters output by CC and r is the randomness used in the circuit compilation process.

• GenUpd on input secret parameters and update u, it generates a secure update
〈
(u,CC.cktSK′, r′)

〉
,

where CC.cktSK′ is the new secret key and r′ is a new randomness to be used in the circuit
compilation algorithm, computed with respect to updatable randomized encodings scheme.

• ApplyUpd updates the randomized encoding, part of the compiled circuit, using the secure
update. It outputs the updated randomized encoding.

50

• Encode is identical to CC.Encode.

• Eval first decodes the randomized encoding to get a compiled circuit, computed with
respect to CC. It then executes the evaluation algorithm CC.Eval.

We omit the proof of correctness argument since it follows directly from the proof of correctness
of the underlying circuit compilers and updatable randomized encodings scheme. We sketch the
proof of security below.

In terms of efficiency, the output-compactness property of the underlying URE scheme guar-
antees that the size of the updates are small. Note that if not for the output-compactness
property, the size of the updates could be proportional to the output length of the circuit which
is proportional to the size of the circuit being compiled.

Security: The main steps in the security argument are as follows: Let (C0, C1) be the circuit
pair, (x0

1, x
1
1), . . . , (x0

`inp
, x1
`inp

) be the input pairs and update pairs (u0
1,u

1
1) . . . , (u0

q,u
1
q).

1. In the first step, instead of computing the randomized encoding of circuit compile algorithm
Compile on just C0, it does the following: consider the circuit G which is computed as
follows:

G(temp = 0,CC.cktSK, C0, r, C1, r′) outputs Compile(CC.cktSK, C0; r).

Furthermore, the secure updates are computed as an encoding of (i,u0
i , r

0
i ,u

1
i , r

1
i ,CC.cktSKi),

where (u0
i , r

0
i) (resp., (u1

i , r
1
i)) will be used to update C0

i−1 to C0
i (resp., C1

i−1 to C1
i). The

value i, as part of update encoding, is used to update the value temp from 0 to i. Finally,
CC.cktSKi is the new secret key.

2. In a sequence of steps, the code of G is switched from computing a compiled circuit of C0

to computing a compiled circuit of C1. This is done in a sequence of steps: in the jth step,
for j ∈ [q + 1], G is of the following form:

G(temp = 0,CC.cktSK, C0, r, C1, r′) :=

{
Compile(CC.cktSK, C0; r) if temp ≥ j,
Compile(CC.cktSK, C1; r) otherwise

The jth step is switched to (j + 1)th step is done in the following steps: a third branch
is introduced in G, for the case when temp = j, a hardwired value V is output. For
all values of temp, G remains unchanged as in jth step. The value V is set to be
Compile(CC.cktSKj , C

0
j ; r0

j), where C0
j is the jth updated circuit. Furthermore, in the jth

update, the secret key CC.cktSKj and randomness (r0
j , r

1
j) is removed from the description

of updates. Now, we invoke the security of underlying dynamic circuit compiler scheme
(since CC.cktSKj is “removed” from the system) to switch from Compile(CC.cktSKj , C

0
j ; r0

j)

to Compile(CC.cktSKj , C
1
j ; r1

j). Once this is done, we can switch the description of G from
having the instruction “temp ≥ j” to “temp ≥ j + 1”. We invoke the security of URE to
make this change.

3. In the (q + 1)th step, G outputs a compiled circuit of C1 for every value of temp. Thus,
C0 and updates {u0

i } can now be removed from the system.

6.2 Updatable Non-Interactive Zero Knowledge

We start by giving the syntax and formal definition.

51

Syntax. Let R be an efficiently computable relation that consists of pairs (x,w), where x is
called the statement and w is the witness. Let L denote the language consisting of statements
in R. We say that the relation R is (Upd,U)-updatable if for any (x,w) ∈ R and any update
string u ∈ U , Upd(x,w,u) = (x′, w′) s.t. (x′, w′) ∈ R.

An updatable non-interactive zero-knowledge (UNIZK) proof system for a language L with a
(Upd,U)-updatable relation R consists of a setup algorithm CRSGen, a prover algorithm Prove
and a verifier algorithm Verify similar to a standard NIZK proof system. However, it also comes
equipped with two additional algorithms, namely, GenUpd and ApplyUpd. We formally describe
the algorithms below:

• Setup, crs← CRSGen(1λ): On input a security parameter λ, it outputs a common refer-
ence string crs.

• Prove, (π, st)← Prove(crs, x, w): On input a common reference string crs and a statement
x along with a witness w, it first checks whether (x,w) ∈ R; if so, it produces a proof
string π along with a state st, else it outputs fail.

• Generate Update, 〈u〉 ← GenUpd(u, st): On input an update u ∈ U and state st, it
outputs an update encoding 〈u〉 and a new state st′.

• Apply Update, π′ ← ApplyUpd(crs, π, 〈u〉): On input a common reference string crs, a
proof string π and an update encoding 〈u〉, it outputs an updated proof string π′.

• Verify, b ← Verify(crs, x, π): On input a common reference string crs, a statement x and
a proof string π, it outputs b = 1 if the proof is valid, and b = 0 otherwise.

Definition 27 (Updatable NIZKs). An updatable non-interactive zero-knowledge (UNIZK) proof
system for a language L with a PPT relation R and update family U with updating algorithm Upd
is a tuple of PPT algorithms (CRSGen,Prove,GenUpd,ApplyUpd,Verify) such that the following
properties hold:

• Efficiency: For any update u ∈ U , the running time of GenUpd(u, st) is p(λ, |u|), where p
is an a priori fixed polynomial. This implies that the size of the resultant update encoding
〈u〉 ← GenUpd(u, st) is also a fixed polynomial in λ and |u|.

• Completeness: For every (x0, w0) ∈ R and every sequence of updates u1 . . . ,uq ∈ U , it
holds that for every 0 ≤ i ≤ q:

Pr[Verify(crs, xi, πi) = 1] = 1

where crs ← CRSGen(1λ), (π0, st0) ← Prove(crs, x0, w0), (〈ui〉, sti) ← GenUpd(ui, sti−1),
πi ← ApplyUpd(πi−1, 〈ui〉) and the probability is taken over the coins of CRSGen, Prove,
GenUpd, ApplyUpd and Verify.

• Soundness against Sequential Updates: For every adversary A, there exists a negli-
gible function negl(λ) s.t.

