
SafeDeflate: compression without leaking secrets

Michał Zieliński

Abstract
CRIME[1] and BREACH[2] attacks on TLS/SSL leverage the fact that

compression ratio is not hidden by encryption to recover content of secrets.
We introduce SafeDeflate—a modification of a standard Deflate algorithm
which compression ratio does not leak information about secret tokens.
The modification is compatible with existing Deflate and gzip decompres-
sors. We introduce a model in which attacker can obtain ciphertexts of
arbitrary compressed plaintext containing secret values. Then we prove
that SafeDeflate is secure in this model.

1 Introduction

Various strategies[3] has been proposed for preventing the BREACH and CRIME
attacks [4]. Adding random amount of padding after compression is one of them.
This is not good enough—with uniform 16 byte padding determining unpadded
length with 99% certainty requires only 200 queries (and the number of tries
scales roughly quadratically). The strategy used by the CRIME attack can be
viewed as a binary search, so the amount of required queries can probably be
decreased by treating the problem as a binary search with lies (Ulam problem
[5]).

The only effective solutions are either disabling compression entirely or taking
care to never repeat secret tokens at application level [3]. They are obviously
unsatisfactory.

In this paper we introduce a model called secrets in chosen container attack. In
this model the attacker can ask the oracle to return encrypted ciphertext of the
compressed message composed by him. The message consists of secret tokens
unknown to attacker interleaved by arbitrary text chosen by the attacker. We
assume that underlying cipher is secure and after each query, the attacker only
learns length of the compressed message.

Afterwards we describe SafeDeflate—a modification of standard Deflate compres-
sor. If we assume that secrets are drawn from small alphabet (e.g. alphanumeric
characters), a simple modification suffices to maintain both good compression
ratio and security. We also show more general algorithm, which is not restricted
to small alphabets.

1

2 Attack model

We model secrets in chosen container attack as a tuple (ΣA,ΣS , SECRETLEN,
MSGLEN, MINΣ), where:

• ΣA is a text alphabet (normally 0 . . . 255)
• ΣS ⊂ ΣA is a secret alphabet
• for each alphabet Σ ⊂ ΣS , each length k (k ≥ SECRETLEN) and any integer
j, secret SΣ,k,j is a random variable. This random variable has uniform
distribution over all strings of length k over Σ. For any Σ, k and j, SΣ,k,j
are mutually independent. Alphabets must have size of at least MINΣ.

Let ORACLE be the oracle function, returning length of compressed message x
in stream1 i. Each stream maintains its own state of compression algorithm.
We assume that attacker is a probabilistic Turing machine equipped with oracle
ORACLE.2 Before the attacker starts running, the secrets are drawn (an elementary
event ω is chosen from the sample space).

Attacker may ask oracle to return the length of the compressed text x pre-
pared by the attacker separated by secret tokens. The parameter x is in form
val(w1) val(w2) . . . val(wn) where wi is either a character from ΣA or a tuple
(Σ1, k1, j1) (where SΣ1,k1,j1 is a secret). Let

ORACLE(i, x) = length of val(w1) val(w2) . . . val(wn) after compression

where val(wi) = wi if wi ∈ ΣA or val((Σ1, k1, j1)) = S(Σ1,k1,j1) otherwise. In
addition, all queries must satisfy | val(w1) val(w2) . . . val(wn)| < MSGLEN.

Note that the value ORACLE(i, x) is a random variable (as it depends on secrets)—
the attacker gets the actual value according to which elementary event ω was
chosen at the start.

Each random variable SΣ,k,j represents a secret string, which attacker tries to
guess. Initially, the attacker knows nothing about them (apart from the fact
they are independent and uniform). When he receives responses from the oracle,
he learns more about the secrets—the conditional probability distribution of
SΣ,k,j , given received oracle responses, changes.

We say that the compression algorithm is (p, l)-secure if attacker cannot guess
any secret SΣ,k,j with probability greater than p making l queries to the oracle.

