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Abstract

In this work we study the feasibility of achieving simulation security in functional encryption (FE) in the

random oracle model. Our main result is negative in that we give a functionality for which it is impossible to

achieve simulation security even with the aid of random oracles.

We begin by giving a formal definition of simulation security that explicitly incorporates the random

oracles. Next, we show a particular functionality for which it is impossible to achieve simulation security.

Here messages are interpreted as seeds to a (weak) pseudorandom function family F and private keys are

ascribed to points in the domain of the function. On a message s and private key x one can learn F (s, x). We

show that there exists an attacker that makes a polynomial number of private key queries followed by a single

ciphertext query for which there exists no simulator.

Our functionality and attacker access pattern closely matches the standard model impossibility result

of Agrawal, Gorbunov, Vaikuntanathan and Wee (CRYPTO 2013). The crux of their argument is that no

simulator can succinctly program in the outputs of an unbounded number of evaluations of a pseudorandom

function family into a fixed size ciphertext. However, their argument does not apply in the random oracle

setting since the oracle acts as an additional conduit of information which the simulator can program. We

overcome this barrier by proposing an attacker who decrypts the challenge ciphertext with the secret keys

issued earlier without using the random oracle, even though the decryption algorithm may require it. This

involves collecting most of the useful random oracle queries in advance, without giving the simulator too

many opportunities to program. We note that our negative result contradicts a theorem of De Caro et al.

(CRYPTO 2013) which claims that random oracles can transform any indistinguishability secure functional

encryption system into one that is simulation secure.

On the flip side, we demonstrate the utility of the random oracle in simulation security. Given only

public key encryption and low-depth PRGs we show how to build an FE system that is simulation secure for

any poly-time attacker that makes an unbounded number of message queries, but an a-priori bounded number

of key queries. This bests what is possible in the standard model where it is only feasible to achieve security

for an attacker that is bounded both in the number of key and message queries it makes. We achieve this by

creating a system that leverages the random oracle to get one-key security and then adapt previously known

techniques to boost the system to resist up to q queries.

Finally, we ask whether it is possible to achieve simulation security for an unbounded number of mes-

sages and keys, but where all key queries are made after the message queries. We show this too is impossible

to achieve using a different twist on our first impossibility result.
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1 Introduction

The traditional notion of public key encryption systems provide “all or nothing” semantics regarding encrypted

data. In such a system a message m is encrypted under a public key, pk, to produce a ciphertext ct. A user that

holds the corresponding secret key can decrypt ct and learn the entire messagem, while any other user will not

learn anything about the contents of the message. The work of Sahai and Waters [23] conceived cryptosystems

that moved beyond these limited semantics to ones where a private key would give a select view of encrypted

data. These efforts [23, 10, 18] cumulated in the concept of functional encryption. In a functional encryption

system an authority will generate a pair of a public key and master key pair (pk,msk). Any user can encrypt

a ciphertext ct using the public key, while the authority can use the master secret key msk to generate a secret

key skf that is tied to the functionality f . A holder of skf can use it to decrypt a ciphertext ct, but instead of

learning the message m, the decryptor’s decryption will instead output f(m).
One challenge in defining and designing functional encryption (FE) systems is in finding a definition to

capture security. The earliest formal definitions of functional encryption [10, 18] (back when the terminology

of “predicate encryption was used”) defined security in terms of an indistinguishability game. Briefly, a system

is indistinguishability secure if no poly-time attacker that receives secret keys for functions f1, . . . , fQ can

distinguish between encryptions of m0,m1 so long as fi(m0) = fi(m1) ∀i ∈ [Q].
Subsequent works [9, 21, 4, 1] aimed to capture various notions of simulation-based security. To achieve

simulation one must be able to show that for each attacker there exists a poly-time simulator S that can produce

a transcript that emulates the attacker’s real world view, but when only given access to what the evaluation of the

secret key functions f(·) were on the attacker’s messages. (We will return to describing simulation-based se-

curity in more detail shortly.) While these simulation definitions had the appeal of perhaps capturing a stronger

notion of security than the indistinguishability-based ones, they were limited in that multiple works [9, 21, 4, 1]

showed that this notion is impossible to achieve in the standard model for even very basic functionalities such

as identity-based encryption [24, 8]. The only exception being in the restricted case where the attacker is only

allowed to access an a-priori number of secret keys [15].

While these results essentially put a hard stop on realizing (collusion-resistant) simulation security in the

standard model, the door to leveraging the random oracle model [5] still remained wide open. Notably, Boneh,

Sahai and Waters [9] building on techniques from non-committing encryption [20] showed that the random

oracle could be leveraged to turn any indistinguishability secure public index FE scheme into one that was

simulation secure. Recall that a public index scheme is one where an encrypted message is split into a hidden

payload and a non-hidden index and the secret key operates only on the index. The set of such schemes includes

identity-based encryption [24, 8] and attribute-based encryption [23]. Thus, they showed that introducing

a random oracle was enough to circumvent their own standard model IBE result. In this work we wish to

understand what are the possibilities and limitations (if any) for using random oracles to achieve simulation

security in FE systems. Our work begins with the question:

Is it possible to achieve simulation secure functional encryption

for any functionality in the random oracle model?

Our main result is to show that there exist functionalities for which their cannot exist a simulation secure

functional encryption system even in the random oracle model. A reader familiar with the literature might

notice that our claim puts us squarely at odds with the work of De Caro et al. [12] who claim to show that

any FE scheme for poly-sized circuits system that is (adaptively) secure in the indistinguishability sense can be

transformed to one that is simulation secure using random oracles.

To understand the discrepancy it is instructive to review the basic tenets of a proof of security in the random

oracle model. The first step is to establish a construction that has all the necessary algorithms and allows each of

the algorithms to call the random oracle. Next, this random oracle construction must be proven secure under a

security game where both the algorithms and adversary are allowed to make calls to the oracle. The fundamental

issue of the work of De Caro et al. [12] is that the authors never establish a random oracle construction to begin

with. Instead of describing a construction that accesses the random oracle, they start by describing a function

that calls a hash function. Moreover, the call to the hash function is embedded inside the secret key of the

underlying indistinguishability secure FE system which is invoked during decryption and its evaluation may be

garbled or spread out in an arbitrary manner over several steps. Therefore there is no obvious place where the

hash function “is called” and no clear random oracle construction that can be derived from the description. The
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proof of security in both the conference and eprint versions at the time of submission is stated to be deferred to

the full version of the paper. We contacted an author [17] of the De Caro et al. paper who confirmed that there

was an error in their claim due to the reasons described above.

On the flip side, we demonstrate the utility of the random oracle in simulation security. Given only public

key encryption and low-depth PRGs we show how to build an FE system that is simulation secure for any

poly-time attacker that makes an unbounded number of message queries, but an a-priori bounded number of

key queries. This bests what is possible in the standard model where it is only feasible to achieve security for an

attacker that is bounded both in the number of key and message queries it makes. We achieve this by creating

a system that leverages the random oracle to get one-key security and then adapt previously known techniques

to boost the system to resist up to q queries.

Finally, we ask whether it is possible to achieve simulation security for an unbounded number of messages

and keys, but where all key queries are made after the message queries. We show this too is impossible to

achieve by repurposing our main impossibility result to the new setting.

1.1 Our Main Impossibility Result

We show the impossibility result for the case where messages are interpreted as keys or seeds to a (weak)

Pseudo Random Function (PRF) [13] family and secret keys are points in the domain of the PRF. Agrawal,

Gorbunov, Vaikuntanathan and Wee [1] showed that such a functionality could not be simulation secure in the

standard model. Here we show that this limitation holds even with the introduction of random oracles.

We begin our exposition by describing the definition of simulation security in a little more depth and briefly

overviewing the AGVW impossibility analysis.

Simulation security. Simulation security for FE is defined by means of real and ideal experiments. In the

real experiment, an adversary A gets secret keys for functions f and and ciphertexts for challenge messages

m of its choice. The secret key queries can either be sent before the challenge messages (also referred to as

pre-challenge queries) or after the challenge messages (post challenge queries). In the ideal world, on the other

hand, a simulator S needs to generate challenge ciphertexts and keys given only the minimal information. In

particular, whenA requests that a challenge messagem be encrypted, S only gets f(m) on all the pre-challenge

functions f queried by A (instead of m itself), and must generate a ciphertext that A cannot distinguish from

the one in the real world. Similarly, whenA makes a post-challenge key query for f ′, S must generate a secret

key given just f ′ and f ′(m) for all challenge messages m.

An FE scheme is (qpre, qchal, qpost)-simulation secure if it can withstand adversaries that make at most qpre
pre-challenge key queries, qchal challenge encryption requests, and qpost post-challenge key queries. Ideally,

one would like to capture all polynomial-time adversaries, who can make any number of queries they want.

However, even simple functionalities like identity-based encryption do not have a scheme secure against an

arbitrary number of encryption requests followed by one post-challenge key query, i.e., IBE does not have

a (0, poly, 1)-simulation secure scheme [9, 4] in the standard model. Here poly denotes that any number of

encryption requests can be made, as long as there is a polynomial bound on them.

AGVW impossibility. A different kind of impossibility was shown by Agrawal et al. [1]. They interpret

messages as seeds to a weak pseudorandom family wPRF1 and secret keys as points in the domain of the

family. When a ciphertext for s is decrypted with a secret key for x, the output is wPRF(s, x). They show

that there does not exist a simulation-secure FE scheme for this family that can tolerate adversaries which can

make an arbitrary number of pre-challenge key queries and then request for the encryption of just one message

(i.e., (poly, 1, 0)-simulation security). Intuitively, when the adversary outputs a message s in the ideal world,

the simulator gets wPRF(s, x1), . . . ,wPRF(s, xq) (if q is the number of post-challenge key queries), which is

computationally indistinguishable from q uniformly random strings. The simulator must output a ciphertext ct

now that decrypts correctly with all the keys issued before. Note that when the keys were issued, simulator had

no information about s, so it must somehow compress q random strings into ct. However, as Agrawal et al.

show, the output of a pseudo-random function family is incompressible. Thus, by choosing a large enough q,

they arrive at the impossibility result.

1A weak pseudorandom function family provides security only against attackers that do not get to choose the points at the which the

PRF is evaluated. These points are chosen randomly by the challenger.
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Random oracle model. In the random oracle model though, Agrawal et al.’s impossibility argument breaks

down. Informally speaking, the random oracle acts as an additional conduit of information which the simulator

can program even after ct appears. For instance, if the decryption algorithm makes RO queries, then the

simulator could program such queries when adversary tries to decrypt ct with the secret keys issued earlier.

Indeed, Boneh et al. show that their (0, poly, 1) impossibility for IBE can be circumvented by employing RO

in the encryption and decryption algorithms.

Thus we need a very different approach. We would like to build an adversaryA⋆ that “cuts off” RO in the

decryption process, and is able to work without it. This involves a delicate balancing act between cutting off

too early and too late. In one extreme case, if A⋆ does not invoke RO at all and makes up its own responses,

then these would not match with the actual RO responses in encryption and key generation. Thus decryption

would always fail in both the real and ideal worlds, and there will be no distinction between them. On the

other extreme, if A⋆ just used the RO all the way through, it would provide the simulator enough opportunity

to program in the desired information. (As a result, we will not be able to use the incompressibility of wPRF.)

At a high level, our approach is to have an initial learning phase where A⋆ will build a list of “high fre-

quency” random oracle queries and responses associated with each secret key and the challenge ciphertext.

Later the attacker will be able to use this list to replace the use of the actual random oracle during decryption.

If some query is not found in the list, then A⋆ will choose a random value for it on its own. Informally, we get

the following result:

Theorem 1.1 (Main Theorem, informal). There does not exist a (poly, 1, 0)-simulation secure FE scheme for

the class of (weak) pseudo-random functions in the random oracle model.

Related work. This bears a resemblance to the work of Canetti, Kalai and Paneth [11] who show impossi-

bility of VBB obfuscation even with ROs. In their case they show that any obfuscated program that uses the

RO can be translated into one that does not need it. They do this by collecting the frequently used RO queries

and bundling this with the core obfuscated code. On one hand, these queries do not give any information

about the program, but on the other, result in an obfuscation that is only approximately correct. Such imperfect

correctness, however, is enough to invoke the impossibility of Bitansky and Paneth [6].

One might ask if we can show whether RO can be dispensed with in any simulation secure FE in a similar

way. If we could establish this, then prior impossibility results [9, 4, 1] would imply RO impossibility as well.

The answer to this is negative as we recall that Boneh, Sahai and Waters [9] showed specific functionalities that

were impossible to simulate in the standard model, but possible to be simulation secure using random oracle.

Therefore we cannot always remove the random oracle and must develop a more nuanced approach: we need

to build a specific adversary for which simulation does not work.

In a recent work [19], Mohammad et al. show that there is no fully black-box construction of indistinguisha-

bility obfuscation (iO) from any primitive implied by a random oracle in a black-box way. In light of recent FE

to iO transformations [2, 7], one might wonder if this rules out FE schemes in the RO model. However, these

transformations are non-black box.

1.1.1 High level description of impossibility

Recall that we want to design an adversaryA⋆ that will build a list of “high frequency” random oracle queries

and responses associated with each secret key and the challenge ciphertext. It will use this list later in the

decryption phase to “cut-off” the random oracle at an appropriate time.

A⋆ starts off by querying the key-generation oracle at random points x1, . . . , xq in the domain of wPRF, and

gets sk1, . . . , skq in return. The RO queries made by the key-generation oracle are hidden from the adversary,

so A⋆ tries to find them by encrypting several randomly chosen seeds using the master public key, and then

decrypting them with sk1, . . . , skq.2 The RO queries made during the decryption process are recorded in a list

Γ. The hope is that Γ will capture the RO queries that were made in generating a key ski.

Note that one cannot hope to capture all RO queries required for decryption: Suppose a polynomial number

Y of high frequency queries associated with ski is collected, but there is an RO call that is made during key-

generation which is used during 1/2Y fraction of the decryptions. Then it will be the case that with some

2It is important that this is done before the challenge message is put out, otherwise simulator will get an opportunity to program in

additional information through the random oracle.
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non-negligible probability, Γ will fail to aid in the decryption of the challenge ciphertext with ski. Instead

of trying to solve this issue, we make our analysis work with a decryption that might fail some of the time.

For this purpose, we extend the incompressibility argument of Agrawal et al. to work even for approximate

compression.

We are not quite done yet. Even though we have captured most of the hidden RO queries involved in

key-generation that are also needed for decryption, we still need to capture those that are involved in the

encryption of the challenge message, as they are also hidden and may be required during decryption.3 Suppose

A⋆ outputs a randomly chosen seed s⋆ as the challenge message, and gets ct⋆ in return. In order to find out RO

queries associated with ct⋆, A⋆ cannot generate secret keys on its own (like in the pre-challenge phase when

it generated ciphertexts); it must make-do with the secret keys sk1, . . . , skq that were issued earlier. Thus, the

idea is to decrypt ct⋆ with some fraction δ of the keys using RO, recording the queries in the list Γ. It then cuts

off the random oracle, and decrypts ct⋆ with the remaining keys using the list Γ. If a query is not found in Γ,

then a random value is used for it (as well as recorded in Γ for consistent responses in future). The adversary

outputs 1 if a large fraction of these decryptions are correct; that is, if the decryption of ct⋆ using ski outputs

wPRF(s⋆, xi).
In the real world, as we will see, the adversary outputs 1 with noticeable probability. On the other hand,

we show that in the ideal world, the adversary outputs 1 only with negligible probability. For the adversary

to output 1 in the ideal world, the simulator needs to somehow program the ciphertext and the post-challenge

random oracle queries so that a large number of decryptions succeed. The only opportunity a simulator has

of programming post-challenge RO responses is when δ fraction of the keys are used for decrypting ct⋆. By

choosing δ appropriately, we can ensure that the simulator is not able program the RO queries to the extent that

most of the remaining decryptions succeed.

