
Constant-deposit multiparty lotteries on Bitcoin

Massimo Bartoletti1 and Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Università degli Studi di Trento, Trento, Italy

Abstract. An active research trend is to exploit the consensus mecha-
nism of cryptocurrencies to secure the execution of distributed applica-
tions. In particular, some recent works have proposed fair lotteries which
work on Bitcoin. These protocols, however, require a deposit from each
player which grows quadratically with the number of players. We propose
a fair lottery on Bitcoin which only requires a constant deposit.

1 Introduction

Recent research on blockchain technologies studies how to extend the applica-
tions of cryptocurrencies from simple transfers of money to complex financial
transactions. The goal is to make financial agreements or “smart contracts” [20]
between mutually distrusting participants, and automatically enforce them via
the consensus mechanism of the cryptocurrency, without relying on a trusted
third party. In particular, some works propose to run smart contracts on top
of existing cryptocurrencies (mostly, on Bitcoin). Many of these approaches,
e.g. [1,6,7,13,14,15], implement fair computations, where a set of players con-
tribute to compute a function without revealing their inputs; fairness, studied
in various forms, guarantees e.g. that any player that aborts after learning the
output pays a penalty to all players that did not learn the output. Other works
implement decentralised authorization systems [10], and contracts which allow
users to make statements, penalising those which make conflicting ones [19].

A particular kind of smart contract is the one which implements a lottery
among a set a players. Intuitively, this is an application where each one of N
players puts their bets in a pot, and a winner — uniformly chosen among the
players — gets the whole pot. Secure protocols for multiparty lotteries on Bit-
coin have been recently proposed by [2,4,5,7]. These protocols enjoy a fairness
property, which roughly guarantees that:

– each honest player will have (on average) a non-negative payoff, even in the
presence of adversaries who play against;

– when all the players are honest, the protocol behaves as an ideal lottery: one
player wins the whole pot, while all the others lose their bets.

To obtain the result, these protocols require that, to bet e.g. 1 coin, each
one of the N players must block a deposit of O(N2) coins throughout the whole
protocol. Since the deposit grows quadratically with N , these protocols are only
practical for a small number of players. In this paper we address this issue.

Contributions. We propose a fair protocol for multiparty lotteries, whose deposit
does not depend on the number N of players. More specifically, our protocol is
fair for any choice of the deposit value, including zero (Theorem 5). Furthermore,
if the deposit value is positive, an adversary who tries to attack the protocol, with
the goal of altering the payoff of honest players, can only lose money on average
(Theorem 4). Our protocol is based on a single-elimination tournament, i.e. a
tree of N − 1 two-player matches where the loser of each match is eliminated.
Overall, a complete run of the protocol requires O(N) transactions and O(logN)
time (assuming that the time to put transactions on the Bitcoin ledger dominates
the time required for communications and local computations).

2 Background on Bitcoin

Bitcoin [18] is a decentralized infrastructure to exchange virtual currency — the
bitcoins. All the transfers of currency are recorded on a public, append-only data
structure, called blockchain or ledger. Transactions are the basic elements of the
ledger, and they denote atomic transfers of bitcoins. To illustrate how Bitcoin
works, we consider two transactions T0 and T1 of the following form:

T0

in: · · ·
in-script: · · ·
out-script(T, σ): verk(T, σ)
value: v0

T1

in: T0

in-script: sigk(•)
out-script(· · ·): · · ·
value: v1

The transaction T0 contains a value v0B. This amount of bitcoins can be
redeemed by anyone who can meet the criterion specified in T0’s out-script, a
programmable boolean function. Anyone can redeem T0 by putting on the ledger
a transaction (e.g., T1), whose in field is the hash of the whole T0 (for simplicity,
displayed as T0 in the figure), and whose in-script contains values making the
out-script of T0 evaluate to true. When this happens, the value of T0 is trans-
ferred to the new transaction T1, and T0 becomes unredeemable. A subsequent
transaction can then redeem T1 by satisfying its out-script.

The transaction T0 above is said standard, because its out-script just requires
a digital signature σ on the redeeming transaction T, with a given key pair k. We
denote with verk(T, σ) the signature verification, and with sigk(•) the signature
of the enclosing transaction (T1 in our example), including all the parts of the
transaction but its in-script (obviously, because it contains the signature itself)3.

Now, assume that T0 is redeemable on the ledger when someone tries to
append T1. To validate this operation, the Bitcoin infrastructure checks that
v1 ≤ v0, and then executes the out-script of T0, instantiating its parameters T
and σ, respectively, to T1 and to the signature sigk(•). The function verk verifies
that the signature is correct: hence, the out-script succeeds, and T1 redeems T0.

3 Technically, ver only requires the public part of the key pair k, while sig only requires
the private part. For notational convenience, we always mention the whole key pair.

T

in[0]: T0[n0]
in-script[0]: W0

...

out-script[0](T′0,w0): OS0
value[0]: v0

...

lockTime: s

t(x)

Variant1 〈y1〉
in[0]: t10(x1

0)[n1
0]

in-script[0]: W1
0

...

...

out-script[0](T′0,w0): OS0
value[0]: v0

...

lockTime: s

Fig. 1. General form of transactions (left) and of transaction templates (right).

