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ABSTRACT 
General Lucas sequences are practically useful in cryptography. In the past quarter century, 

factoring large RSA modulo into its primes is one of the most important and most 

challenging problems in computational number theory. A factoring technique on RSA 

modulo is mainly hindered by the strong prime properties. The success of factoring few 

large RSA modulo within the last few decades has been due to computing prowess 

overcoming one strong prime of RSA modulo. In this paper, some useful properties of 

Lucas sequences shall be explored in factoring RSA modulo. This paper introduces the S-

index formation in solving quadratic equation modulo N. The S-index pattern is very useful 

in designing an algorithm to factor RSA modulo. At any instance in the factoring algorithm, 

the accumulative result stands independently. In effect, there is no clear direction to 

maneuver whether to go left or right. The S-index will add another comparative tool to 

better maneuver in a factoring process. On one hand, it shall remain a theoretical challenge 

to overcome the strong prime properties. On the other hand, it shall remain a computational 

challenge to achieve a running time within polynomial time to factor RSA modulo. This 

paper will propose an avenue to do both using general Lucas sequences. 

 

INTRODUCTION 
General Lucas sequences have made significant contribution to the field of 

cryptography. Lucas sequence V has been proposed to be used for public key 

cryptosystem (Smith and Lennon, 1994), in a manner similar to the famous 

RSA (Rivest et. al., 1978), but using Lucas sequences modulo a composite 

number instead of exponentiation. It has stipulated to have the same security 

level as RSA for the same size key, but is about twice as slow. A special Lucas 

sequence has been used to directly factor pseudo prime numbers especially 

Carmichael numbers (Abu et. al., 2004). 

 

An efficient computation of general Lucas sequences can be found in (Joye 

and Quisquater, 1996). Zhenxiang Zhang has shown on how to factor an RSA 

modulo into its primes near both multiples of group orders P−1 or P+1 and 

respectively Q−1 or Q+1 using Lucas sequences. An asymmetric key GM 

cryptosystem has been developed by Shafi Goldwasser and Silvio Micali in 

1982. It is semantically secure based on intractability of the quadratic residue 

problem modulo N = PQ where P and Q are large primes. The difficulties of 

decrypting the ciphertext without the key pair (P, Q) is solely based on a 

comparative interactive challenge on whether a given ciphertext c is a 

quadratic residue modulo N when the Jacobi symbol for c is +1. 

 



The non-positional nature of Residue Number Systems (RNS) is very efficient 

in a single arithmetic computing without any hassle of carry propagations. 

Unlike in the common index number system, RNS has a drawback in 

comparison. There is no ease general method for magnitude comparison in 

RNS. This inability to compare two numbers whichever is larger makes it 

difficult to operate on large modulo efficiently especially in the field of 

cryptography. (Sousa, 2007). The magnitude comparison in RNS is equivalent 

to the Comparative S-Index in this paper. 
 

CRITERIA OF STRONG RSA PRIMES 
Let N be the product of two primes, P and Q. It may be desirable to use strong 

primes for P and Q. These are prime numbers with certain properties that make 

the product N difficult to factor by known factoring methods.  The selection of 

P and Q as strong primes has been recommended, prior to the year 2000, as a 

way to safeguard the well-known classical factoring algorithm (Rivest and 

Silverman, 2001). However, these basic strong prime criteria are 

independently imposed on P or Q. 

 

Among the properties of strong RSA modulo N = PQ are as follows. 

 

 Criterion 1: P−1 and P+1 consists of a large prime factor. 

 

Let P−1 = 



k
PPP     10    and P+1 =




k
PPP     10  . The largest prime 

factors 

k

P and 

k

P should be larger than 256-bit for 512-bit P.  

 

 Criterion 2: Q−1 and Q+1 consist of a large prime factor. 

 

Let Q−1 = 



k
QQQ     10  and Q+1 =




k
QQQ     10  . Respectively, the 

largest prime factors 

k

Q and 

k

Q should be larger than 256-bit for 512-bit Q.  

 

Criterion 3: Recursively, for each largest factor, 1
k

P and 1
k

P must also 

consist of large enough prime factor, namely, 

k

P  and 

k

P   following the 

notation in (Rivest and Silverman, 2001). 