Looking back. A simulator’s success in the RO model depends on when it comes to know what to program

and how much can it program. When dealing with the attacker A⋆ described above, it gets a large amount of

information, wPRF(s⋆, x1), . . . ,wPRF(s
⋆, xq), only in the challenge phase. Since all key queries come before

that, programming the secret keys is ruled out. If there was no random oracle, then the only possible avenue to

program is the challenge ciphertext, but AGVW shows that it is not possible to compress so much information

into a small ciphertext. Now with the random oracle, it might have been possible to program this information if

there were many RO queries after the challenge phase. However, our adversary makes only a bounded number

of post-challenge RO queries, and as a result, it is not possible to program all of {wPRF(s⋆, xi)} in these RO

responses.

1.2 A New Possibility Result in the Random Oracle Model

Now that we know that simulation security is impossible for unbounded queries even in the random oracle

model, we turn to asking whether this model can be leveraged to support simulation security in any situations

where it is impossible in the standard model. We already have one such example from the work of Boneh et

al. [9] which gives both a standard model impossibility and a random oracle feasibility result for public index

schemes. Thus, we are interested in new examples that go beyond the public index class. In this paper, we

show the following possibility result:

Theorem 1.2 (Possibility, informal). There exists a simulation secure FE scheme for the class of all polynomial-

depth circuits in the random oracle model secure against any poly-time attacker who makes an unbounded

number of messages queries, but an a-priori bounded number of key queries, based on semantically-secure

public-key encryption and pseudo-random generators computable by low-depth circuits.

Recall that such a security notion cannot be achieved even for the simple functionality of IBE in the standard

model [9].

One-bounded FE. Our starting point is a one-bounded simulation-secure FE scheme for all circuits, i.e., a

scheme where the attacker can only make one key query, based just on the semantic security of public-key

encryption. Our scheme can be easily understood in the familiar terminology of Yao’s garbled circuits, though

3Even the RO queries made while setting up the FE system are hidden from the adversary, but we ignore them here for simplicity.
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we use decomposable randomized encodings for a more general and cleaner construction. Let C be a family

of circuits wherein each circuit can be represented using t bits. Suppose Ux is a universal circuit that takes

a C ∈ C as input, and outputs C(x). The set-up algorithm of our FE scheme generates 2t key pairs of a

semantically-secure public-key encryption scheme. The 2t public keys (pk1,0, pk1,1), . . . , (pkt,0, pkt,1) form

the master public key, and the t private keys (sk1,0, sk1,1) . . . , (skt,0, skt,1) are kept secret. In order to encrypt a

message x, a garbled circuit for Ux is generated. Suppose wi,b for i = 1, . . . , t and b = 0, 1 are the wire-labels

of Ux for its t input bits. Then the (i, b)th component of the ciphertext consists of two parts: an encryption of a

random value ri,b under pki,b, and wi,b blinded with the hash of ri,b. The key for a circuit C represented using

bits β1, . . . , βt is simply the private keys corresponding to those bits, i.e., skβ1 , . . . , skβt
.

It is easy to see that the one-bounded FE scheme is correct. Specifically, the secret key forC will allow one

to recover ri,βi
for i = 1, . . . , t. Then by running the hash function on these values, the wi,βi

can be unblinded

and used to evaluate the garbled circuit.

Let us now see how a simulator S can generate ciphertexts and a key from the right distribution in the ideal

world. If the only allowed key query is made before the challenge phase for a circuit C, then S just runs the

normal key generation algorithm, and later when adversary outputs a challenge message x⋆, it can generate a

garbled circuit using just C(x⋆).4 When the adversary’s key query is after the challenge message, however,

S does not get any information in the challenge phase. In particular, it does not know which universal circuit

to garble. Here the random oracle allows the simulator to defer making a decision until after the key query

is made. It can set the second part of the (i, b)th ciphertext component to be a random number zi,b because,

intuitively, adversary does not know ri,b (it is encrypted) so a hash of it is completely random. When adversary

queries with a circuitC afterwards, simulator can program the random oracle’s response on ri,b to be zi,b⊕wi,b,

so that decryption works out properly.

Bounded collusion FE. Using the one-bounded scheme in a black-box way, we can design an FE scheme

secure against any a-priori bounded collusions for the class NC1, without making any additional complexity

assumptions. We borrow Gorbunov et al.’s transformation [15] for this purpose, but it was proved secure for

only one challenge message. We show that if the underlying one-bounded scheme is secure against any number

of challenge messages, then so is the scheme obtained after applying their transformation.

In fact, GVW12’s idea of using constant-depth randomized encodings to bootstrap from NC1 to the class

of polynomial-depth circuits can also be applied, as we will show, to FE schemes secure against an arbitrary

number of challenge messages.

Related work. Sahai and Seyalioglu [22] were the first to use randomized encodings to design an FE system.

Their scheme can issue one key non-adaptively for any function. Our one-bounded scheme can be seen as an

extension of theirs to additionally support post-challenge key query. The random oracle allows a simulator to

not commit to any value in the ciphertext until the function evaluation is made available.

Goldwasser et al. [14] also designed an FE system that can issue one pre-challenge key. Their scheme has

succinct ciphertexts (independent of circuit size) but security is proved under stronger assumptions.

1.3 Another Impossibility Result

A natural question to ask is whether we can construct a simulation secure FE scheme in the random oracle

model that can handle unbounded ciphertext queries, followed by an unbounded number of post-challenge key

queries. We show that this is also impossible, assuming the existence of weak pseudorandom functions.

Theorem 1.3. There does not exist a (0, poly, poly)-simulation secure FE scheme for the class of (weak)

pseudo-random functions in the random oracle model.

Once again we interpret messages as seeds to a weak PRF family wPRF and secret keys as points in the

domain of the PRF. A very different way to attack an FE scheme is needed though because no key query can

be made before the challenge phase.

The new attacker A⋆ starts off by outputting randomly chosen seeds s1, . . . , sk for wPRF, and gets cipher-

texts ct1, . . . , ctk in return. The RO queries made in the encryption process are hidden from A⋆, and it might

4In fact, if we just want pre-challenge key query security, then there is no need for random oracle.

5



need some of them later during decryption. So, it requests secret keys for randomly chosen points x1, . . . , xq ,

and gets sk1, . . . , skq in return. Then it decrypts every cti with skj and records the RO queries made in a list

Γ. An important point to note here is that the simulator gets some information about the seeds chosen earlier

when key-queries are made. Specifically, it gets wPRF(s1, xj), . . . ,wPRF(sk, xj) when xj is the query.

A⋆ now picks a random point x∗ and requests a secret key for it. The goal is to use the key obtained, say

sk∗, to decrypt the challenge ciphertexts ct1, . . . , ctk later. But, in order to do so, A⋆ also needs to find out the

RO queries made during key-generation that may also be required for decryption. To solve this problem, we

use the same idea as in the previous impossibility result: encrypt some random seeds on your own and decrypt

them with sk∗, while adding the RO queries made to Γ.

Finally, A⋆ decrypts ct1, . . . , ctk with sk∗ without invoking the random oracle, using the list Γ instead.

In the real world, at least a constant fraction of the decryptions succeed. The analysis is similar to that of

the previous impossibility result, but with the role of ciphertext and key reversed. The ideal world analysis,

on the other hand, need more care because of two reasons. First, as pointed out earlier, some information

about the seeds s1, . . . , sk is leaked when post-challenge key queries are made. Second, the simulator needs to

compress the evaluation of wPRF on seeds s1, . . . , sk and a common point x∗, instead of one seed and multiple

points as in the (poly, 1, 0) impossibility. At the same time, however, the only opportunity a simulator has of

programming RO responses after learning wPRF(s1, x
∗), . . . ,wPRF(sk, x

∗) is when ciphertexts for random

seeds are decrypted with sk∗ with the help of RO. So, it is conceivable that one can exploit the security of

wPRF to argue that it is impossible to compress wPRF(s1, x
∗), . . . ,wPRF(sk, x

∗) into a small key and a small

number of RO responses. We show that this is indeed the case in Section 7.

2 Preliminaries

We use λ to denote the security parameter. Let [n] denote the set {1, 2, . . . , n}. If A is an algorithm, then

a ← A(·) or A(·) → a denote that a is the output of running A on the specified inputs. If D is a distribution,

then s ← D denotes that s is a sample drawn according to it. Also, x
R
← X denotes drawing a value x

uniformly at random from the set X .

For two distribution ensembles X = {Xλ}λ∈N
and Y = {Yλ}λ∈N

, we use X
c

≈ Y to denote that X is

computationally indistinguishable from Y . Lastly, for two vectors u = (u1, . . . , un) and v = (v1, . . . , vn),
their Hamming distance HD(u, v) is defined to be the number of points where they don’t match, i.e., the size

of set {i ∈ [n] |ui 6= vi}.

2.1 Weak Pseudo-random Functions

Our impossibility results rely on the existence of circuit families whose output cannot be compressed by a

significant amount. In Section 4, we will show that a specific circuit family built from pseudo-random functions

(PRFs) is not compressible. In fact, like Gorbunov et al. [15], a weaker type of PRF where adversary only gets

evaluation at random points suffices for our purpose.

Definition 2.1 (Weak PRFs). Let n,m, p be polynomials in λ. Let wPRF = {wPRFλ}λ∈N be a family of

efficiently computable functions such that wPRFλ : {0, 1}n(λ)×{0, 1}m(λ) → {0, 1}p(λ), where the first input

is called the seed. Pick a seed s
R

← {0, 1}n(λ) and ℓ+ 1 points x1, . . . , xℓ, x
⋆ R

← {0, 1}m(λ). Let Dℓ be the ℓ-
tuple of values (x1,wPRFλ(s, x1)), . . . , (xℓ,wPRFλ(s, xℓ)). Then the wPRF family is a weak pseudo-random

function family if for every ℓ polynomial in λ,

{Dℓ, x
⋆,wPRFλ(s, x

⋆)}λ∈N

c

≈ {Dℓ, x
⋆, r}λ∈N,

where r is a random string of length p(λ).

Below we present two alternate definitions of security for a weak pseudorandom family. The first one is a

standard definition for PRFs/weak PRFs, while the second one is introduced for our final impossibility result.

They both follow from Definition 2.1 above through simple hybrid arguments.
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Definition 2.2 (Weak PRFs, many points). Let wPRF = {wPRFλ}λ∈N be a family as in Definition 2.1. Pick

s
R

← {0, 1}n(λ), x1, . . . , xℓ
R

← {0, 1}m(λ), and r1, . . . , rℓ
R

← {0, 1}p(λ). Then the wPRF family is a weak PRF

family for many points if for every ℓ polynomial in λ,

{(x1,wPRFλ(s, x1)), . . . , (xℓ,wPRFλ(s, xℓ))}λ∈N

c

≈ {(x1, r1), . . . , (xℓ, rℓ)λ∈N.

Definition 2.3 (Weak PRFs, many seeds with aux). Let wPRF = {wPRFλ}λ∈N be a family as in Definition 2.1.

Pick k seeds s1, . . . , sk
R

← {0, 1}n(λ) and ℓ+1 points x1, . . . , xℓ, x
⋆ R

← {0, 1}m(λ). LetDk,ℓ be the k·ℓ-tuple of

values (x1,wPRFλ(s1, x1)), . . . , (xℓ,wPRFλ(s1, xℓ)), . . . , (x1,wPRFλ(sk, x1)), . . . , (xℓ,wPRFλ(sk, xℓ)).
Then the wPRF family is a weak PRF family for many seeds with auxiliary information if for every k, ℓ poly-

nomial in λ,

{Dk,ℓ, x
⋆,wPRFλ(s1, x

⋆), . . . ,wPRFλ(sk, x
⋆)}λ∈N

c

≈ {Dk,ℓ, x
⋆, r1, . . . , rk}λ∈N,

where r1, . . . , rk are random strings of length p(λ).

2.2 Randomized Encodings

We use decomposable randomized encodings [15] to simplify the description of our FE schemes. They are

known to exist for all circuits due to the works of [25, 3].

Definition 2.4 (Randomized Encodings). Let C = {Cλ}λ be a family of circuits, where each circuit C ∈ Cλ
takes an n(λ) bit input and produces an m(λ) bit output. A decomposable randomized encoding RE of C
consists of two PPT algorithms:

• RE.Encode(1λ, C) : It takes a circuitC ∈ Cλ as input, and outputs a randomized encoding ((w1,0, w1,1),
. . . , (wn(λ),0, wn(λ),1)).

• RE.Decode(1λ, (w̃1, . . . , w̃n(λ))) : It takes an encoding (w̃1, . . . , w̃n(λ)) and outputs y ∈ {0, 1}m(λ) ∪

{⊥}. for a circuit C ∈ Cλ evaluated at an x ∈ {0, 1}n(λ) so that w̃i = wi,xi
for all i ∈ [n(λ)] (xi

denotes the ith bit of x), and outputs C(x).

Correctness Let C ∈ Cλ be any circuit, and let ((w1,0, w1,1), . . . , (wn,0, wn,1)) ← RE.Encode(1λ, C). For

any input x ∈ {0, 1}n(λ), RE.Decode(1λ, (w1,x1 , . . . , wn(λ),xn(λ)
)) = C(x).

Security To define the security of such a scheme, consider the following two distributions:

• RealREA (λ). Run A(1λ) to get a C ∈ Cλ and an x ∈ {0, 1}n(λ). Then run RE.Encode on input C to get

an encoding ((w1,0, w1,1), . . . , (wn(λ),0, wn(λ),1)). Output {wi,xi
}i∈[n(λ)].

• IdealRES (λ). RunA(1λ) to get a C ∈ Cλ and an x ∈ {0, 1}n(λ). Output S(1λ, C, C(x)).

A randomized encoding scheme RE is secure if for every PPT adversary A, there exists a PPT simulator S
such that

RealREA (λ)
c

≈ IdealRES (λ).

3 Functional Encryption in the Random Oracle Model

A functional encryption scheme for a function space F = {Fλ}λ∈N and a message space X = {Xλ}λ∈N in the

random oracle model consists of four PPT algorithms that have access to a random oracle O : {0, 1}ℓ(λ) →
{0, 1}m(λ), where ℓ and m are polynomials. The algorithms are described as follows:

• SetupO(1λ) : It takes the security parameter (in unary representation) as input and outputs a public key

pk and a master secret key msk.

• KeyGenO(msk, f) : It takes the master secret key msk and a circuit f ∈ Fλ as inputs, and outputs a

secret key skf for the circuit.
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Experiment RealFEA (λ):
1. (pk,msk)← SetupO(1λ)

2. (x, st)← A
KeyGen-RO(msk,·,·)
1 (pk)

3. cti ← EncryptO(mpk, xi) for i ∈ [qc]

4. α← A
KeyGen-RO(msk,·,·)
2 ({cti}i∈[qc], st)

5. Output α

Experiment IdealFEA,S(λ):

1. (pk, st′)← S(1λ)

2. (x, st)← A
S(·,·)
1 (pk)

3. ({cti}i∈[qc]) ← S({fj(xi)}i∈[qc],j∈[q1]) where

f1, . . . , fq1 are key queries made byA1

4. α← A
SKeyIdeal(·)(·,·)
2 ({cti}i∈[qc], st)

5. Output α

Figure 1: Real and ideal experiments.

• EncryptO(pk, x) : It takes the public key pk and a value x ∈ Xλ as inputs, and outputs a ciphertext ctx.

• DecryptO(pk, sk, ct) : It takes the public key pk, a secret key sk, and a ciphertext ct as inputs, and outputs

a value y or ⊥.

Correctness. The four algorithms defined above must satisfy the following correctness property. For all

values of the security parameter λ, for every f ∈ Fλ and x ∈ Xλ, all random oracles O, and all (pk,msk)
output by SetupO(1λ),

DecryptO(pk,KeyGenO(msk, f),EncryptO(pk, x)) = f(x).

Without loss of generality, we can assume Decrypt to be deterministic.