Bitcoin transactions may be more general than the ones in the previous exam-
ple: their general form is displayed in Figure 1 (left). First, there can be multiple
inputs and outputs (denoted with array notation in the figure). A transaction
with multiple outputs associates an out-script and a value to each of them, which
can be redeemed independently. Consequently, in fields must specify which out-
put they are redeeming (T0[n0] in the figure). A transaction with multiple inputs
redeems all the (outputs of) transactions in its in fields, providing a suitable in-
script for each of them. To be valid, the sum of the values of all the inputs must
be greater or equal to the sum of the values of all outputs. In its general form,
the out-script is a program in a scripting language featuring a limited set of logic,
arithmetic, and cryptographic operators. Such scripting language is not Turing-
complete, e.g., it does not allow loops. Finally, the lockTime field specifies the
earliest moment in time when the transaction can appear on the ledger.

The mining process. The Bitcoin infrastructure contains a large number of nodes,
called miners, which are in charge of maintaining and extending the ledger ac-
cording to the following consensus protocol [8]. To append a new block Bi of
transactions to the ledger, miners must solve a cryptographic puzzle, whose dif-
ficulty is dynamically updated to ensure that the average mining rate is of 1
block every 10 minutes. The first miner who solves the puzzle is rewarded with
newly generated bitcoins, and a small fee for each transaction in Bi (i.e., the
difference between input and output values); the other miners discard their at-
tempts, and start mining a new block on top of Bi. If two or more miners solve
the cryptopuzzle simultaneously, they create a fork in the ledger (i.e., two or
more parallel branches). At that point miners must choose on which one of the
branches to carry out the mining process; roughly, this divergence is resolved
once one of the branches becomes longer than the others. When this happens,
the other branches are discarded, and all the transactions therein are neglected.
Therefore, there is always a small probability that a transaction in Bi is dis-
carded later on, if miners choose an alternate branch. However, this probability

decreases exponentially with the number of blocks mined on top of Bi; con-
ventionally, a transaction at Bi is considered confirmed after six blocks have
been mined on top. Hereafter, we denote with τLedger the time required to put
a transaction on the ledger and confirm it (∼ 60 minutes in Bitcoin).

3 Statically signing chains of transactions

The current signature mechanism of Bitcoin is known to be unsuitable for signing
chains of transactions before they are put on the ledger4. However, this feature
would be a fundamental building block of advanced smart contracts, like e.g. the
Lightning Network [17], as well as our multiplayer lottery. We first illustrate the
issue, and then we exploit an upcoming feature of Bitcoin [17,16] to statically
construct chains of transactions.

To keep our presentation simple, we consider a minimalistic example with
two players, a and b, and three transactions, T0, T1 and T2, made as follows
(the omitted details are immaterial).

– transaction T1 has T0 as input, while T2 has T1 as input: hence the three
transactions form a chain.

– the out-scripts of T0 and T1 require signatures by both players a and b.

The players want to put the chain of transactions on the ledger, assuming that
T0 is already there. Intuitively, the players have two possible ways of proceeding:

dynamic signing: both players sign T1 and put it on the ledger. After that,
they both sign T2 and put it on the ledger.

static signing: a signs both T1 and T2 before these transactions are on the
ledger, and sends her signatures to b. Then, b adds his own signatures, and
puts both T1 and T2, one after the other, on the ledger.

In the current version of Bitcoin, only dynamic signing is feasible. Of course,
in static signing, the addition of b’s signature to the in-script of T1 alters its in-
script. Note that this will not invalidate a’s signature of T1 (because the signature
does not consider the in-script), so T1 can still be put on the ledger. However,
altering the in-script changes the hash of T1, which is used in T2.in to refer to
the previous transaction. Because of this, a’s signature of T2 is no longer valid,
hence b can not put T2 on the ledger.

A possible solution to this problem is to allow partial signatures, which e.g.
neglect the in part of transactions, as already done for the in-script part. In-
deed, even if T2.in (i.e., the hash of T1) is modified, the (partial) signature in
T2.in-script is still valid, because it neglects the in part. More in general, we de-
fine below a signature scheme for Bitcoin transactions, allowing users to choose
which parts M of the transaction to include in the signature. In this way, once
the transaction is signed, anyone can modify the parts not in M without invali-
dating the signature. The ability of modifying transactions while preserving its

4 See https://en.bitcoin.it/wiki/Transaction_Malleability.

https://en.bitcoin.it/wiki/Transaction_Malleability

signatures is called transaction malleability: while in some circumstances it can
cause security vulnerabilities [3], if used in a controlled manner it can extend
the range of applications built upon Bitcoin [1]. Note that the unsigned parts of
a transaction can be freely altered by adversaries; therefore, designing a secure
protocol must take into account this possibility. E.g., in the previous static sign-
ing example, b can alter T2.in so to refer to some T 6= T1 whose out-script can
be satisfied by a’s signature. In this way T becomes unredeemable. To protect
against this attack, a could use a fresh key in T1.out-script, so that nothing else
can be redeemed by her signature.

We anticipate that the mechanism we propose below is more general than
the one allowed by [17,16]; we proceed in this way because generality allows for
a simpler presentation. Remarkably, our lottery protocol will only rely on the
less general mechanism allowed by [17,16].

