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Abstract. Side-channel attacks and in particular differential power
analysis (DPA) attacks pose a serious threat to cryptographic imple-
mentations. One approach to counteract such attacks are cryptographic
schemes based on fresh re-keying. In settings of pre-shared secret keys,
such schemes render DPA infeasible by deriving session keys and by en-
suring that the attacker cannot collect side-channel leakage on the session
key during cryptographic operations with different inputs. While these
schemes can be applied to secure standard communication settings, cur-
rent re-keying approaches are unable to provide protection in settings
where the same input needs to be processed multiple times.
In this work, we therefore adapt the re-keying approach to present the
first symmetric authenticated encryption scheme that is inherently secure
against DPA attacks and that does not have such a usage restriction. This
means that our scheme fully complies with the requirements given in the
CAESAR call and hence, can be used like other standard authenticated
encryption schemes without loss of side-channel protection. Its resistance
against side-channel analysis is highly relevant for several applications
in practice, like bulk storage settings in general and the protection of
FPGA bitfiles and firmware images in particular.

Keywords: authenticated encryption · fresh re-keying · passive side-
channel attacks · sponge construction · permutation-based construction

1 Introduction

Motivation. Passive side-channel attacks pose a serious threat to the secu-
rity of cryptographic implementations. These attacks allow to learn information
about the secret key that is processed inside a device by observing physical prop-
erties, like the timing, the power consumption [20], the electromagnetic (EM)
field [34],. . . or even several of them at the same time. While passive side-channel
attacks have mainly been a threat to ATM and pay TV cards at the time of their
publication, these attacks are now relevant to a wide range of devices of the In-
ternet of Things (IoT).

Side-channel attacks pose a threat whenever a device performs cryptographic
operations with a key that is not known to the holder of a device. This is for



example the case, when a sensor device is installed in a non-protected area to
communicate data to some backend, when a manufacturer performs an encrypted
firmware update on devices in the field, when a device working on encrypted data
is lost, or when a device is rented by one party to another.

Among others, prominent attacks in such settings have been performed on the
encryption of FPGA bitfiles [26,27]. In fact, the keys for bitfile encryption of sev-
eral generations of FPGAs have been revealed using side-channel attacks. While
performing side-channel attacks on FPGAs typically requires a standard oscil-
loscope, there are now also open source projects offering low-cost measurement
setups to attack software implementations [28]. Using these setups, unprotected
software implementations of cryptographic algorithms can typically be broken
by observing less than 100 encryptions or decryptions using the same key [21].
Given the low effort of the attacks, there is a great need for countermeasures.

State of the Art. In order to protect cryptographic keys against side-channel
attacks, a lot of research has been conducted during the last two decades. To-
day, there essentially exist two approaches to counteract such attacks. The first
approach works by hardening the implementation of cryptographic algorithms
with techniques like hiding [21] and masking [33]. The goal of masking is to
randomize the power consumption of a device by randomizing the intermediate
results of the executed cryptographic algorithm. However, the cost of masking
increases quadratically with the protection order [19].

The second approach to counteract side-channel attacks is to change crypto-
graphic protocols in such a way that certain types of side-channel attacks cannot
be performed at all on the underlying cryptographic primitive. Most protocol
designs aim at inherently preventing differential power analysis (DPA) attacks,
which is the strongest class of passive side-channel attacks. DPA attacks accu-
mulate information about a cryptographic key by observing multiple encryp-
tions/decryptions of different inputs. The fact that different inputs are used
allows to extract keys very efficiently via statistical techniques like Bayesian dis-
tinguishers [12] or correlation [11]. In case DPA attacks are prevented by the
design of the protocol, the basic approach thus is to limit the exploitable data
complexity of the underlying cryptographic primitive for a each key by a certain
number q (q-limiting [35]). The corner case are 1-limiting constructions which
are inherently secure against DPA attacks as they allow attackers to just observe
one input per secret key. Hence, attackers are restricted to techniques like simple
power analysis (SPA) which eventually leads to significantly lower overheads for
the implementation of the cryptographic primitive.

Examples of the approach of inherently preventing DPA attacks are fresh
re-keying [22, 23] and leakage-resilient cryptography, which brought forth en-
cryption schemes [17,31] and message authentication codes (MACs) [29]. While
the schemes as such are quite different, the security of all the published schemes
with inherent protection against DPA attacks relies on two basic properties.
First, the schemes require a side-channel secure initialization with a fresh ses-
sion key on every invocation. Second, the schemes require that information an



attacker can learn by collecting side-channel information about the session key
is bounded [16]. These two basic properties do not just guarantee side-channel
security, but also result in designs that turn out to be quite efficient for process-
ing bulk data, since—besides the side-channel secure initialization—there are no
DPA requirements on the implementation of the cryptographic primitive.

In this work, we present a novel symmetric authenticated encryption scheme
that also relies on these two basic properties, but which provides significant im-
provements with respect to both properties. First, our authenticated encryption
scheme can be applied to settings where it is highly beneficial, or even required,
to allow multiple decryptions and verifications of the same ciphertext. Current
schemes have not been designed to be used in such settings. Second, we show that
the parameters of permutation-based cryptographic primitives provide a flexible
tool to cope with the maximum tolerable leakage of cryptographic schemes on
an algorithmic level.