One could consider weaker notions of correctness where a negligible probability of error is allowed, but we

chose to use the simpler notion of perfect correctness for ease of exposition.

3.1 Simulation-based Security

Definition 3.1 (Experiments). Let FE = (Setup,KeyGen,Encrypt,Decrypt) be a functional encryption scheme.

For any PPT algorithms A = (A1,A2) and S, Figure 1 defines two experiments RealFEA (λ) and IdealFEA,S(λ).
In the figure, qc denotes the length of challenge message vector x output by A1 and q1 denotes the number of

key generation queries made before that. The oracles KeyGen-RO and KeyIdeal work as follows:

• KeyGen-RO takes two inputs inp1 and inp2, where inp1 specifies whether the query is a key generation

query or a random oracle query. In the former case, KeyGenO(msk, inp2) is invoked, while in the latter

O(inp2) is invoked.

• KeyIdeal takes a function f as input and outputs (f(x1), . . . , f(xqc)).

Definition 3.2 (Admissibility). An adversary A = (A1,A2) is (qpre(λ), qchal(λ), qpost(λ))-admissible if in

any run of the experiments RealA(1
λ) and IdealA,S(1

λ), A1 and A2 make at most qpre(λ) and qpost(λ) key

generation queries, respectively, andA1 outputs at most qchal(λ) challenge messages.

An adversary A is (poly, qchal(λ), qpost(λ))-admissible if in any run of the experiments RealA(1
λ) and

IdealA,S(1
λ), A1 is allowed to make an unbounded (but polynomial) number of pre-challenge key queries,A2

makes at most qpost(λ) key generation queries, and A1 outputs at most qchal(λ) challenge messages. We can

similarly define admissible adversaries where the number of challenge messages/post challenge key queries are

unbounded.

On the other hand, a simulator S is admissible if wheneverA2 makes a key query f , S queries KeyIdeal on

f only.

Definition 3.3 (Simulation security). A functional encryption scheme FE = (Setup,KeyGen,Encrypt,Decrypt)
is (qpre(λ), qchal(λ), qpost(λ))-Sim-secure for some polynomials qpre, qchal, and qpost, if there exists an admissi-

ble PPT simulator S such that for all (qpre(λ), qchal(λ), qpost(λ))-admissible PPT adversariesA = (A1,A2),

{RealFEA (λ)}λ∈N

c

≈ {IdealFEA,S(λ)}λ∈N.
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We also consider security notions that allow an unbounded (but polynomial) number of pre-challenge key

queries/challenge messages/post-challenge key queries.

Definition 3.4 (Simulation security, unbounded queries). A functional encryption scheme FE = (Setup,KeyGen,
Encrypt,Decrypt) is (poly, qchal(λ), qpost(λ))-Sim-secure for some polynomials qchal, and qpost, if there ex-

ists an admissible PPT simulator S such that for all (poly, qchal(λ), qpost(λ))-admissible PPT adversaries

A = (A1,A2),

{RealFEA (λ)}λ∈N

c

≈ {IdealFEA,S(λ)}λ∈N.

We can similarly define simulation security when qchal and qpost are unbounded.

Note that in the real world an adversary has explicit access to the random oracle. In the ideal world, both the

key generation and random oracles are simulated by S throughout the experiment. This makes the simulator

stronger and our security definition weaker.

4 Hardness of Approximate Compression

In this section, we will first define the notion of approximate compression, and then show that there are certain

circuit families which are hard to approximately compress. This section closely follows the work of Agrawal

et al. [1], who defined the notion of (exact) compressibility of circuit evaluations, and showed that there exist

certain circuit families that are (exact) incompressible.

Definition 4.1. Let ℓ, t be polynomials and ǫ a non-negligible function. A class of circuits C = {Cλ}λ with

domain D = {Dλ}λ and rangeR = {Rλ}λ is said to be (ℓ, t, ǫ)-approximately compressible if there exists a

family of compression circuits Cmp = {Cmpλ}λ, a family of decompression circuits DeCmp = {DeCmpλ}λ,

a polynomial poly, and a non-negligible function η, such that for all large enough λ the following properties

hold:

• The circuits Cmpλ and DeCmpλ have size bounded by poly(λ).

• (compression) For all input s ∈ Dλ and circuits C1, C2, . . . , Cℓ(λ) ∈ Cλ,

∣∣∣Cmpλ

(
{Ci, Ci(s)}i∈[ℓ(λ)]

)∣∣∣ ≤ t(λ).

• (approximate decompression) If s is chosen at random fromDλ, C1, C2, . . . , Cℓ(λ) are chosen uniformly

and independently from Cλ, then

Pr

[
HD

(
DeCmpλ

(
{Ci}i∈[ℓ(λ)] ,Cmpλ

(
{Ci, Ci(s)}i∈[ℓ(λ)]

))
,
(
C1(s), . . . , Cℓ(λ)(s)

))

≤ ǫ(λ) · t(λ)

]
≥ η(λ)

We will now show that weak PRFs can be used to construct a class of circuits that are not approximate

compressible. We will then use the more general notion of approximate incompressibility, rather than the

specific case of weak PRFs, in proving our impossibility results. For simplicity of presentation, in the lemma

statement below, we use specific constants which will be sufficient for our main result. However, the lemma

can be easily extended to work for general ℓ, t and ǫ. We assume that the weak PRF outputs a single bit.

Lemma 4.1. Let wPRF = {wPRFλ}λ be a family of weak pseudorandom functions (for many points),

where wPRFλ : {0, 1}n(λ) × {0, 1}m(λ) → {0, 1}. Consider the family of circuits C = {Cλ}λ, where

Cλ = {wPRFλ(·, x)}x∈{0,1}m(λ) . Let t = t(λ) be any polynomial such that t(λ) ≥ λ for all λ ∈ N. Then C is

not (16t, t, 1/8) approximate compressible.
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Proof. Suppose, on the contrary, that the circuit family C is (16t, t, 1/8) approximate compressible. We will use

the compression circuits {Cmpλ}λ and decompression circuits {DeCmpλ}λ to break the weak PRF security of

wPRF. Fix any large enough security parameter λ. For simplicity of presentation, we will drop the dependence

on λ when it is clear from the context.

Suppose we are given 16t tuples {xi, yi}i∈[16t] that are either generated throughwPRF or chosen uniformly

at random. Define 16t circuits C1, . . . , C16t, where Ci(·) = wPRF(·, xi). Compute the compressed string

u = Cmp
(
{Ci, yi}i∈[16t]

)
and z = DeCmp

(
{Ci}i∈[16t] , u

)
. If HD (z, (y1 . . . y16t)) ≤ 1/8 (16t), output

‘pseudorandom’, else output ‘truly random’.

Below we show that if the yi values are generated through wPRF, i.e., when they are pseudorandom, then

‘pseudorandom’ is output with a non-negligible probability (Claim 4.1). However, if the yi values are truly

random, then the same output is produced with negligible probability (Claim 4.2). Thus we are able to break

the security of wPRF, leading to a contradiction.

Claim 4.1. Pr [Output is ‘pseudorandom’ | {yi} are pseudorandom] ≥ η for some non-negligible function η.

Proof. For a randomly chosen seed s← {0, 1}n, suppose yi = wPRF(s, xi) = Ci(s) for all i ∈ [16t]. Due to

the approximate decompression property, there exists a non-negligible function η such that

Pr
[
HD

(
DeCmp

(
{Ci}i≤16t ,Cmp

(
{Ci, Ci(s)}i∈[16t]

))
, (C1(s), . . . , C16t(s))

)
≤ 1/8 (16t)

]
≥ η

where the probability is over the choice of s and x1, . . . , xm. Thus ‘pseudorandom’ is output with at least η
probability.

Claim 4.2. Pr [Output is ‘pseudorandom’ | {yi} are truly random] ≤ negl.

Proof. Fix any x1, x2, . . . , x16t, which also fixes the circuits C1, C2, . . . , C16t. Now,

Pr [Output is ‘pseudorandom’ | {yi} are truly random]

≤Pr [∃ z s.t. HD (DeCmp ({Ci} , z) , (y1, . . . , y16t)) ≤ 1/8 (16t)]

≤
∑

z∈{0,1}t

Pr [HD (DeCmp ({Ci} , z) , (y1, . . . , y16t)) ≤ 1/8 (16t)]

≤
∑

z∈{0,1}t

(
16t

2t

)
· 2−14t

≤
∑

z∈{0,1}t

(
16 · e

2

)2t

· 2−14t

<
∑

z∈{0,1}t

2−2t

= 2−t

Here, the second inequality is a simple union bound. The third inequality follows from the fact that the yi
values are chosen independent of the Cis and the string z.

5 Impossibility of Simulation Secure FE

In this section we show that there does not exist a functional encryption scheme for the family of all polynomial-

sized circuits that is (poly, 1, 0)-Sim secure in the random oracle model. Specifically, we show that a simulation

secure FE scheme cannot be constructed for any family of circuits that is not approximately compressible

(Definition 4.1). We exhibit an adversary A = (A1,A2) such that for any efficient simulator S, the output

of the real experiment, RealFEA (1λ), is distinguishable from the output of the ideal experiment, IdealFEA,S(1
λ)

(Definition 3.4).
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High level description of adversary. Let C be an approximate incompressible circuit family. The adversary

A1 first asks for secret keys for a large number of randomly chosen circuits fromC, and receives {sk1, . . . , skq}
in return. Next, it generates encryptions of many random messages. It then decrypts each of these ciphertexts

using the q secret keys. The purpose of these encryptions followed by the decryptions is to capture the random

oracle queries that would have occurred while computing the q secret keys, which may also be required when

these keys are used again for decryption later. Let Skeys denote the set of random oracle queries that occur

during these decryptions.

A1 chooses a random message x∗, and outputs it as the challenge (along with a state that consists of its

view so far). A2 then receives a ciphertext ct∗. It decrypts ct∗ using sk1, . . . , skt, for some small t. Let Sct∗

denote the set of random oracle queries during these t decryptions. The purpose of these t decryptions is to

capture the random oracle queries that would have occurred during the encryption of x∗, which may also be

required when ct∗ is decrypted again in the next step.

Finally, A2 decrypts ct∗ using the remaining q − t secret keys. An important thing to note here is that

A2 turns off the random oracle, and instead uses the queries that it has already recorded. If a new random

oracle query is required, then it uses a randomly chosen string. It compares the decrypted values to the correct

function evaluations, and outputs 1 if most decryptions are correct.

First, we show that in the real world, A2 outputs 1 with probability at least 3/4. Let us focus on one of

the q − t decryptions, using a secret key skj . At a high level, this decryption can go wrong if a random oracle

query is made on z, and z /∈ Skeys ∪ Sct, but z was used during the computation of either skj or ct. We show

that this event happens with low probability.

To complete the argument, we show that in the ideal world, A2 outputs 1 with probability around 1/2.

In this world, the simulator receives q circuit evaluations on x∗, and must compress most of this information

in the short challenge ciphertext and the random oracle queries made during the t post-challenge decryption

operations. By choosing parameters carefully and appealing to the (approximate) incompressibility of the

circuit family, we show that this is not possible.

5.1 Formal Description of Adversary

Let C = {Cλ}λ be a family of circuits such that each circuit in Cλ takes an n(λ)-bit input and is not (16t, t, 1/8)
approximately compressible for all polynomials t such that t(λ) ≥ λ. Let FE be a functional encryption scheme

for this family in the random oracle model. We now formally define the adversaryA = (A1,A2).

Adversary A1. Let nkey and nenc be polynomials in λ whose values will be fixed later. Let Γ be a list of

(query, response) pairs that is empty at the beginning. A1 has four phases: setup, key query, random oracle

query collection, and an output phase.

1. Setup. A1 receives the public key pk.

2. Key query. For i ∈ [nkey], it picks a circuit Ci at random from Cλ, requests a secret key for Ci, and

obtains ski in return.

3. RO query collection 1. A1 picks nenc inputs x1, x2, . . . , xnenc

R
← {0, 1}n(λ). For j ∈ [nenc], it runs

EncryptO(pk, xj) to obtain a ciphertext ctj . The RO queries made during the encryption process are

forwarded to the random oracle.

Now each of the ciphertexts ct1, . . . , ctnenc
are decrypted with key ski for every i ∈ [nkey]. If an oracle

query β is made by the Decrypt algorithm, A1 queries the random oracle with the same. The response,

say γ, is given to the algorithm, and (β, γ) is added to Γ (if it is not already present).

4. Output. A1 picks an input x∗
R
← {0, 1}n(λ). It sets the state st to consist of pk, C1, . . . , Cnkey

,

sk1, . . . , sknkey
, x∗, and Γ. Then it outputs (x∗, st).

AdversaryA2. Let neval and ntest be polynomials in λ s.t. neval(λ)+ntest(λ) = nkey(λ) for all λ. (Their val-

ues will be fixed later.) A2 gets ct∗ and st as input, and parses the latter to get pk, C1, . . . , Cnkey
, sk1, . . . , sknkey

,

x∗, and Γ. A2 has three phases: random oracle query collection, test, and an output phase.
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1. RO query collection 2. For every i ∈ [neval], ct
∗ is decrypted with ski. If an RO query β is made by

the Decrypt algorithm,A2 queries the random oracle with the same. The response, say γ, is given to the

algorithm, and (β, γ) is added to Γ (if it is not already present).

2. Test. In this phase, ct∗ is decrypted with rest of the keys but without invoking the random oracle. In

order to do so, a new list ∆ is initialized first, then the following steps are executed for every neval +1 ≤
i ≤ neval + ntest. The decryption algorithm is run with inputs pk, ski, and ct∗. When it makes an RO

query β, A2 checks whether there is an entry of the form (β, γ) in Γ or ∆ (in that order) or not. If yes,

then γ is given to Decrypt and it continues to run. Otherwise, a random bit-string γ′ of length m(λ) (the

output length of the random oracle) is generated, (β, γ′) is added to ∆, and γ′ is given to Decrypt. This

process of providing responses to the RO queries of Decrypt continues till it terminates. Let outi denote

the output of Decrypt, which could be ⊥.

3. Output. For every neval + 1 ≤ i ≤ neval + ntest, check if outi is equal to Ci(x
∗) (where x∗ and Ci

are part of the state transferred to A2). Let num be the number of keys for which this check succeeds.

Output 1 if num/ntest ≥ 7/8, else output 0.

To complete the description of A, we need to define the polynomials nenc, neval and ntest (recall that

nkey = neval + ntest). Let qSetup, qEnc, qKeyGen and qDec be upper-bounds on the number of RO queries made by

Setup, Encrypt, KeyGen and Decrypt, respectively, as a function of λ. Also, let ℓct be an upper-bound on the

length of ciphertexts generated by Encrypt. Then set

• nenc = 4λ · nkey · qKeyGen,

• neval = 32λ (qSetup + qEnc),

• ntest = 16(ℓct + neval · qDec ·m).

5.2 Real World Analysis

First, we will show that the adversaryA = (A1,A2) described above outputs 1 with probability at least 3/4 in

the real world experiment, as long as the scheme FE is correct. To begin with, we classify the random oracle

queries made during a run of A into different sets as follows:

• S-ROCi
for i ∈ [nkey]: random oracle queries made by KeyGen while generating secret key for Ci.

• S-ROkeys =
⋃

i∈[nkey]
S-ROCi

: all random oracle queries during the key query phase of A1.

• S-ROx∗ : random oracle queries made while encrypting x∗ using pk.

• S-RODec-i for i ∈ [ntest]: random oracle queries made during the decryption of ct∗ using skneval+i.

• S-ROΓ-b: random oracle queries recorded during ‘RO Collection Phase b’ for b ∈ {1, 2}. Let S-ROΓ =
S-ROΓ-1

⋃
S-ROΓ-2.

• S-ROSetup: random oracle queries made during setup phase.

Lemma 5.1. For any functional encryption scheme FE for the circuit family C = {Cλ}λ, the adversary A =

(A1,A2) described in Section 5.1 outputs 1 in RealFEA (1λ) with probability at least 3/4− negl(λ).

