
Kummer for Genus One over Prime Order Fields

Sabyasachi Karati1 and Palash Sarkar2

1 iCIS Lab
Department of Computer Science

University of Calgary
email: sabyasachi.karati@ucalgary.ca??

2 Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
e-mail: palash@isical.ac.in

Abstract. This work considers the problem of fast and secure scalar multiplication using curves of genus
one defined over a field of prime order. Previous work by Gaudry and Lubicz had suggested the use of the
associated Kummer line to speed up scalar multiplication. In this work, we explore this idea in details. The
first task is to obtain an elliptic curve in the Legendre form which satisfies necessary security conditions
such that the associated Kummer line has small parameters and a base point with small coordinates. It
turns out that the Kummer ladder supports parallelism and can be implemented very efficiently in constant
time using the single-instruction multiple-data (SIMD) operations available in modern processors. We report
implementation using Intel intrinsics and the code is publicly available. The timing results show that the
performance of the Kummer line based approach compare favourably with previously proposed genus one
curves over prime order fields.

1 Introduction

Curve-based cryptography provides a platform for secure and efficient implementation of public key
schemes whose security rely on the hardness of discrete logarithm problem. Starting from the pioneering
work of Koblitz [37] and Miller [40] introducing elliptic curves and the work of Koblitz [38] introducing
hyperelliptic curves for cryptographic use, the last three decades have seen an extensive amount of
research in the area.

Appropriately chosen elliptic curves and genus two hyperelliptic curves are considered to be suitable
for practical implementation. Necessary conditions have been identified for a curve to be considered
secure. The currently known necessary conditions can be found at [5]. These necessary conditions,
however, are not known to be sufficient. The security of curve-based cryptography is based on the
conjecture that the discrete logarithm problem in the relevant group is computationally difficult. This
conjecture does not hold in the setting of quantum computing. Since the actual realisation of quantum
computers seem to be quite some time away, it is still meaningful to conduct research for identifying
new classes of secure and efficient curves.

Table 1 summarises features for some of the concrete curves that have been proposed in the literature.
Arguably, the two most well known curves proposed till date for the 128-bit security level are P-256 and
Curve25519. Both of these are in the setting of genus one over prime order fields. In particular, we note
that Curve25519 has been extensively deployed for various applications. A listing of such applications
can be found at [18]. So, from the point of view of deployment, practitioners are very familiar with
genus one curves over prime order fields. Influential organisations, such as NIST, Brainpool, Microsoft
(the NUMS curve) have concrete proposals in this setting. Bicoins use the sec256k1 curve. See [5]
for a further listing of such primes and curves. We further note that prime order fields are considered

?? Work done while the author was a post-doctoral fellow at the Turing Laboratory of the Indian Statistical Institute.



important. It has been mentioned in [2] that prime order fields “have the virtue of minimizing the
number of security concerns for elliptic-curve cryptography.” It is quite likely that any future portfolio
of proposals by standardisation bodies will include at least one curve in the setting of genus one over a
prime field.

While genus one curves over prime order fields continue to be of enduring interest (as evidenced
by [43, 18, 11, 47, 13]), in recent years, the research on efficient implementation [39, 9, 10, 44, 20, 17, 16,
45] has largely focussed on either genus 2, or, composite order fields (binary extension, prime-squared)
with the goal of improving efficiency. The use of endomorphisms for fields of large characteristic is based
on [27, 26] while for binary fields, the base-φ expansion of the scalar originates in the work of Koblitz.
The setting of genus one over prime order fields received some recent focus in the implementation of the
NIST P-256 curve [32] and through [46] which presented complete addition formulas for prime order
curves in the short Weierstrass form over finite fields of characteristic not equal to 2 or 3.

Table 1. Features of some curves proposed in the last few years.

Reference genus form field order endomorphisms

NIST P-256 [43] 1 Weierstrass prime no

Curve25519 [2] 1 Montgomery prime no

Brainpool [11] 1 Weierstrass prime no

NUMS [47] 1 twisted Edwards prime no

secp256k1 [13] 1 Weierstrass prime no

Longa-Sica [39] 1 twisted Edwards p2 yes

Bos et al. [9] 2 Kummer prime yes

Bos et al. [10] 2 Kummer p2 yes

Oliviera et al. [44] 1 Weierstrass/Koblitz 2n yes

Faz-Hernández et al. [20] 1 twisted Edwards p2 yes

Costello et al. [17] 1 Montgomery p2 yes

Bernstein et al. [4] 2 Kummer prime no

Costello et al. [16] 1 twisted Edwards p2 yes

Oliviera et al. [45] 1 Weierstrass/Koblitz 2n yes

This work 1 Kummer prime no

Our Contributions

In this work, we go back to the setting of genus one curves over a prime order field. Two efficient models
of curves that have been considered in genus one are the Montgomery [41] and the (twisted) Edwards
model [19, 6]. An issue of central importance is to be able to perform scalar multiplications in constant
time. The Montgomery form supports a ladder based scalar multiplication which ensures constant time
execution. Using unified formula for point addition leads to constant time scalar multiplication for
Edwards form curve.

The contribution of this paper is to propose a new curve for the setting of genus one and prime
order field. Actual computation is done over the Kummer line associated with the curve. The idea of
using Kummer line was proposed by Gaudry and Lubicz [30]. They, however, were not clear about
whether competitive speeds can be obtained using this approach. Our main contribution is to show
that this can indeed be done using the single-instruction multiple-data (SIMD) instructions available in
modern processors. We note that the use of SIMD instructions to speed up computation has been earlier
proposed for Kummer surface associated with genus two hyperelliptic curves [30]. The application of
this idea, however, to Kummer line has not been considered in the literature. Our work fills this gap

2



and shows that properly using SIMD instructions provide a competitive alternative to known curves in
the setting of genus one and prime order fields.

Like in the case of Montgomery curve, scalar multiplication on the Kummer line proceeds via a
laddering algorithm. A ladder step corresponds to each bit of the scalar and each such step consists of a
doubling and a differential addition irrespective of the value of the bit. This ensures that the resulting
code is constant time. We describe and implement a vectorised version of the laddering algorithm which
is also constant time. Our target is the 128-bit security level. The work consists of several aspects.

Choice of the underlying field: We work over the field Fp where p is the prime 2251− 9. This prime
has been earlier suggested in [1]. The approach of multi-limb representation [2] of field elements is
adopted. We argue that using 9 limbs to represent elements of Fp suffices to ensure efficient arithmetic.
Alternative choices for the underlying field, such as F2255−19 and F(2127−1)2 have been considered and
we argue that compared to Fp these would lead to slower field arithmetic.

Choice of the Kummer line: Following previous suggestions [9, 3], we work in the square-only
setting. In this case, the parameters of the Kummer line are given by two integers a2 and b2. We provide
a Kummer line with a2 = 101 and b2 = 61 for which the corresponding elliptic curve satisfies the
necessary conditions listed in [5]. The Kummer line also has a base point [x : z] with x2 = 4 and z2 = 1.
The small values of the parameters and the base point are of great advantage in improving the efficiency
of scalar multiplication. Further details about Kummer line are provided later.

SIMD implementation: On Intel processors, it is possible to pack 4 64-bit words into a single
256-bit quantity and then use SIMD instructions to simultaneously work on the 4 64-bit words. Such
instructions have been used for implementing field arithmetic over F2127−1. We apply this approach to
carefully consider various aspects of field arithmetic over Fp. SIMD instructions allow the simultaneous
computation of 4 multiplications in Fp and 4 squarings in Fp. The use of SIMD instructions dovetails
very nicely with the scalar multiplication algorithm over the Kummer line as we explain below.

Scalar multiplication over the Kummer line: A constant time, ladder style algorithm is used. In
terms of operation count, each ladder step requires 2 field multiplications, 6 field squarings, 6 multipli-
cations by parameters and 2 multiplications by base point coordinates [30]. In contrast, Montgomery
ladder requires 4 field multiplications, 4 squarings, 1 multiplication by curve parameter and 1 multipli-
cation by a base point coordinate. This had led to Gaudry and Lubicz [30] commenting that Kummer
line can be advantageous provided that the advantage of trading off multiplications for squarings is not
offset by the extra multiplications by the parameters and the base point coordinates.

Our choice of the Kummer line ensures that the parameters and the base point coordinates are
indeed very small. This is not to suggest that the Kummer line is only suitable for fixed based point
scalar multiplication. The main advantage arises from the structure of the Kummer ladder vis-a-vis the
Montgomery ladder.

An example of the Kummer ladder is shown in Figure 1. Observe that there are 4 layers of 4
simultaneous multiplications. The first layer consists of 2 field multiplications and 2 squarings, while
the third layer consists of 4 field squarings. Using 256-bit SIMD instructions, the 2 multiplications and
the 2 squarings in the first layer can be computed simultaneously using an implementation of vectorised
field multiplication while the third layer can be computed using an implementation of vectorised field
squaring. The second layer consists only of multiplications by parameters and is computed using an
implementation of vectorised multiplication by constants. The fourth layer consists of two multiplications
by parameters and two multiplications by base point coordinates. For fixed base point, this layer can be
computed using a single vectorised multiplication by constants while for variable base point, this layer

3



requires a vectorised field multiplication. A major advantage of the Kummer ladder is that the packing
and unpacking into 256-bit quantities is done once each. Packing is done at the start of the scalar
multiplication and unpacking is done at the end. The entire scalar multiplication can be computed on
the packed vectorised quantities.

In contrast, the Montgomery ladder is shown in Figure 2 which has been reproduced from [2]. The
structure of this ladder is not as regular as the Kummer ladder. This makes it difficult to optimally
group together the multiplications for SIMD implementation. More importantly, it does not seem easy
to work only on the packed representation within a ladder. AVX2 based implementation of Curve25519
has been reported in [21]. This work, though, could group together only 2 multiplications/squarings. At
a forum3, Tung Chou comments that it would better to find 4 independent multiplications/squarings
and vectorise them. For the Kummer ladder shown in Figure 1 performing vectorisation of 4 independent
multiplications/squarings comes quite naturally. This shows that the Kummer ladder is better suited
for SIMD implementation than the Montgomery ladder.

H

x22 z22

H

x21 z21

x22 + z22 x22 − z22 x21 + z21 x22 − z22

∗ ∗ ∗ ∗B2 A2 B2 A2

∗ ∗ ∗ ∗

H H

∗ ∗ ∗ ∗z2 x2 b2 a2

∗ ∗ ∗ ∗

x24 z24 x23 z23

Fig. 1. Kummer ladder.

Another choice for implementation is the twisted Edwards form. Using explicit unified formulas for
addition leads to constant time scalar multiplication. A non-adjacent form (NAF) representation of the
scalar will require 1 doubling and 1/3 additions per bit. Using operation counts from [6] this comes
to 6 field mulitplications, 4.33 squarings and 0.33 multiplications by constants per bit; using faster
explicit formula from [33] requires 10.33 field multiplications and 1.33 multiplications by constants.
These operation counts are higher than either Kummer or Montgomery. Working with a windowed
NAF method along with a pre-computed table can provide substantial speed-up in the fixed base scalar

3 https://moderncrypto.org/mail-archive/curves/2015/000637.html

4



H

x1 z1

H

x2 z2

x1 + z1 x1 − z1 x2 + z2 x2 − z2

∗ ∗ ∗ ∗

∗ − + −

∗ ∗ ∗(A− 2)/4

+ ∗ x

∗

x3
z3 x4 z4

Fig. 2. Montgomery ladder.

multiplication. See [14] for details of this approach for Curve25519 and [32] for NIST P-256. For this
work, we focus only on ladder based algorithms which do not require a pre-computed table and works
for both fixed base and variable base scalar multiplications.