Our Contribution. We now detail the two main contributions of the arti-
cle. Schemes with inherent protection against DPA require a side-channel secure
initialization in order to obtain a fresh session key for every cryptographic op-
eration. Such session key k0 is typically derived from a pre-shared master key
K using a nonce n by means of a re-keying function g : (K,n) 7→ k0 that is
carefully designed to prevent both DPA and SPA attacks. The purpose of this
secure initialization is to ensure that cryptographic operations for different data
inputs are always done using different keys. Hence, whenever a party encrypts
or authenticates data, a new nonce is generated to derive a new session key.

While this approach successfully prevents DPA on the party performing the
encryption or authentication (sender of a message), the situation is more chal-
lenging for the party performing decryptions or verifications (receiver of a mes-
sage). The reason for this is that the decrypting party has no control of the nonce
n. Therefore, an attacker might send arbitrary messages to the decryption device
using the same nonce n for all sent messages. This behavior results in different
messages being decrypted using the same session key k0. As a result, decryption
is vulnerable to DPA, and more concretely, it is the multiple decryption with
the same session key k0 that causes this DPA vulnerability. In order to prevent
this kind of DPA attacks, the receiver either needs to be protected by other
means [23], or all communicating parties are required to contribute to the nonce
that is used to derive the session key from a pre-shared master key [22].

In our first contribution, we overcome this problematic situation and present
a symmetric authenticated encryption scheme that does not have any special re-
quirements on the initialization and the nonces. In fact, with respect to both us-
age and requirements, it is a standard nonce-based symmetric authenticated en-
cryption scheme that fulfills all functional requirements of the CAESAR call [36]
and at the same time provides inherent protection against DPA attacks for all
involved parties, i.e., also the decrypting party. This is achieved by making the
initialization of the authenticated encryption scheme depend on the processed
message itself. This implicitly prevents DPA attacks and enables several new



use cases. In particular, the scheme remains secure in settings that allow mul-
tiple decryptions and verifications of the same ciphertext. Such settings cannot
be realized with existing schemes, as they would require fresh nonces for every
encryption and decryption.

Our second contribution is that we show how permutation-based designs can
be used in order to scale implementations for different leakage bounds. Essen-
tially, we model the side-channel leakage as part of the public output of the
permutation. This allows us to adjust the maximum tolerable leakage by vary-
ing the permutation parameters. Using this flexible tool as a basis, we propose
an efficient sponge-based variant of our authenticated encryption scheme and
two novel permutation-based re-keying functions inherently secure against DPA
attacks. We instantiate the sponge-based authenticated encryption scheme Isap
using Keccak[400] and present the results of its hardware implementation. This
instance maintains 128-bit security in the presence of up to 16 bits leakage per
permutation call, can be used in settings of multiple decryptions and verifica-
tions, and yet has approximately the same runtime and area requirements as
state-of-the-art schemes. Put into numbers, the hardware implementation using
an UMC 130 nm technology consumes 14 kGE, takes 22.35µs for secure initial-
ization, and performs authenticated encryption in roughly 0.15µs per 128-bit
block.

All these properties make Isap suitable for a set of highly relevant settings in
practice. One prominent example is the decryption and verification of firmware
images or FPGA bitfiles, which requires that it is possible to do multiple de-
cryptions and verifications with the same session key by different parties. There
is one party that encrypts and authenticates the image or bitfile once and there
are many devices that decrypt and verify it. Another example is the bulk stor-
age of data. In such scenario, the goal is to encrypt and authenticate once and
to allow multiple decryptions and verifications without the need to re-encrypt
the data upon every read operation. These scenarios again highlight the main
benefit of Isap over existing schemes: Isap remains secure in all these settings al-
lowing for multiple decryption and verification and simultaneously has practical
implementation cost.

Outline. We introduce our new symmetric authenticated encryption scheme
that is also secure in the setting of multiple decryptions and verifications in Sec-
tion 2. Section 3 shows how permutation-based designs can be used to achieve
scalable security against side-channel attacks and gives an permutation-based
instance of our authenticated encryption scheme. Section 4 concludes this work.
In addition, we give details about the Keccak[400]-based instance of our authen-
ticated encryption scheme and results of its hardware implementation in the
appendix.



2 Authenticated Encryption Mode

State-of-the-art schemes based on re-keying lack security against DPA in sce-
narios that require multiple decryption of the same input (with the same ses-
sion key). Therefore, this section presents the first nonce-based authenticated
encryption mode that is designed to be secure against passive side-channel at-
tacks in such scenarios. To achieve this inherent security against DPA attacks,
our authenticated encryption mode incorporates the re-keying approach [22,23]
in an efficient encrypt-then-MAC scheme. The resulting nonce-based two-pass
authenticated encryption mode fulfills the functional requirements of the CAE-
SAR call [36] without any additional considerations. Especially the fact that the
nonce has to be unique per encryption is covered by the requirements of CAE-
SAR. Hence, our mode can be used in all applications that use an authenticated
encryption algorithm in a nonce-respecting way. In this section, we first specify
the authenticated encryption mode and afterwards discuss its resistance against
side-channel attacks, especially its inherent DPA security.