Proof. We will use the correctness property of FE to prove this claim. Recall that, for simplicity, we assume

correctness to be perfect, i.e., for all random oraclesO : {0, 1}ℓ(λ) → {0, 1}m(λ), x ∈ {0, 1}n(λ), C ∈ Cλ and

(pk,msk)← SetupO(1λ),

DecryptO
(
pk,KeyGenO (msk, C) ,EncryptO (pk, x)

)
= C(x).

Thus, the decryption algorithm can be assumed to be deterministic without loss of generality.

Let Bad denote the event that the adversary outputs 0 at the end of the real world experiment. This event

happens if at least 1/8th fraction of the ntest decryptions fail in the test phase. If I-Deci is an indicator variable
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that takes the value 1 in case the ith decryption fails, then Bad happens iff
∑

i∈[ntest]
I-Deci > 1/8 · ntest. To

analyze the probability of this event, we need to consider the random oracle queries required for decryption in

the test phase. In this phase, A2 does not query the random oracle, but instead uses the list Γ. If some query β
is not present in Γ, thenA2 tries to find it in ∆. If β is not found in ∆ either, then a random value is chosen and

recorded in ∆ against β. Now the only way ith decryption fails is if there is some entry (β, γ) in ∆ such that

β is also among the RO queries hidden from the adversary (and its response is not γ), i.e., the queries made

during the setup phase, key query phase or challenge ciphertext generation. In other words, the ith decryption

succeeds with certainty if all the needed hidden RO queries are captured in either of the two RO collection

phases. This is formalized in the following observation.

Observation 5.1. For every i ∈ [ntest], if the decryption of ct∗ using skneval+i does not give Ci(x
∗), i.e.

I-Deci = 1, then S-RODec-i

⋂
(S-ROSetup

⋃
S-ROkeys

⋃
S-ROx∗) 6⊆ S-ROΓ.

Let I-Dec-1i and I-Dec-2i be indicator variables that are 1 iff S-RODec-i

⋂
(S-ROx∗

⋃
S-ROSetup) 6⊆

S-ROΓ and S-RODec-i

⋂
S-ROkeys 6⊆ S-ROΓ, respectively. Then, I-Deci = 1 iff either I-Dec-1i = 1 or

I-Dec-2i = 1 (or both). Let Bad-1 and Bad-2 be events that happen iff
∑

i∈[ntest]
I-Dec-1i > 1/16 · ntest

and
∑

i∈[ntest]
I-Dec-2i > 1/16 · ntest, respectively. It is easy to see then that whenever Bad happens, at least

one of Bad-1 and Bad-2 also happen. That is, Pr [Bad] ≤ Pr [Bad-1] + Pr [Bad-2]. Below we show that

Pr [Bad-1] ≤ negl(λ) and Pr [Bad-2] ≤ 1/4. Thus the lemma follows.

Claim 5.1. Pr [Bad-1] ≤ negl(λ).

Proof. Fix any random oracleO, the randomness used in SetupO(1λ), challenge message x∗, and the random-

ness used in EncryptO(pk, x∗). This also fixes the sets S-ROSetup and S-ROx∗ . Suppose a circuitC is picked at

random from Cλ, and a key, sk, is generated for it by runningKeyGenO (msk, C). For z ∈ S-ROSetup∪S-ROx∗ ,

let ρz be the probability that z is an RO query in the decryption of ct∗ (the challenge ciphertext) with sk, where

the probability is over the choice of C and the randomness used in KeyGen.

Let Xi,z be an indicator variable that is 1 if an RO query on z is made during the ith decryption in post-

challenge phase (either in the RO collection 2 or test phase). Note that the keys sk1, . . . , sknkey
are gener-

ated independently by choosing circuits C1, . . . , Cnkey
uniformly at random. Thus for any z, the variables

X1,z, . . . , Xnkey,z are independent of each other, and Pr [Xi,z = 1] = ρz for every i.
We are interested in the probability that

∑
i∈[ntest]

I-Dec-1i > ntest/16, i.e., in at least 1/16th fraction of the

decryptions in the test phase, an RO query q is made s.t. q was also an RO query in either set-up or encryption

of x∗, but it was not captured in either of the collection phases. Thus, there must exist a z s.t. z /∈ S-ROΓ

(in particular, z /∈ S-ROΓ-2) but an RO query on z is made in at least ntest/16|Q| of the decryptions, where

Q = S-ROSetup ∪ S-ROx∗ . (If Q = φ then Bad-1 cannot happen, and we are done.) Therefore,

Pr




∑

i∈[ntest]

I-Dec-1i >
ntest

16



 ≤
∑

z∈Q

Pr



z /∈ S-ROΓ-2 ∧
∑

i∈[ntest]

Xi,z >
ntest

16|Q|





Based on the value of ρz , we can divide rest of the analysis into two parts. Intuitively, if ρz is large, then the

probability that z is not captured during RO collection phase is negligible. And when it is small, the probability

that z causes too many decryptions to fail in the test phase is negligible. Since Q is polynomial in the security

parameter, this will prove that the probability of Bad-1 is negligible as well. So now,

• If ρz ≥ 1/32|Q| then

Pr [z /∈ S-ROΓ-2] = Pr [X1,z = 0 ∧ . . . ∧Xneval,z = 0]

=
∏

i∈[neval]

Pr [Xi,z = 0]

= (1− ρz)
neval ≤ e−neval/32|Q|,

where the second equality follows from the independence ofXi,z . Recall that we set neval to be 32λ(qSetup+
qEnc), where qSetup and qEnc are upper-bounds on the number of RO queries made during Setup and

Encrypt, respectively. Thus, e−neval/32|Q| is at most e−λ.
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• If ρz < 1/32|Q| then expected value of
∑

i∈[ntest]
Xi,z is at most ntest/32|Q|. Using Chernoff bounds

we can argue that,

Pr




∑

i∈[ntest]

Xi,z >
ntest

16|Q|



 < e−
1
3 ·

ntest
32|Q| .

We know that ntest ≥ neval. Thus, e−
1
3 ·

ntest
32|Q| is at most e−λ as well.

Claim 5.2. Pr [Bad-2] ≤ 1/4.

Proof. Fix any random oracle O, the randomness used in SetupO(1λ), the circuits C1, . . . , Cnkey
chosen in

the key query phase, and the randomness used in KeyGenO(msk, Ci) for i ∈ [nkey]. This, in particular, fixes

secret keys sk1, . . . , sknkey
and the set S-ROkeys. Consider the following experiment: x

R

← {0, 1}n(λ), ct ←

EncryptO(pk, x), and decrypt ct using ski for i ∈ [neval + 1, nkey]. Let ρ̂z be the probability that at least

ntest/16|Q̂| of the decryptions make an RO query on z, where Q̂ = S-ROkeys.

Let Yj,z be an indicator variable that is 1 iff an RO query on z is made in at least ntest/16|Q̂| of the decryp-

tions of ctj with keys skneval+1, . . . , sknkey
in the first phase of RO query collection. Note that the ciphertexts

ct1, . . . , ctnenc
are generated independently by choosing x1, . . . , xnkey

uniformly at random. Thus for any z, the

variables Y1,z , . . . , Ynenc,z are independent of each other, and Pr [Yj,z = 1] = ρ̂z for every j. In a similar way,

we can also define a random variable Y ∗
z that indicates whether an RO query on z is made in at least ntest/16|Q̂|

of the decryptions of ct∗ with keys skneval+1, . . . , sknkey
in the test phase. Y ∗

z is independent of Y1,z, . . . , Ynenc,z

and Pr [Y ∗
z = 1] = ρ̂z .

In a manner similar to the previous claim, we can argue that

Pr




∑

i∈[ntest]

I-Dec-2i >
ntest

16


 ≤

∑

z∈Q̂

Pr [z /∈ S-ROΓ-1 ∧ Y
∗
z = 1]

If z /∈ S-ROΓ-1, then none of the decryptions in the first phase of RO collection make a query on z. In particular,

the variables Y1,z, . . . , Ynenc,z are all zero in such a case. Therefore,

Pr [z /∈ S-ROΓ-1 ∧ Y
∗
z = 1] ≤ Pr [Y1,z = 0 ∧ . . . ∧ Ynenc,z = 0 ∧ Y ∗

z = 1]

= Pr [Y ∗
z = 1] ·

∏

j∈[nenc]

Pr [Yj,z = 0]

= ρ̂z(1− ρ̂z)
nenc

Once again we have two cases. If ρ̂z ≤ 1/4|Q̂|, then ρ̂z(1 − ρ̂z)
nenc is at most 1/4|Q̂| as well. Otherwise,

(1 − ρ̂z)
nenc ≤ e−nenc/4|Q̂| ≤ e−λ because, recall that, nenc is set to be 4λ · nkey · qKeyGen, where qKeyGen is an

upper-bound on the number of RO queries made during KeyGen. As a result,
∑

z∈Q̂ ρ̂z(1 − ρ̂z)
nenc is at most

1/4.

5.3 Ideal world analysis

Next, we will show that any for PPT simulator, our adversaryA = (A1,A2) outputs 1 in the ideal world with

negligible probability. Let t be a polynomial in λ such that t = ℓct+neval · qDec ·m (so that ntest = 16t) where,

recall that, ℓct is the maximum length of any ciphertext generated by Encrypt. Note that qDec·m is the maximum

number of bits obtained through the random oracle during any decryption,neval·qDec·m is the maximum number

of bits sent to the adversary during the second RO query collection phase, and ℓct + neval · qDec ·m is the total

number of bits the adversary receives after sending the challenge message.

Lemma 5.2. If C = {Cλ}λ is an (16t, t, 1/8) approximately incompressible circuit family, then for any PPT

simulator S, the adversary A = (A1,A2) outputs 1 with probability at most negl(λ).
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Proof. Suppose there exists a simulator S such that our adversaryA outputs 1 with a non-negligible probability

η. We will use S to show that C is (16t, t, 1/8) approximately compressible. In particular, we will use S and

A = (A1,A2) to construct Cmp and DeCmp circuits satisfying the three properties of an approximately

compressible circuit family.

Note that A1 picks Cneval+1, . . . , Cneval+ntest
and x∗ uniformly at random and independent of its other

choices. Let rS and rA denote the randomness used by the simulator S and adversary A (in choosing cir-

cuits C1, . . . , Cneval
, and in RO query collection 1 and test phases), respectively. The compression circuit takes

as input (C1, . . ., C16t, y1, . . ., y16t), has a randomly chosen string for rS and rA hardwired, and works as

follows:

• Use S to generate a public key pk. Give pk to A1.

• Use S to generate secrets keys sk1, . . ., sknkey
for C′

1, . . ., C′
neval

, C1, . . ., C16t, where C′
1, . . ., C′

neval
are

sampled using rA. Give the secret keys to A1.

• Run the first phase of RO query collection. When A1 makes an RO query in this phase, forward it to S.

Give S’s response back to A1.

• Provide y1, . . . , y16t to S. It generates a ciphertext ct∗.

• Run the second phase of RO query collection. Respond to A2’s RO queries in the same way as before.

Let z1, . . . , zv be the responses in order, where zi ∈ {0, 1}
m.

• Output ct∗ and z1, . . . , zv.

The decompression circuit takes C1, . . . , C16t and the compressed string str-cmp as inputs, which can be

parsed as str-cmp = (ct∗, {zi}). It also has the random value chosen before for rS and rA hardwired, and

works as follows:

• Use S to generate pk and secret keys sk1, . . . , sknkey
as before. Give both to A1.

• Run the first phase of RO query collection. Respond to A1’s RO queries in the same way as before. Let

Γ be the list of RO queries and responses recorded in this phase.

• Run the second phase of RO query collection, where sk1, . . . , skneval
are used to decrypt ct∗. The RO

responses required in this step are available as part of the input (z1, . . . , zv). They are also added to Γ.

• Run the test phase with the help of Γ. Let y′i denote the outcome of decrypting ct∗ with skneval+i for

i ∈ [ntest].

• Output y′1, . . . , y
′
16t.

First, note that the size of both compression and decompression circuit is bounded by a polynomial in λ.

Next, the output length of the compression circuit is at most ℓct + v ·m, but v is no more than neval · qDec. Thus

the output length is bounded by t.
Finally, we need to show that the decompression property works with probability η. When C1, . . . , C16t

are chosen uniformly at random and y1, . . . , y16t is the evaluation of these circuits on a randomly chosen point,

then it is easy to see that the decompression circuit emulates the ideal world experiment perfectly. We know

that A2 outputs 1 if and only if for at least 7/8th of the decryptions, y′i = yi. Hence, if 1 is output with

probability η, then the hamming distance of DeCmp({Ci} ,Cmp({Ci} , {yi})) and {yi} is at most 1/8 with

probability at least η.

6 Simulation Secure FE for Bounded Collusions

In this section, we will show an FE scheme that is (q1, poly, q2) simulation secure in the random oracle

model, where q1, q2 are a-priori fixed polynomials. Since both the pre-challenge and post-challenge queries are

bounded, we will simply refer to the total number of key queries. An FE scheme is q-key poly-ciphertext secure

if it is (q1, poly, q2) simulation secure as in Definition 3.4 for all non-negative integers q1, q2 s.t. q1 + q2 = q.
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We first show a scheme that can handle 1 key query in Section 6.1. Then, in Section 6.2 and Appendix 6.3, we

show how to transform a 1-key poly-ciphertext scheme to one that is q-key poly-ciphertext simulation secure

for an a-priori fixed q, by first building a scheme for log-depth circuits and then for all poly-size circuits. This

transformation is very similar to the one showed by Gorbunov et al. [16], except that they dealt with only one

ciphertext.

6.1 Simulation Secure FE for One Key Query

We will now describe our 1-key poly-ciphertext scheme. Recall that in the standard model, it is impossible

to have simulation security even for IBE if the adversary is allowed to query for an unbounded number of

ciphertexts, followed by one adaptive key query [9, 4]. Here, we show how the random oracle can be used to

bypass this impossibility result.

Let C = {Cλ}λ be a class of circuits, where each circuit C ∈ Cλ takes an n(λ) bit input and produces an

m(λ) bit output, and can be represented using t(λ) bits. For x ∈ {0, 1}n(λ), let U
(λ)
x be a universal circuit

that takes any C ∈ Cλ as input and outputs C(x). Let U = {Uλ}λ be a circuit family such that Uλ =

{U
(λ)
x |x ∈ {0, 1}n(λ)}. Our one-bounded FE scheme One-FE = (Setup,Encrypt,KeyGen,Decrypt) uses

a decomposable randomized encoding scheme (RE.Encode,RE.Decode) for U and a public key encryption

scheme PKE = (SetupPKE,EncPKE,DecPKE) that can operate on messages of length λ. For simplicity of

presentation, we will skip the dependence on λ.

• Setup(1λ)→ (mpk,msk): The setup algorithm chooses 2tPKE public key/secret key pairs (pki,b, ski,b)←

SetupPKE(1
λ) for i ∈ [t], b ∈ {0, 1}. It sets mpk =

{
pki,b

}
i∈[t],b∈{0,1}

and msk = {ski,b}i∈[t],b∈{0,1}.

• Enc(mpk, x) → ct: The encryption algorithm first chooses 2t random strings ri,b ← {0, 1}λ for

all i ∈ [t], b ∈ {0, 1}. Next, it computes a randomized encoding for the universal circuit Ux, i.e.,

{wi,b}i∈[t],b∈{0,1} ← RE.Encode(1λ, Ux). Now, let cti,b = EncPKE(pki,b, ri,b) and c̃ti,b = wi,b ⊕

O(ri,b) for all i ∈ [t], b ∈ {0, 1}. The algorithm outputs ct =
{
cti,b, c̃ti,b

}
i∈[t],b∈{0,1}

.

• KeyGen(msk, C) → skC : Let (β1, . . . , βt) be the bit representation of circuit C. The key generation

algorithm outputs {ski,βi
}i∈[t] as the secret key for C.

