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Abstract. We will present here two simple theorems that show that
when we compose permutation generators with independent keys, then
the “quality” of CCA security increases. These theorems are written in
terms of H-coefficients.

1 A simple mathematical property

Theorem 1. Let x1, . . . , xn and y1, . . . , yn be real numbers and let α and β be
real numbers, α ≥ 0, β ≥ 0 such that:
•
∑n

i=0 xi = 0.
•
∑n

i=0 yi = 0.
•∀i, 1 ≤ i ≤ n, xi ≥ −α.
•∀i, 1 ≤ i ≤ n, yi ≥ −β.
Then:

∑n
i=1 xiyi ≥ −nαβ.

Proof. ∀i, 1 ≤ i ≤ n, let:
Ai = xi if xi ≥ 0
ai = −xi if xi < 0
Bi = yi if yi ≥ 0
bi = −yi if yi < 0

Then all the values Ai, ai, Bi, bi, are positive,
∑
Ai =

∑
ai,

∑
Bi =

∑
bi,

0 ≤ ai ≤ α, 0 ≤ bi ≤ β. Let P =
∑n

i=1 xiyi. In P , we have 4 types of terms:
AiBi, −Aibi, −aiBi and aibi. We can assume that we have at least one term
−Aibi or −aiBi because if this is not the case, then P ≥ 0 ≥ −nαβ. From now
on, we will assume that we have at least one term −ai0Bi0 (but not necessary
one term Aibi). Without loss of generality, we can assume that we have no term
in AiBi since decreasing Bi to 0 and increasing Bi0 of the same value (Bi0

becomes Bi0 + Bi) keeps
∑
Bi =

∑
bi but can only decrease P (because the

term in AiBi is nonnegative and the term in −ai0Bi0 is nonpositive), and we
look for P as small as possible. Now, since we have no term in AiBi, we can
assume that we have at least one term Aj0bj0 (if not we would have no term
Ai at all and since

∑
Ai =

∑
ai, no term ai 6= 0 also). Then without loosing

generality, we can assume that ai0 = α since increasing ai0 and increasing Aj0 of
the same value can only decrease P . Similarly, we can assume that all the terms



−aiBi are −αBi and all the terms −Aibi are −βAi.
Now, from the term in −Aj0β we see that we can assume that in all the terms
aibi, we have ai = α since by increasing ai to α and increasing Aj0 of the same
value α−ai (in order to keep

∑
Ai =

∑
ai), we will only decrease P (since P is

changed on P + (α− ai)bi − (α− ai) ≤ P ). Similarly, from the term in −αBi0 ,
we see that we can assume that in the term aibi we have bi = β. Finally, we have
found that

P ≥ −
n1∑
i=1

βAi −
n2∑

i=n1+1

αBi +

n∑
i=n2+1

αβ

with
n1∑
i=1

Ai =
∑

ai = ((n2 − n1) + (n− n2))α = (n− n1)α

n2∑
i=n1+1

Bi =
∑

bi = (n1 + (n− n2))β

P ≥ −(n− n1)αβ − (n1 + n− n2)αβ + (n− n2)αβ

Thus P ≥ −nαβ, as claimed. ut

2 A composition Theorem in CCA with H-coefficients

Theorem 2. Let G1 and G2 two permutation generators (with the same key
space K) such that:
(1) For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q, and for
all sequences of pairwise distinct elements bi, 1 ≤ i ≤ q, we have: H1 ≥

|K|
2N (2N−1)...(2N−q+1)

(1− α1) and similarly H2 ≥ |K|
2N (2N−1)...(2N−q+1)

(1− α2) where

H1 denotes the H coefficient for G1 and H2 the H coefficient for G2. Then:
(2) If we compose 2 such generators G1 and G2 with random independent keys,
for the composition generator G′ = G2 ◦G1, we have: for all sequences of pair-
wise distinct elements ai, 1 ≤ i ≤ q, and for all sequences of pairwise distinct

elements bi, 1 ≤ i ≤ q, H ′ ≥ |K|2
2N (2N−1)...(2N−q+1)

(1− α1α2), where H ′ denotes

the H coefficient for G′.