 

Criterion 4: Each largest factor of the prime 1
k

Q and 1
k

Q must also 

consist of large enough prime factor namely, 

k

Q  and 

k

Q  respectively. 

 

Factoring the RSA modulo N is well known to be unfeasible. Recently, 

(Boudaoud, 2009) explores another practical approach to surmount this major 

difficulty by finding the factorization of an integer in a small neighborhood of 

N instead of N. (Bakhtiari and Maarof, 2012) pointed out that there are more 

than one set of decryption key (d, N) on a given set of RSA encryption key (e, 

N). However the distance between them is lcm(P−1, Q−1) which is ruled by 

the basic strong prime criteria. 

 

Let an elliptic curve be the set of points 

 

E(a, b) = { (x, y, z) : y2z ≡  x3 + axz2 + bz3 (mod p) } 

 



By the end of the century, it has been noted to be useless to concentrate on 

strong primes.  It is unnecessary to protect against factoring attacks by building 

large prime factors into P−1 or P+1  since the adversary can instead attempt to 

overcome by finding an elliptic curve E(a, b) whose size  

 

PPbaEPP 21),(21   

 

is smooth (Rivest and Silverman, 2001). 

 

GENERAL LUCAS SEQUENCES 
Given integer parameters p>2 and q>0, the general Lucas sequences give rise 

to two functions similar to exponentiation, namely, Un and Vn. 

 

U0 = 0, U1 = 1, Un = p·Un–1 – q·Un–2  

V0 = 2, V1 = p, Vn = p·Vn–1 – q·Vn–2 

 

Calculating an element of a Lucas sequence can be done in a very similar 

pattern to exponentiation using a power modulo operation. It may be helpful 

to think of p as the base and the index n as the exponent. The closed forms of 

the general Lucas sequences are:  

 

 









nn

nU  and nn

nV   . 

 

where  and  are the two roots of the quadratic polynomial x2 – px + q.   

 

These classical Lucas sequences Un and Vn are generated from second order 

recursions with integer variables (p, q) and discriminant  = p2 − 4q. In the case 

of (p, q) = (1, 1), the Lucas sequence Un is popularly known as Fibonacci 

numbers, and their companions Vn are the Lucas numbers. The requirement on 

P and Q, to be strong primes by making P±1 and Q±1 to have large prime 

factors, may no longer appear to be adequately substantiated in the view of the 

best factorisation algorithms known today. 

 

Pollard Rho Method basically can achieve rapid factorization if P–1 consists 

of only small prime factors. On the other hand, similar result can be said also 

about P+1. This method of integer factorisation is originally described in 

(Williams, 1982). It can find a large factor P very quickly when P+1 is 

composed of only small factors. (Zhang, 2001) has also shown how the general 

Lucas Sequence can be employed to exploit any weak primes from both sides, 

the P–1 and P+1. 

 

CRITERIA ON GENERAL LUCAS SEQUENCES 

Let N = PQ. For a given parameters p and q, take  = p2 – 4q. Let 
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and 









Q
Q


 . The subscript to the epsilon  is usually left out within the 

context of known prime P or Q and .QPN
QPN




 


























  

 
For instance,  



Pδ

P

P
P

 mod residue quadratic-non is  ,

 mod residue quadratic is           ,

1

1 


















  

 

Here the criteria of general Lucas sequences are being compactly summarised. 

They are very practical tools in factoring process. 

 

 

 
 

Figure 1: Un mod N sequence is odd with respect to the center period C.  

 

 

 

 
 

Figure 2: Vn mod N sequence is even with respect to the center period C.  

 

Criterion 1: All the operations here are done modulo N. The maximum period 

of the general Lucas sequences U and V modulo N of parameters p and q is C 

= lcm(P – P)(Q – Q). This criteria has been regarded as a generalisation of 

the Euler totient function for Lucas functions, the Lehmer totient function 

(Lehmer, 1930). 