Pr[1← Exptpu-soundA (1λ)] ≤ negl(λ)

where, Exptpu-soundA (1λ) is defined as follows:

1. Ch computes crs← CRSGen(1λ) and sends crs to A.

2. A outputs (x0, π0, {xi, 〈u〉i}qi=1) to Ch.

3. The output of the experiment is 1 if: either Verify (crs, x0, π0) = 1 ∧ x0 /∈ L, or there
exists 1 ≤ i ≤ q s.t. Verify (crs, xi, πi) = 1 ∧ xi /∈ L where πi ← ApplyUpd (πi−1, 〈ui〉).
Otherwise, the output is 0.

If the soundness property only holds against PPT adversaries, then we call it an argument
system.

52

• Zero Knowledge against Sequential Updates: There exists a PPT simulator S =
(S1,S2,S3) s.t. for every (x0, w0) ∈ R, every auxiliary input z ∈ {0, 1}∗ and every sequence
of updates u1, . . . ,uq ∈ U , it holds that

IDEAL
(

1λ, x0, w0, z, {ui}qi=1

)
≈c REAL

(
1λ, x0, w0, z, {ui}qi=1

)
where,

IDEAL
(
1λ, x0, w0, z, {ui}qi=1

)
:

1. (crs, st1)← S1(1λ)
2. (π0, st2)← S2(x0, st1)
3. ∀i ∈ [q], (xi, wi)← Upd(x0, w0,ui)
4. ∀i ∈ [q], 〈ui〉 ← S3(st2, 1

|ui|, xi).

Output (x0, z, π0, {〈u〉i}pi=1)

REAL
(
1λ, x0, w0, z, {ui}qi=1

)
:

1. crs← CRSGen(1λ)
2. (π0, st0)← Prove(crs, x0, w0)
3. ∀i ∈ [q], 〈ui〉 ← GenUpd (ui, sti−1)

Output (x0, z, π0, {〈ui〉}qi=1)

6.2.1 Construction of UNIZK

In this section, we construct a UNIZK proof system for NP. Let L be any language in NP with
a (Upd,U)-updatable PPT relation R. We construct a UNIZK proof system (CRSGen,Prove,
GenUpd,ApplyUpd,Verify) for L.

Notation. Let R[x,w] denote a hardwired circuit corresponding to R with inputs (x,w). Let
R[X,W] denote the corresponding hardwired circuit family. We will use the following ingredients
in our construction:

1. A stateless9 URE scheme (URE.Encode,URE.GenUpd,URE.ApplyUpd,URE.Decode) for an
(Updure,Uure)-updatable class of hardwired circuits R[X,W] where Uure = U and Updure is
s.t. for any u ∈ Uure, Updure(R[x,w],u) = R[x′, w′] where (x′, w′)← Upd(x,w,u).

2. A non-interactive perfectly binding commitment scheme Com. Such a scheme can be based
on the existence of injective one-way functions.10

3. A NIZK proof of knowledge (NIZKPOK) system (NIZK.CRSGen,NIZK.Prove,NIZK.Verify)
for NP.

Construction. We now describe the construction of UNIZK.

CRSGen(1λ): Sample a common reference string crsnizk ← NIZK.CRSGen(1λ) for the NIZKPOK
system. Output crs = crsnizk.

Prove(x,w): Perform the following sequence of steps:

• Sample a random string rure and compute 〈R[x,w]〉ure ← URE.Encode
(
1λ, R, (x,w) ; rure

)
using randomness rure.

• Sample a random string rcom and compute a commitment C ← Com(rure; rcom) to rure using
randomness rcom.

9Our construction also works if we start with a stateful URE scheme. For simplicity of exposition, however, we
present our construction using a stateless URE scheme. As a result, we actually construct a stateless UNIZK scheme.

10We can, in fact, use a two round statistically binding commitment scheme that can be based on standard one-way
functions. For simplicity of exposition, however, we present our construction using non-interactive commitments.

53

• Compute a proof πnizk ← NIZK.Prove(xnizk, wnizk) for the statement xnizk = (x, 〈R[x,w]〉ure, C)
using witness wnizk = (w, rure, rcom) where (w′, r′ure, r

′
com) is a valid witness for xnizk iff all

of the following hold:

– 〈R[x,w]〉ure ← URE.Encode
(
1λ, R, (x,w′) ; r′ure

)
– C ← Com(r′ure; r

′
com)

Finally, set st = (rure, C, rcom) and output π = (〈R[x,w]〉ure, C, πnizk).

GenUpd(u, st): Perform the following sequence of steps:

• Parse st = (rure, C, rcom).

• Sample a random string rupd and compute 〈u〉ure ← URE.GenUpd(u, rure; rupd) using ran-
domness rupd.

• Compute a proof πnizk ← NIZK.Prove(xnizk, wnizk) for the statement xnizk = (〈u〉ure, C) using
witness wnizk = (u, rupd, rure, rcom) where (u′, r′upd, r

′
ure, r

′
com) is a valid witness for xnizk iff

all of the following hold:

– 〈u〉ure ← URE.GenUpd
(
u′, r′ure; r

′
upd

)
– C ← Com(r′ure; r

′
com)

Output 〈u〉 = (〈u〉ure, C, πnizk).11

ApplyUpd(crs, π, 〈u〉): Perform the following steps:

• Parse 〈u〉 = (〈u〉ure, C, π
upd
nizk) and crs = crsnizk. Let xupdnizk = (〈u〉ure, C). If NIZK.Verify(crsnizk,

xupdnizk, π
upd
nizk) = 0, then output ⊥.

• If π is a level-0 proof, then parse π = (〈R[x,w]〉ure, C, πnizk). Else, parse π = 〈R[x,w]〉ure.
• Compute 〈R[x′, w′]〉ure ← URE.ApplyUpd(〈R[x,w]〉ure, 〈u〉ure).
• Output 〈R[x′, w′]〉ure.

Verify(crs, x, π): Perform the following steps:

• Parse crs = crsnizk.

• If π is a level-0 proof, then parse π = (〈R[x,w]〉ure, C, πnizk). Let xnizk = (x, 〈R[x,w]〉ure, C).
Output NIZK.Verify(crsnizk, xnizk, πnizk) ∧ URE.Decode(〈R[x,w]〉ure).

• Else, parse π = 〈R[x,w]〉ure. Output URE.Decode(〈R[x,w]〉ure).