Implementation: We report an implementation of the particular Kummer line over F2251−9 on the
Haswell processor of Intel using AVX2 instructions. The implementation has been carried out using
Intel intrinsics. For variable base scalar multiplication, the timing that we obtain is competitive with
the reported timings for other genus one curves over prime order fields, specifically Curve25519 and
NIST P-256.

2 Background

There is a deep theory about Kummer varieties. We require only some very rudimentary facts which
are mentioned below. For details of the theory, we refer to [42, 34]. Cryptographic applications were
pointed out by Gaudry [28] for genus two and Gaudry and Lubicz [30] for genus one (and also for genus
two over characteristic two fields). See also [42, 23, 22] for arithmetic on Kummer surface associated to
genus two curves.

Let Fq be the finite field consisting of q elements having characteristic not equal to two.

2.1 Theta Functions

Let ϑ1, ϑ2, Θ1, Θ2 : Fq → Fq be functions such that the following identities hold:

2Θ1(w1 + w2)Θ1(w1 − w2) = ϑ1(w1)ϑ1(w2) + ϑ2(w1)ϑ2(w2);
2Θ2(w1 + w2)Θ2(w1 − w2) = ϑ1(w1)ϑ1(w2)− ϑ2(w1)ϑ2(w2);

(1)

5



ϑ1(w1 + w2)ϑ1(w1 − w2) = Θ1(2w1)Θ1(2w2) +Θ2(2w1)Θ2(2w2);
ϑ2(w1 + w2)ϑ2(w1 − w2) = Θ1(2w1)Θ1(2w2)−Θ2(2w1)Θ2(2w2).

(2)

Putting w1 = w2 = w, we obtain

2Θ1(2w)Θ1(0) = ϑ1(w)2 + ϑ2(w)2;
2Θ2(2w)Θ2(0) = ϑ1(w)2 − ϑ2(w)2;

(3)

ϑ1(2w)ϑ1(0) = Θ1(2w)2 +Θ2(2w)2;
ϑ2(2w)ϑ2(0) = Θ1(2w)2 −Θ2(2w)2.

(4)

Putting w = 0 in (3), we obtain

2Θ1(0)2 = ϑ1(0)2 + ϑ2(0)2;
2Θ2(0)2 = ϑ1(0)2 − ϑ2(0)2.

(5)

Let

a = ϑ1(0), b = ϑ2(0), A = Θ1(0) and B = Θ2(0).

Then from (5) we obtain

A2 = (a2 + b2)/2 and B2 = (a2 − b2)/2.

Assume that the values a and b are known and hence the values of A2 and B2 are also known. Let
P1(Fq) denote the projective line over Fq. Consider the map

ϕ : Fq → P1(Fq) given by ϕ(w) = [ϑ1(w) : ϑ2(w)]. (6)

Suppose that ϕ(w) = [ϑ1(w) : ϑ2(w)] is known for some w ∈ Fq. Using (3) it is possible to compute
Θ1(2w) and Θ2(2w) and then using (4) it is possible to compute ϑ1(2w) and ϑ2(2w). So, from ϕ(w) it
is possible to compute ϕ(2w) = [ϑ1(2w) : ϑ2(2w)] without knowing the value of w.

Suppose that ϕ(w1) = [ϑ1(w1) : ϑ2(w1)] and ϕ(w2) = [ϑ1(w2) : ϑ2(w2)] are known for some w1, w2 ∈
Fq. Using (3), it is possible to obtain Θ1(2w1), Θ1(2w2), Θ2(2w1) and Θ2(2w2). Then (2) allows the
computation of ϑ1(w1 +w2)ϑ1(w1−w2) and ϑ2(w1 +w2)ϑ2(w1−w2). Further, if ϕ(w1−w2) = [ϑ1(w1−
w2) : ϑ2(w1 − w2)] is known, then it is possible to obtain ϕ(w1 + w2) = [ϑ1(w1 + w2) : ϑ2(w1 + w2)]
without knowing the values of w1 and w2.

Remark: We have not provided the definitions of the functions ϑ1, ϑ2, Θ1 and Θ2. As a result the
identities given in (1) and (2) appear to come out of nowhere. There are, in fact, explicit definitions of
ϑ1 and ϑ2 as maps from C to C from which the functions Θ1 and Θ2 are defined. Given these definitions,
the identities in (1) and (2) can be proved to hold over C. One can refer to the Lefschetz principle to
argue that the identities also hold over Fq. For the present work, only the identities are required and
how they have been obtained are not important.

2.2 Kummer Line

Given a = ϑ1(0) 6= 0 and b = ϑ2(0) 6= 0, the image of Fq under ϕ is the Kummer line Ka,b. The task
of computing ϕ(2w) from ϕ(w) is called doubling in Ka,b and the task of computing ϕ(w1 + w2) from
ϕ(w1), ϕ(w2) and ϕ(w1 − w2) is called differential addition in Ka,b. Doubling and differential addition
are completely defined by the values of a and b.

For a point R = ϕ(w) in Ka,b, let dbl(R) denote the point ϕ(2w) ∈ Ka,b. For points R1 = ϕ(w1),
R2 = ϕ(w2) and S = ϕ(w1 − w2), let diffAdd(R1, R2, S) denote the point ϕ(w1 + w2). The discussion
given above shows that it is possible to compute dbl(R) and diffAdd(R1, R2, S).

6



Let P = ϕ(w) be a point on Ka,b and n ≥ 1 be a positive integer. The scalar multiplication of P
by n, denoted as nP , is the point ϕ(nw) ∈ Ka,b. Using doubling and pseudo-addition, it is possible to
compute nP from P without actually knowing w. This is done using the ladder algorithm shown in
Table 2. The input to the first ladder step are the squared coordinates of (P, 2P ). Suppose, at the i-th

scalarMult(P, n)
input: P ∈ Ka,b;

`-bit scalar n = (1, n`−2, . . . , n0);
output: nP ;

set R = P and S = dbl(P );
for i = `− 2, `− 3, . . . , 0 do

(R,S) = ladder(R,S, ni);
return R.

ladder(R,S, b)
if (b = 0)

S = diffAdd(R,S, P );
R = dbl(R);

else
R = diffAdd(R,S, P );
S = dbl(S);

return (R,S).

Table 2. Scalar multiplication using a ladder.

iteration, the input to the ladder step corresponds to (kP, (k+ 1)P ). If ni = 0, then the output consists
of the squared coordinates of the points (2kP, (2k + 1)P ) and if ni = 1, then the output consists of the
squared coordinates of ((2k + 1)P, (2k + 2)P ).

2.3 Legendre Form Elliptic Curve

Let E be an elliptic curve and σ : E → E be the automorphism which maps a point of E to its inverse,
i.e., for (a, b) ∈ E, σ(a, b) = (a,−b). The Kummer line associated with E is the image of E/σ under the
map ϕ defined in (6). In fact, the map ϕ provides an embedding of E/σ into P1(Fq).

For µ ∈ Fq, let

Eµ : Y 2 = X(X − 1)(X − µ) (7)

be an elliptic curve in the Legendre form. Let Ka,b be a Kummer line such that

µ =
a4

a4 − b4
. (8)

An explicit map ψ : Ka,b → Eµ/σ has been given in [30]. The corrected version [29] of this map is as
follows. Let [x : ±z] represent the two points [x : z] and [x : −z] on Ka,b associated to Eµ. These two
points map to the same point on Eµ.

ψ([x : ±z]) =

{
∞ if [x : z] = [b : ±a];(

a2x2

a2x2−b2z2 , . . .
)

otherwise.
(9)

Given X = a2x2/(a2x2−b2z2), it is possible to find ±Y from the equation of E, though it is not possible
to uniquely determine the sign of Y . The inverse ψ−1 maps an element of Eµ/σ to Ka,b. Since ψ maps
two elements of Ka,b to a single point of Eµ/σ, the inverse map ψ−1 does not uniquely determine the
preimage. Let P ∈ Eµ/σ. Then either P = (X, . . .) or P =∞. Then

ψ−1(P) =


[b : ±a] if P =∞;[√

b2X
a2(X−1) : ±1

]
if P = (X, . . .) and X 6= 1;

[1 : 0] if P = (X, . . .) and X = 1.

(10)

Notation: We will use upper-case bold face letters to denote points of Eµ and upper case normal letters
to denote points of Ka,b.

7



Consistency of scalar multiplication: Let Ka,b and Eµ be such that (8) holds. Suppose that P is
a point on Ka,b. It is possible to compute nP using the laddering algorithm described in Section 2.2.
Using ψ it is possible to map P to a point in Eµ/σ and perform scalar multiplication in Eµ. Consistency
means that doing the computation in Ka,b and in Eµ should give rise to the same result. The map ψ by
itself does not guarantee this. It is required to compose ψ with addition by a point of order two in Eµ.
The details are as follows.

Let T be a point of order 2 on Eµ. Let ψ(P ) = P; Q = P + T; Qn = nQ; Pn = nP ; ψ(Pn) = Pn;
Pn + T = Q′n. Then Qn = Q′n. Here nQ denotes scalar multiplication in Eµ.

Conversely, let Q be a point on Eµ; Qn = nQ; P = Q−T; P = ψ−1(P); Pn = nP ; Pn = Qn −T;
P ′n = ψ−1(Pn). Note that ψ−1 does not return a unique element of Ka,b and one chooses the sign
arbitrarily. As a result, Pn and P ′n are equal only up to the sign. Since T is a point of order 2, the
operation −T is the same as the operation +T.

Figure 3 depicts the above statements in pictorial form. Formal proofs of the above statements are
very messy to obtain. On the other hand, using the explicit formulas, it is easy to verify these relations
using a software such as Magma.

P P Q

Pn Pn Qn

∗n

ψ +T

∗n

ψ +T

Q P P

Qn Pn Pn

∗n

−T ψ−1

∗n

−T ψ−1

Fig. 3. Consistency of scalar multiplications on Eµ and Ka,b.

The points (0, 0), (1, 0) and (µ, 0) are the three points of order 2 on Eµ. For concreteness, we fix
T = (0, 0).

Relation between the discrete logarithm problems: Suppose the Kummer line Ka,b is chosen
such that the corresponding curve Eµ has a cyclic subgroup G which can be used for cryptographic
purposes. So, in particular, the order of G is a prime. Let G = 〈P〉.

Given Q ∈ G, the discrete logarithm problem in G is to obtain an n such that Q = nP. This
problem can be reduced to computing discrete logarithm problem in Ka,b. Map the point P (resp. Q) to
P ∈ Ka,b (resp. Q ∈ Ka,b) using translation by T followed by ψ−1 as described above. Find n such that
Q = nP and return n. Similarly, the discrete logarithm problem in Ka,b can be reduced to the discrete
logarithm problem in Eµ.