Signature scheme for transaction malleability. Let

M ⊆ {in[n], in-script[n], value[n], out-script[n], lockTime |n ≥ 0}

and denote with M(T) the bitstring obtained by concatenating the parts of the
transaction T mentioned in M . We then define:

sigMk (T) = (sigk(M(T)),M) verk(T, (y,M)) = verk(M(T), y)

Hereafter, we use σ as a meta-variable for the partial signatures (sigk(. . .),M),
and σ for arrays of such pairs (we will always use the same convention for arrays).
When k and σ have the same size n, we define:

sigMk (T) = (sigMk[0](T), . . . , sigMk[n−1](T)) verk(T,σ) =
∧
i verk[i](T,σ[i])

Transaction templates. The mechanism shown above allows to statically sign
chains of transactions; further, we can also use it to statically sign chains of
the form T0 T1(y)T2, where the transaction T1(y) depends on a parameter y
such that (i) y is unknown at signing time (it will only be known later on), and
(ii) y only affects those parts of T1(y) not included in the partial signatures.
Under these assumptions, instantiating y in a later moment will not invalidate
any signature. More importantly, while there might be a large number of values
for y (and so, a large number of chains that can be put on the ledger), only one
partial static signature of T1 is needed (as well as for T0 and T2).

Parametric descriptions like the chain above are useful when designing com-
plex protocols, where the actual chain (or graph) of transactions to be put on
the ledger depend on events known after signatures have already been computed.
We now introduce a general notation for expressing transactions with parame-
ters and variants, which hereafter we name transaction templates. Our notation
shows all the possible forms of the malleable transaction parts which are used in
a protocol. Further, we will show how to statically sign such transactions (in all
their forms). We anticipate that, for our lottery protocol, the number of possible
transactions is large, while the number of needed static signatures is small.

Hereafter, we fix M = {value[n], out-script[n], lockTime |n ≥ 0} in our signa-
ture scheme, so making the in and in-script fields malleable. The general form
of transaction templates t, t′, . . . is shown in Figure 1 (right). The template t(x)
is parametrized over an array of values x, in a given domain. Further, for its
in and in-script fields, the template describes a few variants, each of which may
take some additional parameters y. Note that out-scripts may only refer to the
template parameters x, while in and in-scripts may also refer to their own vari-
ant parameters y. Further, the in field refers to another template. A template
t(x) can be instantiated to a transaction T = t(x).Variant i〈yi〉, by choosing the
variant i and the parameters. Here, T.in is set to any redeemable transaction on
the ledger which is an instantiation of the template in the in field of t.

Transaction templates signatures. We define below the signature of a transaction
template t(x): intuitively, this is a set S of transaction signatures which cover all
the possible actual values for the parameters x and for the variant parameters
y, in their respective domains. Once the signatures in S have been generated
and sent to a player, she can effectively compute any instance t(v).Variant〈w〉.

Formally, let t(x) be a transaction template, with variant i taking param-
eters y. In our notation, we allow the input scripts of the variant i to include
signatures of the form sigK(z)(•), denoting the partial signature (w.r.t. M) of

the transaction t(x).Variant i〈y〉, using a key K(z) which depends on a subset z
of the parameters x and y.

Now, assume that the parameters x range over a finite domain, and that for
all (finitely many) variants Variant i〈y〉, for all (finitely many) input scripts
in-script[n] = W in i, and for all (finitely many) partial signatures Wj =
sigK(z)(•) in W, the set of keys κ(x, i, n, j) = {K(z) |y in its domain} is finite.

Under these assumptions, we build the finite set S of template signatures as
follows. For all values v in the domain of x, we denote with Tv the instance t(v)
without any inputs and input scripts (hence, the variant is immaterial). Then,
we define S =

⋃
v,i,n,j {sigk(Tv) | k ∈ κ(v, i, n, j)}.

We anticipate that in our lottery protocol the assumptions above are satisfied,
hence the players can effectively compute and share S in the initialization phase,
allowing everyone to generate the needed instances in the execution phase.

4 The tournament protocol

We introduce our lottery protocol for N = 2L players; each player is represented
by a bit-string in P = {0, 1}L, ranged over by a, b, We assume that each
player bets 1B in the lottery, and blocks a deposit of dB, for an arbitrary d ≥ 0.
Our protocol is based on a single-elimination tournament, where matches are
organised as a complete binary tree of L levels. The tournament involves N − 1
two-player matches: the winners of the matches at level ` ∈ 1..L play at the next
level `− 1; the winner of the match at level 0 wins the whole NB stake.

Let Π = {{0, 1}n |n ≤ L} (i.e., sequences of n bits) be the set of tree paths.
Intuitively, for every path in Π \ P we have a two-player match. For any two
paths π, π′ ∈ Π, we write π v π′ when π is a prefix of π′ (< for proper prefixes).

Key pairs and secrets. Our protocol requires players to exchange a certain num-
ber of Bitcoin transactions, together with their signatures. To this purpose, each
player p generates all the following key pairs for every a, b ∈ P and for every π:

Kp(Betp), Kp(Collect), Kp(Init , a)

Kp(Win, π, a), Kp(WinTO , π, a) ε 6= π v a

Kp(Turn1 , π, a, b), Kp(Turn1TO , π, a, b), Kp(Turn2TO , π, a, b) π < a, b

Kp(Turn2 , π, a) π < a

Kp(Timeout1 , π, a, b), Kp(Timeout2 , π, a, b) π < a, b

The first component in each key pair above (e.g., Collect) is a distinct label. Note
that each player generates O(N2 L) key pairs. We assume that the private part of
a key pair Kp(· · ·) is kept secret by p, while the public part is communicated to
the other players. For each set of key pairs Kp(X, · · ·), we denote with K(X, · · ·)
the set of key pairs {Kp(X, · · ·) | p ∈ P}. We denote with ε the empty sequence.