2.1 Specification

The inputs for the authenticated encryption E are the secret key K1‖K2, a
unique public message number (nonce) n, associated data a, and plaintext p.
The output of the authenticated encryption E is a ciphertext c and a tag t. Note
that the nonce ideally is not input by the user but generated directly on the
device implementing the authenticated encryption E .

E(K1‖K2, n, a, p) = (c, t)

The authenticated decryption D (decryption plus verification) takes as input the
key K1‖K2, nonce n, associated data a, ciphertext c, and tag t, and outputs the
plaintext p, or ⊥ if the verification fails:

D(K1‖K2, n, a, c, t) ∈ {p,⊥}

As shown in Algorithm 1, the basis of our authenticated encryption mode is
the generic composition encrypt-then-MAC. Bellare and Namprempre [3] showed
that this generic composition is capable of achieving the strongest security no-
tions. Here, ENC and DEC denote a nonce-based SPA-secure encryption and
decryption scheme, MAC denotes an SPA-secure message authentication code,
H denotes a cryptographic hash function with distinct inputs for nonce, associ-
ated data and ciphertext, and g1 and g2 are secure re-keying functions (secure
against SPA and DPA). Note that g1 and g2 are not required to be distinct.

2.2 Side-channel Resistance

In this section, we discuss the security of our authenticated encryption mode
against passive side channel attacks, and in particular DPA. Hereby, our ap-
proach essentially uses the same assumptions and requirements as other re-
keying schemes. Namely, we assume g1, g2 to be (DPA and SPA) secure re-keying



Algorithm 1: Authenticated encryption and decryption procedures.

Auth. Encryption E(K1‖K2, n, a, p)

Input: keys K1 ∈ {0, 1}m, K2 ∈ {0, 1}m,
public message number n ∈ {0, 1}m,
associated data a ∈ {0, 1}∗,
plaintext p ∈ {0, 1}∗

Output: ciphertext c ∈ {0, 1}∗,
tag t ∈ {0, 1}m

Encryption
k1 = g1(n,K1)
c = ENCn,k1(p)

Authentication
y = H(n, a, c)
k2 = g2(y,K2)
t = MACk2(y)
return c, t

Auth. Decryption D(K1‖K2, n, a, c, t)

Input: keys K1 ∈ {0, 1}m, K2 ∈ {0, 1}m,
public message number n ∈ {0, 1}m,
tag t ∈ {0, 1}m,
associated data a ∈ {0, 1}∗,
ciphertext c ∈ {0, 1}∗

Output: plaintext p ∈ {0, 1}∗, or ⊥

Verification
y = H(n, a, c)
k2 = g2(y,K2)
t′ = MACk2(y)
if t 6= t′ return ⊥

Decryption
k1 = g1(n,K1)
p = DECn,k1(c)
return p

functions and assume the implementations of ENC , DEC , and MAC to have
bounded SPA leakage such as in [15–17, 29, 31, 37], i.e., ENC , DEC , and MAC
must be able to process arbitrarily long messages within a given leakage bound to
prohibit SPA attacks. However, there are no requirements on the implementation
of the hash function H, since it processes only publicly known data.

We now show that our mode is secure against DPA by discussing the security
of the en-/decryption part and the authentication part separately.

Encryption/Decryption. The encryption and decryption part is an instance
of fresh-rekeying such as in [22, 23]. Such schemes for fresh re-keying combine
an SPA-secure encryption scheme ENC with a (DPA and SPA) secure re-keying
function g1 : (K,n) 7→ k1. As the nonce n that is used to derive the session
key k1 must not be repeated, fresh session keys are guaranteed and DPA on the
encryption scheme ENC is inherently prevented.

However, for decryption, there is the threat that an adversary could exploit
multiple decryptions (using different data) with the same session key k1 to induce
a DPA setting within the decryption DEC , since multiple calls of DEC with
the same nonce n are allowed. To prevent such a DPA scenario in our mode,
authentication is performed prior to decryption. The authentication part aborts
the process if tag verification fails, which ensures that the same session key k1
is never used to decrypt distinct ciphertexts. Therefore, the authentication part
precludes DPA attacks on the decryption part.

Authentication/Verification. The authentication and verification part can
be seen as a tweaked instance of the re-keying concept. Hereby, the session
key k2 is derived from the hash value y that is computed from the nonce n,



associated data a, and ciphertext c using a cryptographic hash function H. For
every authenticated encryption E , a new unique nonce n has to be used. This
results in a new session key k2 to be used to generate the tag t, since unique
nonces n result in unique hash values y in the absence of collisions. Hence, DPA
attacks on the MAC are inherently prevented during the generation of the tag
t as the same session key k2 is never used to authenticate distinct ciphertexts.