The above shows the equivalence of the hardness of solving the discrete logarithm problem in either
Eµ or in Ka,b. So, if Eµ is a well chosen curve such that the discrete logarithm problem in Eµ is
conjectured to be hard, then the discrete logarithm problem in the associated Ka,b will be equally hard.
This fact forms the basis for using Kummer line for cryptographic applications.

2.4 Recovering y-Coordinate

Suppose Q = (XQ, YQ),R = (XR, YR),S = (XS , YS) are points in Eµ such that ∞ 6= Q = R − S,
Q 6= R and Q is not a point of order 2. The last two conditions imply that XQ 6= XR and YQ 6= 0. So,
it is allowed to divide by both (XR −XQ) and YQ.

Suppose that XQ, YQ, XR and XS are known. We show that YR is uniquely determined and can be
computed from these four quantities. This is based on a similar calculation in [41, 12]. For the genus
two case, this problem has been addressed in [15].

8



Consider the chord-and-tangent rule for addition on Eµ. The points R and −S determine a line
Y = mX+ c. This line intersects the curve Eµ at the point −Q = (XQ,−YQ). So, m can be determined
as m = (YR + YQ)/(XR −XQ). Substituting Y = mX + c into the equation of the curve we obtain:

X3 − (µ+ 1 +m2)X2 + (µ− 2mc)X − c2 = 0.

Since XQ, XR, XS are roots of this equation, we have

XQ +XR +XS = µ+ 1 +m2.

Using the value for m = (YR + YQ)/(XR −XQ), we have

(YR + YQ)2 = (XR −XQ)2(XQ +XR +XS − µ− 1).

Write f(X) = X(X − 1)(X − µ). Then Y 2
R = f(XR) and we obtain

YR =
1

2YQ

(
(XR −XQ)2(XQ +XR +XS − µ− 1)− f(XR)− Y 2

Q

)
.

3 Square Only Setting

Let P = [x : z] be a point in Ka,b. Doubling computes the point 2P = [x3 : z3]. Suppose w ∈ Fq such
that x = ϑ1(w), z = ϑ2(w), x3 = ϑ1(2w) and z3 = ϑ2(2w). As discussed in Section 2.1, computation of
x3 and z3 can be done using the theta identities. Looking at these identities carefully, one notices that
the computation would be more uniform if x23 and z23 are computed from x2 and z2. We provide the
details. For the case of genus two, this approach was advocated in [9, 3].

Using (3), we obtain

Θ1(2w)2 =
(x2 + z2)2

4A2
; Θ2(2w)2 =

(x2 − z2)2

4B2
.

Then from (4)

x′23 = ϑ1(2w)2 =
(Θ1(2w)2 +Θ2(2w)2)2

a2
; z′23 = ϑ2(2w)2 =

(Θ1(2w)2 −Θ2(2w)2)2

b2
.

For [x : z] ∈ P1(Fq), [x : z] = [λx : λz] for any non-zero λ. Using this, we have

[x′23 : z′23 ] =

[
(Θ1(2w)2 +Θ2(2w)2)2

a2
:

(Θ1(2w)2 −Θ2(2w)2)2

b2

]
=
[
b2(Θ1(2w)2 +Θ2(2w)2)2 : a2(Θ1(2w)2 −Θ2(2w)2)2

]
=

[
b2
(

(x2 + z2)2

4A2
+

(x2 − z2)2

4B2

)2

: a2
(

(x2 + z2)2

4A2
− (x2 − z2)2

4B2

)2
]

=
[
b2
(
B2(x2 + z2)2 +A2(x2 − z2)2

)2
: a2

(
B2(x2 + z2)2 −A2(x2 − z2)2

)2]
= [x23 : z23 ].

So, it is sufficient to compute [x23 : z23 ]. This computation is shown as Algorithm sdbl in Table 3. The
requirement is to double the point P = [x : z] and obtain the point 2P = [x3 : z3]. Instead the above
procedure takes input (x2, z2) and returns (x23, z

2
3).

9



sdbl(x2, z2)
s0 = B2(x2 + z2)2;
t0 = A2(x2 − z2)2;
x23 = b2(s0 + t0)2;
z23 = a2(s0 − t0)2;
return (x23, z

2
3).

sdiffAdd(x21, z
2
1 , x

2
2, z

2
2 , x

2, z2)
s0 = B2(x21 + z21)(x22 + z22);
t0 = A2(x21 − z21)(x22 − z22);
x23 = z2(s0 + t0)2;
z23 = x2(s0 − t0)2;
return (x23, z

2
3).

Table 3. Double and differential addition in the square-only setting.

For differential addition, one starts with points P1 = [x1 : z1], P2 = [x2 : z2] and the difference
P1 − P2 = P = [x : z] in Ka,b and computes P1 + P2 = [x3 : z3]. The above idea of square only
computation extends to differential addition. Given x21, z

2
1 , x

2
2, z

2
2 , x

2 and z2, the computation of x23 and
z23 is shown as Algorithm sdiffAdd in Table 3.

Suppose P = [x1 : z1] and the requirement is to compute [xn : zn] where nP = [xn : zn]. The square
only approach starts with x21, z

2
1 and computes x2n and z2n. This is achieved by replacing dbl and diffAdd

in Algorithm scalarMult with the sdbl and sdiffAdd respectively.
Let the `-bit binary expansion of n be n = (1, n`−2, . . . , n0). Algorithm scalarMult goes through `−1

ladder steps. Each ladder step takes the squared coordinates of two points as input and provides as
output the squared coordinates of two other points.

A conceptual description of a ladder step is given in Figure 1. For u, v ∈ Fq, the Hadamard transform
H(u, v) is defined to be (u + v, u − v). Suppose the squared coordinates of the two input points to a
ladder step are (x21, z

2
1) and (x22, z

2
2). Also assume that the double of the point (x21, z

2
1), and addition of

the points (x21, z
2
1) and (x22, z

2
2) are required to be performed. Then the ladder produces the (x23, z

2
3) and

(x24, z
2
4), where (x23, z

2
3) = sdbl(x21, z

2
1) and (x24, z

2
4) = sdiffAdd(x21, z

2
1 , x

2
2, z

2
2).

Redefinition of ψ and ψ−1 In the square only setting the pair of inputs (x2, z2) represents the two
points [x : ±z] ∈ P1(Fq). We redefine the maps ψ and ψ−1 to reflect this change. In particular, the
redefined ψ takes as input (x2, z2) and returns the x-coordinate of the corresponding point on Eµ while
the redefined ψ−1(P) returns (x2, z2) where [x : ±z] are the points in P1(Fq) corresponding to P.

ψ(x2, z2) =

{
∞ if (x2, z2) = (b2, a2);(

a2x2

a2x2−b2z2 , . . .
)

otherwise.
(11)

ψ−1(P) =


(b2, a2) if P =∞;(

b2X
a2(X−1) , 1

)
if P = (X, . . .) and X 6= 1;

(1, 0) if P = (X, . . .) and X = 1.

(12)

3.1 Scalar Multiplication in Eµ

Let Eµ be a Legendre form curve and Ka2,b2 be a Kummer line in square only setting. Suppose G =
〈P = (XP , YP )〉 is a cryptographically relevant subgroup of Eµ. Further, suppose a point P = (x2, z2)
in Ka2,b2 is known such that ψ(P ) + T = (XP , . . .). The point P is the base point on Ka2,b2 .

Let n be a non-negative integer which is less than the order of G. We show how to compute the scalar
multiplication nP via the laddering algorithm on the Kummer line Ka2,b2 . First, the ladder algorithm is
applied to the input P and n. This results in a pair of points Q and R, where Q = nP and R = (n+1)P
so that Q−R = −P . The square only ladder algorithm will return (x2Q, z

2
Q) to represent Q and (x2R, z

2
R)

to represent R.

10



Let Q = ψ(Q) + T and R = ψ(R) + T, where as before T = (0, 0) is a point of order 2 on Eµ.
The consistency of scalar multiplication have been described in Section 2.3. This extends easily to the
square only setting. By the consistency of scalar multiplication, we have Q = nP.

Consider Q = ψ(Q) + T. Let αQ = a2x2Q and βQ = a2x2Q − b2z2Q so that ψ(Q) = (αQ/βQ, . . .).
Writing Q = (XQ, YQ) and applying the addition rule on Eµ we obtain XQ = γQ/δQ where

γQ = µβQ = µ(a2x2Q − b2z2Q);

δQ = αQ = a2x2Q.

Similarly, we obtain R = (XR, . . .) where XR = γR/δR and γR, δR given by the above expression with
Q replaced by R.

At this point, we have P = (XP , YP ), Q = (XQ, YQ) and R = (XR, . . .) where Q −R = −P. The
y-coordinate YQ of Q can be recovered as discussed in Section 2.4. This gives

YQ =
−1

2YP

(
(XQ −XP )2(XP +XQ +XR − µ− 1)− f(XQ)− Y 2

P

)
= − 1

2YP

((
γQ
δQ
−XP

)2(
XP +

γQ
δQ

+
γR
δR
− µ− 1

)
− f

(
γQ
δQ

)
− Y 2

P

)
=

−1

2YP δ3QδR

(
(γQ −XP δQ)2 ((XP − µ− 1)δQδR + γQδR + γRδQ)− γQδR(γQ − δQ)(γQ − µδQ)− Y 2

P δ
3
QδR

)
.

This shows that given n it is possible to compute Q = (XQ, YQ) such that Q = nP.
It is required to compute both YQ and XQ. Using Montgomery’s trick, the two inversions required for

computing YQ and XQ can be done using one inversion and 3 multiplications. So, the entire computation
of XQ and YQ from Q,R and P can be done using one inversion and a few multiplications in Fp. The
main time consuming step will be that of the inversion. If projective coordinates are used to represent
the point of Eµ, then the field inversion can be avoided.

4 Choice of the Kummer Line

We will work in the square only setting. This means we will only be interested in the values a2 and b2

and the values a and b will not be required at all. In view of this, for the rest of the paper, we will
abuse notation and write Ka2,b2 to denote the Kummer line where ϑ1(0) = a and ϑ2(0) = b. Extending
to points, we will only require the squared coordinates of the points. So, if [x : z] is the base point, we
will require x2 and z2.

Let p be the prime 2251−9. This prime has been earlier suggested for use in elliptic curve cryptology
in [1]. Below we mention some advantages of using this prime.

Let a, b ∈ Zp be such that a2 = 101 mod p and b2 = 61 mod p. We consider the Kummer line K101,61

in the square-only setting. The other two important theta constants are A2 = (a2 + b2)/2 = 81 mod p
and B2 = (a2 − b2)/2 = 20 mod p.

Let Eµ be the Legendre form curve on Fp defined by the following equation.

Eµ : y2 = x(x− 1)(x− µ) (13)

where,

µ = 1206726007146220574413275938482709147718539915424620268563212958338639434566.

11



The Kummer Line K101,61 corresponds to the curve Eµ, where it is easy to verify that µ = 1012

1012−612 mod

p. The point P = (x2, z2) = (4, 1) is on K101,61 and for fixed-base scalar multiplications, we have used
this point as the base point. Let P1 and P2 be the two points ψ(P ) + T with T = (0, 0). Then

P1 = (1938104715086878786971252875284064217697418978000925866319190826077664422729,

3308591561905352439625603254720660762583625133829578929908408291891344419733)

P2 = (1938104715086878786971252875284064217697418978000925866319190826077664422729,

309911226760778667360990026800836357831061886971688696324641208355940881506).