Proof Sketch. We first argue the efficiency property. Recall that the computation of an
update encoding for UNIZK involves two main steps: first, we compute an update encoding
for the underlying URE scheme. Next, we compute a fresh proof string for the underlying
NIZKPOK system to prove that the URE update encoding was computed honestly. From the
efficiency property of the URE, it follows that the first step only requires time polynomial in
the update size and the security parameter. Further, it follows from the standard efficiency of
NIZKPOKs that the second step also only requires time polynomial in the size of the update
and the security parameter. Putting the above together, we have that GenUpd satisfies the
efficiency requirement.

Correctness of the above construction is easy to verify. In order to argue soundness, we
leverage the proof of knowledge property of the underlying NIZKPOK. Let us assume that the
construction is not sound, i.e., there exists an efficient adversary for the soundness security
game that outputs (x0, π0, {xi, 〈ui〉}qi=1) for some q s.t. all the (updated) proof strings are

11Note that it is not really necessary for the update encoding to include C since the verifier, who runs the ApplyUpd
and Verify algorithms, can remember C. We have added C to the update encoding for clarity.

54

accepted by the honest verification algorithm, yet at least one of the (updated) statements is
false. We obtain a contradiction as follows: for every i, let 〈ui〉 = (〈ui〉ure, πinizk) and let xinizk be
the statement corresponding to πinizk. Then, starting with i = q and proceeding backwards, we
apply the NIZKPOK extractor on each πinizk to extract a valid witness winizk for xinizk. From the
description of the scheme, it follows that winizk consists of an update ui as well as randomness
that can be used to verify that ui was indeed used to compute the update encoding honestly.
For i = 0, the extractor also returns the witness w0 for the original statement x0. Putting all
of this together, we can recover a witness wi for every updated statement xi, which leads to a
contradiction.

Finally, we argue the zero-knowledge property. We establish this via a simple hybrid argu-
ment: the first hybrid H0 corresponds to the real world experiment. In the next hybrid H1, we
first simulate crsnizk and all the proof strings πinizk that are part of the original proof π0 and the
update encodings ui. Next, in hybrid H2, we switch the commitment C to be commitment of all
zeros. Finally, in H3, we use the simulator of URE to simulate the URE encoding 〈R[x,w]〉ure in
π0 as well as the URE update encodings 〈u〉iure in every update 〈ui〉. Note that this experiment
corresponds to the ideal world.

The indistinguishability of H0 and H1 follows from the zero-knowledge property of the un-
derlying NIZKPOK. The indistinguishability of H1 and H2 follows from the hiding property of
the commitment scheme Com. Finally, the indistinguishability of H2 and H3 follows from the
security of the URE scheme. This finishes the proof sketch of our construction.

6.3 Updatable Multiparty Computation

We consider the setting of n parties P = {P1, ..., Pn} who wish to jointly compute any PPT
function over their private inputs. We are interested in the scenario where after performing a
computation of any function f over an input vector ~x = x1, . . . , xn, the parties wish to perform
another computation over an updated function f ′ and input vector ~x′. Note that if the parties
were to simply use a standard MPC protocol to perform a fresh computation over the updated
function and input vector, then the communication complexity of this computation will depend
on |f ′| and |~x′|. We instead consider the scenario where after performing the initial computation
of f over ~x, the parties can run a less-expensive update phase whose communication complexity
only depends on the description size of the update and not on the size of the updated function
and input vector. We refer to a protocol that achieves this efficiency property as updatable MPC
(UMPC).

We consider the setting of multiple updates where the parties can perform multiple updated
computations in a sequential manner. We now proceed to formally define UMPC with sequential
updating using the real/ideal paradigm.

Notation. We study the notion of UMPC with respect to a class of updatable hardwired
circuits. Below, we first extend the notation for updatable hardwired circuits (as described in
Section 3) to meet our requirements for UMPC. We consider two changes: (a) First, we consider
computation over n different inputs, as opposed to a single input. (b) Second, we consider
updates u of the form u = u1, . . . , un where each ui is contributed by party Pi. For simplicity of
exposition, we restrict our discussion to the case where all the parties receive the same output.

Let C : {0, 1}λ × . . . × {0, 1}λ → {0, 1}`(λ) be any n-input circuit that the parties are
interested in computing. Then, for any input vector ~x = x1, . . . , xn, where xi ∈ {0, 1}λ, the
corresponding hardwired circuit is denoted as C[~x]. The corresponding hardwired circuit family
is denoted as {C[X]λ}λ∈N where X = {0, 1}n×λ.

We now establish our notation for updates. For any set system of strings U = {Uλ}λ∈N,
we say that C[X] is (Upd,U)-updatable if C ′[~x′] ← Upd (C[~x],u), where C[~x] ∈ C[X]λ,u =
(u1, . . . , un), ui ∈ Uλ, is such that C ′[~x′] is also a hardwired circuit.

55

Finally, we specify our adversarial model for MPC. We consider polynomial-time adversaries
who can statically corrupt up to n− 1 parties. We consider security with abort.

Ideal World. We start by describing the ideal world for UMPC. Let C ∈ C be the initial
circuit that the parties wish to compute.

Inputs: Each party Pi obtains an initial input xi. The adversary S is given auxiliary input z.
S selects a subset of the parties M ⊂ P to corrupt, and is given the inputs x` of each
party P` ∈M .

Sending inputs to trusted party: Each honest party Pi sends its input xi to the trusted
party. For each corrupted party Pi ∈M , the adversary may select any value x∗i and send
it to the ideal functionality.

Trusted party computes output: Let x∗1, ..., x
∗
n be the inputs that were sent to the trusted

party. Let C[~x∗]0 be the hardwired circuit corresponding to the circuit C and input vector
~x∗ = x∗1, . . . , x

∗
n. The trusted party sends the evaluation of C[~x∗]0 to the adversary who

replies with either continue or abort. If the adversary’s message is abort, then the
trusted party sends ⊥ to all honest parties. Otherwise, it sends the evaluation of C[~x∗]0
to all honest parties.

`th Update Phase: For every ` ∈ [q], where q is chosen by the adversary, the following is
repeated sequentially:

• Each party Pi sends an update string ui,` ∈ Uλ to the trusted party.

• The trusted party computes C[~x∗]` ← Upd(C[~x∗]`−1,u`) where u` = (u1,`, . . . , un,`).
It sends the evaluation of C[~x∗]` to the adversary who replies with either continue

or abort. If the adversary’s message is abort, then the trusted party sends ⊥ to all
honest parties. Otherwise, it sends the evaluation of C[~x∗]` to all honest parties.

Outputs: Honest parties output all the messages they obtained from the ideal functionality.
Malicious parties may output an arbitrary PPT function of the adversary’s view.