The outcome of a match is randomly determined with a “coin toss” protocol,
as in [2]. Intuitively, the players generate two random secrets, and exchange their
hashes; then, they reveal the secrets: the winner is determined by a function of
the two secrets (i.e., the parity of the sum of the lengths of the two secrets).
Since a player may be involved in L distinct matches, we assume that each p
generates L secrets (i.e., long random sequences of bits), one for each π < p. The
secret of p at level π is denoted by sπp ; its public hash H(sπp) is denoted by hπp .

Overview of the protocol. Our protocol uses a number of transactions, the tem-
plates of which are in Figure 2. The protocol is organised in three phases:

initialization: the players exchange the public data, e.g. the static signatures
and hashed secrets. Then, they collect all the bets, and put on the ledger
the transactions for the leaves of the tournament tree.

execution: this phase is organised in L rounds, one for each level of the tree.
In each round `, exactly 2` two-player matches are played, by the winners of
the previous round. The possible executions of a single round are depicted
in Figure 4. The winner of the last round collects the whole stake.

garbage collection: this allows players to recover from some potential inter-
ference, to be discussed in Section 5.2.

We now comment the protocol in Figure 3. We denote the duration of each
round with τRound = 6 τLedger , following Figure 4. The transaction templates
of Figure 2 define some timelocks, which depend on a time τ1 (chosen in the
initialization phase), corresponding to the start of the execution phase.

Initialization phase. In step 1, all the players generate the signatures and secrets,
and exchange the related public data. Step 2 is needed to prevent attacks where
a player does not compute a hash from her own secret, but replays the hash of

Win(π, a) with ε 6= π < a

Timeout1 〈b〉
in: Timeout1(π, b, a)
in-script: sigK(Timeout1 ,π,b,a)(•)

Timeout2 〈b〉
in: Timeout2(π, a, b)
in-script: sigK(Timeout2 ,π,a,b)(•)

Turn2fst 〈b, ŝa , ŝb〉
in: Turn2(π, a, b)
in-script: ŝa , ŝb , sigK(Turn2 ,π,a)(•)

Turn2snd 〈b, ŝa , ŝb〉
in: Turn2(π, b, a)
in-script: ŝb , ŝa , sigK(Turn2 ,π,a)(•)

out-script(T,σ): verK(Win,π,a)(T,σ)
∨ verK(WinTO,π,a)(T,σ)

value: (1 + d) 2L−|π|B

Init

∀p ∈ P :
{ in[p]: Betp

in-script[p]: sigKp(Betp)
(•)

∀p ∈ P :
{ out-script[p](T,σ): verK(Init,p)(T,σ)

value[p]: 1 + dB

Win(a, a) (leaf)

in: Init[a]
in-script: sigK(Init,a)(•)
out-script(T,σ): verK(Win,a,a)(T,σ)
value: 1 + dB

Win(ε, a) (root)

(Variants as for Win(π, a))

out-script[a](T, σ): verKa (Collect)(T, σ)
value[a]: N + dB

∀p 6= a :
{ out-script[p](T, σ): verKp(Collect)(T, σ)

value[p]: dB

Turn1(π, a, b) with π < a, b

in[0]: Win(π0, a)
in-script[0]: sigK(Win,π0,a)(•)
in[1]: Win(π1, b)
in-script[1]: sigK(Win,π1,b)(•)
out-script(T, ŝa ,σ):

(H(ŝa) = hπa ∧ verK(Turn1 ,π,a,b)(T,σ))
∨ verK(Turn1TO,π,a,b)(T,σ)

value: (1 + d) 2L−|π|B

Turn2(π, a, b) with π < a, b

Secret 〈ŝa〉
in: Turn1(π, a, b)
in-script: ŝa , sigK(Turn1 ,π,a,b)(•)
out-script(T, ŝa , ŝb ,σ):(

H(ŝa) = hπa ∧ H(ŝb) = hπb
∧ verK(Turn2 ,π,winner(a,b,ŝa ,ŝb))(T,σ)

)
∨ verK(Turn2TO,π,a,b)(T,σ)

value: (1 + d) 2L−|π|B

Timeout1(π, a, b) with π < a, b

in: Turn1(π, a, b)
in-script: ⊥, sigK(Turn1TO,π,a,b)(•)
out-script(T,σ): verK(Timeout1 ,π,a,b)(T,σ)

value: (1 + d) 2L−|π|B
lockTime: τ1 + (L− |π| − 1)τRound + 2τLedger

Timeout2(π, a, b) with π < a, b

in: Turn2(π, a, b)
in-script: ⊥, ⊥, sigK(Turn2TO,π,a,b)(•)
out-script(T,σ): verK(Timeout2 ,π,a,b)(T,σ)

value: (1 + d) 2L−|π|B
lockTime: τ1 + (L− |π| − 1)τRound + 4τLedger

CollectOrphanWin(π, a) with ε 6= π < a

in: Win(π, a)
in-script: sigK(WinTO,π,a)(•)
out-script[a](T, σ): verKa (Collect)(T, σ)

value[a]: 2L−|π| + dB

∀p with a 6= p v π :
{ out-script[p](T, σ): verKp(Collect)(T, σ)

value[p]: dB
lockTime: τ1 + (L− |π|)τRound + τLedger

Fig. 2. Transaction templates for the lottery protocol.

another player. In step 3 we choose the time τ1 to be large enough so that the
initialization can be completed within τ1. In steps 4–5 the players exchange all
the static signatures needed in the execution phase. Each player p contributes his
own part of the signature, using his own keys Kp(. . .). Steps 6–8 collect the bets

from the transactions Betp in a single transaction Init. If Init is not confirmed
on the ledger, e.g. because some player has already redeemed his bet, then all
the other players redeem their original bets. In this way, they ensure that Init
can no longer appear on the ledger, hence the protocol is aborted. Step 8 also
prevents an attack where Init is maliciously delayed so to make honest players
lose. Finally, step 9 sets up the first level of the tournament, by splitting the
stake in the Init among all the leaves of the tree, i.e. Win(p, p).