Any one of these can be used as a base point for scalar multiplication in Eµ.

4.1 Procedure for Selecting K101,61

Our target was 128-bit security level. The selection procedure for the K101,61 was an exhaustive search
over certain range of parameters. The search terminates when an underlying Legendre form curve
appropriate conjectured security is obtained. The actual search procedure is the following.

Start with α = 1 and increase α by one at each iteration; vary β from 1 to α; set a2 = α and b2 = β
and check whether the corresponding Kummer line Ka2,b2 has the desired conjectured security level.
This checking was done on the associated curve Eµ. The choice (a2 = 101, b2 = 61) is the first pair of
values for which the desired security parameters are achieved.

The checking of the security of the curve Eµ associated with the Kummer line Ka2,b2 has been done
based on the criterion provided by [5]. The relevant security parameters associated with the K101,61 are
provided in Table 4. Based on Table 4 and the recommendations in [5], we conclude that K101,61 is a

Table 4. Security Parameters of the Kummer Line K101,61

` (sz of max prime subgroup) 4523128485832663883733241601901871400546714350314447\
79053239516557584630053

cofactor 8

rho security 123.83 bits

embedding degree = `−1
7

646161212261809126247605943128838771506673478616349\
68436177073793940661436

complex multiplication −139594264541126456366502846787211587344503522447547\
field discriminant (≈ 2246.3) 43385315147073016860219100

= −1× 59× 83× 15948101111× 178742772691495830118613\
5112275754335637706122668624995942473

`′ (sz of max prime subgroup 4523128485832663883733241601901871400490003201688721\
of the non-trivial twist) 27505022858504236695257

cofactor of the non-trivial twist 8

twist rho security 123.83 bits

twist embedding degree = `′ − 1 4523128485832663883733241601901871400490003201688721\
27505022858504236695256

joint rho security 122.33 bits

good choice for 128-bit security level.

12



4.2 Appropriateness of the Prime 2251 − 9

The prime p is a generalised Mersenne prime of the form 2251 + δ with δ = −9. The elements of Fp can
be represented using 9 limbs so that all arithmetic can be carried out without any overflow. This issue
is explained below in more details.

One alternative prime is 2255 − 19 which has been used in the widely popular Curve25519. For this
prime, however, a 10-limb representation is required to ensure no-overflow arithmetic. The increase from
9 limbs to 10 limbs will significantly degrade the performance of field multiplication and squaring and
hence of the scalar multiplication.

In our experiments, using other primes (such as the NIST primes), we were able to find a few other
Kummer lines having proper security parameters, though we did not find any suitable Kummer line for
the prime 2255−19. For all these other Kummer lines, however, the line parameters and the coordinates
of the base point are large. So, we did not consider them.

5 Field Arithmetic

For the target Kummer line K101,61, the underlying field is Fp with p = 2251 − 9. All Kummer line
operations are ultimately built from field operations. So, it is important to have fast field arithmetic to
ensure fast Kummer line computation. We use the approach of limb-wise representation and arithmetic
for elements of Fp. This approach has been earlier used in [2, 4]. In the rest of this section, we provide
the details of the approach for the specific prime that we consider.

5.1 Representation of Field Elements

A general element r of Fp with p = 2251− 9 requires 251 bits to be represented. Consider these 251 bits
to be split into 9 parts as (r8, r7, r6, r5, r4, r3, r2, r1, r0), where for 0 ≤ i ≤ 7, ri is 28 bits long and r8 is
27 bits long. Following previous terminology, we call each part to be a limb. So, a general element r of
Fp can be written as follows:

r = r8 · 2224 + r7 · 2196 + r6 · 2168 + r5 · 2140 + r4 · 2112 + r3 · 284 + r2 · 256 + r1 · 228 + r0. (14)

In the above, r is a 251-bit integer and so can be greater than or equal to p. The elements of Fp are
actually obtained as r mod p. We instead will work directly with 251-bit integers. Doing this gives rise to
non-unique representations of the elements 0, . . . , 8 in Fp which are also represented as 2251−9, . . . , 2251−
1 respectively. While working with “random” 251-bit integers, the probability of encountering one of
the integers 2251 − 9, . . . , 2251 − 1 is at most 9/(2251 − 9) which is negligible. Importantly, working with
the non-unique representations does not cause any of the computations to become incorrect. Further,
if desired, at the end of all the computations, it is easy to check whether the obtained result is one of
2251 − 9, . . . , 2251 − 1 and if so, to replace it by the corresponding value from 0, . . . , 8. In view of this,
for the rest of the work, we will work with 251-bit integers as if they are the elements of Fp.

Let

θ = 228. (15)

A polynomial A(θ) in θ with integer coefficients will be called a proper polynomial if A(θ) is of degree
at most 8, i.e., A(θ) = a0 + a1θ + · · ·+ a8θ

8 and further, a0, . . . , a7 < 228 and a8 < 227. Clearly, if A(θ)
is a proper polynomial, then A(θ) represents an element of Fp in the form (14).

13



The representation of the prime p will be denoted by P(θ) where

P(θ) =
∑8

i=0 piθ
i with

p0 = 228 − 9;
pi = 228 − 1; i = 1, . . . , 7; and
p8 = 227 − 1.

(16)

The coefficients of a proper polynomial will be represented using 64-bit words. The product of
coefficients of two proper polynomials can be computed using a 32-bit multiplication and will also fit
in a 64-bit word. In the following sections, we show that all the arithmetic on coefficients that will
be required will result in values that fit into 64-bit words. Arithmetic in Fp will take as input proper
polynomials and provide as output the result which is also a proper polynomial.

5.2 Reduction

Using p = 2251 − 9, we have

2252 = 2× 2251 = 2(2251 − 9) + 18 ≡ 18 mod p.

So, multiplying by 2252 modulo p is the same as multiplying by 18 modulo p. Recall that we have set
θ = 228 and so 2252 = θ9 which implies that θ9 mod p = 18.

Suppose C(θ) =
∑8

i=0 ciθ
i is a polynomial such that for some m ≤ 64, ci < 2m for all i = 0, . . . , 7.

If m > 28, then C(θ) is not a proper polynomial. We describe a method to obtain a proper polynomial
D(θ) such that D(θ) ≡ C(θ) mod p. This procedure will be called the reduction step.

The reduction is done iteratively. Let c
(0)
i = ci for i = 0, . . . , 8 and C(0)(θ) =

∑8
i=0 c

(0)
i θi. Set

t
(1)
0 = 0. The reduction will successively construction polynomials C(1)(x), C(2)(x), . . .. The construction

of C(1)(x) from C(0)(x) will be as follows.

The idea is to iteratively compute c
(1)
0 , . . . , c

(1)
7 < 228, c

(1)
8 < 227; t

(1)
1 , . . . , t

(1)
8 < 2m−28 and t

(2)
0 <

2m−27 in the following manner. Let lsbi(·) denote the i least significant bits of the argument.

– Set t
(1)
0 = 0.

– For i = 0, . . . , 7, let c
(1)
i = lsb28(c

(0)
i + t

(1)
i ) and t

(1)
i+1 be such that c

(0)
i + t

(1)
i = c

(1)
i + 228t

(1)
i+1.

– Let c
(1)
8 = lsb27(c

(0)
8 + t

(1)
8 ) and t

(2)
0 be such that c

(0)
8 + t

(1)
8 = c

(1)
8 + 227t

(2)
0 .

– Set c
(1)
0 ← c

(1)
0 + 18t

(2)
0 and

C(1)(θ) = c
(1)
0 + c

(1)
1 θ + · · ·+ c

(1)
8 θ8.

The computation can be written out more explicitly in the following manner.

C(0)(θ) = c
(0)
0 + c

(0)
1 θ + · · ·+ c

(0)
8 θ8

= (c
(1)
0 + t

(1)
1 θ) + c

(0)
1 θ + · · ·+ c

(0)
8 θ8

= c
(1)
0 + (t

(1)
1 + c

(0)
1 )θ + · · ·+ c

(0)
8 θ8

= c
(1)
0 + ((c

(1)
1 + t

(1)
2 θ))θ + · · ·+ c

(0)
8 θ8

= c
(1)
0 + c

(1)
1 θ + (t

(1)
2 + c

(0)
2 )θ2 + · · ·+ c

(0)
8 θ8

· · · ·
= c

(1)
0 + c

(1)
1 θ + c

(1)
2 θ2 + · · ·+ (t

(1)
8 + c

(0)
8 )θ8

= c
(1)
0 + c

(1)
1 θ + c

(1)
2 θ2 + · · ·+ (c

(1)
8 + t

(2)
0 θ)θ8

14



= c
(1)
0 + c

(1)
1 θ + c

(1)
2 θ2 + · · ·+ c

(1)
8 θ8 + t

(2)
0 θ9

≡ (c
(1)
0 + 18t

(2)
0 ) + c

(1)
1 θ + c

(1)
2 θ2 + · · ·+ c

(1)
8 θ8 (mod p)

= C(1)(θ).

The last but one step uses θ9 ≡ 18 mod p.

By construction, t
(1)
1 , . . . , t

(1)
8 are all less than 2m−28 and t

(2)
0 < 2m−27. In the above, we assume that

t
(1)
i + c

(0)
i < 264 for i = 1, . . . , 8 and 228 + 18t

(2)
0 < 264 (17)

so that the additions can be carried out using 64-bit arithmetic without any overflow. The second

condition is required in the computation of c
(1)
0 + 18t

(2)
0 . Later, in the context where the reduction

procedure is applied, we will see that the assumption holds.

In the above computation, c
(1)
0 is first obtained as the 28 least significant bits of c

(0)
0 and then is

updated as c
(1)
0 ← c

(1)
0 + 18t

(2)
0 . For C(1)(θ) we have c

(1)
0 < 228 + 18 × 2m−27, c

(1)
1 , . . . , c

(1)
7 < 228 and

c
(1)
8 < 227. If it turns out that c

(1)
0 is actually less than 228, then C(1)(θ) is a proper polynomial and

the reduction stops. Otherwise, further reduction is required. A procedure similar to the one used for
obtaining C(1)(θ) from C(0)(θ) is used to obtain a polynomial C(2)(θ) from C(1)(θ). If C(2)(θ) is proper,
then the reduction stops; otherwise, it continues to obtain C(3)(θ), . . . until a proper polynomial is
obtained. The complete algorithm is described below.

reduce(C(θ))
input: C(θ) = c0 + c1θ + · · ·+ c8θ

8, ci < 2m, i = 0, . . . , 8;

output: a proper polynomial D(θ) such that D(θ) ≡ C(0)(θ) mod p;

1. set C(0)(θ) = C(θ), i.e., c
(0)
i = ci for i = 0, . . . , 8

1. set k = 0;
2. repeat
3. k ← k + 1;

4. set t
(k)
0 = 0;

5. for i = 0, . . . , 7 do

6. c
(k)
i ← lsb28(c

(k−1)
i + t

(k)
i ); let t

(k)
i+1 be such that c

(k−1)
i + t

(k)
i = c

(k)
i + 228t

(k)
i+1;

7. end for;

8. c
(k)
8 ← lsb27(c

(k−1)
8 + t

(k)
8 ); let t

(k+1)
0 be such that c

(k−1)
8 + t

(k)
8 = c

(k)
8 + 227t

(k+1)
0 ;

9. set c
(k)
0 ← c

(k)
0 + 18t

(k+1)
0 ;

10. set C(k)(θ) = c
(k)
0 + c

(k)
1 θ + · · ·+ c

(k)
8 θ8;

11. until C(k)(θ) is proper;

12. return C(k)(θ).