3 The SafeDeflate algorithm

3.1 LZ77

LZ77 [6] algorithm keeps track of last BUFLEN (typically 32 kB) of compressed
data in a compression buffer (usually called dictionary). When new byte comes,
the compressor checks if current suffix occurs somewhere else in a dictionary. If so,
the algorithm may output reference to previous occurrence instead of inserting

1Most compression algorithms process data in streams i.e. contests of compressed packet
depends on previous data.

2We actually do not need the attacker to be computationally bounded.

2

the bytes verbatim (we say that this suffix is matched). Standard Deflate
implementations choose to do that when the suffix exceeds some predefined
length (other criteria are also employed).

The problem with this approach is the fact that small parts of secrets can be
matched, resulting in different compressed length depending on attacker guesses:

In the following example, boxed part is a matched suffix which will be outputted
as a reference, the rest of text will be outputted verbatim.

<input value="yo5aaaaaa"... <input value="yo5 Gee6keiqu9oona"...

We can see that if attacker can control the first part of the plaintext, he may try
to guess the secret. The length of ciphertext (or length of compressed plaintext)
will depend on how many characters from secret he has already guessed. Using
this information, the attacker can guess whole secret in linear time.

Informally, if the boundary of the matched suffix can be crossed by a secret in
an arbitrary place, the compression algorithm will be vulnerable to CRIME-like
attacks. Note that it is not a problem for a matched suffix to contain a secret as
a whole.

SafeDeflate LZ77 matches longest suffix S that:

• is longer than some predefined constant (e.g. it is not useful to match 1
byte suffixes) and

• has form S = awb, where either
– a, b 6∈ ΣS or
– a, b ∈ DICT, |x| > C1, where DICT is a predefined set of words that

are long enough and C1 is a big enough constant (this ensures that
most secrets can’t be crossed by a matched suffix)

Compression buffer for each stream is defined as the concatenation of previous
messages.

3.2 Huffman encoding

The LZ77 phase outputs a sequence of symbols. The symbols can be of two
types [6]:

• 0 . . . 255 for verbatim text,
• additional symbols for encoding references.

The string is then processed using Huffman encoding—that is, a prefix code is
constructed for it and the string is encoded using it. The compression algorithm
may choose to either use predefined static table, compute optimal table or use
table from previous block [6].

3

4 Analysis

The length of string after Huffman encoding is a function of frequencies of
symbols in LZ77 encoded string (and frequencies of symbols in previous blocks).
It follows that the length is also a function of frequencies of strings outputted
verbatim and offsets of references.

Thus, if our algorithm is secure against an attacker that learns strings outputted
verbatim and offsets of references, it is also secure against attacker that only
learns the length.

4.1 Properties of the dictionary

Let DICT′ be a closure of DICT over “overlapping concatenation”—that is, DICT′ is
a minimal set containing DICT and for which w ∈ DICT′ if there exists x, y ∈ DICT′

s.t. x is a prefix of w, y is a suffix of w and |x|+ |y| ≥ |w|.

For a word w, we say that position i ∈ {0, . . . , |w| − 1} is marked iff there is
v ∈ DICT, s.t. v is a subword of w and it overlaps with position i in word w.
Every maximal marked subword is in DICT′—this follows from the construction
of DICT′.

For a word w, we say that position i ∈ {0, . . . , |w|− 1} is ps-marked (prefix-suffix
marked) iff there exist words x, y ∈ Σ∗ s.t. position i+ |x| is marked in xwy.

We assume that all words in DICT have same length m.

Lemma 1a If a word w ∈ DICT′, it is an overlapping concatenation of at most
2|w|/m words from DICT.

Proof By induction on |w|. For |w| = m, obviously w ∈ DICT. For |w| > m, let
i1 be the position of last occurrence of word from DICT in w, s.t i1 ≤ m. Let i2
be position of first occurrence of word from DICT in w, s.t i2 > m.