The overall output of the ideal-world experiment consists of the outputs of all parties. For
any ideal-world adversary S with auxiliary input z ∈ {0, 1}∗, input vector ~x, any arbitrary
polynomial set of updates {u`}q`=1, and security parameter λ, we denote the output of the
corresponding ideal-world experiment by

IDEALS,M
(

1λ, ~x, z, {u`}q`=1

)
.

Real World. The real world execution begins by an adversary A selecting any arbitrary
subset of parties M ⊂ P to corrupt. The parties then engage in an execution of a real n-party
updatable MPC protocol Π = (Πinit,Πupd) for initial circuit C ∈ C that consists of two stages,
namely, (a) an initial computation phase, (b) an update phase, where the latter can be repeated
polynomially many times. Throughout the execution of Π, the adversary A sends all messages
on behalf of the corrupted parties, and may follow an arbitrary polynomial-time strategy. In
contrast, the honest parties follow the instructions of Π.

We now describe the two phases in the protocol.

Initial Computation Phase: Let xi be the initial input of party Pi. In this phase, all the
parties execute protocol Πinit, where each honest party Pi ∈ P \M acts in accordance with
its input xi. At the end of the protocol, each honest party computes an initial output as
well as state sti,0 in accordance with the protocol. If the protocol computation ends in an
abort, then each honest party sets its output and state to ⊥.

56

`th Update Phase: Whenever the parties wish to perform a computation over an updated
circuit and input vector, they run an execution of Πupd, where each honest party acts
in accordance with its input (sti,`−1, ui,`). At the end of the protocol, each honest party
computes an output and an updated state st`, both of which may be set to ⊥ if the protocol
ends in an abort.

At the conclusion of all the update phases, each honest party Pi outputs all the outputs it
obtained in the computations. Malicious parties may output an arbitrary PPT function of the
view of A.

For any adversary A with auxiliary input z ∈ {0, 1}∗, input vector ~x, any arbitrary poly-
nomial set of updates {u`}q`=1, and security parameter λ, we denote the output of the multi-
function MPC protocol Π = (Πinit,ΠUpd) by

REALΠ
A,M

(
1λ, ~x, z, {u`}q`=1

)
.

Efficiency. We require the following efficiency property: the total communication complexity
of any update phase ` is a fixed polynomial in the size of the update length |u`| and the security
parameter.

Security Definition. We say that a protocol Π is a UMPC protocol if any adversary, who
corrupts a subset of parties and runs the protocol with honest parties, gains no information
about the inputs of the honest parties beyond the protocol outputs that correspond to sequential
evaluations of C[~x], C[~x]1, . . . , C[~x]q where C[~x]` = Upd(C[~x],u`), u` = (u1,`, . . . , un,`).

Definition 28 (Updatable MPC). A protocol Π = (Πinit,Πupd) is a secure n-party UMPC
protocol for a (Upd,U)-updatable circuit family C if for every PPT adversary A in the real
world, there exists a PPT adversary S corrupting the same parties in the ideal world such that
for every initial input vector ~x, every auxiliary input z, and every sequence of updates {u`}q`=1

where u` = (u1,`, . . . , un,`) and ui,` ∈ U , it holds that

IDEALS,M
(

1λ, ~x, z, {u`}q`=1

)
≈c REALΠ

A,M

(
1λ, ~x, z, {u`}q`=1

)
.

6.3.1 Construction of UMPC

In this section, we construct a UMPC protocol for general circuits.

Notation. Let C be a n-input (Upd,U)-updatable circuit family and let C[X] denote the
corresponding updatable hardwired circuit family. In order to construct a UMPC protocol for
C, we will use the following ingredients in our construction:

1. A stateless12 URE scheme (URE.Encode,URE.GenUpd,URE.ApplyUpd,URE.Decode) for an
(Updure,Uure)-updatable class of hardwired circuits C[X] where Uure = Un and Updure
is the same as Upd: for any C[~x] ∈ C[X] and any u ∈ Uure where u = (u1, . . . , un),
Updure(C[~x],u) = Upd(C[~x,u).

2. A standard n-party MPC protocol Πmpc for general circuits that is secure against arbitrary,
static corruptions.

12Our construction also works if we start with a stateful URE scheme. For simplicity of exposition, however, we
present our construction using a stateless URE scheme.

57

Construction. We now describe our construction of a UMPC protocol Π = (Πinit,Πupd).

Protocol Πinit: Let C0 ∈ C be the level-0 circuit that the parties wish to compute and xi,0 denote
the level-0 input of party Pi. Protocol Πinit consists of the following two steps:

1. First, each party Pi privately samples a random string ri.

2. Next, the parties engage in an execution of Πmpc for computing the following function f0: it
takes as input (C0, xi,0, ri) from party Pi and computes 〈C0[~x0]〉ure ← URE.Encode(C0[~x0]; r)
using randomness r = r1 ⊕ · · · ⊕ rn, where ~x0 = (x1,0, . . . , xn,0). The output of f is
〈C0[~x0]〉ure.

3. At the end of Πmpc, each party computes y0 ← URE.Decode(〈C0[~x0]〉ure) and outputs y0.
Each party Pi stores sti,0 = (〈C[~x]〉ure, ri).

Protocol Πupd: Let ui,` denote the `th update string corresponding to party Pi. Let sti,` =

(〈C`−1[~x`−1]〉ure, ri) be the state of party Pi at the start of the `th update phase. Then, the `th
execution of protocol Πupd consists of the following two steps:

1. First, the parties engage in an execution of Πmpc for computing the following (random-
ized) function f`: it takes as input (ui,`, ri) from party Pi and computes 〈u`〉ure ←
URE.GenUpd(u`, r) where u` = (u1,`, . . . , un,`) and r = r1 ⊕ · · · ⊕ rn. The output of
f` is 〈u`〉ure.

2. At the end of Πmpc, each party computes 〈C`[~x`]〉ure ← URE.ApplyUpd(〈C`−1[~x`−1]〉ure, 〈u`〉ure).
3. Next, each party computes y` ← URE.Decode(〈C`[~x`]〉ure) and outputs y`. Finally, Pi

updates its state to sti = (〈C`[~x`]〉ure, ri).
This completes the description of Π.