The polynomials constructed in Step 10 are successively C(1)(θ), C(2)(θ), . . ..
To argue about termination, suppose m = 64 which is the maximum possible value of m. (If m < 64,

then termination can happen sooner.) We have already argued that c
(1)
0 is less than 228 +18×237 < 242.

From Step 6, t
(2)
1 is given by the 14 most significant bits of c

(1)
0 and so t

(2)
1 < 214. As a result, c

(1)
1 +t

(2)
1 <

228 + 214 < 229. Writing c
(1)
1 + t

(2)
1 as c

(2)
1 + t

(2)
2 228 where c

(2)
1 is given by the 28 least significant bits of

c
(1)
1 + t

(2)
1 shows that t

(2)
2 < 2. We already have that c

(1)
2 < 228 and so c

(1)
2 + t

(2)
2 ≤ 228 and as a result

t
(2)
3 < 2. Continuing, it can be argued that t

(2)
i < 2 for i = 2, . . . , 8 and the value of t

(3)
0 computed in

Step 8 is also less than 2.

If for any i ∈ {2, . . . , 8}, t(2)i turns out to be zero, or, t
(3)
0 turns out to be zero, then there will be

no further carries and the algorithm can immediately stop. The resulting C(2)(θ) is proper. The only

15



way in which t
(2)
3 can be 1 is if c

(1)
2 = 228 − 1; similarly, for i = 4, . . . , 8, the only way in which t

(2)
i can

be 1 is if c
(1)
i−1 = 228 − 1; and the only way in which the value of t

(3)
0 computed at Step 8 can be 1 is if

c
(1)
8 = 228 − 1.

Considering c
(1)
2 , . . . , c

(1)
8 to be random 28-bit integers, the probability of this event is 2−28×7 which

is negligible. So, with very high probability, C(2)(θ) is proper. In fact, with probability 1− 2−28, t
(2)
3 is

0 and the reduction process immediately stops. For a deterministic analysis, it can be argued that if
C(2)(θ) is not proper, then C(3)(θ) will certainly be proper. Since the chances of considering C(3)(θ) is
very low in practice, we omit the details of this analysis.

5.3 Field Addition

Let A(θ) =
∑8

i=0 aiθ
i and B(θ) =

∑8
i=0 biθ

i be two proper polynomials. Let C(θ) =
∑8

i=0 ciθ
i where

ci = ai+ bi for i = 0, . . . , 8. From the bounds on ai and bi, we have ci < 229−1 for i = 0, . . . , 7 and c8 <
228−1. The operation sum(A(θ), B(θ)) is defined to be D(θ) which is obtained as D(θ) = reduce(C(θ)).
During the computation of reduce(θ), the value of m used in Section 5.2 is 29.

5.4 Field Negation

Let A(θ) =
∑8

i=0 aiθ
i be a proper polynomial. We wish to compute −A(θ). By negate(A(θ)) we denote

T (θ) = 2P(θ)− A(θ). Reducing T (θ) modulo p gives the desired answer. Let T (θ) =
∑8

i=0 tiθ
i so that

ti = 2pi − ai.
From (16), 228 < 2pi < 229 for i = 0, . . . , 7 and 227 < 2p8 < 228. Since A(θ) is a proper polynomial,

from the bounds on the coefficients of proper polynomials, it follows that 2pi − ai is positive for i =
0, . . . , 8. This eliminates the situation in two’s complement subtraction, where the result can be negative.
Considering all values to be 64-bit quantities, the computation of ti is done in the following manner:
ti = ((264− 1)− ai) + (1 + 2pi) mod 264. The operation (264− 1)− ai is equivalent to taking the bitwise
complement of bi which is equivalent to 164 ⊕ ai.

Given the operation of negation, subtraction can be done by first negating the subtrahend and then
adding to the minuend followed by a reduction.

5.5 Multiplication by a Small Constant

Let A(θ) =
∑8

i=0 aiθ
i be a proper polynomial and c < 228 be a small positive integer. We will require c

to be only at most a 16-bit quantity. Note that c is also an element of Fp.
The operation C(A(θ), c) will denote the proper polynomial C(θ) obtained as follows: Compute

B(θ) =
∑8

i=0(cai)θ
i; and C(θ) = reduce(B(θ)).

5.6 Field Multiplication

Field multiplication in Fp is done by first performing an integer multiplication of two elements of Fp
followed by a reduction modulo p. The 9-limb representation of an element of Fp can be used to define
several strategies for integer multiplication.

Suppose that A(θ) =
∑8

i=0 aiθ
i and B(θ) =

∑8
i=0 biθ

i are proper polynomials representing two
elements of Fp. Let C(θ) be the result of the integer multiplication of A(θ) and B(θ). Then C(θ) can
be written as

C(θ) = c0 + c1θ + · · ·+ c16θ
16 (18)

16



where ct =
∑t

s=0 asbt−s with the convention that ai, bj is zero for i, j > 8. For s = 0, . . . , 8, the coefficient
c8±s is the sum of (9− s) products of the form aibj . Since ai, bj < 228, it follows that for s = 0, . . . , 8,

c8±s ≤ (9− s)(228 − 1)2 < 260. (19)

In particular, for t = 0, . . . , 16, each ct fits in a 64-bit word.

The result of the integer multiplication of A(θ) and B(θ) in Fp is C(θ). There are several strategies
for computing C(θ) from A(θ) and B(θ). These are considered below.

Schoolbook: This consists of 81 multiplications of the type aibj with i, j = 0, . . . , 8 and then adding up
the relevant products to obtain the ct’s. All the multiplications are independent and can be carried out in
parallel. There is no pre-processing involved before performing the multiplications. The post-processing
is required to add the desired products.

Karatsuba with 3-way split: Suppose we are required to multiply two polynomials of degrees at most
2 each. This requires a total of 9 multiplications of the coefficients of the polynomials. Using Karatsuba
with 3-way split, the number of multiplications can be reduced to 6 at the cost of some extra additions.
We provide more details.

Let a(x) = a0 + a1x + a2x
2 and b(x) = b0 + b1x + b2x

2 be two quadratic polynomials and we are
required to compute c(x) = a(x)b(x) =

∑4
i=0 cix

i. The 5 coefficients c0, . . . , c4 can be computed using
6 multiplications in the following manner:

s1 = (a0 + a1), s2 = (a1 + a2), s3 = (a0 + a2),
t1 = (b0 + b1), t2 = (b1 + b2), t3 = (b0 + b2),
m0 = a0b0, m1 = a1b1, m2 = a2b2, m3 = s1t1, m4 = s2t2, m5 = s3t3,
c0 = m0, c1 = m3 −m0 −m1, c2 = m5 −m0 −m2 +m1, c3 = m4 −m1 −m2, c4 = m2.

The 6 multiplications are independent and can be carried out in parallel, but, there is some pre-
processing required to prepare the inputs to the multiplications and also some post-processing of the
outputs of the multiplications to obtain the ci’s.

Consider now the task of multiplying the two polynomials A(θ) and B(θ) of degrees at most eight
each. The polynomials A(θ) and B(θ) can be written as A(θ) = A0(θ) +A1(θ)θ

3 +A2(θ)θ
6 and B(θ) =

B0(θ) +B1(θ)θ
3 +B2(θ)θ

6 where Ai(θ) and Bj(θ) are polynomials of degrees at most two. The product
is C(θ) = A(θ)B(θ) =

∑4
i=0Ci(θ)θ

3i. The Ci(θ)’s can be computed using 6 multiplications of quadratic
polynomials in a manner similar to the method described above. Further, each such product of two
quadratic polynomials can be computed using 6 multiplications in exactly the manner described above.
So, the complete product A(θ)B(θ) can be computed using a total of 36 32-bit multiplications. These
36 multiplications themselves can be made independent and computed in parallel, but, this requires
substantial amount of pre and post-processing.

Unbalanced Karatsuba: Two 9-coefficient polynomials can be multiplied by breaking each into a 4-
coefficient polynomial and a 5-coefficient polynomial. Using Karatsuba at the top level will require the
multiplication of one 4-coefficient polynomial and two 5-coefficient polynomials. Again using Karatsuba
for these multiplications will require 9 32-bit multiplications for multiplying the 4-coefficient polynomials
and 16 32-bit multiplications for multiplying each pair of 5-coefficient polynomials. So, the two 9-
coefficient polynomials can be multiplied using a total of 41 32-bit multiplications. The pre and post-
processing for this case will be lower than that of Karatsuba with 3-way split, but, the overhead is still
quite high.

17



Hybrid Karatsuba: Suppose a(x) = a0 + a1x and b(x) = b0 + b1x are two polynomials and c(x) =
a(x)b(x) = c0 + c1x+ c2x

2 is their product. The basic Karatsuba algorithm computes c0, c1 and c2 using
3 multiplications as c0 = a0b0, c2 = a1b1 and c1 = (a0 + a1)(b0 + b1)− c0 − c2.

Given polynomials A(θ) and B(θ) of degrees at most 8 each, write A(θ) = a8θ
8 + S(θ) and B(θ) =

b8θ
8 + T (θ) where S(θ) and T (θ) are of degrees at most 7 each. The product C(θ) = A(θ)B(θ) can be

written as

C(θ) = A(θ)B(θ) = a8b8θ
16 + (a8T (θ) + b8S(θ))θ8 + S(θ)T (θ). (20)

Computing C(θ) in this manner requires 17 32-bit multiplications (one to compute a8b8; 8 to compute
a8T (θ); 8 to compute b8S(θ)) plus the multiplications to compute S(θ)T (θ).

The product of the two degree 7 polynomials S(θ) and T (θ) can be computed using three recursive
applications of Karatsuba’s algorithm using 27 32-bit multiplications. Write S(θ) = S0(θ)+S1(θ)θ

4 and
T (θ) = T0(θ) + T1(θ)θ

4, where Si(θ) and Tj(θ) are polynomials of degrees at most 4 each. The product

S(θ)T (θ)

= S0(θ)T0(θ) + (S0(θ)T1(θ) + S1(θ)T0(θ))θ
4 + S1(θ)T1(θ)θ

8

= S0(θ)T0(θ) + ((S0(θ) + S1(θ))(T0(θ) + T1(θ))− S0(θ)T0(θ)− S1(θ)T1(θ))θ4 + S1(θ)T1(θ)θ
8

can be computed using three multiplications of degree 4 polynomials. Each of the multiplications of
degree 4 polynomials can be broken down into 3 multiplications of degree 2 polynomials and further,
each of the multiplications of degree 2 polynomials can be computed using 3 multiplications. This leads
to a total of 27 multiplications. The actual procedure does not involve any recursive calls; instead, the
recursion is completely written out.