 

Table 1: The values of general Lucas sequences Un mod N and Vn mod N near 

the center C. 

n Un Vn 

-20 10216491 30209367 

-19 29036528 20045158 

-18 30261649 23191067 

-17 18792338 18795473 

-16 15621865 22711257 

0

33435257

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

n

Un mod N

0

33435257

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
n

Vn mod N



-15 8068338 17166298 

-14 32788163 13416017 

-13 21484355 29894547 

-12 29247453 32210237 

-11 20259335 29625847 

-10 25438043 11803817 

-9 32063152 7761798 

-8 33199841 1331714 

-7 33394866 228486 

-6 33428327 39202 

-5 33434068 6726 

-4 33435053 1154 

-3 33435222 198 

-2 33435251 34 

-1 33435256 6 

0 0 2 

1 1 6 

2 6 34 

3 35 198 

4 204 1154 

5 1189 6726 

6 6930 39202 

7 40391 228486 

8 235416 1331714 

9 1372105 7761798 

10 7997214 11803817 

11 13175922 29625847 

12 4187804 32210237 

13 11950902 29894547 

14 647094 13416017 

15 25366919 17166298 

16 17813392 22711257 

17 14642919 18795473 

18 3173608 23191067 

19 4398729 20045158 

20 23218766 30209367 

 

Criterion 2: The Lucas sequence U is odd while V is even with respect to the 

period as shown in the Figures 1 and 2 above, i.e. UkC–n = – UkC+n and  VkC–n = 

VkC+n for  any integer k and positive integer n from the center period C=0.  

 

Let the parameters of general Lucas sequences be (p, q) = (6, 1). The values of 

both Lucas sequences have been listed in Table 1. The graphs in Figures 1 and 

2 above show typical characteristics of an odd sequence Un (mod N) and an 

even sequence Vn mod N for N = PQ = 4073 · 8209 = 33435257. This criterion 

has made Lucas sequence V appear to be a better reference than U in the LUC 

public-key system. 

 

Criterion 3: The center values of the general Lucas sequences U and V modulo 

RSA primes are as follows; 

 

i. Uk(P–)   0 ( mod P ) for any positive integer k. 

ii. )(mod2 2

)1(

)( PqV

k

Pk







  for any positive integer k. 

iii. Uk(Q –)   0 ( mod Q )  for any positive integer k. 



iv. )(mod2 2

)1(

)( QqV
k

Qk







   for any positive integer k. 

  

Preferably the second parameter q is set to be one(1) so that the sequence V 

will always have consistent output 2 modulo N at a multiple instance of period 

C.  

 

Criterion 4: These following characteristics have been observed based on the 

previous research on general Lucas sequences. Most researchers insist on 

Criterion 3 as a more practical form for factoring purposes. Nevertheless,  

these criteria are more flexible in factoring angles to choose from. 

 

i. Uj(P–) + L − Uk(P–) + L  0  (mod P) for some positive integers  j and k. 

ii. Vj(P–) ± L  − Vk(P–) ± L  0  (mod P) for some positive integers  j and k. 

iii. Uj(Q–) + L − Uk(Q–) + L  0  (mod Q) for some positive integers  j and k. 

iv. Vj(Q–) ± L  − Vk(Q–) ± L  0  (mod Q) for some positive integers  j and k. 

 

It is a necessary condition that j  k for integer –R < L < R where R is typically 

referred to the absolute difference between the primes P and Q. This last 

criterion is the most useful but by far the most elusive characteristic of the 

general Lucas sequences in designing a factoring algorithm.  It is also noted 

that Criterion 4 is useful for factoring algorithm if it does not happen 

simultaneously i.e. the sequence U or V is not equal to the ones modulo N. 