Considering the decryption and verification D, we cannot rely on the unique-
ness of the nonce n anymore. An attacker can usually modify the associated
data a, or ciphertext c, to provoke multiple decryptions and verifications D with
different data under the same nonce n. However, such a DPA scenario on the
MAC session key k2 is prevented in our mode as k2 is bound to the data it pro-
cesses. Namely, as y depends on n, a and c, the MAC session key k2 = g2(y,K2)
changes whenever the data changes. This ensures that modifications to the input
data cause the tag verification to fail and the process to abort before the actual
decryption DEC of the ciphertext starts.

Moreover, no adversary can predictably influence y due to the use of a cryp-
tographic hash function H. This guarantees that the key k2 is unique for every
new triple of nonce n, associated data a, and ciphertext c, as long as there is
neither a collision in the hash y nor in the re-keying function g2. Thus DPA
on the MAC session key k2 during decryption and verification D is inherently
prevented.

Note however that collisions in the re-keying function g2 or the hash function
H result in the same session key k2 being used in MAC computations of different
data, thus allowing for a DPA. Yet, collisions in g2 depend on the secret key
K2 and therefore inputs causing collisions in g2 cannot be calculated off-line.
Moreover, choosing g2 to be a permutation for a fixed key K2 renders collisions
in g2 infeasible. In contrast, collisions in the hash value y are directly observable
and can be calculated off-line. The complexity of calculating collisions off-line is
determined by the size of the hash. The generic complexity of finding a collision
for an m-bit hash function is 2m/2. Hence, the size of the hash needs to be chosen
depending on the potential threat of such an event. This will be discussed in more
detail in the next section.

3 ISAP

Permutation-based cryptographic designs have become quite popular in the last
years. For example, three out of five finalists in the SHA-3 hash competition
were based on permutations, with the most prominent example being the sponge
construction [6] of SHA-3 winner Keccak [7]. The versatile sponge construction
was consequently adopted in the design of various cryptographic primitives, e.g.,
in authenticated encryption (AE) designs for the ongoing CAESAR competition.

Besides their flexibility, permutation-based constructions also offer a conve-
nient way to deal with bounded SPA leakage. As we will show in this section,
especially the sponge construction allows simple and elegant arguments on the
side-channel security assuming a bounded leakage of the underlying permutation.



In this section, we therefore introduce Isap – an authenticated encryption
scheme inherently secure against passive side-channel attacks that solely relies on
permutation-based primitives. Based on the ideas in Section 2, Isap consists of
both a sponge-based encryption scheme IsapEnc and a sponge-based authenti-
cation part IsapMac. IsapEnc was designed as a streaming mode since previous
work [17,31] already suggests the high suitability of streaming modes to obtain
encryption schemes secure against side-channel attacks. On the other hand, Is-
apMac combines a re-keying function and a sponge-based MAC in a novel way
to obtain a MAC inherently secure against DPA with only one pass over the in-
put data. For the secure re-keying function, either a generic permutation-based
construction, IsapRk1, or a sponge construction, IsapRk2, can be used. Is-
apRk1 is a design inherently secure against DPA, whereas IsapRk2 is a more
efficient design based on a stronger side-channel assumption.

Throughout this section, the side-channel discussion of the four Isap primi-
tives assumes SPA secure implementations of the single components and focuses
on DPA only. A discussion on the SPA security of the four primitives and the
underlying permutations in general follows at the end of this section.

3.1 Authenticated Encryption Mode

The sponge-based instances of the encryption part IsapEnc and the authenti-
cation part IsapMac are now presented consecutively.

Encryption/Decryption. The sponge mode to encrypt plaintexts, IsapEnc,
is shown in Fig. 1. It is an adaptation of the streaming mode in [6], which is
proven cryptographically secure in [1]. In contrast to the “standard” sponge-
based streaming mode in [6], IsapEnc uses a different session key k1 for each
new nonce n. This session key k1 is provided via the secure re-keying function
g1.
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Fig. 1: Encryption part: IsapEnc.

Whenever a cryptographic primitive is frequently re-keyed, care has to be
taken to preclude generic time-memory trade-off (TMTO) attacks to recover
the secret master key K1 [13]. To avoid such attacks, IsapEnc uses both the
session key k1 and the nonce n as inputs to the first permutation call p. Hence,



the design principle is similar to the fresh re-keying schemes recently presented
in [14].

The initialization with a fresh nonce n and a new session key k1 for each
encryption ensures that the key stream is unpredictable and unique for different
encryptions. Multiple decryption of different ciphertexts with the same nonce n
and session key k1 is inherently prevented by the authentication part as discussed
in Section 2. DPA on the master key K1 is prevented by the use of the (DPA and
SPA) secure re-keying function g1 to initialize the streaming mode in IsapEnc.

Authentication/Verification. The authentication part of the authenticated
encryption mode in Algorithm 1 consists of the following three steps:

1. Hash the data to get y,
2. Use y to derive the data-dependent MAC session key k2, and
3. Compute the MAC with k2 to authenticate the data.

Following this description, two cryptographic primitives, a hash function and
a MAC, are required. However, a suffix-MAC allows to virtually combine the
hash function and the MAC in one primitive. The result is IsapMac in Fig. 2,
a sponge-based suffix-MAC that is inherently secure against DPA.
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Fig. 2: Authentication part: IsapMac (not showing authenticated data).