So, the total number of 32-bit multiplications required to compute (20) is 17+27 = 44. This number
is larger than the 36 32-bit multiplications required using Karatsuba with 3-way split. However, in this
case, the amount of pre and post-processing involved is less and consequently in our implementation,
this strategy results in the fastest time.

No overflows. The coefficients of A(θ) and B(θ) are multiplied using 32-bit arithmetic and the rest of
the operations on the coefficients are done using 64-bit arithmetic. We argue that this does not cause
any overflow.

Suppose that C(θ) as given by (18) has been computed, i.e., c0, . . . , c16 are available.

C(θ) = (c16θ
7 + c15θ

6 + · · ·+ c10θ + c9)θ
9 + c8θ

8 + · · ·+ c1θ + c0

≡ 18(c16θ
7 + c15θ

6 + · · ·+ c10θ + c9) + c8θ
8 + · · ·+ c1θ + c0 mod p

≡ c8θ8 + (c7 + 18c16)θ
7 + · · ·+ (c1 + 18c10)θ + (c0 + 18c9) mod p.

The multiplications by 18 can be computed using 3 left shifts followed by an addition and another left
shift.

Let c
(0)
8 = c8 and for i = 0, . . . , 7, let c

(0)
i = ci + 18c9+i. Define

C(0)(θ) = c
(0)
0 + c

(0)
1 θ + · · ·+ c

(0)
8 θ8. (21)

Using (19), the following bounds on c
(0)
i can be obtained.

c
(0)
8 ≤ 260;

c
(0)
i ≤ ((i+ 1) + 18(9− i− 1))(228 − 1)2 ≤ 145(228 − 1)2 < 264 i = 0, . . . , 7.

(22)

18



In particular, c
(0)
0 , . . . , c

(0)
8 all fit into 64-bit words. So, the reduction procedure of Section 5.2 is applied

to C(0)(θ). We need to argue that (17) holds. By construction t
(1)
1 < 236. Proceeding by induction, for

i = 1, . . . , 7, c
(0)
i ≤ 145(228 − 1)2 implying t

(1)
i + c

(0)
i < 145(228 − 1)2 + 236 < 264 and t

(1)
2 , . . . , t

(1)
8 < 236.

Since c
(0)
8 < 260 and t

(1)
8 < 236, t

(1)
8 + c

(0)
8 < 261 so that t

(2)
0 < 234 (since c

(1)
8 equals lsb27(t

(1)
8 + c

(0)
8 )).

As a result, c
(1)
0 + 18t

(2)
0 < 239. So, all computations required in the reduction step can be carried out

using 64-bit additions without any overfull.

Since c
(1)
0 < 239, t

(2)
1 is given by the 11 most significant bits of c

(1)
0 and so t

(2)
1 < 211. The termination

analysis in Section 5.2 assumed t
(2)
1 < 214. The smaller value of t

(2)
1 can make the termination possibly

a little faster, but, otherwise does not affect anything else.
Given two proper polynomials A(θ) and B(θ), by M(A(θ), B(θ)) we denote the proper polynomial

D(θ) which is obtained as D(θ) = reduce(C(0)(θ)) and C(0)(θ) is as defined in (21).

5.7 Field Squaring

Let A(θ) be a proper polynomial representing an element of Fp as described in (5.1). We wish to obtain
a proper polynomial C(θ) such that C(θ) ≡ A2(θ) mod p. As in the case of multiplication, this is done in
two steps. First C(θ) = A2(θ) is computed considering θ to be a place-holder variable and second, C(θ)
is reduced modulo p to obtain a proper polynomial D(θ). The reduction step is the one described in
Section (5.2) and the overflow analysis is similar to that for multiplication. So, we only need to consider
the procedure for computing C(θ) = A2(θ).

Most computer architectures do not have different instructions for 32-bit multiplication and 32-
bit squaring. So, there is no difference in the times for 32-bit multiplications and 32-bit squarings.
Accordingly, we will also not distinguish between these times.

The strategy for multiplying using Karatsuba with 3-way split described above can be directly used
for squaring A(θ) and requires 36 32-bit multiplications. The hybrid Karatsuba strategy, however, can
be made more efficient for squaring as we next describe.

Write A(θ) = a8θ
8 + S(θ). Then

A2(θ) = a28θ
16 + 2a8S(θ) + S2(θ). (23)

One 32-bit multiplication is required to compute a28 and 8 32-bit multiplications are required to compute
a8S(θ); these two tasks account for 9 32-bit multiplications. The main cost is the computation of S2(θ).
Recall that A(θ) is of degree (at most) 8 and so S(θ) is of degree (at most) 7 having a total of 8
coefficients. Karatsuba with 2-way split can be applied with recursion depth 3 to compute S2(θ) using
a total of 27 32-bit multiplications. (We say more about this below.) So, A2(x) given by (23) can be
computed using a total of 36 32-bit multiplications. As a result, for squaring there is no difference in
the number of required multiplications using 3-way Karatsuba or hybrid Karatsuba.

There are two ways to consider squaring using 2-way Karatsuba. Suppose α(x) = α0 + xα1 is to be
squared. This can be obtained as either

α2(x) = α2
0 + 2α0α1x+ α2

1x
2 (24)

requiring 2 squarings and 1 multiplication; or, as

α2(x) = α2
0 + ((α0 + α1)

2 − α2
0 − α2

1)x+ α2
1x

2 (25)

requiring 3 squarings. The second method performs a squaring using squarings and addition/subtraction
of smaller objects, while the first method performs a squaring using squarings and multiplications of
smaller objects.

19



While computing S2(θ) using 2-way Karatsuba, there will be 3 levels of recursion, corresponding to
x = θ4, x = θ2 and x = θ. At the bottom level where x = θ, the coefficients α0 and α1 are integers
which are to be multiplied using 32-bit multiplication. Since there is no difference in time between
32-bit multiplication and 32-bit squaring, the method given by (24) is used, since this avoids the extra
addition and subtraction required in the method given by (25). On the other hand, for the higher two
levels corresponding to x = θ4 and x = θ2, the method given by (25) turns out to be faster. So, our
implementation uses (25) at the higher two levels to break down the recursion and then at the bottom
level, (24) is used to actually perform the integer multiplications. The results are then combined back
up the recursion tree according to (25).

Given a proper polynomial A(θ) by S(A(θ)) we denote the polynomial D(θ) obtained as D(θ) =
M(A(θ), A(θ)). The particular method of computing S(A(θ)) does not affect the result, though, it does
affect the efficiency.

5.8 Hadamard Transform

Let A0(θ) and A1(θ) are two proper polynomials. By H(A0(θ), A1(θ)) we denote the pair (B0(θ), B1(θ))
where

B0(θ) = reduce(A0(θ) +A1(θ));

B1(θ) = reduce(A0(θ)−A1(θ)) = reduce(A0(θ) + negate(A1(θ))).

5.9 Field Inversion

It is possible to compute the multiplicative inverse of a field element using exponentiation, i.e., for
r ∈ Fp, r−1 = r2

251−11 (mod 2251 − 9). The Montgomery inverse algorithm [36] is a faster alternative
of the exponentiation method. Since p is a 251-bit integer, for any r ∈ {0, . . . , p− 1}, the Montgomery
inverse algorithm on inputs r and p returns s = r−12251 mod p. The actual value of r−1 is obtained by
computing s9−1 mod p. This is because 2251 ≡ 9 mod p. It is also possible to implement Montgomery
inversion in constant time using the algorithm described in [8].

In our context, field inversion is required only for conversion from projective to affine coordinates.
The output of the scalar multiplication is in projective coordinates and if for some application the
output is required in affine coordinates, then only a field inversion is required. For a proper polynomial
A(θ), by I(A(θ)) we denote the inverse of A(θ).

5.10 Costs of Field Operations

Let M denote the cost of a single 32-bit multiplication and A denote the cost of a single 64-bit addition
or subtraction. The costs of field operations are expressed in terms of M and A. These costs are as
follows.

– Field multiplication M or squaring S: 44M + 117A using the hybrid Karatsuba method.
– Field squaring S: 36M + 74A using the hybrid Karatsuba method.
– Field multiplication by a small constant C: 9M + 10A.
– Hadamard transform C: 18A.

5.11 Choice of the Field

In Section 4.2, we have explained our choice of the particular prime p = 2251 − 9 and the advantage of
this prime for SIMD instructions over the prime 2255 − 19.

20



On the other hand, one may consider the possibility of using a composite order field with a large
characteristic. One such choice is the field F(2127−1)2 . This field has been used in [16] and the field F2127−1
has been used in [4]. An element of F(2127−1)2 will be represented using two elements of F2127−1. For
overflow free arithmetic, each element of F2127−1 will require a 5-limb representation. Using Karatsuba, a
field multiplication in F(2127−1)2 will require 3 multiplications in F2127−1; using the 5-limb representation
of elements of F2127−1, each multiplication in F2127−1 will require 5 32-bit multiplications. So, a single
multiplication in F(2127−1)2 will require 48 32-bit multiplications. Since this is larger than the number
of 32-bit multiplications required for a single multiplication in F2251−9, we did not explore F(2127−1)2
further.

6 Vector Operations

SIMD instructions in modern processors allow parallelism where the same instruction can be applied to
multiple data. To take advantage of SIMD instructions it is convenient to organise the data as vectors.
The Intel instructions that we target apply to 256-bit registers which are considered to be 4 64-bit words
(or, as 8 32-bit words). So, we consider vectors of length 4.

Let A(θ) = (A0(θ), A1(θ), A2(θ), A3(θ)) where Ak(θ) =
∑8

i=0 ak,iθ
i are proper polynomials. We will

say that such an A(θ) is a proper vector. So, A(θ) is a vector of 4 elements of Fp. Recall that each ak,i
is stored in a 64-bit word. Conceptually one may think of A(θ) to be given by a 9× 4 matrix of 64-bit
words.

We describe a different way to consider A(θ). Let ai = (a0,i, a1,i, a2,i, a3,i) and define aiθ
i =

(a0,iθ
i, a1,iθ

i, a2,iθ
i, a3,iθ

i). Then we can write A(θ) as A(θ) =
∑8

i=0 aiθ
i. Each ai is stored as a 256-bit

value. We define the following operations.

– pack(a0, a1, a2, a3): returns a 256-bit quantity a. Here each ai is a 64-bit quantity and a is obtained
by concatenating a0, . . . , a3.

– unpack(a): returns (a0, a1, a2, a3). Here a is a 256-bit quantity and the ai’s are 64-bit quantities such
that a is the concatenation of a0, . . . , a3.

– pack(A0(θ), A1(θ), A2(θ), A3(θ)): returns A(θ) represented as A(θ) =
∑8

i=0 aiθ
i,

where ai = pack(ai,0, ai,1, ai,2, ai,3).

– unpack(A(θ)): returns (A0(θ), A1(θ), A2(θ), A3(θ)),
where A(θ) =

∑8
i=0 aiθ

i, for j = 0, 1, 2, 3, Aj(θ) =
∑8

i=0 aj,iθ
i and (a0,i, a1,i, a2,i, a3,i) = unpack(ai).

In the above, we use pack to denote both the packing of 4 64-bit words into a 256-bit quantity and also
the limb-wise packing of four field elements into a vector. Similar overloading of notation is used for
unpack.