Proof Sketch. It is easy to see that the above construction satisfies our desired efficiency
property. Specifically, since the `th update phase simply involves the execution of a standard
MPC protocol πmpc to compute an update encoding 〈u`〉ure, it follows from the efficiency property
of URE that the the size of the function f` computed by the MPC protocol is a fixed polynomial
in the size of |u`| and the security parameter. It follows then from the efficiency of a standard
MPC that the total communication complexity of the `th update phase is a fixed polynomial in
the size of |u`| and the security parameter.

Next, we argue security of our construction. We establish this by a simply hybrid argument.
We start with hybrid H0 that corresponds to the real world experiment. Next, we consider
hybrid H1 where we simulate all the executions in πmpc. Note that here we still use the inputs
and the updates of the honest parties. Finally, we consider hybrid H2 where we simulate the
output of each execution of πmpc, i.e., we simulate the URE encoding 〈C0[~x0]〉ure and the update
encodings 〈u`〉ure using the URE simulator who is provided the outputs using the trusted party
in the ideal world. This experiment corresponds to the simulator’s algorithm.

The indistinguishability of H0 and H1 follows easily from the security of the MPC protocol
πmpc. The indistinguishability of H1 and H2 follows from the security of URE. This completes
our proof sketch.

References

[ABC+07] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. Provable data possession at untrusted stores. In
Proceedings of the 14th ACM conference on Computer and communications security,
pages 598–609. Acm, 2007.

58

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. In
Proceedings of the Network and Distributed System Security Symposium, NDSS
2005, San Diego, California, USA, 2005.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In Advances in Cryp-
tology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part II, pages 500–518, 2013.

[AIK07] Benny APPLEBAUM, Yuval ISHAI, and Eyal KUSHILEVITZ. Cryptogaphy in
nc0. SIAM journal on computing, 36(4):845–888, 2007.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Advances in Cryptology–CRYPTO 2015, pages 308–
326. Springer, 2015.

[AJS15a] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfusca-
tion from functional encryption for simple functions. Technical report, Cryptology
ePrint Archive, Report 2015/730, 2015.

[AJS15b] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Patchable indistinguishability
obfuscation: io for evolving software. IACR Cryptology ePrint Archive, 2015:1084,
2015.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In Advances in Cryptology - EUROCRYPT ’98, International
Conference on the Theory and Application of Cryptographic Techniques, Espoo,
Finland, May 31 - June 4, 1998, Proceeding, pages 127–144, 1998.

[BF11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial
functions. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 149–168. Springer, 2011.

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography:
The case of hashing and signing. In Advances in Cryptology—CRYPTO’94, pages
216–233. Springer, 1994.

[BGG95] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography
and application to virus protection. In Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing, pages 45–56. ACM, 1995.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 19-23,
2001, Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In Public-Key Cryptography–PKC 2014, pages 501–519. Springer,
2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled cir-
cuits. In Proceedings of the 2012 ACM conference on Computer and communications
security, pages 784–796. ACM, 2012.

[BKY01] Enrico Buonanno, Jonathan Katz, and Moti Yung. Incremental unforgeable en-
cryption. In Fast Software Encryption, pages 109–124. Springer, 2001.

59

[BLMR13] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key ho-
momorphic prfs and their applications. In Advances in Cryptology–CRYPTO 2013,
pages 410–428. Springer, 2013.

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: In-
crementality at reduced cost. In Advances in Cryptology—EUROCRYPT’97, pages
163–192. Springer, 1997.

[BM99] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In
Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pages
431–448, 1999.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From crypto-
mania to obfustopia through secret-key functional encryption. volume TCC, 2016.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography, pages 253–273. Springer, 2011.

[BV15a] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 171–190. IEEE, 2015.

[BV15b] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs
from standard lattice assumptions. In Theory of Cryptography, pages 1–30. Springer,
2015.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography Conference, pages 535–554. Springer, 2007.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Advances in Cryptology-ASIACRYPT 2013, pages 280–300. Springer,
2013.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. In-
distinguishability obfuscation of iterated circuits and RAM programs. In STOC,
2015.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
pages 519–535, 2013.

[CKLM12] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Mal-
leable proof systems and applications. In Advances in Cryptology–EUROCRYPT
2012, pages 281–300. Springer, 2012.

[CKLM13] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Suc-
cinct malleable nizks and an application to compact shuffles. In Theory of Cryptog-
raphy, pages 100–119. Springer, 2013.

[CKO14] Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky. Locally updatable
and locally decodable codes. In Theory of Cryptography, pages 489–514. Springer,
2014.

[DSLSZ15] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally
decodable and updatable non-malleable codes and their applications. In Theory of
Cryptography, pages 427–450. Springer, 2015.

[DvOW92] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and
authenticated key exchanges. Des. Codes Cryptography, 2(2):107–125, 1992.

60

[Fis97] Marc Fischlin. Incremental cryptography and memory checkers. In Advances in
Cryptology—EUROCRYPT’97, pages 393–408. Springer, 1997.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 169–178, 2009.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
578–602. Springer, 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE
Computer Society, 2013.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. IACR Cryptology ePrint Archive, 2014:666, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 467–476. ACM, 2013.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and
Daniel Wichs. Garbled ram revisited. In Advances in Cryptology–EUROCRYPT
2014, pages 405–422. Springer, 2014.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic encryp-
tion and rerandomizable yao circuits. In Advances in Cryptology–CRYPTO 2010,
pages 155–172. Springer, 2010.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 555–564. ACM, 2013.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled ram. In Founda-
tions of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
210–229. IEEE, 2015.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled ram
from one-way functions. In Proceedings of the Forty-Seventh Annual ACM on Sym-
posium on Theory of Computing, pages 449–458. ACM, 2015.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguisha-
bility obfuscation from the multilinear subgroup elimination assumption. IACR
Cryptology ePrint Archive, 2014:309, 2014.

[GLW14] Craig Gentry, Allison Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In International Cryptology Conference, pages 426–443.
Springer, 2014.

61

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, 1996.

[Gol87] Oded Goldreich. Towards a theory of software protection and simulation by oblivi-
ous rams. In Proceedings of the 19th Annual ACM Symposium on Theory of Com-
puting, 1987, New York, New York, USA, pages 182–194, 1987.

[GP15] Sanjam Garg and Omkant Pandey. Incremental program obfuscation. IACR Cryp-
tology ePrint Archive, 2015:997, 2015.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 89–98, 2006.

[Gün89] Christoph G. Günther. An identity-based key-exchange protocol. In Advances
in Cryptology - EUROCRYPT ’89, Workshop on the Theory and Application of
of Cryptographic Techniques, Houthalen, Belgium, April 10-13, 1989, Proceedings,
pages 29–37, 1989.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, pages 162–179, 2012.