Bertoni et al. [6] showed that one can always turn a sponge into a MAC
by either putting the key before (prefix-MAC), or after the message (suffix-
MAC), as this always gives a pseudo-random function as long as the sponge
itself behaves like a random oracle. Compared to a “standard” sponge-based
suffix-MAC, IsapMac uses a secure re-keying function g2 to absorb the secret
key K2. Note however, that whenever a suffix-MAC is used, care has to be taken
with the choice of the parameters and the padding rule to preclude some generic
attacks [32].

IsapMac prevents DPA on the tag computation in two ways. First, and as
shown in Fig. 2, the MAC session key k2 is derived from the hash value y and the
MAC master key K2 via a secure re-keying function g2, thus prohibiting DPA
on K2. Second, the design inherently prevents DPA on the MAC session key k2
by binding it to the data being processed, thus leading to different MAC session
keys k2 for different data.

As already mentioned in Section 2.2, a collision in the hash value y allows
for two side-channel measurements of the MAC using different data but the



same MAC session key k2. This holds true for IsapMac as well. Yet, to perform
a successful DPA, usually more than two traces will be needed to recover one
fixed session key k2. Such a setting occurs with hash multi-collisions. The generic
complexity for finding a v-collision is

v
√
v! · 2m(v−1). Luckily, the complexity is

quite high already for small values of v as shown in Table 1 for a 128-bit key.
Furthermore, we want to stress that even though a DPA attack exploiting multi-
collisions might be able to recover the MAC session key k2, this does not imply
a key recovery attack on the master key K2 if a non-invertible re-keying function
g2 is used.

Table 1: Complexity for receiving a v-collision for a 128-bit session key k2.

v 2 3 4 5 · · · 34

complexity 264.5 286.2 297.1 2103.8 · · · 2128

3.2 Side-channel Secure Re-keying

Our authenticated encryption scheme requires two re-keying functions g1, g2 :
(K,n) 7→ k that are secure against passive side-channel attacks (DPA and SPA).
These two functions g1, g2 must not necessarily be distinct, but can be the same.
We now present two possible options to design such secure re-keying function
allowing to reuse the permutation p from our sponge instances IsapEnc and
IsapMac. While the first design is inherently secure against DPA attacks, the
second design is 2-limiting.

Variant 1. In our first design, we use a variation of the classical GGM con-
struction [18]. The respective re-keying function IsapRk1 is shown in Fig. 3 and
works as follows. The state is first initialized with the padded master key K,
followed by an application of the permutation p. In each iteration, one bit of the
nonce n is processed by either choosing the left or right half of the permutation
output, padding it to the permutation size, and again applying the permutation
p. Hereby, the padding incorporates information on which half was chosen and
on the index of the nonce bit being processed. After all nonce bits have been
processed, the session key k is generated from the last permutation output.

The approach to re-keying used in IsapRk1 inherently protects against DPA
attacks, since the same secret (i.e., right or left part of the permutation out-
put) is never combined with more than one public input. In this respect, Is-
apRk1 has a lower data complexity bound than present GGM-based re-keying
functions [17, 35] which are 2-limiting when instantiated using common block
ciphers [31]. In terms of SPA leakage, a generic treatment of leakage for permu-
tations follows in Section 3.3.
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Fig. 3: Re-keying inherently secure against DPA attacks: IsapRk1.

Variant 2. A more efficient re-keying function than IsapRk1 can be obtained
from sponges directly, potentially reducing the required state and permutation
size. However, the presented re-keying function uses a stronger security assump-
tion than IsapRk1, namely, that DPA is impossible on a 2-limiting primitive,
i.e., given the leakages from two different public inputs.

The basic idea is to make DPA infeasible by reducing the input data complex-
ity accordingly. For this purpose, a secret state is constantly updated with small
portions of public data by repeating two phases, (1) modifying the secret state
according to the public data, and (2) updating the state such that predictions
on the future state based on the absorbed public data become infeasible.

Sponges are an ideal choice to implement this basic idea as the rate directly
influences the input data complexity for each permutation. Choosing the smallest
possible rate (r = 1) results in the design IsapRk2 shown in Fig. 4. IsapRk2
first initializes the sponge state by applying the initial permutation p to the
padded master key K. Then, IsapRk2 repeatedly injects single nonce bits into
the state, each separated by a permutation call. After full absorption of the
nonce and a final permutation call, the session key k is output. This working
principle is similar to sponge instances of a prefix-MAC. While for general MAC
computations the absorption rate can be as big as the state size [8], IsapRk2
uses a small absorption rate in order to limit the data complexity exploitable in
a DPA.
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Fig. 4: Sponge construction for re-keying: IsapRk2.

In terms of DPA security, IsapRk2 uses a different assumption than the rest
of this paper. For each secret state in IsapRk2, a permutation p will produce



the leakages for two different public inputs. Thus, IsapRk2 is not inherently
secure to DPA attacks, but 2-limiting. This results in IsapRk2 being a secure
re-keying function under the assumption that the combined leakage resulting
from the processing of two different public inputs is bounded such that DPA on
the secret state is infeasible. However, note that this construction for a secure
re-keying function is again related to the classical GGM construction [18] and
can be seen as their sponge equivalent. IsapRk2 is similar to it in the sense
that the exploitable data complexity is equal for IsapRk2 and the block-cipher
based instantiations of both [17] and the 2PRG primitive used in [35].