Precondition: for all players p, the ledger contains a transaction Betp with value
(1 + d)B, and redeemable with key Kp(Betp).

Initialization phase:

1. each player p generates all the key pairs and the secrets sπp as in Section 4,
and broadcasts to the other players the public keys and hashes hπp = H(sπp);

2. if hπp = hπ
′

p′ for some (p, π) 6= (p′, π′), the players abort;
3. choose the time τ1 large enough to fall after the initialization phase;
4. each player signs all the transactions templates in Figure 2 except for Init

(using the procedure in Section 3), and broadcasts the signatures;
5. each player verifies the signatures received by the others; if some signature is

not valid or missing, the player aborts the protocol;
6. each player p signs Init, and sends the signature to the first player;
7. the first player puts the (signed) transaction Init on the ledger;
8. if Init does not appear within one τLedger , then each p redeems Betp and aborts;
9. the players put the signed transactions Win(p, p) on the ledger, for all p ∈ P.

Execution phase:

for each level ` = L..1:

for each π such that |π| = `− 1, in parallel, a two-player match is played:

10. let a and b be such that Win(π0, a) and Win(π1, b) are on the ledger;
11. the players put Turn1(π, a, b) on the ledger;
12. player a puts Turn2(π, a, b).Secret〈sπa 〉 on the ledger;
13. the players wait until either Turn2(π, a, b) is confirmed, or Timeout1(π, a, b)

is enabled. In the second case, they put Timeout1(π, a, b) on the ledger; once
it is confirmed, they put Win(π, b).Timeout1 〈a〉 on the ledger, and terminate
the match at π;

14. player b computes w = winner(a, b, sπa , s
π
b), the winner of the match at π;

– if w = a, player b puts Win(π, a).Turn2fst〈b, sπa , sπb 〉 on the ledger.
– if w = b, player b puts Win(π, b).Turn2snd〈a, sπa , sπb 〉 on the ledger.

15. the players wait until either Win(π, c) is confirmed (for some c ∈ {a, b}) , or
Timeout2(π, a, b) is enabled. In the second case, they put Timeout2(π, a, b)
on the ledger; once confirmed, they put Win(π, a).Timeout2 〈b〉 on the ledger.

Garbage collection phase: if there is some unredeemed Win(π, p) with π 6= ε,
then the players put CollectOrphanWin(π, p) on the ledger.

Fig. 3. Tournament lottery Protocol.

To choose τ1, note that the initialization phase requires:

– at steps 1–6, to generate all the needed signatures and secrets, and share the
related public parts. This costs O(N3L).

– at step 7, to put on the ledger the transaction Init. This costs 1 τLedger .
– after that, at step 9, to put all the transactions Win(p, p). This costs 1 τLedger ,

because it can be done in parallel.

Therefore, we choose τ1 such that τ1 ≥ currentTime +O(N3L) + 2τLedger .

Execution phase. In this phase, the players play against each other. We recom-
mend the reader to examine Figure 4 for an overview of how matches are played.
Matches correspond to the nodes of the tournament tree, and so they are indexed
by tree paths π. The match at π involves the winners of the two matches π0 and
π1 of the previous round (i.e., the children of π). These winners are, respectively,
the players a and b in the transactions Win(π0, a) and Win(π1, b) which are on
the ledger at the start of the match (step 10). The goal of steps 10–15 is to put
on the ledger a transaction Win(π,w), where w is the winner at π.

Step 11 starts by redeeming both Win(π0, a) and Win(π1, b) through the
transaction Turn1(π, a, b). Note that any player (not only a and b) can perform
this step, since everyone has the required signatures. At step 12, player a is ex-
pected to reveal her secret sπa ; otherwise, after a certain deadline, the other play-
ers can make a lose. If a chooses to reveal her secret, she must put on the ledger
the transaction Turn2(π, a, b), which redeems Turn1(π, a, b), through an input
script containing sπa . Otherwise, after 1τLedger , the timelock on Timeout1(π, a, b)
expires, allowing any other player to put Timeout1(π, a, b) on the ledger at
step 13. After that, Win(π, b) can be put on the ledger by any player, so mak-
ing a lose the match. At step 14, it is the turn of player b to reveal his secret
sπb ; otherwise, similarly to the previous steps, the other players can make b lose
after some time. If b chooses to reveal his secret, he must first compute the
winner w of the match — this is possible because b knows both secrets sπa and
sπb . Then, he must put Win(π,w) on the ledger, which redeems Turn2(π, a, b),
through an input script containing sπb . Otherwise, after 1τLedger , the timelock
on Timeout2(π, a, b) expires, allowing any other player to put Timeout2(π, a, b)
on the ledger at step 15. After that, Win(π, a) can be put on the ledger by any
player, so making b lose the match.