• If i2 exists then wi2... is overlapping concatenation of at most 2(|w| −
m)/m = 2|w|/m− 2 words3. As w is overlapping concatenation of w0...m,
wi1...i1+m and wi2..., the Lemma holds.

• Otherwise |w| = i1 +m and the Lemma holds.

Lemma 1b There are at most 2(|DICT|m)2s/m words of length s in DICT′.

Proof Let Sk be the set of words which are overlapping concatenations of k
words. First, we will prove by induction, that |Sk| ≤ (|DICT|m)k.

Obviously |S1| = |DICT| < 2|DICT|m. For k > 1, any word is overlapping
concatenation of one of words from S1 = DICT and from Sk−1. As the former
word has length equal to m, this concatenation can be done in m ways. Then
|Sk| ≤ m · |DICT| · |Sk−1| = (|DICT|m)k.

Word of length s is an overlapping concatenation of at most 2|w|/m words,
so there are at most

∑2s/m
i=1 (|DICT|m)i < 2(|DICT|m)2s/m words of length s in

DICT′.
3By xa...b we denote a subword of x starting at a with length b− a. Let xa... = xa...|w|.

4

Lemma 1c There are at most 2(|DICT|m)2s/m+2 words of length s that are prefix
of a word in DICT′.

Proof If word w is a prefix of w′ ∈ DICT′, then there exists w′′ ∈ DICT′ s.t.
|w′′| ≤ |w|+ m and w is prefix of w′′. Then, by Lemma 1a w′′ is overlapping
concatenation of at most 2|w|/m+ 2. Then the bound for this Lemma is then
constructed analogously to bound from Lemma 1b.

Lemma 1 : For every L, s ∈ N, s ≤ L, if X is a random word uniformly sampled
from ΣL, the following holds:

1. In word X first s positions are ps-marked with probability ≤
(|DICT|m)2s/m+2/|Σ|s.

2. All marked characters in X form a subword of length ≥ s with probability
≤ L(|DICT|m)2s/m+2/|Σ|s.

3. There are two marked characters in X that are not part of a marked
subword with probability ≤ (L|DICT|/|Σ|m)2.

Proof :

1. If first s positions are ps-marked, then the word X0...s is a prefix of some
word w ∈ DICT′. By Lemma 1c, there are at most |Σ|L−s · (|DICT|m)2s/m+2

such words.
2. If marked characters in X form a subword of length ≥ s, then there exists

position i s.t. Xi...i+s is a prefix of word in DICT′. The position i can
be chosen in L ways. Then by Lemma 1c, there are at most |Σ|L−s · L ·
(|DICT|m)2s/m+2 such words.

3. There are at least two disjoint subwords of X that are in DICT. Each
of these words can be chosen in at most L ways, so there are at most
(L|DICT|)2|Σ|L−2m such words.

4.2 Token character frequencies

Let samefreq(w) be a set of permutations of word w. That is, let samefreq(w) =
{w′ ∈ Σn|∀c ∈ Σ, w′ ∈ samefreq(w) : |w|c = |w′|c}.

Lemma 2 : Let Σ be an alphabet and let |Σ| be a power of two. For every
n ∈ N, if w is a random word uniformly sampled from Σn then |samefreq(w)| ≥
(1.14log |Σ|)n with probability at least 1− 2 · (1.14log |Σ|)n.

Proof :

Without loss of generality let Σ = {0, 1}k. For any word w ∈ Σn, by wi,j we
denote j-th bit of the symbol wi. Let Wj ∈ {0, 1}n be defined as Wj,i = wi,j
(i.e. sequence of j-th bits of symbols from w). Obviously |samefreq(w)| =∏

j |samefreq(Wj)|.

The number of occurrences of character c ∈ {0, 1} in wordWj , |Wj |c has binomial
distribution with parameter 1

2 .