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from lwe. In Annual Cryptology Conference, pages 503–523. Springer,
2015.

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully ho-
momorphic signatures from standard lattices. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, pages 469–477. ACM, 2015.

[HJO+15] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and
Daniel Wichs. Adaptively secure garbled circuits from one-way functions. IACR
Cryptology ePrint Archive, 2015:1250, 2015.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In Advances in Cryptology–CRYPTO
2011, pages 132–150. Springer, 2011.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representa-
tion with applications to round-efficient secure computation. In Foundations of
Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 294–304.
IEEE, 2000.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security, pages
669–684. ACM, 2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
146–162. Springer, 2008.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble ram programs? In Advances in
Cryptology–EUROCRYPT 2013, pages 719–734. Springer, 2013.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

62

[LPST16a] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability ob-
fuscation with non-trivial efficiency. In Public-Key Cryptography - PKC 2016 -
19th IACR International Conference on Practice and Theory in Public-Key Cryp-
tography, Taipei, Taiwan, March 6-9, 2016, Proceedings, Part II, pages 447–462,
2016.

[LPST16b] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing
randomized encodings and applications. In Theory of Cryptography, pages 96–124.
Springer, 2016.

[Mic97] Daniele Micciancio. Oblivious data structures: applications to cryptography. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pages 456–464. ACM, 1997.

[MPRS12] Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremental de-
terministic public-key encryption. In Advances in Cryptology–EUROCRYPT 2012,
pages 628–644. Springer, 2012.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[Ost90] Rafail Ostrovsky. Efficient computation on oblivious rams. In Proceedings of the
22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Balti-
more, Maryland, USA, pages 514–523, 1990.

[SBC+07] Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In 2007 IEEE Symposium on
Security and Privacy (SP’07), pages 350–364. IEEE, 2007.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 463–472. ACM, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005, Proceedings, pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: de-
niable encryption, and more. In David B. Shmoys, editor, Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
475–484. ACM, 2014.

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In CRYPTO 2015, 2015.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

[Zha16] Mark Zhandry. How to avoid obfuscation using witness prfs. In Theory of Cryp-
tography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part II, pages 421–448, 2016.

A Other Definitions of URE

We can consider updating processes different from the sequential process that we studied in
Section 3.1. Another important type of updating process is parallel updating that we define
next.

63

A.1 Parallel Updating

Given a randomized encoding 〈C[x]〉ure and multiple patches, parallel updating allows for sep-
arately updating the original encoding using each of these patches. That is, given secure up-
dates 〈u1〉ure, . . . , 〈up〉ure, we can update 〈C[x]〉ure to obtain the respective updated encodings
〈C1[x1]〉ure, . . . , 〈Cp[xp]〉ure, where for each i, 〈Ci[xi]〉ure = ApplyUpd(〈C[x]〉ure, 〈ui〉ure). We em-
phasize that this process does not immediately allow for updating the already updated random-
ized encoding 〈Ci[xi]〉ure again. This is in contrast with the sequential updating process where
an updated randomized encoding can indeed be updated again.

Correctness of Parallel Updating. Intuitively, the correctness property states that
whether you first compute the randomized encoding 〈C[x]〉ure and then apply the secure update
〈u〉ure or if you first update the hardwired circuit C[x] using u and then compute the randomized
encoding, the decoding of either one of them yields the same output. In the formal description
below we take into account multiple parallel updates.

Consider a circuit C ∈ Cλ, input x ∈ {0, 1}λ. Let U ∈ (Uλ)
p

be a vector consisting of update
strings, where p(λ) is polynomial in λ. Consider the following two processes:

Secure updating process: This corresponds to the case when you compute the randomized en-
coding first and then apply the secure updates.

1. (〈C[x]〉ure, st)← Encode
(
1λ, C, x

)
.

2. For every i ∈ [p]; (〈ui〉ure, st′)← GenUpd (st,ui), where ui is the ith entry in U.

3. For every i ∈ [p]; 〈Ci[xi]〉ure ← ApplyUpd (〈C[x]〉ure , 〈ui〉ure).
Insecure updating process: This corresponds to the case when you first update the circuit and
then compute a fresh randomized encoding.

1. For every i ∈ [p], we have Ci[xi] ← Upd(C[x],ui). We have Cp(xp) to be the output of
Cp[xp].

We have,
Decode

(
〈Cp[xp]〉ure

)
= Cp(xp)

Security of Parallel Updating. There are different ways to formalize the security of
updatable randomized encodings. Inspired by the literature on randomized encodings, we study
two security notions - namely, simulation-based and indistinguishability-based.

Simulation-Based Security. We adopt the real world/ ideal world paradigm in formal-
izing the simulation-based security definition of parallel updatable RE. In the real world, the
adversary receives a randomized encoding and encodings of updates. All the encodings are
generated honestly as per the description of the scheme. In the ideal world, the adversary is
provided simulated randomized encodings and encodings of updates. These simulated encodings
are generated as a function of the outputs and in particular, the simulation process does not
receive as input the circuit, input or the plaintext updates. A parallel updatable RE scheme is
secure if an efficient adversary cannot tell apart real world from the ideal world.

The ideal world is formalized by considering a simulator Sim that runs in probabilistic
polynomial time. Sim gets as input the output of circuit C(x), the length of C and produces
a simulated randomized encoding. We emphasize that Sim does not receive as input C or x.
After this, Sim simulates the update encodings. On input length of update ui, value Ci(xi), it
generates a simulated encoding of ui. Here, Ci(xi) is obtained by first updating C[x] using ui
to obtain Ci[xi], whose output is Ci(xi). For this discussion, we consider the scenario where
the circuit, input along with the updates are fixed at the beginning of the experiment. This is
termed as the selective setting. We describe the formal experiment in Figure 6.

64

We present the formal security definition below.

Definition 29 (SIM-secure Parallel URE). A parallel URE scheme URE for (Upd,U)-updatable
class of circuits C = {Cλ}λ∈N is said to be SIM-secure if for every PPT adversary A, for
every circuit C ∈ Cλ, updates u1, . . . ,up ∈ Uλ, there exists a PPT simulator Sim such that the
following holds for sufficiently large λ ∈ N,∣∣∣Pr [0← IdealExptA

(
1λ, C, x, {ui}i∈[p]

)]
− Pr

[
0← RealExptA

(
1λ, C, x, {ui}i∈[p]

)]∣∣∣ ≤ negl(λ),

where negl is a negligible function.