3.3 Bounded Leakage in Permutations-based Designs

The permutation-based instances presented before are inherently secure to DPA
attacks if used correctly, or, in case of IsapRk2, effectively limit the number
of exploitable leakage traces to two. However, it remains to discuss the security
of the presented constructions in the presence of SPA leakage. Therefore, we
show now that keyed sponges are a convenient tool to argue on the security of
permutation-based designs given bounded leakage of the single permutation.

For this purpose, we model the leakage from a permutation p by allowing an
adversary to learn a certain amount of the state between subsequent permutation
calls as depicted in Fig. 5. Hereby, we use ` to denote the amount of information
that an attacker can learn about the state from the collected side-channel infor-
mation in bits. We do not care how and where the leakage is created within p,
but let the adversary account the learned information to either the input or the
output state of p. Therefore, given two consecutive permutations p with leakages
`i and `i+1, respectively, the maximum an adversary might learn about the state
is `i + `i+1. This means that if each leakage `i, `i+1 is bounded by λ bits and the
adversary can optimally combine these two leakages, the adversary will learn at
most 2λ bits of the state between the respective two permutation calls.
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(a) Leaking permutations
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Fig. 5: Leakage of information in permutation-based designs.

The basic idea now is to use the sponge parameters to express the construc-
tions capability to cope with the leakage emitted by the permutation. Therefore,



the sponge parameters are adjusted according to the amount of information an
adversary learned about the secret state. This means that if the adversary learns
2λ bits of the internal, secret state, the leaked bits can be considered as an in-
crease of the rate, i.e., r′ = r+2λ, which results in a smaller capacity c′ = c−2λ
and thus reduced security. However, a reduced security level corresponding to a
capacity of c− 2λ bits is still guaranteed by the cryptographic properties of the
permutation and the associated constrained-input constrained-output (CICO)
problem [6]. Therefore, permutation-based designs such as sponges can be con-
sidered to have bounded security loss for bounded leakage of the permutation.

Clearly, the challenge in practice is to build an implementation that bounds
the leakage of p. However, the advantage of the sponge construction is that be-
sides standard SPA countermeasures, like hiding and masking, the capacity is
an additional and very natural security parameter that helps to build a design
that withstands side-channel attacks in practice. For example, the leakage as-
sumption in Fig. 5 allows to scale a permutation-based scheme to maintain its
desired security level in the presence of λ-bit leakages `i, `i+1 by increasing the
capacity by 2λ bits (and either decreasing the rate r accordingly, or increasing
the size of the permutation p).

An advantage of this approach is its flexibility. If at some later point the
leakage of an existing implementation turns out to be larger, one could simply
reduce the rate r to retain the same security level.

In terms of our proposed schemes IsapEnc, IsapMac, and IsapRk2, our
assumptions can be straightforwardly applied. With respect to IsapRk1, the
modeling works analogously: the 2λ bits learned about the intermediate state
account to the known part of the state that without leakage consists of the
padding bits. Thus, the size of the permutation p used in IsapRk1 has to be
chosen accordingly to obtain a sufficiently large secret part to maintain the
desired security level in the presence λ-bit leakage of the permutation.

3.4 Instantiation and Implementation

For the practical use of Isap we propose an instance based on the Keccak[400]
permutation. It provides 128-bit security in the presence of up to 16 bits leakage
per permutation call. Our parameter choices (permutation size, capacity, rate,
number of rounds, etc.) are based on state-of-the-art cryptanalysis results and
discussed in detail in Appendix A.

In terms of implementation cost, an UMC-130 nm implementation of Isap
with IsapRk2 as the re-keying function consumes merely 14 kGE, takes 22.35µs
for all kind of initialization, and performs authenticated encryption in roughly
0.15µs per 128-bit block. These hardware results show that Isap extends DPA
resistance to settings allowing multiple decryption, resists up to 16 bits leakage
per permutation call, and yet yields performance and area figures comparable
to state-of-the-art schemes.

These results suggest that Isap is particularly suitable for the encryption
and authentication of bulk data, because the scheme does not pose any DPA
requirements on the implementation of the cryptographic primitive.



4 Conclusion and Discussion

In this work, we presented a novel nonce-based authenticated encryption mode
fulfilling the functional requirements of the CAESAR call. Most notably, this
implies that it is not allowed to make any assumptions on the choice of the
nonce, besides the fact that the nonce has to be unique per encryption (e.g., it
must be possible to implement the nonce as simple counter on encryption side).
Our approach ensures that as long as the re-keying function is DPA-secure, both
the encrypting and the decrypting entity are also DPA-secure. This is a unique
feature of our design compared to existing ones. Consequently, our authenticated
encryption mode is highly suitable for scenarios where DPA attacks are a threat
and multiple decryptions are useful, or cannot be precluded.