Proof. Let H̃1 (respectively H̃2) denotes the mean value of H1. (respectively
H2). We have:

H̃1 = H̃2 =
|K|

2N (2N − 1) . . . (2N − q + 1)

Let denote by H̃ ′ the mean value of H for G′ = G2 ◦G1. We have

H̃ ′ =
|K|2

2N (2N − 1) . . . (2N − q + 1)



Let a = (a1, . . . , aq) be q pairwise distinct plaintexts, and b = (b1, . . . , bq) be q
ciphertexts of G′. Let J be the set of all (t1, . . . , tq) pairwise distinct values of
{0, 1}N . We have |J | = 2N (2N − 1) . . . (2N − q + 1). For G′ = G2 ◦G1, we have:

H(a, b) =
∑
t∈J

H1(a, t)H2(t, b)

We also have
∑

t∈J H1(a, t) = |K| and
∑

t∈J H2(t, b) = |K| since each key sends

a value a to a specific value t. We also have |K| = H̃1 · |J | = H̃2 · |J |. By
hypothesis, we also have:

∀t ∈ J, H1(a, t) ≥ H̃1(1− α1) and H2(a, t) ≥ H̃2(1− α2)

∀t ∈ J , let xt = H1(a,t)

H̃1
− 1 and yt = H2(a,t)

H̃2
− 1. ∀t ∈ J , we have xt ≥ −α1, and

yt ≥ −α2,
∑

t∈J xt = 0 and
∑

t∈J yt = 0. Therefore, from theorem 1, we have∑
t∈J xtyt ≥ −|J |α1α2. For G′ = G2 ◦G1, we have:

H(a, b) =
∑

t∈J H1(a, t) ·H2(t, b)

=
∑

t∈J

(
H̃1xt − H̃1

)(
H̃2yt − H̃2

)
=
∑

t∈J H̃1H̃2xtyt − H̃1H̃2yt − H̃1H̃2xt + H̃1H̃2

≥ −H̃1H̃2|J |α1α2 + |J |H̃1H̃2

Moreover H̃ ′ = |K|2
|J| = |J |H̃1H̃2. We have proved: H(a, b) ≥ H̃ ′(1 − α1α2) as

claimed. ut

Theorem 3. (H-coefficient technique, sufficient condition for security against
CCA)

Let α and β be real numbers, α > 0 and β > 0
If: There exists a subset E of ({0, 1}qN )2 such that
(1a) For all (a, b) ∈ E, we have:

H ≥ |K|
2Nq

(1− α)
◦
1

with
◦
1
déf
=

1

(1− 1
2N )(1− 2

2N ) . . . (1− q−1
2N )

(1b) For all CCA acting on a random permutation f of PN , the probability
that (a, b) ∈ E is ≥ 1− β where (a, b) denotes here the successive bi = f(ai) or
ai = f−1(bi), 1 ≤ i ≤ q, that will appear.

Then
(2) For every CCA with q queries (i.e. q chosen plaintexts or ciphertexts) we

have: AdvPRP ≤ α + β where AdvPRP denotes the probability to distinguish
G(f1, . . . , fr) when (f1, . . . , fr) ∈R K from a permutation f ∈R PN .

Proof. This theorem is proved in [5, 6]. ut



Corollary 1. From theorem 3 (H-coefficients in CCA) with β = 0, we see that
we have: AdvPRP ≤ α1α2 where AdvPRP denotes the advantage in CCA to
distinguish G2◦G1 (when the keys are independently and randomly chosen) from
a permutation f ∈R Pn.

By induction, we see:

Theorem 4. Let q and k be two integers. Let α1, . . . , αk be k real values. Let
G1, . . . , Gk be k permutation generators such that: for all sequences of pairwise
distinct elements ai, and for all sequences of pairwise distinct elements bi, 1 ≤
i ≤ q, we have:

H ≥ |K|
2N (2N − 1) . . . (2N − q + 1)

(1− αj)

If we compose k such generators G1, . . . , Gk with random and independent keys,
for the composition generator G′ = Gk ◦ . . . ◦ G1, we have: for all sequences of
pairwise distinct elements ai, 1 ≤ i ≤ q and for all sequences of pairwise distinct

elements bi, 1 ≤ i ≤ q, H ≥ |K|
2N (2N−1)...(2N−q+1)

(1− α1 . . . αk). Therefore, from

theorem 3 with β = 0, we see that we have: AdvPRP ≤ α1 . . . αk

3 A composition theorem to eliminate a “hole”

J denotes, as above, the set of all q pairwise distinct values of {0, 1}N .