Experiment IdealExptA(1λ, C, x, {ui}i∈[p]):

1. (〈C[x]〉ure, st)← Sim(1λ, 1|C|, C(x)).

2. C[x] := hardwired circuit of (C, x).

3. ∀i ∈ [p], Ci[xi]← Upd(C[x],ui).
Let Ci(xi) be the output computed by Ci[xi].

4. ∀i ∈ [p], 〈ui〉ure ← Sim(st, 1|ui|, Ci[xi]).

Output A
(
〈C[x]〉ure, 〈u1〉ure, . . . , 〈up〉ure

)
.

Experiment RealExpt(1λ, C, x, {ui}i∈[p]):

1. (〈C[x]〉ure, st)← Encode
(
1λ, C, x

)
.

2. ∀i ∈ [p], (〈ui〉ure, sti)← GenUpd (st,ui).

Output A
(
〈C[x]〉ure, 〈u1〉ure, . . . , 〈up〉ure

)
.

Figure 6: Selective Simulation-Based Definition of Parallel Updatable RE.

Indistinguishability-based Security. We formulate a game-based definition between
the challenger and the adversary. The adversary makes circuit query (C0, C1) along with input
x to the challenger. The challenger picks a bit b at random and encodes (Cb, x). This challenge
encoding is sent to the adversary. The adversary also queries for secure updates. That is, it
sends the pair (u0

i ,u
1
i) to the challenger who responds with encoding of ubi . The adversary is

restricted to “valid” update queries: it should hold that C0
i [x0

i] = C1
i [x1

i] for every i, where
C0
i [x0

i] ← Upd(C0[x],u0
i) and C1

i [x1
i] ← Upd(C1[x],u1

i). If the adversary makes any invalid
update queries, the challenger aborts the experiment. In the end, the adversary is required to
guess the bit b. We say that the parallel URE scheme is IND-secure if the adversary succeeds
with negligible advantage (i.e., with probability negligibly close to 1/2).

We can consider different flavors of IND-based security depending on the order of circuit and
update queries made by the adversary. We consider the simplest setting where the adversary is
supposed to declare all his queries in the beginning of the game. We call this selective setting.
We can also consider the adaptive setting where the adversary can chose the circuit and the
update queries adaptively.

ExptPUREA (1λ, b):

• A sends circuits (C0, C1) ∈ Cλ, input x ∈ {0, 1}λ to Ch.

• A additionally sends the update queries (u0
i ,u

1
i) for i ∈ [p(λ)] to Ch. Challenger first

checks if the following condition holds: letting Cβi [xi]← Upd(Cβ [x],uβi) for β ∈ {0, 1} and

65

i ∈ [p]: (
C0(x) = C1(x)

)
and

(
∀i ∈ [p] : C0

i (x0
i) = C1

i (x0
i)
)
.

Here, C0
i (xi) (resp., C1

i (xi)) denotes the output of C0
i [xi] (resp., C1

i [xi]). If the above
condition is not satisfied, Ch aborts the experiment.

• Ch sends
〈
Cb[x]

〉
ure

to A, where (
〈
Cb[x]

〉
ure
, st)← Encode(1λ, Cb, x), to A. Also, Ch sends

(〈ubi 〉ure, st′)← GenUpd(st,ubi) for every i ∈ [p(λ)].

• A outputs b′.

We give the formal definition of the security notion below.

Definition 30 (IND-secure Parallel URE). A parallel URE scheme is IND-secure if for any
PPT adversary A, bit b, we have Pr[b′ = b : b′ ← ExptPUREA (1λ, b)] ≤ 1

2 + negl(λ), for some
negligible function negl.

A.2 Connection between Parallel URE and Reusable Garbled Circuits

The notions of parallel URE and reusable garbled circuits are closely connected. Specifically,
consider an input-updatable family of hardwired circuits (defined formally below), in which an
update is simply an input x′, and Upd(C[x], x′) = C[x′]. By a simple transformation, the
existence of a parallel URE scheme for the hardwired circuit family {C[X]λ}λ∈N is equivalent
to the existence of a reusable garbled circuit scheme for C. We present the transformation
from a parallel URE scheme to a reusable garbling scheme; the reverse transformation is as
straightforward.

Let C = {Cλ}λ∈N be a family of circuits, and {C[X]λ}λ∈N be the corresponding family
of hardwired circuits (Definition 8). We {C[X]λ}λ∈N is input-updatable if it is (Uinp,Updinp)-
updatable:

• Uinp = {0, 1}∗.
• Updinp (C[x], x′) takes as input a hardwired circuit C[x] ∈ C[X] and a update x′ ∈ Uinp

indicating the new input to hardwired. If |x| > λ, then Updinp outputs ⊥. Otherwise,
output the hardwired circuit C[x′].

Observe that in the sequential URE setting, the ability to compose updates implies that to
update the input of a hardwired circuit, it suffices to support only bitwise updates, in which
only a single bit is changed. In the setting of parallel updating, this is no longer the case.

Suppose URE = (Encode,GenUpd,ApplyUpd,Decode) is a secure parallel URE scheme for
the input-updatable class of hardwired circuits {C[X]λ}λ∈N. We construct a reusable garbled
circuit scheme for C as follows:

• GrbCkt(1λ, C) = Encode(1λ, C, 0λ). This outputs a state stgc = sture and a garbled circuit
〈C〉gc =

〈
C[0λ]

〉
ure

.

• GrbInp(st, x) = GenUpd(st, x). This outputs a garbled input 〈x〉gc = 〈x〉ure.
• EvalGC(〈C〉gc, 〈x〉gc) = Decode

(
ApplyUpd(

〈
C[0λ]

〉
ure
, 〈x〉ure)

)
.

The security of the URE scheme transfers directly to the security of the resulting reusable
garbling scheme.

B Achieving Update Hiding Generically

We describe how to achieve update hiding generically. We give this transformation for the
general case of updatable randomized encodings but the same transformation works even for
updatable garbled circuits. The main idea is to use a non-interactive write-only oblivious RAM
scheme to achieve this. We define this notion below.

66

Non-Interactive Write-Only ORAM. A scheme wNIORAM consists of the following
algorithms.

• Database Encoding, EncDB(1λ, D): On input security parameter λ, database D, it

produces an encoded D̃ and secret key osk. The database encoding is given to the server
by the client. The client hides osk from the server.