By Hoeffding inequality we have (for any α > 2 and c ∈ {0, 1}):

P
(
|Wj |c ≤ 1

αn
)
≤ exp

(
−2 · n

(1
2 −

1
α

)2)

5

With probability at least 1− 2 exp
(
−2 · n

(1
2 −

1
α

)2) we have

1
α ≤ |Wj |0 ≤ 1− 1

α

In this case
samefreq(Wj) ≥

(
n
n
α

)
≥
(
n
n
α

)n
α =

(
α1/α)n

Setting α = 7.5 we get

P (|samefreq(Wj)| ≤ 1.3n) ≤ 2 · 1.3−n

and
P (∀j ∈ {1, . . . , k/2} : |samefreq(Wj)| ≤ 1.3n) ≤ 2 · 1.3−n·k/2

If the latter event does not occur, then for at least k/2 strings |samefreq(Wi)| ≥
1.3n, so samefreq(w) ≥ 1.3nk/2 ≈ 1.14nk.

Note that this bound is far from being tight.

4.3 Good tokens

For any word x ∈ ΣL define:

• L(x), W (x) and R(x) as words s.t. x = L(x)W (x)R(x). W (x) is the
maximal marked substring s.t. L(x) 6= ε and R(x) 6= ε

• L1(x) as the first 2C2 characters of L(x) and L(x) = L1(x)L2(x).
• R1(x) as the last 2C2 characters of R(x) and R(x) = R2(x)R1(x).

We call L(x), W (x) and R(x) respectively left, center and right side of the word
x.

We call a word x ∈ ΣL good if it satisfies the following criteria:

• L ≥ SECRETLEN
• no prefix nor suffix longer than 2C2 characters is ps-marked.
• apart from prefixes and suffixes there is at most one marked nonempty

substring w and |w| ≤ 2C2
• |samefreq(L1(x))| ≥ C4 or |samefreq(R1(x))| ≥ C4

where C4 = (1.14log |MINΣ|)(SECRETLEN−4C2−1)/2.

Lemma 3 : If X is a random word uniformly sampled from ΣL, it is good with
probability ≥ 1 − 2(|DICT|m)4C2/m+2/|Σ|2C2 − L(|DICT|m)4C2/m+2/|Σ|2C2 −
(L|DICT|/|Σ|m)2 − 2 · (1.14log |MINΣ|)−(L−4C2−1)/2 · L.

Proof

By Lemma 1 (case 1), the first condition is not satisfied with probability P1 ≤
2(|DICT|m)4C2/m+2/|Σ|2C2 .

By Lemma 1 (cases 2 and 3), the second condition is not satisfied with probability
P2 ≤ L(|DICT|m)4C2/m+2/|Σ|2C2 − (L|DICT|/|Σ|m)2.

Consider all partitions of X into L1(X)L2(X)W (X)R1(X)R2(X). There are
L of them and in every one, either R2(X) or L2(X) is greater than (L −

6

4C2 − 1)/2. Let P3 be probability that all these partitions satisfy condition
|samefreq(L(X))| ≥ C4 or |samefreq(R(X))| ≥ C4. By Lemma 2, we know
that P3 ≤ 2 · (1.14log |MINΣ|)−(L−4C2−1)/2 · L.

Therefore probability of all of these conditions being satisfied is greater than
1− (P1 + P2 + P3).

4.4 The fooling sets

We are going to analyze security of our algorithm by maintaining a set of possible
secrets that would produce same outputs of the oracle given specific queries. We
call this set a fooling set FQΣ,k,j (as it is often done in communication complexity).
Given a sequence of past queries Q we maintain one fooling set FQΣ,k,j for each
secret token SΣ,k,j . Note that FQΣ,k,j is a random variable and SΣ,k,j ∈ FQΣ,k,j .