• Dec(mpk, skC , ct): Let skC = {ski,βi
}i∈[t] and ct =

{
cti,b, c̃ti,b

}
i∈[t],b∈{0,1}

. The decryption algorithm

first decrypts the relevant randomized encoding components, i.e., for each i ∈ [t], it computes ri,βi
=

DecPKE(ski,βi
, cti,βi

) and wi,βi
= c̃ti,βi

⊕O(ri,βi
). Finally, it outputs RE.Decode({wi,βi

}i∈[t]).

The correctness of our scheme follows directly from the correctness of the randomized encoding scheme

and the public key encryption scheme.

6.1.1 Simulator

Suppose an adversary outputsM messages in the challenge phase. A simulator S for our scheme can be defined

as follows.

• Setup. S runs Setup(1λ) honestly to obtain mpk =
{
pki,b

}
i∈[t],b∈{0,1}

and msk = {ski,b}i∈[t],b∈{0,1}.

It initializes an empty list Γ that will be used to record random oracle queries and responses. For each

k ∈ [M ], it also picks 2t random strings {rk,i,b}i∈[t],b∈{0,1}. S then sends mpk to the adversary.

• Challenge phase. There are two cases:

– No key query made before. S computes ctk,i,b ← EncPKE(pki,b, rk,i,b) and chooses random strings

c̃tk,i,b, for each k ∈ [M ], i ∈ [t], b ∈ {0, 1}. The kth ciphertext ctk is
{
ctk,i,b, c̃tk,i,b

}
i∈[t],b∈{0,1}

for k ∈ [M ].

16



– A key query was made before. Suppose C = (β1, . . . , βt) was the key query. S receives evalua-

tions y1, . . . , yM of C at all challenge messages. Let RE.Sim be the simulator for the randomized

encoding scheme. S computes, for each k ∈ [M ], (wk,1, . . . , wk,t) ← RE.Sim(1λ, C, yk). It also

computes ctk,i,b ← EncPKE(pki,b, rk,i,b) and chooses random strings c̃tk,i,b, for each k ∈ [M ],

i ∈ [t], b ∈ {0, 1}. The kth ciphertext ctk is
{
ctk,i,b, c̃tk,i,b

}
i∈[t],b∈{0,1}

for k ∈ [M ]. Further, S

adds (rk,i,βi
, c̃tk,i,βi

⊕ wk,i) to Γ for k ∈ [M ], i ∈ [t].

• Random oracle queries. At any time before making the only allowed key query, if the adversary makes

an RO query q that lies in the set {rk,i,b}k∈[M ],i∈[t],b∈{0,1}, the simulator outputs ⊥ and aborts. Other-

wise, it checks if q is present in the list Γ or not. If it is, then the associated response is returned to the

adversary. Else, a random bit-string γ of length r is chosen, r is given to the adversary, and (q, γ) is

added to Γ.

• Key query. Let C = (β1, . . . , βt) be the key query. There are two cases:

– Adaptive query. In this case, the simulator receives the circuitC as well as evaluations (y1, . . . , yM )
at all challenge messages. S computes, for each k ∈ [M ], (wk,1, . . . , wk,t)← RE.Sim(1λ, C, yk).
It adds (rk,i,βi

, c̃tk,i,βi
⊕ wk,i) to Γ for all k ∈ [M ], i ∈ [t], and sends skC = {ski,βi

}i∈[t] to the

adversary.

– Non-adaptive query. In this case, the simulator only receives the circuit C. It runs the honest key

generation procedure, i.e., it outputs {ski,βi
}i∈[t] as the secret key for C.

• Random oracle queries. After making the key query and getting a secret key back, if the adversary

makes an RO query q that lies in the set {rk,i,1−βi
}k∈[M ],i∈[t], the simulator outputs ⊥ and aborts.

Otherwise, it behaves in the same way as before.

We prove security of One-FE with the help of S in Appendix A.1.

6.2 Simulation Secure FE with Bounded Key Queries for NC1

In this section, we will show how to transform a scheme that handles one key query to one that handles a

bounded number of key queries for the class of log-depth circuits. This transformation is identical to the one

in [16]. However, the proof is slightly different because we handle unbounded challenge ciphertext queries.

Formal Description Let C = {Cλ}λ be a class of circuits, where each circuit C ∈ Cλ takes n(λ) bit in-

puts, outputs a single bit and can be represented using an n(λ) variate polynomial of degree D(λ) over a

(large enough) field F. Let q denote a bound on the number of secret key queries. Our FE scheme FE =
(Setup,Enc,KeyGen,Dec) uses a 1-key poly-ciphertext simulation secure FE scheme (Setupone, Encryptone,
KeyGenone, Decryptone) as a building block. Our scheme is parameterized by four polynomials: N , S, v and

t, whose values depend onD and q. As in GVW, we set t(λ) = Θ(q2λ), N(λ) = Θ(N2q2t) and v(λ) = Θ(λ)
and S(λ) = Θ(vq2). We will skip the dependence on λ when it is clear from the context.

For any circuit C ∈ Cλ and set ∆ ⊂ [S], we define a circuit GC,∆ which takes n+ S bit inputs and works

as follows:

GC,∆(x1, . . . , xn, y1, . . . , yS) = C(x1, . . . , xn) +
∑

h∈∆

yh

LetO = O1×. . .ON be a hash function, where eachOi : {0, 1}
ℓ → {0, 1}m. Each of these hash functions

Oi will be modeled as a random oracle in our security proof.

• SetupO(1λ) → (MPK,MSK): The setup algorithm runs the one-key FE scheme’s setup N times. Let

(mpki,mski) ← SetupOi

one(1
λ). The master public key MPK is set to be {mpki}i∈[N ], and the master

secret key MSK is {mski}i∈[N ].

• EncO(MPK, x) → ct: Let MPK = {mpki}i∈[N ] and x = (x1, . . . , xn). The encryption algorithm

works as follows:
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– It chooses n uniformly random polynomials µ1, . . . , µn of degree t over field F subject to the

constraint that the constant term of µi is xi.

– It chooses S uniformly random polynomials ζ1, . . ., ζS of degreeDt over field F and constant term

0.

– It computes N ciphertexts using the Encryptone algorithm. For i ∈ [N ], it computes cti ←
EncryptOi

one(mpki, (µ1(i), . . . , µn(i), ζ1(i), . . . , ζS(i))).

The encryption algorithm outputs (ct1, . . . , ctN ) as the final ciphertext.

• KeyGenO(MSK, C): Let MSK = {mski}i∈[N ]. The key generation algorithm works as follows:

– It chooses a uniformly random set Γ ⊂ [N ] of size Dt+ 1.

– It chooses a uniformly random set ∆ ⊂ [S] of size v.

– It uses the KeyGenone algorithm to generate Dt+ 1 secret keys for the function GC,∆. For i ∈ Γ,

it computes ski ← KeyGenOi

one(mski, GC,∆).

The key generation algorithm outputs (Γ,∆, {ski}i∈Γ) as the secret key for C.

• DecO(sk, ct): Let sk = (Γ,∆, {ski}i∈Γ) and ct = (ct1, . . . , ctN ). The decryption algorithm works as

follows:

– For each i ∈ Γ, let αi = DecryptOi

one(ski, cti).

– It computes a polynomial η of degree Dt over field F such that for all i ∈ Γ, η(i) = αi.

The decryption algorithm outputs η(0n+S) as the final decryption.

Correctness The correctness proof is identical to the one in [16]. Let µ1, . . ., µn, ζ1, . . ., ζS be the polynomi-

als chosen during encryption, and let Γ,∆ be the sets chosen during key generation. From the correctness of the

one-key FE scheme, it follows that the decryption algorithm computesαi = C(µ1(i), . . . , µn(i))+
∑

j∈∆ ζj(i)
for all i ∈ Γ. Now, since the polynomial η = C(µ1, . . . , µn) +

∑
j∈Γ ζj has degree Dt and |Γ| = Dt + 1,

the decryption algorithm can compute the polynomial η using the set {αi}i∈[N ]. Finally, note that η(0n+S) =

C(µ1(0), . . . , µn(0)) +
∑

j ζj(0) = C(x1, . . . , xn).

6.2.1 Simulation Security

We will first describe our simulator Sim. Let Simone be the simulator for the one-key FE scheme. Our simulator

will perform N parallel executions of Simone. Let
{
Simi

one

}
i∈[N ]

denote the N parallel executions. Let q1
denote the number of pre-challenge secret key queries, q2 the number of post-challenge secret key queries

(q = q1 + q2) and M the number of challenge messages. In the remaining section, the variable k ∈ [M ] will

be used for indexing the ciphertexts, j ∈ [q] will be used to index the secret key query, and i ∈ [N ] will be

used to index the components of public key/secret key/ciphertext.

• Setup

– The simulator first chooses, for each j ≤ q, uniformly random sets Γj ⊂ [N ] of size Dt + 1 and

∆j ⊂ [S] of size v. Let I =
⋃

j 6=j′ (Γj

⋂
Γj′).

– For each i ∈ I, the simulator honestly chooses the master public key/secret key. For each i ∈ I, it

chooses (mpki,mski)← Setupone(1
λ).

For all i /∈ I, the simulator runs Simi
one to generate the ith public key. Let mpki ← Simi

one(1
λ) for

i ∈ [N ] \ I. The simulator sets MPK = {mpki}i∈[N ] and sends MPK to the adversary.

• Pre-Challenge Key Generation Queries Let q1 denote the number of pre-challenge key queries. For

the jth key query Cj , the simulator does the following:
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– For each i ∈ Γj ∩I, the simulator generates secret keys honestly. It sets skj,i ← KeyGenOi

one(mski,
GCj ,∆j

).

– For each i ∈ Γj \ I, the simulator computes skj,i ← Simi
one(GCj ,∆j

).

The simulator sends (Γj ,∆j , {skj,i}i∈Γj
) as the jth secret key and sends it to the adversary.

• Challenge Ciphertexts The adversary queries for M ciphertexts. Let x1, . . . , xM denote the M mes-

sages queried by the adversary. For each j ∈ [q1], k ∈ [M ], the simulator receivesCj(xk). It must output

M ciphertexts ct1, . . . , ctM , and each of these ciphertexts ctk consists of N components ctk1 , . . . , ct
k
N .

– Ciphertext components honestly generated: For each k ∈ [M ], i ∈ I, the simulator chooses

uniformly random zk1,i, . . . , z
k
n,i, z

′k
1,i, . . . , z

′k
S,i and computes honest encryptions. It sets ctki ←

Encryptone(mpki, (z
k
1,i, . . . , z

k
n,i, z

′k
1,i, . . . , z

′k
S,i)).

– Ciphertext components generated by pre-challenge query simulators: Next, the simulator simu-

lates the ciphertext components for each k ∈ [M ], i ∈
(⋃

j∈[q1]
Γj

)
\ I. In order to do so, the

simulator uses the relevant Simone execution that have been used for generating secret keys in the

pre-challenge phase. For each j ≤ q1,

∗ It chooses uniformly random polynomials ψj,1, . . . , ψj,M of degree Dt subject to the restric-

tions that ψj,k(0
n+S) = Cj(x

k) and for all i ∈ Γj

⋂
I, ψj,k(i) = Cj(z

k
1,i, . . . , z

k
n,i) +∑

h∈∆j
z′kh,i.

∗ For all i ∈ Γj , it computes (ct1i , . . . , ct
M
i )← Simi

one({ψj,k(i)}k).
5

– Ciphertext components generated by remaining (post-challenge query) simulators: Finally, the

simulator simulates ciphertext components for each k ∈ [M ], i /∈ (
⋃

j∈[q1 ]
Γj

⋃
I). For each

i /∈
(⋃

j∈[q1]
Γj

)⋃
I, it computes (ct1i , . . . , ct

M
i )← Simi

one().
6

The simulator sends
(
ct1 =

(
ct11, . . . , ct

1
N

)
, . . . , ctM =

(
ctM1 , . . . , ct

M
N

))
to the adversary.

• Post Challenge Key Generation Queries Let q2 denote the number of post challenge key queries. For

the jth query Cj , the simulator also receives circuit evaluations
{
Cj(x

k)
}
k∈[M ]

at all inputs queried

during the challenge ciphertext phase.

It chooses uniformly random polynomials ψj,1, . . . , ψj,M of degree Dt subject to the restrictions that

ψj,k(0
n+S) = Cj(x

k) and for all i ∈ Γj

⋂
I, ψj,k(i) = Cj(z

k
1 , . . . , z

k
n) +

∑
h∈∆j

z′kh .

– For each i ∈ Γj ∩I, the simulator generates secret keys honestly. It sets skj,i ← KeyGenOi

one(mski,
GCj ,∆j

).

– For each i ∈ Γj \ I, the simulator uses Simi
one. It computes the secret key component skj,i ←

Simi
one(GCj ,∆j

, {ψj,1(i), . . . , ψj,M (i)}). 7

The secret key skj =
(
Γj ,∆j , {skj,i}i∈Γj

)
is sent to the adversary.

• Random Oracle Queries For each random oracle query r, the simulator forwards it to each one-query

simulator Simi
one, and receives responses y1, . . . , yN . It forwards these responses to the adversary.

We prove security of our scheme for NC1 in Appendix A.2.

5For these indices i, the simulator has been queried for a pre-challenge secret key, and it receives the function evaluations in the

ciphertext generation phase.
6For these indices i, the simulator has not yet received a secret key query. As a result, it does not receive any additional input for

generating the ciphertext.
7The simulator receives both the circuit GCj ,∆j

as well as M evaluations.
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6.3 Bootstrapping from NC1 to Poly

In this section, we show how to use the FE scheme FENC1 we constructed earlier for NC1 circuits to build an

FE scheme that can issue keys for any polynomial-depth circuit. We use the same high-level idea as that of

GVW12: in order to generate a secret key for a circuit C, use the FENC1 scheme to get a key for a constant-

depth randomized encoding of C that derives fresh randomness from a subset of random values encrypted with

the input.

Let C = {Cλ}λ be a family of polynomial size circuits. If C̃ represents a randomized encoding of a circuit

C ∈ Cλ, then define a circuit GC,∆ such that

GC,∆(x; r1, . . . , rs) := C̃(x;⊕i∈∆ri), (1)

i.e., a subset of values r1, . . . , rs based on ∆ is used to compute the randomness for evaluating the encoding

C̃. From the work of Applebaum, Ishai and Kushilevitz [3], we know that any uniform family of polynomial-

size circuits admits a constant-degree (perfectly-correct) randomized encoding, assuming the existence of a

minimal PRG, one that stretches its seed by just one bit, in uniform ⊕L/poly (a subclass of NC1). Thus GC,∆

is computable by a constant-degree polynomial, and we can use our FENC1 FE scheme to generate a secret key

for it.

Our FE scheme FEpoly is parameterized by positive integers v and s, just like GVW12. Let FENC1 be a

(q1, poly, q2) simulation-secure FE scheme for NC1. The four algorithms for FEpoly are as follows:

• SetupO(1λ)→ (MPK,MSK): Set MPK and MSK to be the master public and private key, respectively,

obtained from FENC1.Setup
O(1λ).

• EncryptO(MPK, x)→ ctx: Pick random numbers r1, r2, . . . , rs and output

FENC1.Encrypt
O(MPK, (x, r1, r2, . . . , rs))

as the ciphertext.

• KeyGenO(MSK, C)→ skC : Pick a v-sized subset ∆ of [s] uniformly at random. Output

FENC1.KeyGen
O(MSK, GC,∆)

as the key, where GC,∆ is defined in (1).

• DecryptO(MPK, skC , ctx): First run FENC1.Decrypt
O(MPK, skC , ctx) to get C̃(x;⊕i∈∆ri). Then run

the decoder of randomized encoding to get C(x).

The (perfect) correctness of FEpoly follows from the (perfect) correctness of FENC1 and that of randomized

encoding.