Theorem 5. Let G1 and G2 be two permutation generators with the same key
space K. Let H1 (respectively H2) denotes the H-coefficients for G1 (respectively
G2).

If:
(1) For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q, and for all

sequences of pairwise distinct bi ∈ E1, 1 ≤ i ≤ q, we have

H1 ≥
|K|

2N (2N − 1) . . . (2N − q + 1)
(1− α1)

with |E1| ≥ |J |(1− ε1).
(2) Similarly, for all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q,

and for all sequences of pairwise distinct bi ∈ E2, 1 ≤ i ≤ q, we have

H2 ≥
|K|

2N (2N − 1) . . . (2N − q + 1)
(1− α2)

with |E2| ≥ |J |(1− ε2).
Then: for the composition generator G−1

2 ◦G1, for all sequences of pairwise
distinct elements ai, and for all sequences of pairwise distinct bi, we have

H ′ ≥ |K|2

2N (2N − 1) . . . (2N − q + 1)
(1− ε1 − ε2)(1− α1)(1− α2)



where H ′ denotes the H-coefficients for G−1
2 ◦G1 (wa have no hole). Moreover,

if E1 = E2, then

H ′ ≥ |K|2

2N (2N − 1) . . . (2N − q + 1)
(1− ε1)(1− α1)(1− α2)

Proof. For G′ = G−1
2 ◦ G1, we have: H ′(a, b) =

∑
t∈J H1(a, t)H2(t, b) , with∑

t∈J H1(a, t) = |K| and
∑

t∈J H2(t, b) = |K|. Let H̃1 = |K|
|J| , H̃2 = |K|

|J| , and

H̃ ′ = |K|2
|J| = H̃1H̃2|J |. We have: |J | = 2N (2N−1) . . . (2N−q+1). Let P1 = J\E1

and P2 = J \ E2. Then

H ′(a, b) ≥
∑

t∈J\P1\P2

H1(a, t)H2(t, b)

≥
∑

t∈J\P1\P2

H̃1(1− α1)H̃2(1− α2)

≥ |J \ P1 \ P2|H̃1(1− α1)H̃2(1− α2)

≥ |J |(1− ε1 − ε2)H̃1(1− α1)H̃2(1− α2)

≥ |K|
2

|J |
(1− ε1 − ε2)(1− α1)(1− α2)

as claimed. ut

4 Comments about the composition theorems

These very simple theorems of composition are not very well known because
the classical theorems of composition (with more difficult proofs) usually do not
consider hypothesis in term of the values on the H coefficients. For example,
the famous “two weak make one strong” theorem of Maurer and Pietrzak [2, 3]
says that if F and G are NCPA secure, then the composition G−1 ◦ F is CCA
secure. This result only holds in the information-theoretic setting, not in the
computational setting (cf [4, 7]). Another example is this theorem [1]:

Theorem 6. Let E,F and G be 3 block ciphers with the same message space
M . Denote εE = AdvNCPA

E (q), εF = AdvNCPA
F (q), εF−1 = AdvNCPA

F−1 (q) and
εG−1 = AdvNCPA

G−1 (q), where q is the number of queries. We have:

AdvCCA
G◦F◦E(q) ≤ εEεF + εEεG−1 + εF−1εG−1 + min {εEεF , εEεG−1 , εF−1εG−1}

Why do we have 3 rounds in this theorem and only 2 rounds in theorem 2 for the
product of the advantages? (Moreover theorem 6 was also proved by using the
H-coefficient technique [1]). This is because in theorem 2, we used the additional
property that there are no “holes” in the hypothesis that H is greater than or
equal to the mean value H(1 − ε), i.e. that this property was true for any q
pairwise distinct inputs and q pairwise distinct outputs.
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