Without loss of generality we may assume that |SΣ,k,j | = SECRETLEN—any
attacker strategy using tokens of greater lengths could be turned into strategy
using only SECRETLEN (instead of asking for SΣ,k′,j , ask for SΣ,k,j padded with
k′ − k zeros).

Claim 1 : If current fooling set has size p = |FQΣ,k,j |, it is not possible to guess the
secret with probability greater than 1/p. In other words, for a sequence of oracle
queries Q and results O, there is no random variable X, s.t. X is independent
from SΣ,k,j assuming ORACLE(Q) = O and P (X = SΣ,k,j |ORACLE(Q) = O) >

1
|FΣ,k,jQ| .

Initially we set4

F
()
Σ,k,j := samefreq(L(SΣ,k,j)){W (SΣ,k,j)R(SΣ,k,j)}

wherever |L(SΣ,k,j)| > |R(SΣ,k,j)| or otherwise

F
()
Σ,k,j := {L(SΣ,k,j)W (SΣ,k,j)}samefreq(R(SΣ,k,j))

This is obviously a fooling set (there were no queries yet).

Lemma 4 : For good tokens, with probability 1− 1
|FQΣ,k,j |

after each query to the
oracle, the size of the fooling set decreases by not more than BUFLEN + MSGLEN.

Proof :

For sake of brevity we will assume that |L(SΣ,k,j)| > |R(SΣ,k,j)| (argument for
the other case is identical).

After issuing queries Q, the attacker issues an additional query w = w1w2 . . . wn
to the oracle. Q′ is Q with this query appended.

Let A be a set of all substrings of length |L2(SΣ,k,j)| of compression buffer after
queries Q′. We will show that

FQ
′

Σ,k,j = FQΣ,k,j \ ({L1(SΣ,k,j)}A{W (SΣ,k,j)R(SΣ,k,j)}) ∪ {SΣ,k,j}

4If A and B are sets of words, then AB = {ab : a ∈ A, b ∈ B}

7

is a fooling set with probability ≥ 1− 1
|FQΣ,k,j |

.

As we have noted before, we can assume that after each query to oracle, the
attacker learns:

• character frequencies of strings outputted verbatim (Fr)
• positions and lengths of references (refi)

For a fixed refi, for every item in the fooling set, Fr is the same (every word in
the fooling set has the same character frequencies).

Consider information about token SΣ,k,j attacker gets from refi:

• for each i-th character outputted verbatim, attackers learns that there is no
substring of a compression buffer that is equal to the substring val(wm...i)
(for i > m) and satisfies SafeDeflate requirements.

• for each refi, attacker learns that a substring of a compression buffer is
equal to a location of our query and satisfies SafeDeflate requirements.

We can easily see that the first condition is satisfied by strings from the fooling
set. If we replace every SΣ,k,j (in a query and in a compression buffer) with
a string from a fooling set, every substrings that was not equal is still not
equal (simply because none of words in a fooling set is a subword of the new
compression buffer).

Claim 2 : For any nonempty word v and n ∈ N, there exists exactly one word x
s.t. |x| = n and x is a prefix of vX. �

For reference refi attacker learns that some subwords of new compression buffer
v and v′ are equal. Let N and N ′ be sets of integers. The secret SΣ,k,j occurs
respectively at positions N and N ′ in these strings (we let position be negative, if
the secret overlaps v or v′, but starts before it). We have minN,minN ′ ≥ −m.

• If N = N ′ = ∅ then replacing SΣ,k,j with items from the fooling set trivially
preserve equality of v and v′.

• Let n = min(N∪N ′) and let n′ = min(N ′) if N ∈ I otherwise n′ = min(N).
– If n′ does not exist or n′ ≥ n+ |L(SΣ,k,j)| then the left side of SΣ,k,j

is a plaintext provided by attacker or secret other than SΣ,k,j . By
Claim 1, this happens with probability ≤ 1

|FQΣ,k,j |
.