6.3.1 Simulator

Suppose SimNC1 is a simulator for the FENC1 scheme. For any adversary A who makes at most q key queries

overall, we can construct a simulator S that exploits SimNC1 as follows. (We will suppress λ below to make the

presentation simpler.)

• Setup. Run SimNC1 to get FENC1.MPK and FENC1.MSK. Pick v-sized subsets ∆1, . . . ,∆q of [s] uni-

formly at random such that for all j ∈ [q], ∆i has a unique number aj that is not present in any other

subset. Give FENC1.MPK to A.

• Pre-challenge key queries. When S receives the jth key query for a circuit Cj , it generates a key skCj

by running SimNC1(GCj ,∆j
) (using ∆j picked earlier as the random subset). Let q1 be the total number

of queries made in this phase.

• Challenge ciphertexts. SupposeA outputs x1, . . . , xM as the challenge messages. Then S gets Cj(xk)
for all j ∈ [q1] and k ∈ [M ]. It invokes SimNC1 on inputs {RE.Sim(Cj(xk))}j∈[q1],k∈[M ] to get

ct1, . . . , ctM , which is passed ontoA.
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• Post-challenge key queries. When A makes a query Cj , S gets Cj along with Cj(xk) for k ∈ [M ]. It

invokes SimNC1 on inputs GCj ,∆j
and {RE.Sim(Cj(xk))}k∈[M ] to get a key skCj

, which is passed onto

A.

We prove security of FEpoly in Appendix A.3.

7 Another Impossibility for Simulation Secure FE

In this section we show that there does not exist a (0, poly, poly)-Sim secure FE scheme for all polynomial-

sized circuits in the random oracle model. Thus we get a complete picture of what can and cannot be achieved

in the random oracle mode. Once again we rely on circuit families that cannot be approximately compressed

for proving the impossibility result. See Section 1.3 for an overview of the result.

Let C = {Cλ}λ be a family of circuits such that each circuit in Cλ takes an n(λ)-bit input. Let FE be a

functional encryption scheme for this family in the random oracle model. We formally define an adversary

A = (A1,A2).

Adversary A1. Let nchal be a polynomial in λ whose value will be fixed later. A1 has just two phases, setup

and output.

1. Setup. A1 receives the public key pk.

2. Output. It picks an x∗i uniformly at random from {0, 1}n(λ), for i ∈ [nchal]. It sets the state st to consist

of x∗1, . . . , x
∗
nchal

, and pk. Then it outputs ((x∗1, . . . , x
∗
nchal

), st).

Adversary A2. Let nkey and nenc be polynomials in λ whose values will be fixed later. Let Γ be a list of

(query, response) pairs that is empty at the beginning. A2 gets (ct∗1, . . . , ct
∗
nchal

) and st as input, and parses the

latter to get x∗1, . . . , x
∗
nchal

, and pk. A2 has seven phases: key query (1 and 2), random oracle query collection

(1 and 2), encryption, test, and an output phase.

1. Key query 1. For i ∈ [nkey], A2 picks a circuit Ci at random from Cλ, requests a secret key for Ci, and

obtains ski in return.

2. RO query collection 1. Each of the ciphertexts ct∗1, . . . , ct
∗
nchal

are decrypted with key ski for every

i ∈ [nkey]. If an oracle query β is made by the Decrypt algorithm, A1 queries the random oracle with

the same. The response, say γ, is given to the algorithm, and (β, γ) is added to Γ (if it is not already

present).

3. Encryption. A2 picks x1, x2, . . . , xnenc
independently and uniformly at random from {0, 1}n(λ). For j ∈

[nenc], it runs EncryptO(pk, xj) to obtain a ciphertext ctj . The RO queries made during the encryption

process are forwarded to the random oracle.

4. Key query 2. A2 requests a secret key for a circuit Cnkey+1, picked at random from Cλ, and obtains

sknkey+1 in return.

5. RO query collection 2. In this phase, sknkey+1 is used to decrypt ct1, . . . , ctnenc
. If an oracle query β is

made in the process, then A2 queries the random oracle with the same. The response, say γ, is given to

the algorithm, and (β, γ) is added to Γ (if it is not already present).

6. Test. In this phase, ct∗1, . . . , ct
∗
nchal

is decrypted with sknkey+1 but without invoking the random oracle. In

order to do so, a new list ∆ is initialized first, then the following steps are executed for every i ∈ [nchal].
The decryption algorithm is run with inputs pk, sknkey+1, and ct∗i . When it makes an RO query β, A2

checks whether there is an entry of the form (β, γ) in Γ or ∆ (in that order) or not. If yes, then γ is given

to Decrypt and it continues to run. Otherwise, a random bit-string γ′ of length m(λ) (the output length

of the random oracle) is generated, (β, γ′) is added to ∆, and γ′ is given to Decrypt. This process of

providing responses to the RO queries of Decrypt continues till it terminates. Let outi denote the output

of Decrypt, which could be ⊥.
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7. Output. For every i ∈ [nchal], check if outi is equal to Cnkey+1(x
∗
i ) (where x∗i is part of the state trans-

ferred to A2). Let num be the number of keys for which this check succeeds. Output 1 if num/ntest ≥
7/8, else output 0.

To complete the description of A, we need to define the polynomials nchal, nkey and nenc. Let qSetup, qEnc
and qKeyGen be upper-bounds on the number of RO queries made by Setup, Encrypt and KeyGen, respectively,

as a function of λ. Also let ℓKey be the maximum length of any key generated by KeyGen. Then set

• nchal = 16(ℓKey + nenc · qDec ·m)

• nkey = 4λ · nchal · qEnc,

• nenc = 32λ(qSetup + qKeyGen).

The real and ideal world analysis are in Appendix B.
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A Simulation Security Proofs

A.1 Simulation Security of One Query FE scheme

For simplicity, we will only prove the adaptive key query case. The non-adaptive key query proof is easier to

handle.

First we write down the real experiment in detail for our One-FE scheme.

• Setup. Setup(1λ) is run to obtain mpk =
{
pki,b

}
i∈[t],b∈{0,1}

and msk = {ski,b}i∈[t],b∈{0,1}. Adversary

is given mpk.

• Challenge phase. Let M denote the number of challenge message queries. For each k ∈ [M ], choose

2t random strings {rk,i,b}i∈[t],b∈{0,1} and compute ctk,i,b ← EncPKE(pki,b, rk,i,b). Also, compute

{wk,i,b}i∈[t],b∈{0,1} ← RE.Encode(1λ, Uxk
). The kth ciphertext ctk is {ctk,i,b, wk,i,b ⊕O(ctk,i,b)}i∈[t],b∈{0,1}

for k ∈ [M ].

• Key query. When the adversary makes a key queryC = (β1, . . . , βt), respond with skC = {ski,βi
}i∈[t].

• Random oracle queries. All the random oracle queries (including the ones required during encryption)

are forwarded to O.

To prove security of our one-bounded scheme, we define two intermediate hybrids, Hyb1 and Hyb2. With-

out loss of generality, assume that any adversary outputs a single bit only. In Hyb1, the interaction with an

adversary is as follows:

• Setup. Setup(1λ) is run to obtain mpk =
{
pki,b

}
i∈[t],b∈{0,1}

and msk = {ski,b}i∈[t],b∈{0,1}. Initialize

an empty list Γ that will be used to record random oracle queries and responses. For each k ∈ [M ], pick

2t random strings {rk,i,b}i∈[t],b∈{0,1}. Finally, send mpk to the adversary.

• Challenge phase. Compute ctk,i,b ← EncPKE(pki,b, rk,i,b) and choose random strings c̃tk,i,b, for each

k ∈ [M ], i ∈ [t], b ∈ {0, 1}. The kth ciphertext ctk is set to be
{
ctk,i,b, c̃tk,i,b

}
i∈[t],b∈{0,1}

for k ∈ [M ].

Also, compute {wk,i,b}i∈[t],b∈{0,1} ← RE.Encode(1λ, Uxk
) for every k, which will be used later.
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• Key query. When the adversary makes a key queryC = (β1, . . . , βt), respond with skC = {ski,βi
}i∈[t].

• Random oracle queries. If the adversary makes an RO query on rk,i,b for some k ∈ [M ], i ∈ [t], b ∈
{0, 1} before the challenge phase, output 0 and abort. If such a query is made after the challenge phase,

then return (c̃tk,i,b⊕wk,i,b). For any other query (at any point in the experiment), return a random value.

(The list Γ is used to ensure that the responses are consistent.)

It is easy to see that the Real and Hyb1 are statistically indistinguishable. In particular, the probability that

Hyb1 aborts is negligible because no information about {rk,i,b} is available before the challenge phase.

Hyb2 is exactly the same as Hyb1 except the manner in which it responds to RO queries:

• Random oracle queries. If the adversary makes an RO query on rk,i,b for some k, i, b before the key

phase, or on rk,i,1−βi
for some k, i afterwards, then output 0 and abort. If a query is made on rk,i,βi

after the key phase, return c̃tk,i,βi
⊕ wk,i,βi

. For any other query (at any point in the experiment), return

a random value.

Fix any adversary A. In Hyb1, let p1 be the probability that A queries for rk,i,b (for some k, i, b) after the

challenge phase but before the key phase or for rk,i,1−βi
(for some k, i) after the key phase. If we show that p1

is negligible, then it is easy to see that Hyb1 and Hyb2 are indistinguishable.

Consider a new hybrid Hyb1,1 that differs from Hyb1 as follows:

• Pick k∗
R
← [M ], i∗

R
← [t], b∗

R
← {0, 1}, and r

R
← {0, 1}λ at the beginning.

• If the adversary makes an RO query on r before the challenge phase, output 0 and abort. If such a query

is made after the challenge phase, then return (c̃tk∗,i∗,b∗ ⊕ wk∗,i∗,b∗).

• If A makes a key query C = (β1, . . . , βt) such that βi∗ = b∗, then output 0 and abort.

Note that RO queries for rk∗,i∗,b∗ and r are treated identically. Hyb1,1 outputs 1 if and only if A queries for

rk∗,i∗,b∗ after the challenge phase. One can see that 1 is output with probability at least p1/2Mt− negl.

Define yet another hybrid, Hyb1,2, which is exactly the same as Hyb1,1 except that it outputs 1 if and only

if A queries for r after the challenge phase. It is clear that Hyb1,2 outputs 1 with negligible probability.

We show that Hyb1,1 and Hyb1,2 are computationally indistinguishable, which implies that p1 is also neg-

ligible. We build an adversary B for the IND-CPA game of PKE by using the adversaryA as follows. B picks

2t random strings {rk,i,b}i∈[t],b∈{0,1} for each k ∈ [M ] as well as k∗
R
← [M ], i∗

R
← [t], b∗ ∈ {0, 1}, and

r
R
← {0, 1}λ (just like in Hyb1,1 and Hyb1,2). It gets a public key pk from the IND-CPA challenger, generates

(pki,b, ski,b) pairs for all (i, b) 6= (i∗, b∗), sets pki∗,b∗ = pk, and gives
{
pki,b

}
to A. B initializes an empty list

Γ to record RO queries and responses.

IfA makes an RO query on {rk,i,b} or r before submitting its challenge messages x1, . . . , xM , then output

0 and abort. Otherwise, B sends (rk∗,i∗,b∗ , r) to the IND-CPA challenger, and get ct∗ in return. It encrypts

x1, . . . , xM as in Hyb1,1 or Hyb1,2, except that it sets ctk∗,i∗,b∗ = ct∗. In response to an RO query on rk,i,b,

(c̃tk,i,b ⊕ wk,i,b) is returned. Further, if r is queried, then the response is (c̃tk∗,i∗,b∗ ⊕ wk∗,i∗,b∗). If A makes

a key query C = (β1, . . . , βt) such that βi∗ = b∗, then output 0 and abort. Else generate a key for C using

{ski,b} for (i, b) 6= (i∗, b∗). Finally, output 1 if A queries for rk∗,i∗,b∗ after the challenge phase.

One can see that if IND-CPA challenger encrypts rk∗,i∗,b∗ , then B’s output is identically distributed to

Hyb1,1, otherwise it is identically distributed to Hyb1,2. Thus, due to the security of PKE, Hyb1,1 is computa-

tionally indistinguishable from Hyb1,2, and p1 is negligible.

Finally, the only difference between Hyb2 and simulator S is that in the former, a randomized encoding

{wk,i,b} is computed for xk in the challenge phase itself, while S computes it through RE.Sim in the key phase

whenC(xk) is made available. But, by the security of randomized encoding, no PPT adversary can distinguish

between the two cases.

A.2 Simulation Security of FE Scheme for NC1

A.2.1 Sequence of Hybrids

In order to prove security, we will first define a sequence of hybrid experiments H0, . . . , H4 such that H0

corresponds to the Real experiment and H4 corresponds to the Ideal World experiment. Let q1 denote the
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number of pre-challenge key queries, M the number of challange ciphertexts and q2 the number of post-

challenge key queries. Let q = q1 + q2 denote the total number of key queries made by the adversary.

Hybrid H0 This corresponds to the real experiment.

• Setup Phase

1. Choose (mpki,mski)← Setupone(1
λ) for i ∈ [N ].

2. For each j ∈ [q], choose uniformly random sets Γj ⊂ [N ] of size Dt + 1 and ∆j ⊂ [S] of size v.

Let I =
⋃

j 6=j′ (Γj

⋂
Γj′).

Send {mpki}i∈[N ] to the adversary.

• Pre-Challenge Key Query Phase For each key query Cj

1. For each i ∈ Γj , let skj,i ← KeyGenone(mski, GCj ,∆j
).

Send skj =
(
Γj ,∆j , {skj,i}i∈Γj

)
to the adversary.

• Challenge Phase Let x1, . . . , xM denote the challenge messages, where each message xk has bit repre-

sentation (xk1 , . . . x
k
n).

1. For each k ∈ [M ], h ∈ [n], choose random polynomials µk,h of degree t s.t. µk,h(0) = xkh.

2. For each k ∈ [M ], h ∈ [S], choose random polynomials ζk,h of degree Dt s.t. ζk,h(0) = 0.

3. For each k ∈ [M ], i ∈ [N ], compute the ciphertext component ctki ← Encryptone(mpki, (µk,1(i), . . . ,
µk,n(i), ζk,1(i), . . . , ζk,S(i))).

Send
{
ctk =

(
ctk1 , . . . , ct

k
N

)}
k∈[M ]

to the adversary.

• Pre-Challenge Key Query Phase For each key query Cj

1. For each i ∈ Γj , let skj,i ← KeyGenone(mski, GCj ,∆j
).

Send skj =
(
Γj ,∆j , {skj,i}i∈Γj

)
to the adversary.

• Random Oracle Queries Maintain a table T containing random oracle queries and their responses.

For each new query z, choose uniformly random strings κi for i ∈ [N ] and send (κ1, . . . , κN ) to the

adversary. Add (z, (κ1, . . . , κN )) to T .

Hybrid H1 This experiment is identical to the previous one, except that the challenger aborts if the sets Γj

have too many indices in common, or if the sets ∆j are not cover-free. More formally, the setup phase is

modified as follows.

Setup Phase

1. Choose (mpki,mski)← Setupone(1
λ) for i ∈ [N ].

2. For each j ∈ [q], choose uniformly random sets Γj ⊂ [N ] of size Dt + 1 and ∆j ⊂ [S] of size v. Let

I =
⋃

j 6=j′ (Γj

⋂
Γj′).

3. The adversary wins if either |I| > t or the sets {∆j}j∈[q] are not cover-free.

If {∆j}j∈[q] is cover-free, for each j ∈ [q], let rep(j) denote the first index in ∆j that is not present in⋃
j′ 6=j ∆j′ .

Send {mpki}i∈[N ] to the adversary.
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Hybrid H2 In this experiment, the challenger modifies its response to the challenge messages. Instead of

choosing random polynomials µk,h, it first chooses random field elements zkh,i for all i ∈ I, and chooses µk,h

subject to the restriction that µk,h(i) = zkh,i for all i ∈ I. Similarly, it chooses random field elements z′kh,i and

chooses ζk,h subject to the restriction that ζk,h(i) = z′kh,i.