Furthermore, we showed that sponges provide an elegant way to argue the
resistance of permutation-based designs to side-channel leakage. This flexibility
motivated our permutation-based instances for both the authenticated encryp-
tion scheme and the re-keying functions. We give a Keccak[400]-based hardware
implementation of Isap. This instance does not only extend security against
DPA to multiple decryption with costs comparable to state-of-the-art schemes,
but also maintains 128-bit security in the presence of up to 16 bits leakage per
permutation call.
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A Keccak[400] Instance

The authenticated encryption scheme and its permutation-based instance Isap
were designed to be secure against passive side-channel attacks. For practical
use, we will now give instance parameters for the four algorithms IsapEnc,
IsapMac, IsapRk1 and IsapRk2. Based on the specified parameters we will
then give implementation results. Our results show that a hardware implementa-
tion of Isap yields performance and area figures comparable to state-of-the-art
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schemes, while extending resistance against DPA to settings allowing multiple
decryption.

The parameters of Isap have been chosen such that permutations are al-
lowed to leak up to 16 bits per invocation. However, the concrete choice of the
parameters for instances of our permutation-based designs also depends on the
desired security against cryptographic attacks. Compliant with the CAESAR
call, we state as our security level the intended number of bits of security. The
cryptographic security levels of the encryption scheme IsapEnc, message authen-
tication code IsapMac, and the two re-keying functions IsapRk1, IsapRk2, are
summarized for a b-bit permutation p in Table 2.

Table 2: Security level (in bits) for the different building blocks of Isap.

Function Security (bits) References

IsapEnc min(k, b/2, c) [1]
IsapMac min(k, c/2, n) [4–6]
IsapRk1 min(k, b/2, n)
IsapRk2 min(k, b/2, c, n) [1]

A.1 Parameter Selection

Based on Table 2, we propose using the permutation Keccak[400] to target a
128-bit security level. Both its permutation size b = 400 and a chosen capacity
of c = 256 make Keccak[400] a suitable choice to meet the security requirements
for IsapEnc and IsapMac. Moreover, Keccak[400] also provides adequate se-
curity for the two re-keying functions IsapRk1 and IsapRk2. Our choice for
the number of rounds for the permutation used in our primitives relies on the
CEASAR candidate Keyak [9], which uses 12 rounds, and on Keccak[400] using
20 rounds [7]. Since the security of IsapMac is based on the security of the un-
derlying hash function, we decided to rely on the scrutinized, original Keccak [7]
proposal and use a 20-round version of the Keccak[400] permutation. In con-
trast, IsapEnc and IsapRk2 inject the secret key before the first permutation
call, significantly restricting the possible attack vectors. Thus, we followed the
proposal of Keyak [9] (although it does only propose variants using the larger
800 and 1600-bit permutations) and use 12 rounds. The only non-sponge design
IsapRk1 uses a very conservative number of 20 rounds. Since we cannot rely
here on third-party analysis as in the case of our constructions that are similar
to Keyak [9], we want to use a very strong permutation.

Table 3 summarizes the recommended capacity for the different building
blocks along with the required number of rounds for the permutation. For domain
separation of the four algorithms, we suggest using distinct IVs and/or padding.

The full Keccak[400]-based Isap instance also maintains 128-bit security for
the permutation leaking up to 16 bits per invocation. This is based on each



Table 3: Parameters for Isap with 128-bit security using the Keccak[400] per-
mutation (k = 128, b = 400).

Function Capacity c
max. State

Rounds
Leakage

IsapEnc 256 128 12 [9]
IsapMac 256 – 20 [7]
IsapRk1 – 72 20 [7]
IsapRk2 399 271 12 [9]

algorithm’s maximum tolerated state leakage given in Table 3, which can be
determined using the approach discussed in Section 3.3 and the security levels
in Table 2. In case of IsapEnc, the choice of Keccak[400] with capacity c = 256
would allow the implementation to leak about 128 bits of its secret state as
long as the session key is not concerned. This suggests a maximum tolerable
leakage of 64 bits per invocation of the permutation. However, also leakage of
the session key has to be considered in the initial permutation of IsapEnc, i.e.,
the permutation processing session key k1, nonce n, and iv. Allowing the initial
permutation to leak 64 bits could—in the worst case—reduce the security of the
session key k1 by 64 bits. Yet, to cope with such leakage, we suggest deriving 144-
bit session keys from 128-bit master keys. This allows the permutation directly
using the session key to leak 16 bits thereof without falling below 128-bit security.
For IsapMac, we do not care about any leakage in the hashing part since all
values are known to the attacker anyway. However, similar to IsapEnc, 144-bit
session keys are recommended in IsapMac to allow 16-bit session key leakage
in the last permutation.

Similarly, the two re-keying functions IsapRk1 and IsapRk2 allow for a
certain 2λ-bit leakage of their internal state. For IsapRk1, 72 bits of the internal
state can be leaked (36 bits per permutation invocation). For IsapRk2 with
an r-bit rate, security is determined by min(k, (b − min(r, 2λ))/2, c − 2λ, n).
Therefore, for the rate r = 1, up to 271 bits of the internal state can be leaked.
However, IsapRk2 is a 2-limiting design and not inherently secure against DPA.
Therefore, allowing such larger amounts of leakage will be necessary in practice.
To further increase security, we recommend to store the 400-bit expanded key
that is initially used in either of the two re-keying functions instead of the 128-
bit master-key. Using the 400-bit expanded key avoids leakage of master-key bits
in the initial permutation and increases the overall security due to the larger
secret state that is used within the re-keying functions. Also note that load-time
leakage of the master key can be considered as state leakage before the initial
permutation.