After the last round of the execution phase, the tournament protocol is over.
At this point, there is exactly one transaction Win(ε, a) on the ledger, for some a.
This transaction can be redeemed by a at any time, by putting on the ledger a
transaction with in-script sigKa(Collect)(•). Note that only a has the private key

needed for this signature. In this way a can obtain the whole stake of NB.

Garbage collection phase. As we will discuss in Section 5.2, a dishonest player
can try to cheat by forging Win transactions. When this happens, some legit Win
transactions are left orphan on the ledger: the garbage collection phase allows
the players who contributed to these transactions to redeem their money back.
In this way the protocol remains secure, as established later on by Theorem 5.

Win(π0, a)

Win(π1, b)

0

sπa

Turn1(π, a, b)

1 τLedger

sπb

Turn2(π, a, b)

2 τLedger

Win(π,w) w = winner(a, b, sπa , s
π
b)

Timeout1(π, a, b)

3 τLedger

Win(π, b)

4 τLedger

Timeout2(π, a, b)

5 τLedger

Win(π, a)

6 τLedger

Fig. 4. Graph of the transactions in a tournament round. An edge from transaction T
to T′ means that T′ redeems T. Solid edges mean that any player can redeem; wavy
edges mean that any player can redeem, but only after a timeout. Dashed edges mean
that only the player who knows the secret on the label can redeem.

5 Security of the tournament protocol

We assume that all the algorithms used by the players run in PPTIME with
respect to a security parameter η. A function f : N→ R is said to be negligible
iff, for some constant c ∈ N, the inequation |f(η)| ≤ η−c holds asymptotically.
We assume that all the cryptographic primitives (e.g., digital signatures, hash
functions) are secure, up-to a negligible probability of attack.

We assume that Bitcoin works as a robust public transaction ledger, where
every player can append valid transactions (which are confirmed in τLedger),
while invalid transactions cannot appear. Recent results [12] show that, in a
backbone Bitcoin protocol, this assumption holds when the honest miners hold
the majority of the hashing power (despite the negative results in [11]). For
simplicity, we assume that transactions require no fees. All our results hold even
when there is only one honest player.

5.1 Properties of the protocol

Consider an arbitrary lottery protocol with N players, where each player bets
a certain amount bet of bitcoins to have the chance to win N · bet . A run is
a pair (β, λ), where β is the state of the blockchain when the protocol starts,
and λ is the timed sequence of public events occurred in a (possibly partial)
protocol execution. The component λ includes, e.g., the exchanged signatures
and the transactions put on the ledger after β. Each player a uses a strategy Σa

to choose which events to perform at any time in a run of the protocol. Roughly,
Σa(1η, β, λ) is a PPTIME algorithm which can observe the whole past (β, λ),
and choose the next moves (not necessarily those prescribed by the protocol). We
further allow Σa to access the local state of a, including her private information.
A strategy Σa is honest when it follows the protocol; a player is honest when
she uses an honest strategy. A run is maximal for a when she has performed all
the enabled actions prescribed by Σa .

We say that a transaction is freely redeemable by a when (i) a can use her
knowledge (including private information) to compute the needed witness, and
(ii) a can freely choose the output script of the redeeming transaction. The
wealth of a after a certain run (β, λ), denoted by wealth(a, β, λ), is the amount
of bitcoins freely redeemable at that time by a, but not by any other player.

Lottery protocols usually require players to block a deposit of bitcoins through-
out their execution (beyond the bet). Technically, we define the deposit of a as
the minimum amount of bitcoins wealth(a, β, ε)− bet such that, starting from β,
a can always perform a maximal run of the protocol (using an honest strategy),
regardless of the behaviour of the other players. Then, we say that a lottery
protocol is d-deposit if d is the maximum of the deposits of all players. Note
that, by definition, it must be d ≥ 0: otherwise, should a lose the lottery, there
would not be enough bitcoins to pay the other players.

The following theorem states that the tournament protocol requires constant
dB deposit; note instead that the protocols in [2,4,5,7] require O(N2)B deposit.

Theorem 1. The tournament protocol is d-deposit.

Lemma 1. For each level ` = L..1 of the execution phase:

1. for every π such that |π| = `, the ledger contains a transaction Win(π, a)
with value (1 + d) 2(L−`)B, for some a;

2. the round starts within time τ1 + (L− `) · τRound .

Theorem 2 exploits Lemma 1 to establish an upper bound to the completion
time of our protocol. Note that a single honest player a is enough to guarantee
termination: indeed, even if the other players do not cooperate, a can always
put all the required transactions on the ledger, after the respective timeouts.

Theorem 2. Assume that at least one player is honest, while the others can be
adversaries with arbitrary strategies. Then:

1. after τ1, either Init is on the ledger, or the protocol is aborted without any
honest players losing their wealth;

2. after Init is on the ledger, a transaction Win(ε, p) is put on the ledger within
6LτLedger , for some p (who is the winner of the lottery).

The following theorem quantifies the payoff of each player in a single run
of the protocol where all the players are honest. The payoff of a player at a
given point of an execution is the wealth difference between that point and the
beginning of the protocol. Formally, given a run (β, λ) for a, this amounts to:

Φ(a, β, λ) = wealth(a, β, λ)− wealth(a, β, ε)

Then, Theorem 3 states that, once the Init transaction has been put on the
ledger, there are only two possible outcomes of the protocol: either a player loses
1B (her bet), or she wins N − 1B (the bets of all the other players).