 

Criterion 5: Alternatively, all the criteria above may be summarised in terms 

of primes P and Q as follows. There are integers 0 ≤ aj, bk < Q and 0 ≤ cj, dk < 

P such that 

 

i. Uj(P–) + L  = aj∙P + UL (mod N) 

ii. Vk(P–) ± L  = bk∙P + VL (mod N) 

iii. Uj(Q–) + L = cj∙Q + UL (mod N) 

iv. Vk(Q–) ± L = dk∙Q + VL (mod N) 

 

for every integer  L. Thus, an RSA prime can be extracted respectively by 

taking the greatest common divisor as follows; 

 

i. P = gcd(Uj(P–) + L  UL, N) 

ii. P = gcd(Vk(P–) ± L   VL, N) 

iii. Q = gcd(Uj(Q–) + L  UL, N) 

iv. Q = gcd(Vk(Q–) ± L  VL, N) 

 

 

NEW PROPOSAL ON RSA FACTORING 
On one hand, it shall remain a theoretical challenge to overcome the strong 

prime properties. On the other hand, it shall remain a computational challenge 

to keep the running time within polynomial time to factor RSA modulo. 

 

According to the Proposition 3.3 in (Khadir, 2008) Let N be the product of two 

prime factors P and Q, 2 < P < Q. If we can compute efficiently two odd 

integers r and s such that s < P and |sQ − rP| ≤ 4

5

2

K

where K is the bit-size of 

the integer rsN, then we can compute the factors P and Q. 

 

In this paper, a more relaxed requirement shall be made. 



Suppose .1)1)(1( 
























 QPN

Q

c

P

c

N

c
 Let R < P < Q 

such that R = Q – P. 

N−1  = (P−1)(Q−1) + (P−1)+(Q−1)  

= (P−1)(Q−1) + 2(P−1) + R = (P−1)(Q−1) + 2(Q−1) – R 

For a given odd w, 

N−1 + w = (P−1)(Q−1) + 2(P−1) + (R+w) 

  = (P−1)(Q−1) + 2(Q−1) − (R−w) 

and 

N−1 − w = (P−1)(Q−1) + 2(P−1) + (R–w)  

  = (P−1)(Q−1) + 2(Q−1) − (R+w) 

 

Preferably, w = 1 is a good starting point. 

 

Let Vn be the special Lucas sequence with parameters (p, q) = (p, 1) so that p2 

– 4 is a quadratic residue of N. Then we need to set a special even Lucas 

sequence such that V0 = 2, V1 = p,   V2 = p2 – 2 and V3 = p∙V2 – V1 =p∙(p2–2) – 

p =  p3–3p. 

 

Let N0 = N–1. Suppose an odd indexed sequence only is readily available. 

Nevertheless, it is sufficient to generate the values of V sequences along other 

large odd indexes. Since N0–w and N0+w are odd, V sequence modulo N can 

be computed using a special algorithm below. The running time of this 

textbook Algorithm 1 is still O(n3) compared to the running time of general 

Lucas sequences. 

 

Algorithm 1: A textbook algorithm to compute an odd Lucas sequence V. 

 

Function Vodd ( p, K, N) 

Set K=bn−1bn−2…b2b1b0 be odd such that bn−1=1 and b0=1. 

Left = V1, Right = V3. 

for i=n–2 down to 1, 

 if bi =0,  

  Right = Left*Right – p mod N, 

  Left   = Left2 – 2 mod N. 

if bi =1,  

  Left = Left*Right – p mod N, 

  Right = Right 2 – 2 mod N. 

end(*for*) 

return Left. 

 

Following the Lucas sequence V criterion 5, there are integers a, b, c and d 

such that  

 

V(N−1) –w  = aP + VR−w = bQ + VR+w      (1) 

V(N−1) +w  = cP + VR+w = dQ + VR−w     (2) 

 

Let us compute  

 

S = V(N−1) –w  + V(N−1) +w  ≡ VR−w + VR+w ( mod N) 

T = V(N−1) –w  ∙ V(N−1) +w   ≡ VR−w ∙ VR+w ( mod N) 

 



Let us scan for a candidate of x of Vr and y of Vs. respectively the satisfy the 

conditions 

 

x + y ≡ S (mod N)      (3) 

x ∙ y  ≡ T (mod N)      (4) 

 

From (3), let y = S – x, equation (4) will become,  

 

 x ∙ y  = x ∙ (S – x)  ≡ T  (mod N)    (5) 

 

Consequently, the problem has been reduced down to solving the quadratic 

equation modulo N. We shall search for the root of the function  

 

f(x)  = x ∙ (S – x) – T  (mod N).  