A.2 Implementation Results and Comparison

We first discuss the implementation of the re-keying functions followed by the
full authenticated encryption scheme.



Re-keying Function. The re-keying functions IsapRk1 and IsapRk2 were
implemented according to the instance parameters in Section A.1. Both de-
signs compute one permutation round per cycle and were synthesized in an
UMC 130 nm technology. For comparison, we also implemented and synthesized
a GGM-based re-keying function [35] based on an AES capable of one round
per cycle. The respective results shown in Table 4 are supplemented with syn-
thesis results stated in the literature for re-keying using a masked polynomial
multiplication over a finite field [22,23].

Table 4: Implementation results for secure re-keying functions (130 nm).

Function
Area Frequency Runtime1

[kGE] [MHz] [cycles] [µs]

IsapRk1 8.5 172 2 709 15.8
IsapRk2 7.7 212 1 677 7.9

AES-GGM [35] 11.2 101 1 536 15.2

PolyMult [23] 10.2 – 1 160 –

1) Runtime is given for 128-bit nonces.

The results in Table 4 suggest that both IsapRk1 and IsapRk2 give a
smaller re-keying function than using an AES-based GGM tree. While IsapRk2
is twice as fast as AES-GGM, IsapRk1 is similarly fast. Note however that
IsapRk1 provides inherent security to DPA attacks while AES-GGM and Is-
apRk2 are 2-limiting. Moreover, both IsapRk1 and IsapRk2 provide a signif-
icant security margin to cope with SPA leakage.

Compared to the polynomial multiplication with 3rd order masking in [23],
the re-keying functions IsapRk1 and IsapRk2 have a smaller area footprint
and do not require dedicated DPA countermeasures, but were designed in view
of preventing DPA scenarios at all. Besides, the weak algebraic structure of the
multiplication opens the door to combined attacks on the re-keying function
and the encryption [30] as well as to TMTO attacks [10,13,25] that recover the
master key.

Apart from the re-keying functions listed in Table 4, there are also re-keying
functions based on leakage-resilient pseudo-random functions [2,24] (LR-PRFs).
We ommitted such re-keying functions based on LR-PRFs as their security can
hardly be compared to the ones of IsapRk1 and IsapRk2 as it is mainly based
on the assumption that the attacker is not able to distinguish the leakage of
different hardware components on a chip. However, the 7.3 kGE implementation
of LR-PRFs performs re-keying in 0.5µs at 338 MHz and is thus faster than
both Isap re-keying functions. Yet, concerning applications like FPGA bitfile
encryption, re-keying will typically not be the bottleneck.



Authenticated Encryption Scheme. The authenticated encryption scheme
consisting of IsapEnc and IsapMac was implemented in two variants, where
the first variant uses IsapRk1 and the second uses IsapRk2. Both variants
employ a single Keccak[400] permutation that performs one round per cycle.
The synthesis results using a 130 nm UMC technology are shown in Table 5.
The runtime is given for encryption and authentication of a single 128-bit data
block. Hereby, secure initialization amounts to 36.35µs and 22.35µs for IsapAe-
Rk1 and IsapAe-Rk2, respectively. However, this initialization part becomes
negligible for bulk data processing. For a single 128-bit data block, it shows that
IsapAe-Rk2 is 11% smaller and 38% faster than IsapAe-Rk1. The main reason
for this performance penalty lies in the higher number of permutation rounds
for initialization with IsapRk1.

Table 5: Implementation of the AE modes (130 nm).

Function
Area Frequency Runtime1

[kGE] [MHz] [cycles] [µs]

IsapAe-Rk1 15.8 169 6 171 36.52

IsapAe-Rk2 14.0 171 3 853 22.53

1) Runtime is given for 144-bit nonces.
2) Secure initialization: 36.35µs.
3) Secure initialization: 22.35µs.

While IsapAe is designed to be secure against DPA also for multiple decryp-
tions, there are no other schemes fulfilling this security property. On the other
hand, leakage-resilient schemes such as in [29, 35] come with a formal security
proof we do not provide. It is therefore hard to compare our results fairly with
related work.

However, we yet implemented a hardware module comprising the leakage-
resilient encryption scheme in [35] and the leakage-resilient MAC in [29] to pro-
vide authenticated encryption. The module uses the GGM-based re-keying func-
tion that shares with both the MAC and the encryption scheme a single AES
module that computes one round per cycle. The module is sized 13.1 kGE and
processes one 128-bit data block in 29.9µs. Compared to the two variants of Is-
apAe, the AES-based leakage-resilient encryption and MAC [29, 35] thus gives
quite similar results both in terms of area and runtime, even though IsapAe
uses a significantly larger state.
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