We define the following vector operations. The operand A(θ) represents (A0(θ), A1(θ), A2(θ), A3(θ))
and similarly, B(θ) represents (B0(θ), B1(θ), B2(θ), B3(θ), ).

– M4(A(θ),B(θ)): returns C(θ) =
∑8

i=0 ciθ
i representing (C0(θ), C1(θ), C2(θ), C3(θ))

where Ck(θ) = mult(Ak(θ), Bk(θ)) for k = 0, . . . , 3.

– S4(A(θ)): returns C(θ) =
∑8

i=0 ciθ
i representing (C0(θ), C1(θ), C2(θ), C3(θ))

where Ck(θ) = sqr(Ak(θ)) for k = 0, . . . , 3.

– C4(A(θ),d): returns C(θ) =
∑8

i=0 ciθ
i representing (C0(θ), C1(θ), C2(θ), C3(θ))

where d = (d0, d1, d2, d3); Ck(θ) = constMult(Ak(θ), dk) for k = 0, . . . , 3. Here each dk is a small
constant represented as a 64-bit word so that d is a 256-bit quantity.

The key Intel intrinsics operations that are required to implement the above vector operations are the
following.

21



– mm256 add epi64: On inputs a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) returns (a0 + b0, a1 + b1, a2 +
b2, a3 + b3) with each component reduced modulo 264.

– mm256 sub epi64: On inputs a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) returns (a0− b0, a1− b1, a2−
b2, a3 − b3) with each component reduced modulo 264. We have used this operation only in context
of Karatsuba multiplication, i.e., for a subtraction of the type (a + b)(c + d) − (ac + bd) = ad + bc
for non-negative integers a, b, c and d. The result is guaranteed to be non-negative and so there is
no need to handle the sign.

– mm256 mul epu32: On inputs a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) returns (a0b0, a1b1, a2b2, a3b3)
with each component reduced modulo 264.

Using the above SIMD operations to replace the 32-bit operations in the algorithm for multiplying a
pair of field elements directly provides an algorithm for multiplying four pairs of field elements. Similar
vectorisation is achieved for squaring.

6.1 Vector Hadamard Operation

The Hadamard operation H(A(θ), B(θ)) is required to output (C(θ), D(θ)) where C(θ) ≡ A(θ) +
B(θ) mod p and D(θ) ≡ A(θ) − B(θ) mod p. We define the vector extension of the Hadamard oper-
ation, which computes two simultaneous Hadamard operations using SIMD vector instructions. For a
256-bit quantity a = (a0, a1, a2, a3) we define dup1(a) = (a0, a0, a2, a2) and dup2(a) = (a1, a1, a3, a3).

H2(A(θ))

input: A(θ) =
∑8

i=0 aiθ
i representing (A0(θ), A1(θ), A2(θ), A3(θ));

output: C(θ) =
∑8

i=0 ciθ
i representing (A0(θ) +A1(θ), A0(θ)−A1(θ), A2(θ) +A3(θ), A2(θ)−A3(θ))

with each component reduced modulo p;
1. for i = 0, . . . , 8 do
2. s = dup1(ai);
3. t = dup2(ai);
4. t = t⊕ (064, 164, 064, 164);
5. t = t + (064, 2pi + 1, 064, 2pi + 1);
6. ci = t + s;
7. end for;
return reduce(C(θ)).

The goal is to compute (A0(θ) +A1(θ), A0(θ)−A1(θ), A2(θ) +A3(θ), A2(θ)−A3(θ)). Instead at the end
of Step 7, (A0(θ) + A1(θ), A0(θ) + 2P(θ)− A1(θ), A2(θ) + A3(θ), A2(θ) + 2P(θ)− A3(θ)) is computed.
The reduce operation ensures that the correct result is returned. For further explanation of how this
is achieved, we refer to Section 5.4. The ⊕ operation is implemented using mm256 xor si256; the
additions in Steps 5 and 6 can be implemented using mm256 add epi32; the operations dup1 and dup2

are implemented using mm256 permute4x64 epi64.

6.2 Vector Duplication

Let a = (a0, a1, a2, a3) and b be a bit. We define an operation copy(a, b) as follows: if b = 0, re-
turn (a0, a1, a0, a1); and if b = 1, return (a2, a3, a2, a3). The operation copy is implemented using
mm256 permutevar8x32 epi32.

Let A(θ) =
∑8

i=0 aiθ
i be a proper vector and b be a bit. We define the operation P4(A, b) to return∑8

i=0 copy(ai, b)θ
i. If A(θ) represents (A0(θ), A1(θ), A2(θ), A3(θ)), then

P4(A, b) =

{
(A0(θ), A1(θ), A0(θ), A1(θ)) if b = 0;
(A2(θ), A3(θ), A2(θ), A3(θ)) if b = 1.

22



6.3 Costs of Vector Operations

The costs of vector operations are expressed in terms of the number of SIMD operations that are
required. Let A4 denote the cost of one mm256 add epi64 or one mm256 sub epi64 operation; and let
M4 denote the cost of one mm256 mul epu32 operation. The costs of the various vector operations are
as follows.

– Vectorised multiplication M4: 44M4 + 117A4.
– Vectorised squaring S4: 36M4 + 74A4.
– Vectorised multiplication by a constant C4: 9M4 + 10A4.
– Vectorised Hadamard transform H2: 18A4 along with 9 mm256 xor si256 and 9 mm256 and si256

instructions.
– P4: 9 mm256 permutevar8x32 epi32 instructions.

7 Vectorised Scalar Multiplication

Scalar multiplication on the Kummer line is computed from a base point [x : z] represented as (x2, z2)
in the square only setting and an `-bit non-negative integer n. The quantities x2 and z2 are elements of
Fp. If x2 and z2 are small as in the fixed base point of K101,61, then these two values are represented as
32-bit words (or even as bytes). In general, the values x2 and z2 will be arbitrary elements of Fp and
will have a 9-limb representation as has been described above.

The scalar multiplication algorithm using vector operations is given below. In the algorithm below,
a2 and b2 are the parameters of Ka2,b2 while A2 and B2 are defined from a2 and b2 as A2 = (a2 + b2)/2
and B2 = (a2 − b2)/2.

scalarMult(P, n)
Input: base point P = (x2, z2) and `-bit scalar n given as (1, n`−2, . . . , n0);
Output: nP = (U2(θ), V 2(θ));

1. a = pack(B2, A2, B2, A2);
2. c0 = pack(b2, a2, z2, x2); c1 = pack(b2, a2, z2, x2);
3. compute 2P = (X2

2 (θ), Z2
2 (θ));

4. T(θ) = pack(X2, Z2, X2
2 (θ), Z2

2 (θ));
5. for i = `− 2 down to 0
6. T(θ) = H2(T(θ));
7. S(θ) = P4(T(θ), ni);
8. T(θ) =M4(T(θ),S(θ));
9. T(θ) = C4(T(θ), a);
10. T(θ) = H2(T(θ));
11. T(θ) = S4(T(θ));
12. T(θ) = C4(T(θ), cni);
13. end for;
14. (U2(θ), V 2(θ), ·, ·) = unpack(T(θ));
15. return (U2(θ), V 2(θ)).

Remark: In the above description, we have assumed that the base point (x2, z2) is represented by
small integers. This is true if the scalar multiplication is for a fixed base point. On the other hand, for
variable base point, this is no longer true. In this case, in Step 12 it is required to use the operation
M4 instead of the operation C4. In any case, since the base point is the same for each ladder step, all
the ladder steps take the same time.

23



Correctness: Steps 6 to 12 constitute a single vectorised ladder step. At the i-th iteration, suppose
(kP, (k+1)P ), for some k, is a pair of points which forms the input to the ladder step. If ni = 0, then the
output of the ladder step is the pair of points (2kP, (2k+1)P ); and if ni = 1, then the output of the ladder
step is the pair of points ((2k+1)P, (2k+2)P ). Suppose kP = (x21(θ), z

2
1(θ)) and (k+1)P = (x22(θ), z

2
2(θ)).

These two points are represented in packed form as (x21(θ), z
2
1(θ), x22(θ), z

2
2(θ)) which is the vector input

to the ladder step. Denoting the output of the ladder step as (x23(θ), z
2
3(θ), x24(θ), z

2
4(θ)), the operation

of the ladder step is shown in Figure 4. The correctness of the ladder step is easy to argue from which
the correctness of the vectorised scalar multiplication follows.

(x21, z
2
1 , x

2
2, z

2
2)

H2

P4

M4 C4

(B2, A2, B2, A2)

H2 S4 C4 or M4

(z2, x2, b2, a2)

(x23, z
2
3 , x

2
4, z

2
4)

Fig. 4. One vectorized ladder step

Cost: In Step 2, 2P is computed which needs 2M + 6S + 8C + 2H field operations and so a total
of 304M + 678A operations. Each vectorised ladder step requires 1M4 + 1S4 + 2C4 + 2H2 + 1P4 and
so a total of 98M4 + 247A4 operations; plus 18 mm256 xor si256 instructions; 18 mm256 and si256

instructions; and 9 mm256 permutevar8x32 epi32 instructions.
Vectorised scalar multiplication with a 256-bit scalar requires 304M + 678A + 256(98M4 + 247A4)

operations; plus 4608 mm256 xor si256 instructions; 4608 mm256 and si256 instructions; and 2304
mm256 permutevar8x32 epi32 instructions. Additionally, there is a cost of packing the data before

starting the ladder steps and the cost of unpacking the data after all the ladder steps are over. Depending
on the application, it may be required to convert the final Kummer point from projective to affine
representation. The cost of doing this is 1M+ 1I.

8 Implementation and Timings

We have implemented the vectorised scalar multiplication algorithm in 64-bit AVX2 intrinsics instruc-
tions. The code implements the vectorised ladder algorithm which takes the same amount of time for
all scalars. Consequently, our code also runs in constant time. The code is publicly available at [25].

The experiments for K101,61 were performed on a machine with IntelrCoreTMi7-4790 Haswell 4-
core CPU having four cores with each core running at 3.60GHz. The code runs on a single core. For
further details of the Haswell architecture and AVX2 instructions, we refer to [24, 35]. The OS was 64-bit
Ubuntu-14.04-LTS operating system and the C code was complied using GCC version 4.8.4. Timing
measurements were performed using the methodology described at [31]. During measurement, turbo
boost and hyperthreading were turned off. We used average from 100,000 iterations. Cache training was
done using 25000 iterations. The Time Stamp Counter (TSC) was read from the CPU to RAX and
RDX registers by RDTSC instruction. For the actual measurements, the header file “measurement.h”,
given in [31] was used.

Table 5 compares the number of cycles required by our implementation with that of a few other
concrete curve proposals. All the timings are for constant time code on the Haswell processor using

24



variable base scalar multiplication. For Four-Q, K11,−22,−19,−3 and the results from [45] and [32], the
timings are obtained from the respective papers. For Curve25519, we downloaded the sandy2x4 library
and timed Curve25519 on the machine which was used to measure the time for K101,61 using the
methodology from [31]5. The cycle count of 158169 on Haswell that we obtain for Curve25519 is close to
156076 cycles reported by Tung Chou at https://moderncrypto.org/mail-archive/curves/2015/

000637.html and the count of about 156500 cycles reported in [21]. Further, EBACS (https://bench.
cr.yp.to/results-dh.html) also mentions about 156000 cycles on the machine titan0.