 

Let us take the (2m+1) terms at one time as the error function, 

  





mx

mxi

ifxg )()(   

 

A sample case for N= 4073∙8209 = 33435257 is made here. Let the Lucas 

sequence parameters (p, q) = (6, 1), m=1 and w=3. From (1) and (2), 

 

V(N−1) –3  =   146 ∙P + VR−3   =   −146 ∙Q + VR+3   

V(N−1) +3  = 1561∙P + VR+3   =  −1561∙Q + VR−3  

 

The strategy is to locate the values of VR−3   and VR+3. The error function has 

been plotted within the surrounding region of V(N−1)+3 in the Figure 3. We 

would like to collect the points near zeros. 

 
Figure 3: The error function near the zero value. 

 

-16717628

-8358814

0

8358814

16717628

4268000 4288000 4308000 4328000

g(x)

x

The error function



 
Figure 4: Taking the square on the error function. 

 

Let us take the square of the error function so that we can see the error function 

value near zeros as depicted in Figure 4. The yellow dot is the target value for 

V(N−1) +w. The touchdown points have been observed here as shown in Figure 

5. The errors are probabilistically getting larger as the points are moving away 

from the center critical point. They are much easier to locate as the points of 

local minima as shown in Figure 4. The green dot is the target value for V(N−1) 

+3. 

 

 
Figure 5: The point of local minima on the error function. 

 

It has also been observed that the distances between the local minima is getting 

smaller as the points go further away from the center. The list of points x has 

been plotted in the Figure 6 which form the S pattern.  

0.00E+00

1.00E+14

2.00E+14

3.00E+14

4268000 4288000 4308000 4328000

g(x)

x

The square error function

0

2E+10

4E+10

6E+10

8E+10

1E+11

1.2E+11

1.4E+11

4258000 4278000 4298000 4318000 4338000

The near zero on error function



 
Figure 6: The point of local minima on the error function forms the S shape. 

 

According to basic Calculus, a point x to the left of the critical inflection point 

z, is said to be concaved up and to the right of the critical inflection point z is 

concaved down respectively.  

 

DISCUSSION 
Checking on 3 consecutive ‘touch-down’ at any given point x, will give us a 

good estimate of the concavity of the surrounding region. A major hurdle in 

reducing the sub-exponential running time in breaking RSA down to super 

polynomial running time is the comparative mechanism. At any one time in 

the factoring algorithm, there has been no mechanism to compare the current 

position and where to go next. In effect, there is no direction to maneuver 

whether to go left or right. The S index pattern is very useful in designing an 

algorithm to factor RSA modulo. For instance, in order to determine the 

quadratic residue on ciphertext c of N,  it suffices to predict whether the Lucas 

sequence V follow the S index pattern case 0 or case 1. The S-index pattern 

follows the similar behaviour on all root of the quadratic equation (5) at V(N−1) 

–3, V(N−1) +3, VR−3 and  VR+3. Rather than locating the periodic center of general 

Lucas sequences U and V as shown in Figures 1 and 2, it is much easier and 

we stand better chances in locating the S pattern on the quadratic equation (5) 

modulo N. 

 

CONCLUSION 
Factoring large integers into primes is one of the most important and most 

difficult problems in computational number theory. A factoring technique on 

RSA modulo has been previously hindered by the strong prime properties. Few 

algorithms have overcome the strong prime criteria of RSA modulo. 

Nevertheless, they are still subjected to the size of the primes. In this paper, 

some useful properties of general Lucas sequences have been explored in 

factoring RSA modulo. A major hurdle in reducing the sub-exponential 

running time in breaking RSA down to super polynomial running time is the 

comparative mechanism. At any instance in the factoring algorithm, the 

accumulative result stands independently. In effect, there is no clear direction 

to maneuver whether to go left or right. This paper has introduced the S index 

formation in solving quadratic equation modulo N. The S index pattern is very 

4260000

4280000

4300000

4320000

4340000

-32 -16 0 16 32 48 64

The S shape of local minima



useful in designing an algorithm to factor RSA modulo. It shall remain a 

computational challenge to see whether the running time of factoring RSA 

modulo can be reduced down to a super polynomial time. 
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