Challenge Phase Let x1, . . . , xM denote the challenge messages, where each message xk has bit represen-

tation (xk1 , . . . x
k
n).

1. For each k ∈ [M ], h ∈ [n], h′ ∈ [S], i ∈ I, choose random field elements zkh,i ← F and z′kh′,i ← F.

2. For each k ∈ [M ], h ∈ [n], choose polynomials µk,h of degree t s.t. µk,h(0) = xkh and for all i ∈ I,

µk,h(i) = zkh,i.

3. For each k ∈ [M ], h ∈ [S], choose random polynomials ζk,h of degree Dt s.t. ζk,h(0) = 0 and for all

i ∈ I, ζk,h(i) = z′kh,i.

4. For each k ∈ [M ], i ∈ [N ], compute the ciphertext component ctki ← Encryptone(mpki, (µk,1(i), . . . ,
µk,n(i), ζk,1(i), . . . , ζk,S(i))).

Send
{
ctk = (ctk1 , . . . , ct

k
N )

}
k∈[M ]

to the adversary.

Hybrid H3 In this experiment, the challenger further modifies the challenge ciphertexts. The modifications

in this step are done to ensure that the some of the ciphertext components can be simulated using the one-key

simulators.

Challenge Phase Let x1, . . . , xM denote the challenge messages, where each message xk has bit represen-

tation (xk1 , . . . x
k
n).

1. For each k ∈ [M ], h ∈ [n], h′ ∈ [S], i ∈ I, choose random field elements zkh,i ← F and z′kh′,i ← F.

2. For each j ∈ [q1], k ∈ [M ], choose random polynomials ψj,k of degree Dt subject to the restrictions

that ψj,k(0) = Cj(x
k) and for each i ∈ I, ψj,k(i) = Cj(z

k
1,i, . . . , z

k
n,i) +

∑
h∈∆j

z′kh,i.

3. For each k ∈ [M ], h ∈ [n], choose polynomials µk,h of degree t s.t. µk,h(0) = xkh and for all i ∈ I,

µk,h(i) = zkh,i.

4. For each k ∈ [M ], h ∈ [S] \ {rep(1), . . . , rep(q1)}, choose random polynomials ζk,h of degree Dt s.t.

ζk,h(0) = 0 and for all i ∈ I, ζk,h(i) = z′kh,i.

5. For each k ∈ [M ], j ∈ [q1], set ζk,rep(j) = ψj,k − Cj(µk,1, . . . , µk,n)−
∑

h∈∆j\{rep(j)}
ζk,h.

6. For each k ∈ [M ], i ∈ [N ], compute the ciphertext component ctki ← Encryptone(mpki, (µk,1(i), . . . ,
µk,n(i), ζk,1(i), . . . , ζk,S(i))).

Send
{
ctk = (ctk1 , . . . , ct

k
N )

}
k∈[M ]

to the adversary.

Hybrid H3,j∗,i∗ for j∗ ∈ [q1], i
∗ ∈ Γj∗ \ I Next, we define a sequence of hybrids where the pre-challenge

key queries (and the corresponding public keys and ciphertext components) are simulated by the one-key sim-

ulators.

• Setup Phase

1. For each j ∈ [q], choose uniformly random sets Γj ⊂ [N ] of size Dt + 1 and ∆j ⊂ [S] of size v.

Let I =
⋃

j 6=j′ (Γj

⋂
Γj′).

2. The adversary wins if either |I| > t or the sets {∆j}j∈[q] are not cover-free.

If {∆j}j∈[q] is cover-free, for each j ∈ [q], let rep(j) denote the first index in ∆j that is not present

in
⋃

j′ 6=j ∆j′ .
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3. For each j < j∗, i ∈ Γj \ I, choose mpki ← Simi
one().

For each i ∈ Γj∗ \ I, i ≤ i∗, choose mpki ← Simi
one().

4. Choose (mpki,mski)← Setupone(1
λ) for the remaining indices.

Send {mpki}i∈[N ] to the adversary.

• Pre-Challenge Key Query Phase For each key query Cj

1. For each i ∈ I, set skj,i ← KeyGenone(mski, GCj,∆j
).

2. If j < j∗ and i ∈ Γj \ I, let skj,i ← Simi
one(GCj ,∆j

).

If j = j∗ and i ∈ Γj∗ \ I, i ≤ i∗, let skj,i ← Simi
one(GCj ,∆j

). For i > i∗ , let skj,i ←
KeyGenone(mski, GCj ,∆j

).

If j > j∗ and i ∈ Γj , let skj,i ← KeyGenone(mski, GCj ,∆j
).

Send skj =
(
Γj ,∆j , {skj,i}i∈Γj

)
to the adversary.

• Challenge Phase Let x1, . . . , xM denote the challenge messages, where each message xk has bit repre-

sentation (xk1 , . . . x
k
n).

1. For each k ∈ [M ], h ∈ [n], h′ ∈ [S], i ∈ I, choose random field elements zkh,i ← F and z′kh′,i ← F

and compute the ciphertext component ctki ← Encryptone(mpki,
(
zk1,i, . . . , z

k
n,i, z

′k
1,i, . . . , z

′k
S,i

)
).

2. For each j ∈ [q1], k ∈ [M ], choose random polynomials ψj,k of degree Dt subject to the restric-

tions that ψj,k(0) = Cj(x
k) and for each i ∈ I, ψj,k(i) = Cj(z

k
1,i, . . . , z

k
n,i) +

∑
h∈∆j

z′kh,i.

3. For each i ∈
⋃

j<j∗ Γj \ I, set (ct1i , . . . , ct
M
i )← Simi

one(ψj,k(i)).

For each i ∈ Γj∗ \ I, i ≤ i∗, set (ct1i , . . . , ct
M
i )← Simi

one(ψj,k(i)).

4. For each k ∈ [M ], h ∈ [n], choose polynomials µk,h of degree t s.t. µk,h(0) = xkh and for all

i ∈ I, µk,h(i) = zkh,i.

5. For each k ∈ [M ], h ∈ [S] \ {rep(1), . . . , rep(q1)}, choose random polynomials ζk,h of degreeDt
s.t. ζk,h(0) = 0 and for all i ∈ I, ζk,h(i) = z′kh,i.

6. For each k ∈ [M ], j ∈ [q1], set ζk,rep(j) = ψj,k − Cj(µk,1, . . . , µk,n)−
∑

h∈∆j\{rep(j)}
ζk,h.

7. The remaining ciphertext components are generated honestly.

For the remaining indices k, i, compute the ciphertext component ctki ← Encryptone(mpki, (µk,1(i),
. . . , µk,n(i), ζk,1(i), . . . , ζk,S(i))).

Send
{
ctk = (ctk1 , . . . , ct

k
N )

}
k∈[M ]

to the adversary.

• Post-Challenge Key Query Phase and Random Oracle Queries Same as in previous game.

Hybrids H3,j∗,i∗ for j ∈ {q1 + 1, . . . , q2} , i ∈ Γj∗ Next, we define a sequence of hybrids where the post

challenge queries are handled by the simulator.

• Setup Phase

1. For each j ∈ [q], choose uniformly random sets Γj ⊂ [N ] of size Dt + 1 and ∆j ⊂ [S] of size v.

Let I =
⋃

j 6=j′ (Γj

⋂
Γj′).

2. The adversary wins if either |I| > t or the sets {∆j}j∈[q] are not cover-free.

If {∆j}j∈[q] is cover-free, for each j ∈ [q], let rep(j) denote the first index in ∆j that is not present

in
⋃

j′ 6=j ∆j′ .

3. For each j < j∗, i ∈ Γj \ I, choose mpki ← Simi
one().

For each i ∈ Γj∗ \ I, i ≤ i∗, choose mpki ← Simi
one().
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4. For the remaining indices, choose the public/secret keys honestly. Choose (mpki,mski)← Setupone(1
λ)

for the remaining i.

Send {mpki}i∈[N ] to the adversary.

• Pre-Challenge Key Query Phase Same as in previous game.

• Challenge Phase Let x1, . . . , xM denote the challenge messages, where each message xk has bit repre-

sentation (xk1 , . . . x
k
n).

1. For each k ∈ [M ], h ∈ [n], h′ ∈ [S], i ∈ I, choose random field elements zkh,i ← F and z′kh′,i ← F

and compute the ciphertext component ctki ← Encryptone(mpki,
(
zk1,i, . . . , z

k
n,i, z

′k
1,i, . . . , z

′k
S,i

)
).

2. For each j ∈ [q1], k ∈ [M ], choose random polynomials ψj,k of degree Dt subject to the restric-

tions that ψj,k(0) = Cj(x
k) and for each i ∈ I, ψj,k(i) = Cj(z

k
1,i, . . . , z

k
n,i) +

∑
h∈∆j

z′kh,i.

3. For each i ∈
⋃

j≤q1
Γj \ I, set (ct1i , . . . , ct

M
i )← Simi

one(ψj,k(i)).

4. For each i ∈
⋃

q1<j<j∗ Γj \ I, set (ct1i , . . . , ct
M
i )← Simi

one().

For each i ∈ Γj∗ \ I, i ≤ i∗, set (ct1i , . . . , ct
M
i )← Simi

one().

5. For each k ∈ [M ], h ∈ [n], choose polynomials µk,h of degree t s.t. µk,h(0) = xkh and for all

i ∈ I, µk,h(i) = zkh,i.

6. For each k ∈ [M ], h ∈ [S] \ {rep(1), . . . , rep(q1)}, choose random polynomials ζk,h of degreeDt
s.t. ζk,h(0) = 0 and for all i ∈ I, ζk,h(i) = z′kh,i.

7. For each k ∈ [M ], j ∈ [q1], set ζk,rep(j) = ψj,k − Cj(µk,1, . . . , µk,n)−
∑

h∈∆j\{rep(j)}
ζk,h.

8. The remaining ciphertext components are generated honestly.

For the remaining indices k, i, compute the ciphertext component ctki ← Encryptone(mpki, (µk,1(i),
. . . , µk,n(i), ζk,1(i), . . . , ζk,S(i))).

Send
{
ctk = (ctk1 , . . . , ct

k
N )

}
k∈[M ]

to the adversary.

• Post-Challenge Key Query Phase For each key query Cj

1. For each i ∈ I, set skj,i ← KeyGenone(mski, GCj,∆j
).

2. If (q1 < j < j∗ and i ∈ Γj \ I) or (j = j∗ and i ∈ Γj∗ \ I, i ≤ i∗), let skj,i ← Simi
one(GCj ,∆j

,{
GCj ,∆j

(µk,1(i), . . . , µk,n(i), ζk,1(i), . . . , ζk,S(i))
}
k
).

For all remaining indices, let skj,i ← KeyGenone(mski, GCj,∆j
).

Send skj =
(
Γj ,∆j , {skj,i}i∈Γj

)
to the adversary.

Hybrid H4 In this hybrid, the public key and ciphertext components for i /∈ I are also simulated. This

includes indices corresponding to which no secret key components are given.

• Setup Phase

1. For each j ∈ [q], choose uniformly random sets Γj ⊂ [N ] of size Dt + 1 and ∆j ⊂ [S] of size v.

Let I =
⋃

j 6=j′ (Γj

⋂
Γj′).

2. The adversary wins if either |I| > t or the sets {∆j}j∈[q] are not cover-free.

If {∆j}j∈[q] is cover-free, for each j ∈ [q], let rep(j) denote the first index in ∆j that is not present

in
⋃

j′ 6=j ∆j′ .

3. For each i /∈ I, choose mpki ← Simi
one().

4. For each i ∈ I, let (mpki,mski)← Setupone(1
λ).

Send {mpki}i∈[N ] to the adversary.
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• Pre-Challenge Key Query Phase Same as in previous hybrid.

• Challenge Phase Let x1, . . . , xM denote the challenge messages, where each message xk has bit repre-

sentation (xk1 , . . . x
k
n).

1. For each k ∈ [M ], h ∈ [n], h′ ∈ [S], i ∈ I, choose random field elements zkh,i ← F and z′kh′,i ← F

and compute the ciphertext component ctki ← Encryptone(mpki,
(
zk1,i, . . . , z

k
n,i, z

′k
1,i, . . . , z

′k
S,i

)
).

2. For each j ∈ [q1], k ∈ [M ], choose random polynomials ψj,k of degree Dt subject to the restric-

tions that ψj,k(0) = Cj(x
k) and for each i ∈ I, ψj,k(i) = Cj(z

k
1,i, . . . , z

k
n,i) +

∑
h∈∆j

z′kh,i.

3. For each i ∈
⋃

j≤q1
Γj \ I, set (ct1i , . . . , ct

M
i )← Simi

one(ψj,k(i)).

4. For the remaining indices i, set (ct1i , . . . , ct
M
i )← Simi

one().

5. For each k ∈ [M ], h ∈ [n], choose polynomials µk,h of degree t s.t. µk,h(0) = xkh and for all

i ∈ I, µk,h(i) = zkh,i.

6. For each k ∈ [M ], h ∈ [S] \ {rep(1), . . . , rep(q1)}, choose random polynomials ζk,h of degreeDt
s.t. ζk,h(0) = 0 and for all i ∈ I, ζk,h(i) = z′kh,i.

7. For each k ∈ [M ], j ∈ [q1], set ζk,rep(j) = ψj,k − Cj(µk,1, . . . , µk,n)−
∑

h∈∆j\{rep(j)}
ζk,h.

Send
{
ctk = (ctk1 , . . . , ct

k
N )

}
k∈[M ]

to the adversary.

• Pre-Challenge Key Query Phase Same as in previous hybrid.

Hybrid H5 In the previous hybrid, note that the polynomials µk,h and ζk,h are not required during the

encryption phase. In fact, even during the post-challenge key generation phase, the one-key simulator only

requires αk,j,i = Cj(µk,1(i), . . . , µk,n(i)) +
∑

h∈∆j
ζk,h(i). This value can be simulated using Cj(x

k) (that

is, αk,j,i can be simulated without knowing xk).

• Setup Phase Same as in previous hybrid.

• Pre-Challenge Key Query Phase Same as in previous hybrid.

• Challenge Phase Same as in previous hybrid, except that the challenger does not choose the polynomials

µk,h and ζk,h.

• Post-Challenge Key Query Phase For the jth query Cj , the simulator also receives circuit evaluations{
Cj(x

k)
}
k∈[M ]

at all inputs queried during the challenge ciphertext phase.

Choose uniformly random polynomials ψj,1, . . . , ψj,M of degree Dt subject to the restrictions that

ψj,k(0
n+S) = Cj(x

k) and for all i ∈ Γj

⋂
I, ψj,k(i) = Cj(z

k
1 , . . . , z

k
n) +

∑
h∈∆j

z′kh .

– For each i ∈ Γj

⋂
I, compute skj,i ← KeyGenOi

one(mski, GCj ,∆j
).

– For each i ∈ Γj \ I, compute skj,i ← Simi
one(GCj ,∆j

, {ψj,1(i), . . . , ψj,M (i)}).

The secret key skj =
(
Γj ,∆j , {skj,i}i∈Γj

)
is sent to the adversary.

A.2.2 Analysis

We will now show that any PPT adversary’s advantage in each of the above hybrids is negligible. For any

adversaryA, let AdvAx denote the advantage of A in hybridHx.

Claim A.1. For any adversary A, AdvA1 = AdvA0 − negl(λ).

Proof. This follows from our choice of parameters N, t, S, v. As discussed in [16] (Section 5.2), setting t =
Θ(q2λ), N = Θ(D2q2t) ensures that |

⋃
j 6=j′ Γj

⋂
Γj′ | ≤ t. For cover-freeness, we set v = Θ(λ) and

S = Θ(vq2).
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Claim A.2. For any adversary A, AdvA1 = AdvA2 .