For fixed base scalar multiplication, K101,61 requires 106735 cycles while Curve25519 requires
144277 cycles. These measurements were made on the machine that was used for variable base scalar
multiplication using the timing method from [31]. Again, for Curve25519, the sandy2x library was used.

Considering the comparison of Curve25519 and K101,61 we find that K101,61 gives significantly better
performance for both variable base and fixed base scalar multiplications. We further note that our
implementation of K101,61 is in Intel intrinsics, while the sandy2x library uses assembly (as does Four-Q
and the implementations in [32, 45]). There is a possibility that an assembly implementation of K101,61

will show further competitive advantage over Curve25519.
It is possible to improve the speed of fixed base scalar multiplication using a pre-computed table along

with a windowed-NAF scalar multiplication algorithm. Using this approach, [32] reports much faster
timing for NIST P-256 and [14] reports much faster timing for Curve25519. We have not investigated
the use of pre-computed tables for K101,61 and so we do not make a detailed comparison for this setting.

curve genus security field automorphism cycles pre-comp tab

Curve-25519 [2] 1 126 F2255−19 no 158169 no

NIST P-256 [32] 1 128 F2256−2224+2192+296−1 no 291000 no

Four-Q [16] 1 123 F(2127−1)2
yes 59000 2048 bits
no 109000 no

K11,−22,−19,−3 [4] 2 125 F2127−1 no 54389 no

Koblitz [45] (3-τNAF) 1 128 F4149 yes 69,656 4768 bits

K101,61 1 124 F2251−9 no 141794 no

Table 5. Timing comparison for variable base scalar multiplication.

9 Conclusion

This work has shown that compared to Curve25519, Kummer line based scalar multiplication for genus
one over prime order fields offers competitive performance using SIMD operations. Previous works on
implementation of Kummer arithmetic had focused completely on genus two. By showing competitive
implementation also in genus one, our work fills a gap in the existing literature. We do not claim to
have the best possible implementation for K101,61. It may be possible to improve the speed by further
optimisations. One possibility is to use assembly implementation to improve speed. Another possibility
is to improve the speed of field multiplication by carefully implementing one of the other strategies
which have been mentioned earlier and which require lesser number of 32-bit multiplications.

4 Downloaded from https://bench.cr.yp.to/supercop/supercop-20160910.tar.xz. We used
crypto scalarmult(q,n,p) to measure variable base scalar multiplication and crypto scalarmult base(q,n) to
measure fixed base scalar multiplication.

5 We had initially intended to use SUPERCOP for timing K101,61 and had some email interactions with Peter Schwabe
regarding this. An email from him on March 31, 2016 informed us that due to certain bugs in SUPERCOP some of
the stated timing results in [4] cannot be reproduced. So, we opted instead to use [31] for timing both K101,61 and
Curve25519.

25



Acknowledgement

We would like to thank Pierrick Gaudry for helpful comments and clarifying certain confusion regarding
conversion from Kummer line to elliptic curve. We would also like to thank Peter Schwabe for clarifying
certain implementation issues regarding Curve25519 and Kummer surface computation on genus 2.

References

1. Diego F. Aranha, Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira, and Jefferson E. Ricardini. A note on high-
security general-purpose elliptic curves. Cryptology ePrint Archive, Report 2013/647, 2013. http://eprint.iacr.

org/2013/647.

2. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Public Key Cryptography - PKC, volume 3958 of
Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

3. D. J. Bernstein. Elliptic vs. hyperelliptic, part I. Talk at ECC, 2006.

4. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. Kummer strikes back: New DH speed records. In
Advances in Cryptology - ASIACRYPT, volume 8873 of Lecture Notes in Computer Science, pages 317–337. Springer,
2014.

5. D. J. Bernstein and T. Lange. Safecurves: choosing safe curves for elliptic-curve cryptography. http://safecurves.

cr.yp.to/index.html, accessed 15th September, 2016.

6. Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic curves. In Kaoru Kurosawa, editor,
Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes
in Computer Science, pages 29–50. Springer, 2007.

7. Guido Bertoni and Jean-Sébastien Coron, editors. Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th
International Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in
Computer Science. Springer, 2013.

8. Joppe W. Bos. Constant time modular inversion. J. Cryptographic Engineering, 4(4):275–281, 2014.

9. Joppe W. Bos, Craig Costello, Hüseyin Hisil, and Kristin E. Lauter. Fast cryptography in genus 2. In Advances in
Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science,
pages 194–210. Springer, 2013.

10. Joppe W. Bos, Craig Costello, Hüseyin Hisil, and Kristin E. Lauter. High-performance scalar multiplication using
8-dimensional GLV/GLS decomposition. In Bertoni and Coron [7], pages 331–348.

11. Brainpool. ECC standard. http://www.ecc-brainpool.org/ecc-standard.htm.

12. Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks. In David Naccache and Pascal Paillier,
editors, Public Key Cryptography, 5th International Workshop on Practice and Theory in Public Key Cryptosystems,
PKC 2002, Paris, France, February 12-14, 2002, Proceedings, volume 2274 of Lecture Notes in Computer Science,
pages 335–345. Springer, 2002.

13. Daniel R. L. Brown. SEC 2: Recommended elliptic curve domain parameters. http://www.secg.org/sec2-v2.pdf,
2010.

14. Tung Chou. Sandy2x: New Curve25519 speed records. In Orr Dunkelman and Liam Keliher, editors, Selected Areas
in Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August 12-14, 2015, Revised
Selected Papers, volume 9566 of Lecture Notes in Computer Science, pages 145–160. Springer, 2015.

15. Ping Ngai Chung, Craig Costello, and Benjamin Smith. Fast, uniform scalar multiplication for genus 2 Jacobians with
fast Kummers. In Selected Areas in Cryptography, 2016. to appear.

16. C. Costello and P. Longa. Four(Q): Four-dimensional decompositions on a Q-curve over the Mersenne prime. In
Advances in Cryptology - ASIACRYPT Part I, volume 9452 of Lecture Notes in Computer Science, pages 214–235.
Springer, 2015.

17. Craig Costello, Hüseyin Hisil, and Benjamin Smith. Faster compact Diffie-Hellman: Endomorphisms on the x-line.
In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 183–200. Springer, 2014.

18. Curve25519. Wikipedia page on Curve25519. https://en.wikipedia.org/wiki/Curve25519, accessed 15th Septem-
ber, 2016.

19. Harold M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical Society, 44:393–422,
2007.

26



20. Armando Faz-Hernández, Patrick Longa, and Ana H. Sánchez. Efficient and secure algorithms for GLV-based scalar
multiplication and their implementation on GLV-GLS curves. In Josh Benaloh, editor, Topics in Cryptology - CT-
RSA 2014 - The Cryptographer’s Track at the RSA Conference 2014, San Francisco, CA, USA, February 25-28, 2014.
Proceedings, volume 8366 of Lecture Notes in Computer Science, pages 1–27. Springer, 2014.

21. Armando Faz-Hernández and Julio López. Fast implementation of Curve25519 using AVX2. In Kristin E. Lauter and
Francisco Rodŕıguez-Henŕıquez, editors, Progress in Cryptology - LATINCRYPT 2015 - 4th International Conference
on Cryptology and Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015, Proceedings,
volume 9230 of Lecture Notes in Computer Science, pages 329–345. Springer, 2015.

22. E.V. Flynn. Formulas for Kummer on genus 2. http://people.maths.ox.ac.uk/flynn/genus2/kummer/, accessed on
15th September, 2016.

23. E.V. Flynn. The group law on the Jacobian of a curve of genus 2. J. reine angew. Math., 439:45–69, 1993.
24. A. Fog. Software optimization resources. http://agner.org/optimize/, 2016.
25. Code for K101,61. https://github.com/skarati/Kummer_Line.
26. Steven D. Galbraith, Xibin Lin, and Michael Scott. Endomorphisms for faster elliptic curve cryptography on a large

class of curves. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Pro-
ceedings, volume 5479 of Lecture Notes in Computer Science, pages 518–535. Springer, 2009.

27. Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point multiplication on elliptic curves with
efficient endomorphisms. In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 190–200. Springer, 2001.

28. P. Gaudry. Fast genus 2 arithmetic based on theta functions. J. Mathematical Cryptology, 1(3):243–265, 2007.
29. P. Gaudry. Personal communication, 2016.
30. P. Gaudry and D. Lubicz. The arithmetic of characteristic 2 Kummer surfaces and of elliptic Kummer lines. Finite

Fields and Their Applications, 15(2):246–260, 2009.
31. S. Gueron. Software optimizations for cryptographic primitives on general purpose x86 64 platforms. Tutorial at

IndoCrypt, 2011.
32. Shay Gueron and Vlad Krasnov. Fast prime field elliptic-curve cryptography with 256-bit primes. J. Cryptographic

Engineering, 5(2):141–151, 2015.
33. Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Edwards curves revisited. In Josef

Pieprzyk, editor, Advances in Cryptology - ASIACRYPT 2008, 14th International Conference on the Theory and
Application of Cryptology and Information Security, Melbourne, Australia, December 7-11, 2008. Proceedings, volume
5350 of Lecture Notes in Computer Science, pages 326–343. Springer, 2008.

34. Jun ichi Igusa. Theta functions. Springer, 1972.
35. Intel. Intrinsics guide. https://software.intel.com/sites/landingpage/IntrinsicsGuide/#.
36. Burton S. Kaliski Jr. The Montgomery inverse and its applications. IEEE Trans. Computers, 44(8):1064–1065, 1995.
37. Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987.
38. Neal Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–150, 1989.
39. Patrick Longa and Francesco Sica. Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. In Xiaoyun

Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings,
volume 7658 of Lecture Notes in Computer Science, pages 718–739. Springer, 2012.

40. Victor S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology - CRYPTO’85, Santa Barbara,
California, USA, August 18-22, 1985, Proceedings, pages 417–426. Springer Berlin Heidelberg, 1985.

41. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation,
48(177):243–264, 1987.

42. D. Mumford. Tata lectures on theta I. Progress in Mathematics 28. Birkh äuser, 1983.
43. U.S. Department of Commerce/National Institute of Standards and Technology. Digital Signature Standard (DSS).

FIPS-186-3. http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf, 2009.
44. Thomaz Oliveira, Julio López, Diego F. Aranha, and Francisco Rodŕıguez-Henŕıquez. Lambda coordinates for binary

elliptic curves. In Bertoni and Coron [7], pages 311–330.
45. Thomaz Oliveira, Julio López, and Francisco Rodŕıguez-Henŕıquez. Software implementation of Koblitz curves over

quadratic fields. In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and Embedded
Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
volume 9813 of Lecture Notes in Computer Science, pages 259–279. Springer, 2016.

46. Joost Renes, Craig Costello, and Lejla Batina. Complete addition formulas for prime order elliptic curves. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part I, volume 9665 of Lecture Notes in Computer Science, pages 403–428. Springer, 2016.

47. NUMS: Nothing up my sleeve. https://tools.ietf.org/html/draft-black-tls-numscurves-00.

27