Theorem 3. If all players are honest, then, for all players a and for all maximal
runs (β, λ) of a such that Init ∈ λ, we have Φ(a, β, λ) ∈ {−1B, N − 1B}.

Theorem 4 below establishes the security of the tournament protocol, by de-
scribing the probability distribution of the payoff of an honest player in contexts
where the other players are adversaries. In particular, we will assume that ad-
versaries follow rational strategies which, on average, will not make them lose
money (but for a negligible amount). In order to define rational strategies, we
introduce an auxiliary notion. Given a set of strategies Σ for all players and a
blockchain state β, we denote with EΦ(a,Σ, β, η) the expected payoff of a over
all the runs (β, λ) which are maximal for each player p using Σ[p]. Then, we say
that player a is rational in Σ iff for all β, there exists a negligible f such that,
for all η, EΦ(a,Σ, β, η) ≥ f(η).

Theorem 4 states that the expected payoff of each player p in a given set of
honest players H is either −1 or N −1 with probabilities, respectively, N−1/N or
1/N, up-to a negligible error. This holds when either all the players are honest
(and the deposit is arbitrary, potentially zero), or the adversaries are rational
and the deposit is greater than zero.

Theorem 4. Let H ⊆ P be a set of players, and let Σ be such that Σ[a] is
honest for all a ∈ H. If (i) H = P, or (ii) d > 0 and Σ[b] is rational for all
b ∈ P \ H, then the payoff of each p ∈ H is distributed as follows, for all β:

Pr(Φ(p, β, λ) = v | Init ∈ λ maximal) =


N−1
N + f1(η) if v = −1

1
N + f2(η) if v = N − 1

f3(η) otherwise

where f1, f2, f3 are negligible functions, and λ is a random variable, sampled so
that (β, λ) is maximal with respect to Σ.5

5.2 Security of zero-deposit lotteries

Theorem 4 requires that, when there are (rational) adversaries, the deposit is
strictly greater than zero. To see why, assume d = 0, and consider some match
π = 010 where the honest player a plays against an adversary b. Assume that
both players have won 1B in the previous rounds of the lottery, and that a would
be the winner of the match at π, according to the committed secrets. Further,
assume that b can redeem 2B from some transaction Tb external to the protocol.

Since a is honest, at step 12 of the protocol she reveals her secret sπa , by
putting Turn2(π, a, b).Secret〈sπa 〉 on the ledger. Realizing that he has lost the
match, b redeems Tb through a transaction Win(π, b) with malleated in and
in-script fields. Note that, to do this, b invested additional 2B from Tb. Player b
can now redeem both his transaction and Win(c, π′) from the sibling match at
π′ = 011 by putting Turn1(01, b, c) on the ledger.

Player a can redeem the pending Turn2 (after its timeout has expired) using
Timeout2(π, a, b), and then redeem it with Win(π, a). This transaction is now

5 We neglect the case where the probability of λ not containing Init is zero, because
already dealt with by the first item of Theorem 2.

orphan, i.e. it can no longer be used in the next rounds, because its sibling
Win(π′, c) was already redeemed by b. However, the orphan transaction can be
redeemed in the garbage collection phase by CollectOrphanWin(π, a). In this way
a can collect her winnings till match π, including the one in the match where b
interfered. The average payoff of a is still zero, even though b misbehaved.

Remarkably, the dishonest strategy used by b is rational, when the deposit
is zero. Indeed, when b realizes to have lost 1B at π, he can let the timeout of
Turn2 expire without further loss; also, by investing additional 2B from Tb he
can continue the tournament, with a fair chance to win. Overall, this makes the
average payoff of b equal to zero (up-to a negligible function). Therefore, the
protocol does not guarantee that the probability distribution of the payoff is the
one in Theorem 4, when the deposit is zero and there are rational adversaries.

Instead, when the deposit is positive, the dishonest strategy of b is no longer
rational. The reason is that, to continue the tournament, b needs to pay 2B
plus the deposit for all the players p = π, including a. In the garbage col-
lection phase, all these players will receive back their original deposit through
CollectOrphanWin, and an additional deposit from the final transaction Win(ε,w).
The deposit in the latter transaction was provided by b to enable the interfer-
ing Win(π, b). Overall, the average payoff of a becomes positive, while that of b
becomes negative: hence the dishonest strategy is irrational.

This informal argument can be extended to the case of adversaries with
arbitrary strategies. In general, Theorem 5 below establishes that, even in this
case, our zero-deposit lottery protocol is secure, i.e. a player which follows the
protocol does not lose money, on average.

Theorem 5. Honest strategies are rational in any set of strategies Σ.

6 Conclusions

We have presented a lottery protocol based on Bitcoin, where N players can
place a bet, and one of them, uniformly chosen, wins all the bets. Our protocol
is parametric w.r.t. the deposit d ≥ 0 that the players have to block through-
out the protocol. For any value of d, our protocol ensures that honest players
have a negligible average payoff, even in the presence of arbitrary adversaries
(Theorem 5). Further, for d > 0, the payoff is distributed like an ideal lottery
(Theorem 4): that is, the winner gets the sum of all the bets with probability
close to 1/N, while the other players lose their bets with probability close to
N−1/N. This holds unless the adversaries follow strategies which (on average)
make them lose money, and make honest players gain money. According to the
terminology in [2], our protocol implements a fair lottery.