– Otherwise L2(SΣ,k,j) is a prefix of vL2(SΣ,k,j), where v is a plaintext
provided by attacker or secret other than SΣ,k,j . By Claim 2 (with
x = L2(SΣ,k,j)), we see that L2(SΣ,k,j) depends only on v. Again, by
Claim 1, this happens with probability ≤ 1

|FQΣ,k,j |
.

4.5 Wrapping up

Let Pbad be a probability that some secret is a bad token (it is limited by Lemma
3). Attacker making q queries to one oracle decreases fooling set size by q
(with probability 1 − q

|FΣ,k,j |−q), and his probability of finding a bad token is
≤ 1 − qPbad. Therefore, after making q queries, the probability of success is
≥ 1− q

|FΣ,k,j |−q − qPbad. Obviously, making queries about more than one stream
does not decrease this bound.

8

For parameters C2 = 10, SECRETLEN = 150, MINΣ = 16, |DICT| < 10000, we get
the initial fooling set size ≈ 241 and probability that a token is good ≈ 1− 2−41

(and these values depend exponentially on C2 and SECRETLEN). These bounds
could be improved a lot by making bound in Lemma 2 tighter.

Therefore, for these parameters SafeDeflate is (225, 2−15)-secure.

5 Typical compression ratios

The example implementation together with tests of SafeDeflate is available at
https://github.com/zielmicha/safedeflate.

We have downloaded several popular websites and concatenated them in two
files: training data and test data. Most frequent 10-grams from training data
were used to generate the dictionary. The following table compares sizes of the
test dataset compressed using different algorithms.

Compression Size
None 1772 KiB
Huffman coding only 1128 KiB
SafeDeflate ΣC = byte 876 KiB
SafeDeflate*5 ΣC = byte 800 KiB
SafeDeflate ΣC = alphanum, DICT = ∅ 588 KiB
SafeDeflate ΣC = alphanum 580 KiB
SafeDeflate ΣC = hex, DICT = ∅ 432 KiB
Unsafe Deflate 296 KiB

It turns out that SafeDeflate variant optimized for compressing HTML is signifi-
cally better than pure Huffman encoding and worse than unsafe deflate. If we
restrict secret alphabet to alphanumeric or hexadecimal characters, the compres-
sion ratio becomes more favorable and dictionary becomes unnecessary. However
the dictionary improves compression when we do not have any restrictions on
secret alphabet.

2 Conclusion

In order to analyze CRIME-like attack, we have introduced a model called
secrets in chosen container attack. We have designed a variant of Deflate, called
SafeDeflate, and proven it secure in this model. SafeDeflate could be deployed
on HTTP and TLS servers without any modifications to the clients.

5SafeDeflate* is a SafeDeflate variant with reduced security

9

https://github.com/zielmicha/safedeflate

References

[1] J. Rizzo and T. Doung, “The CRIME Attack.”

[2] “BREACH ATTACK” [Online]. Available: http://breachattack.com/

[3] “Defending against the BREACH attack” [Online]. Available: https://
community.qualys.com/blogs/securitylabs/2013/08/07/defending-against-the-breach-attack

[4] J. Kelsey, “Compression and Information Leakage of Plaintext.”

[5] J. Czyzowicz and A. Pelc, “Solution of Ulam’s problem on binary search with
two lies.”

[6] P. Deutsch, “DEFLATE Compressed Data Format Specification (RFC-1951).”

10

http://breachattack.com/
https://community.qualys.com/blogs/securitylabs/2013/08/07/defending-against-the-breach-attack
https://community.qualys.com/blogs/securitylabs/2013/08/07/defending-against-the-breach-attack

	Introduction
	Attack model
	The SafeDeflate algorithm
	LZ77
	Huffman encoding

	Analysis
	Properties of the dictionary
	Token character frequencies
	Good tokens
	The fooling sets
	Wrapping up

	Typical compression ratios
	Conclusion
	References