• Query encoding, EncQ(osk, q): On input secret key osk and write query q, it produces
program encoding q̃. The client sends the query encoding to the server. Here, we only
consider write queries of the form (index, b).

• Updating, Upd(q̃, D̃): On input query encoding q̃ and database encoding D̃, it produces

an updated database encoding D̃′. Note that the server can execute this procedure non-
interactively and in particular, this does not involve any communication with the client.

The correctness property is stated as in an oblivious RAM scheme – updating an encoding of
the database using an encoded query is equivalent to updating the underlying database and
then encoding it. The security guarantee (as in any ORAM scheme) is that the access pattern
does not leak any information about the underlying query.

In this work, we are interested in wNIORAM schemes satisfying two properties:

1. The query encoding q̃ is a tuple of pairs of the form (index, b) and the updating algorithm

substitutes b in indexth position of D̃ for every (index, b) in q̃. We call such schemes
bitwise wNIORAM schemes.

2. Another property we are interested is the decodability property: given a valid database D̃
and secret key osk, there is a public algorithm to recover D correctly.

The garbled RAM scheme of [GLOS15] yields a bitwise wNIORAM schemes with decodability
property. Furthermore, their scheme is based on one-way functions. We thus have the following
theorem.

Theorem 10. There exists bitwise wNIORAM schemes with decodability property assuming one-
way functions.

Update-Hiding Transformation. Suppose we have an updatable randomized encoding
scheme UREnph which does not necessarily satisfy update hiding property. We show how to
achieve updatable RE, denoted by URE, with update hiding property.

Encode
(
1λ, C, x

)
: First, it computes ((̃C, x), osk)← EncDB(1λ, (C, x)). It executes (UREnph.〈C∗[⊥]〉ure,

st)← UREnph.Encode(1
λ, C∗,⊥), where C∗ (with (̃C, x) and osk hardwired into it) is defined as

follows. C∗ first decodes (̃C, x) using osk to recover (C, x) (using decodability property) and
then it outputs C(x).

Finally, it outputs UREnph.〈C∗[⊥]〉ure as the randomized encoding and it sets the state
st = osk.

GenUpd (st,u): It first encodes u using the query encode algorithm EncQ to obtain ũ. It then
compiles ũ into an encoding UREnph.〈ũ〉ure by executing 〈ũ〉ure ← UREnph.GenUpd(st, ũ). The
encoding of update is set to be UREnph.〈ũ〉ure. The new state is the same as the old state.

ApplyUpd (〈C∗[x]〉ure, 〈ũ〉ure): This procedure essentially executes ApplyUpd of the scheme UREnph.
That is, it executes UREnph.ApplyUpd(UREnph.〈C∗[⊥]〉ure,UREnph.〈ũ〉ure) to obtain UREnph.

〈
C∗′[⊥]

〉
ure

.

It outputs the updated randomized encoding UREnph.
〈
C∗′[⊥]

〉
ure

. Here, C∗′ contains the up-
dated ORAM and similar to circuit C∗ – it first decrypts the ORAM to get (C ′, x′) and performs

67

the computation C ′(x′).

Decode (〈C[x]〉ure): This procedure executes the decoding procedure of UREnph.

The correctness property of UREnph as well as the decodibility property of wNIORAM implies
the correctness property of the above URE scheme. Furthermore, we can invoke the security
property of UREnph and the access pattern hiding property of wNIORAM to show the security
of the above scheme.

C Reducing the State of Authority

There is a generic approach to reduce the state size of the authority (i.e., the encoder in the
definitions of URE and UGC) using garbled RAMs with persistent memory [GHL+14, GLOS15].
Interestingly, our approach works even if the garbled RAM scheme is non-succinct, i.e., if the
size of the program encoding is dependent on the computation time. Since the existence of such
garbled RAM schemes can be based on one-way functions, we only need to assume the existence
of one-way functions for our transformation.

We remark that the idea of using garbled RAMs to reduce the state size of the encoder was
observed in [AJS15b]. However, their work crucially use a strong notion of succinct garbled
RAMs whose existence is known only from indistinguishability obfuscation. In contrast, here,
we only rely on non-succinct garbled RAM.

We now state our theorem:

Theorem 11. Assuming that one-way functions exist, there exists an efficient transformation
that transforms any URE (resp., UGC) scheme URE satisfying efficient update generation time
property into a new URE (resp., UGC) scheme that also satisfies the state-size property.

The main idea behind proving the above theorem is that the authority delegates the job of
computing the secure update to the client. This delegation process is carried out by initially
garbling the circuit and input pair using the garbled database encoding algorithm. This will be
shipped as part of the initial randomized encoding. That is the randomized encoding of (C, x)
w.r.t URE∗ comprises of the garbled database encoding of (C, x) and randomized encoding of
(C, x) w.r.t URE. During the update phase, the update generation algorithm of URE∗ essentially
encodes the update generation algorithm of URE using the garbled program encoding algorithm.
On the client’s end, the evaluation of the program encoding is done on the database to obtain the
secure update computed w.r.t the old scheme URE. Using this secure update, the randomized
encoding of (C, x) w.r.t URE is updated. The database encoding is also correspondingly updated
(this is done as part of garbled evaluation algorithm) to correspond to the updated circuit and
input pair.

We refer the reader to [AJS15b] for further details.

68

	Introduction
	Our Results
	Our Techniques
	Construction of UGC
	Construction of URE

	Related Work

	Preliminaries
	Randomized Encodings
	Private-Key Functional Encryption
	Updatable Circuits

	Updatable Randomized Encodings
	Sequential Updating
	IND to SIM-Security
	On the Necessity of 1-Key Secret Key Compact FE
	Intermediate Tool: XiO
	Output-Compact URE implies XiO

	Output-Compact URE from FE
	Construction
	Proof of Security

	Updatable Garbled Circuits
	Definition of Updatable Garbled Circuits
	Puncturable Proxy Re-encryption Scheme
	Definition of Puncturable Symmetric Proxy Re-encryption
	Building Block: Puncturable, Almost Key-Homomorphic PRFs
	Construction of Puncturable Symmetric Proxy Re-encryption

	Construction of UGC
	Proof of Theorem 9

	Updatable Cryptography
	Dynamic Circuit Compilers
	Updatable Non-Interactive Zero Knowledge
	Construction of UNIZK

	Updatable Multiparty Computation
	Construction of UMPC

	Other Definitions of URE
	Parallel Updating
	Connection between Parallel URE and Reusable Garbled Circuits

	Achieving Update Hiding Generically
	Reducing the State of Authority