Table 1 summarises the comparison between our protocol and the ones in [2]
(ADMM) and [7] (BK). We also consider a variant of ours and [2], called “2 play-
ers iterated”, which implement an N -players lottery by running N − 1 instances
of a two-players protocol. Similarly to our tournament protocol, these instances
are composed in a tree: only the winners of a level can play at the next one, and

ADMM [2] ADMM [2] BK [7] Tournament Tournament
N players 2 players iterated N players N players 2 players iterated

Deposit N(N − 1) N O(N2) d ≥ 0 d ≥ 0

Completion time 4 τLedger 4LτLedger O(N) (2 + 6L) τLedger 7LτLedger

Transactions O(N2) O(N) O(N) O(N) O(N)

All-or-nothing yes no yes yes, if d > 0 no

Bitcoin features NST NST NST + [17] NST + [17,16] NST + [17,16]

Table 1. Comparison of lottery protocols.

the winner of the root collects all the bets. In the iterated versions, the initializa-
tion phase is performed for every match (using independent keys/secrets), while
in the non-iterated version the initialization is done only once, at the beginning.

The first row in the table quantifies the deposit: this is constant in our pro-
tocol, while in the others it grows with the number of players. More specifically,
the deposit is O(N2) in [7] and in the non-iterated version of [2], while in the
iterated version the deposit is N : intuitively, an N -deposit at the last round is
needed to guarantee that the final winner can collect the whole N stake.

The second row quantifies the completion time of the protocol, excluding the
communication and computation time (which is marginal in practice, compared
to the time required to put transactions on the ledger). Only the non-iterated
version of [2] requires constant time; in [7] the time is linear in N , while in the
other protocols the time is proportional to L = logN .

The number of transactions required by each protocol is linear in N , except
for [2], which requires O(N2) transactions (third row).

The fourth row describes whether a protocol has an ideal behaviour, where
only one player wins the whole stake, while the others lose their bets. More
specifically, we call a protocol “all-or-nothing” if, assuming rational adversaries,
the payoff of honest players is either −1 or N − 1. The non-iterated versions
of the protocols are “all-or-nothing”, while the iterated ones are not. Indeed, a
rational adversary can simply stop playing after winning a match, collecting the
partial winnings and making impossible for any other player to obtain the whole
NB stake (hence forcing some honest player to gain −1 < v < N − 1B).

The last row describes which Bitcoin features a protocol requires to be actu-
ally implemented. All protocols make use of non-standard transactions (NST),
which are admitted, but currently handled by a portion of the miners. Note that
some recent works [6] address the issue of implementing complex protocols on
Bitcoin by using only standard transactions. Our tournament protocol also re-
lies on two upcoming improvements to Bitcoin [17,16] related to the segregated
witnesses, as discussed in Section 3. The protocol in [7] assumes resilience to
malleability attacks, which can be obtained through [17].

Although our protocol has been crafted for Bitcoin, the underlying ideas can
be used to implement fair lotteries on other frameworks for smart contracts. This
could allow to relax the rationality assumption of Theorem 4 when the deposit
is zero. For instance, an implementation in Ethereum [9] could just follow the
structure of rounds in Figure 4, neglecting the Bitcoin transactions.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via bitcoin deposits. In: Bitcoin workshop. pp. 105–121 (2014)

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S & P. pp. 443–458 (2014)

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: On the mal-
leability of Bitcoin transactions. In: Financial Cryptography and Data Security.
pp. 1–18 (2015)

4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure mul-
tiparty computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016), http:

//doi.acm.org/10.1145/2896386

5. Back, A., Bentov, I.: Note on fair coin toss via Bitcoin. http://www.cs.technion.
ac.il/~idddo/cointossBitcoin.pdf (2013)

6. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. pp. 261–280 (2016)

7. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In:
CRYPTO. pp. 421–439 (2014)

8. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
S & P. pp. 104–121 (2015)

9. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)

10. Crary, K., Sullivan, M.J.: Peer-to-peer affine commitment using bitcoin. In: ACM
Conf. on Programming Language Design and Implementation. pp. 479–488 (2015)

11. Eyal, I., Sirer, E.: Majority is not enough: Bitcoin mining is vulnerable. In: Finan-
cial Cryptography and Data Security. pp. 436–454 (2014)

12. Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis
and applications. In: EUROCRYPT. pp. 281–310 (2015)

13. Kiayias, A., Zhou, H., Zikas, V.: Fair and robust multi-party computation using a
global transaction ledger. In: EUROCRYPT. pp. 705–734 (2016)

14. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS. pp. 30–41 (2014)

15. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized
poker. In: ACM CCS. pp. 195–206 (2015)

16. Lau, J., Wuille, P.: Transaction signature verification for version 0 witness program,
BIP 143, https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki

17. Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus layer), BIP 141,
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008)

19. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: Penalizing equivocation
by loss of Bitcoins. In: ACM CCS. pp. 219–230 (2015), http://doi.acm.org/10.
1145/2810103.2813686

20. Szabo, N.: Formalizing and securing relationships on public networks. First Mon-
day 2(9) (1997), http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/
fm/article/view/548

http://doi.acm.org/10.1145/2896386
http://doi.acm.org/10.1145/2896386
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://doi.acm.org/10.1145/2810103.2813686
http://doi.acm.org/10.1145/2810103.2813686
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548

	Constant-deposit multiparty lotteries on Bitcoin