Proof. The adversary’s view in hybrids H1 and H2 is identical. In H2, each polynomial µk,h is uniformly

random, subject to one constraint : µk,h(0) = xkh. In H2, the challenger chooses t random points zk1,i, . . . , z
k
h,i

and then chooses µk,h subject to the restrictions that µk,h(i) = zkh,i. Since µk,h has degree t, these two views

are identical. Similarly, we have the choice of ζk,h. This shows that the views in the two experiments are

identical.

Claim A.3. For any adversary A, AdvA2 = AdvA3 .

Proof. The proof of this claim relies on the cover-free property of the sets {∆1, . . . ,∆q2}. Since these sets are

cover-free, we can choose a representative rep(j) ∈ Γj \
⋃

j′ 6=j Γj′ for each j ≤ q. Notice the only difference

in the two hybrids is the choice of ζk,rep(j) for each j ∈ [q1]. In H2, ζk,rep(j) is a uniformly random polynomial

subject to restrictions at t + 1 points {0}
⋃
I. In H3, ζk,rep(k) is defined as ψj,k − P , where P is some fixed

polynomial 8. Here ψj,k is a uniformly random polynomial of degree Dt subject to restrictions at {0}
⋃
I.

Moreover, in both hybrids, ζk,rep(j) takes the same value at all points in {0}
⋃
I. This shows that the two

distributions are identical.

Claim A.4. Assuming FEone is one-key many-ciphertext simulation secure, for any j∗ ∈ [q1], i
∗ ∈ Γj∗ , PPT

adversary A, |AdvA3,j∗,i∗ − AdvA3,j∗,i∗+1| ≤ negl(λ).

Proof. The proof of this claim follows directly from the one-key many-ciphertext simulation security of FEone.

Claim A.5. Assuming FEone is one-key many-ciphertext simulation secure, for any j∗ ∈ {q1 + 1, . . . , q},
i ∈ Γj∗ , PPT adversaryA, |AdvA3,j∗,i∗ − AdvA3,j∗,i∗+1| ≤ negl(λ).

Proof. The proof of this claim follows directly from the one-key many-ciphertext simulation security of FEone.

Claim A.6. Let i∗ be the last index in Γq2 . Assuming FEone is zero-key many-ciphertext secure, for any PPT

adversary A, |AdvA3,q,i∗ − AdvA4 | ≤ negl(λ).

Proof. The proof of this claim follows directly from the zero-key many-ciphertext simulation security of FEone.

Claim A.7. For any adversary A, AdvA4 = AdvA5 .

Proof. This proof is identical to the proof of Claim A.3.

A.3 Simulation Security of FE Scheme for All Circuits

A.3.1 Sequence of Hybrids

Hybrid 1. We switch from the real experiment to using the simulator of FENC1, but at the same time, unlike

the ideal world experiment, challenge messages are directly used. Formally,

• Setup. Same as the set-up phase of S.

• Pre-challenge key queries. Same as the corresponding phase of S.

• Challenge ciphertexts. SupposeA outputs x1, . . . , xM as the challenge messages. Then pick rk,1, rk,2,
. . . , rk,s at random for every k ∈ [M ] and invoke SimNC1 on inputs

{
GCj ,∆j

(xk; rk,1, . . . , rk,s)
}
j∈[q1 ],k∈[M ]

to get ct1, . . . , ctM .

• Post-challenge key queries. WhenAmakes a query Cj , invoke SimNC1 on inputs GCj ,∆j
and {GCj ,∆j

(xk; rk,1, . . . , rk,s)}k∈[M ] to get a key skCj
.

8P = Cj(µk,1, . . . , µk,n) +
∑

h∈∆j\{rep(j)}
ζk,h
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Hybrid 2. Hyb2 is exactly the same as Hyb1 except that in order to compute GCj ,∆j
on an input xk for any

j, k, a uniformly chosen value r̂j,k is used instead of ⊕i∈∆j
rk,i. (In other words, a randomized encoding of Cj

on xk is computed using fresh randomness rk,i.)

A.3.2 Analysis

Claim A.8. If SimNC1 is an admissible simulator for (q1, poly, q2) simulation security of FENC1, then Real
FEpoly

A

is computationally indistinguishable from Hyb1.

Proof. This claim can be easily verified by observing that Hyb1 is identical to the ideal world for FENC1.

Claim A.9. The output of Hyb1 is statistically close to that of Hyb2.

Proof. This follows from the cover-freeness of the sets ∆1, . . . ,∆q. With high probability over the choice of

these sets, ∆j \
⋃

i∈[q],i6=j ∆i is not empty for any j. Thus for every k ∈ [M ], ⊕i∈∆1rk,i, . . ., ⊕i∈∆q
rk,i are

uniformly distributed.

Claim A.10. Hyb2 is computationally indistinguishable from Ideal
FEpoly

A,S due to the security of randomized

encodings.

Proof. The only difference betweenHyb2 and the ideal world is that C̃j(xk; rj,k) is replaced byRE.Sim(Cj(xk))
for every j, k. However, since rj,k is a uniformly random value, the output of randomized encoding can be sim-

ulated by RE.Sim given just the function evaluation.

B Real And Ideal Analysis of Second Impossibility

B.1 Real World Analysis

First, we will show that the adversaryA = (A1,A2) described above outputs 1 with probability at least 3/4 in

the real world experiment. We will refer to the special key sknkey+1 as sk∗ below. To begin with, we classify

the random oracle queries made during a run of A into different sets as follows:

• S-ROSetup: random oracle queries made during setup phase.

• S-ROx∗
i

for i ∈ [nchal]: random oracle queries made while encrypting x∗i using pk.

• S-ROchal =
⋃

i∈[nchal]
S-ROx∗

i
: all random oracle queries made during the encryption of x∗1, . . . , x

∗
nchal

.

• S-ROs-key: random oracle queries made by KeyGen while generating secret key forCnkey+1 in the second

key query phase.

• S-RODec-i for i ∈ [ntest]: random oracle queries made during the decryption of ct∗i using sk∗.

• S-ROΓ-b: random oracle queries recorded during ‘RO Collection Phase b’ for b ∈ {1, 2}. Let S-ROΓ =
S-ROΓ-1

⋃
S-ROΓ-2.

Lemma B.1. For any functional encryption scheme FE for the circuit family C = {Cλ}λ, the adversary A =

(A1,A2) described in Section 5.1 outputs 1 in RealFEA (1λ) with probability at least 3/4− negl(λ).

Proof. Let Bad denote the event that the adversary outputs 0 at the end of the real world experiment. This event

happens if at least 1/8th fraction of the nchal decryptions fail in the test phase. If I-Deci is an indicator variable

that takes the value 1 in case the ith decryption fails, then Bad happens iff
∑

i∈[nchal]
I-Deci > 1/8 · ntest.

Adapting Observation 5.1 to the present situation, we have

Observation B.1. For every i ∈ [nchal], if the decryption of ct∗i using sk∗ does not giveCi(x
∗), i.e. I-Deci = 1,

then S-RODec-i

⋂
(S-ROSetup

⋃
S-ROs-key

⋃
S-ROchal) 6⊆ S-ROΓ.
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Let I-Dec-1i and I-Dec-2i be indicator variables that are 1 if and only if S-RODec-i

⋂
(S-ROs-key

⋃
S-ROSetup)

6⊆ S-ROΓ and S-RODec-i

⋂
S-ROchal 6⊆ S-ROΓ, respectively. Then, I-Deci = 1 iff either I-Dec-1i = 1 or

I-Dec-2i = 1 (or both). Let Bad-1 and Bad-2 be events that happen iff
∑

i∈[nchal]
I-Dec-1i > 1/16 · nchal and∑

i∈[nchal]
I-Dec-2i > 1/16 · nchal, respectively. Below we show that Pr [Bad-1] ≤ negl(λ) and Pr [Bad-2] ≤

1/4. Since Pr [Bad] ≤ Pr [Bad-1] + Pr [Bad-2], the lemma follows.

Claim B.1. Pr [Bad-1] ≤ negl(λ).

Proof. Fix any random oracleO, the randomness used in SetupO(1λ), the circuit Cnkey+1, and the randomness

used in KeyGenO(msk, sk∗). This also fixes the sets S-ROSetup and S-ROs-key . Suppose an x is picked at

random {0, 1}n(λ), and a ciphertext, ct, is generated for it by running EncryptO (pk, x). For z ∈ S-ROSetup ∪
S-ROs-key, let ρz be the probability that z is an RO query in the decryption of ct with sk∗, where the probability

is over the choice of x and the randomness used in Encrypt.

Let Xj,z and X∗
i,z be indicator variables that are 1 if an RO query on z is made during the jth decryption

in RO query collection 2 and ith decryption in test phase, respectively, for j ∈ [nenc], i ∈ [nchal]. Note that

the ciphertexts ct1, . . . , ctnenc
and ct∗1, . . . , ct

∗
nchal

are generated independently by choosing x1, . . . , xnenc
and

x∗1, . . . , x
∗
nchal

uniformly at random. Thus for any z, the variables X1,z, . . . , Xnenc,z and X∗
1,z, . . . , X

∗
nchal,z

are

independent of each other, and the probability of any of them being 1 is ρz .

We are interested in the probability that
∑

i∈[nchal]
I-Dec-1i > nchal/16, i.e., in at least 1/16th fraction of

the decryptions in the test phase, an RO query q is made s.t. q was also queried during set-up or key generation

for Cnkey+1, but it was not captured in either of the collection phases. Thus, there must exist a z s.t. z /∈ S-ROΓ

(in particular, z /∈ S-ROΓ-2) but an RO query on z is made in at least nchal/16|Q| of the decryptions, where

Q = S-ROSetup ∪ S-ROs-key. (If Q = φ then Bad-1 cannot happen, and we are done.). Therefore,

Pr




∑

i∈[nchal]

I-Dec-1i >
nchal

16



 ≤
∑

z∈Q

Pr



z /∈ S-ROΓ-2 ∧
∑

i∈[nchal]

X∗
i,z >

nchal

16|Q|





Based on the value of ρz , we can divide rest of the analysis into two parts:

• If ρz ≥ 1/32|Q| then

Pr [z /∈ S-ROΓ-2] = Pr [X1,z = 0 ∧ . . . ∧Xnenc,z = 0]

=
∏

i∈[nenc]

Pr [Xi,z = 0]

= (1− ρz)
nenc ≤ e−nenc/32|Q|,

where the second equality follows from the independence of Xi,z . Recall that we set nenc to be at least

32λ(qSetup + qKeyGen), where qSetup and qKeyGen are upper-bounds on the number of RO queries made

during Setup and KeyGen, respectively. Thus, e−nenc/32|Q| is at most e−λ.

• If ρz < 1/32|Q| then expected value of
∑

i∈[nchal]
X∗

i,z is at most nchal/32|Q|. Using Chernoff bounds

we can argue that,

Pr




∑

i∈[nchal]

X∗
i,z >

nchal

16|Q|


 < e−

1
3 ·

nchal
32|Q| .

We know that nchal ≥ nenc. Thus, e−
1
3 ·

nchal
32|Q| is at most e−λ as well.

Since Q is polynomial in the security parameter, this proves that the probability of Bad-1 is negligible as well.

Claim B.2. Pr [Bad-2] ≤ 1/4.
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Proof. Fix any random oracle O, the randomness used in SetupO(1λ), challenge messages x∗1, . . . , x
∗
nchal

, and

the randomness used in EncryptO(pk, x∗i ) for i ∈ [nchal]. This, in particular, fixes ciphertexts ct∗1, . . . , ct
∗
nchal

and the set S-ROchal. Consider the following experiment: C
R
← Cλ, sk ← KeyGenO(msk, C), and decrypt

ct∗1, . . . , ct
∗
nchal

using sk. Let ρ̂z be the probability that at least nchal/16|Q̂| of the decryptions make an RO

query on z, where Q̂ = S-ROchal.

Let Yj,z be an indicator variable that is 1 iff an RO query on z is made in at least nchal/16|Q̂| of the de-

cryptions of ct∗1, . . . , ct
∗
nchal

with skj in the first phase of RO query collection. Note that the keys sk1, . . . , sknkey

are generated independently by choosing C1, . . . , Cnkey
uniformly at random. Thus for any z, the variables

Y1,z, . . . , Ynkey,z are independent of each other, and Pr [Yj,z = 1] = ρ̂z for every j. In a similar way, we can

also define a random variable Y ∗
z that indicates whether an RO query on z is made in at least nchal/16|Q̂|

of the decryptions of ct∗1, . . . , ct
∗
nchal

with sk∗ in the test phase. Y ∗
z is independent of Y1,z, . . . , Ynkey,z and

Pr [Y ∗
z = 1] = ρ̂z .

In a manner similar to the previous claim, we can argue that

Pr




∑

i∈[nchal]

I-Dec-2i >
nchal

16



 ≤
∑

z∈Q̂

Pr [z /∈ S-ROΓ-1 ∧ Y
∗
z = 1]

If z /∈ S-ROΓ-1, then none of the decryptions in the first phase of RO collection make a query on z. In particular,

the variables Y1,z, . . . , Ynkey,z are all zero in such a case. Therefore,

Pr [z /∈ S-ROΓ-1 ∧ Y
∗
z = 1] ≤ Pr

[
Y1,z = 0 ∧ . . . ∧ Ynkey,z = 0 ∧ Y ∗

z = 1
]

= Pr [Y ∗
z = 1] ·

∏

j∈[nkey]

Pr [Yj,z = 0]

= ρ̂z(1− ρ̂z)
nkey

Once again we have two cases. If ρ̂z ≤ 1/4|Q̂|, then ρ̂z(1 − ρ̂z)
nkey is at most 1/4|Q̂| as well. Otherwise,

(1 − ρ̂z)
nkey ≤ e−nkey/4|Q̂| ≤ e−λ because, recall that, nkey is at least 4λ · nchal · qEnc, where qEnc is an upper-

bound on the number of RO queries made during Encrypt. As a result,
∑

z∈Q̂ ρ̂z(1 − ρ̂z)
nkey is at most 1/4.

B.2 Ideal world analysis

We now show that for any PPT simulator, our adversary A = (A1,A2) outputs 1 in the ideal world with

negligible probability. Let t be a polynomial in λ such that t = ℓKey + nenc · qDec · m (so that nchal = 16t)
where, recall that, ℓct is the maximum length of any key generated by KeyGen.

Approximate compressibility is defined w.r.t. the experiment where several circuits are chosen at random

and then evaluated at a random point (Definition 4.1). We need a slightly different notion of compressibility

here, with d as an additional parameter. Suppose circuits C1, . . . , Cd+1 are chosen at random from Cλ and

points s1, . . . , sℓ are chosen at random from Dλ. When Cmp is given ({Ci}i∈[d+1] , {Ci(xj)}i∈[d+1],j∈[ℓ]), it

must produce an output z such that when DeCmp is given (z, {Ci}i∈[d+1] , {Ci(xj)}i∈[d],j∈[ℓ]), the hamming

distance of its output from (Cd+1(s1), . . . , Cd+1(sℓ)) is at most ǫ · t with probability at least η. One can

show that weak pseudo-random functions for many seeds with auxiliary information (Definition 2.3) can give

a (d, 16t, t, 1/8) approximately incompressible family for any polynomials d and t as long as t is at least λ.

Below d is set to be nkey.

Lemma B.2. If C = {Cλ}λ is an (d, 16t, t, 1/8) approximately incompressible circuit family, then for any PPT

simulator S, the adversary A = (A1,A2) outputs 1 with probability at most negl(λ).

Proof. Suppose there exists a simulator S such that our adversaryA outputs 1 with a non-negligible probability

η. Like in the proof of Lemma 5.2, we will use S to show that C is (16t, t, 1/8) approximately compressible.

Note thatA1 picks x∗1, . . . , x
∗
nchal

and Cnkey+1 uniformly at random and independent of its other choices. Let rS
and rA denote the randomness used by the simulator S and adversaryA (in key query 1, RO collection 2, and

test phases), respectively. The compression circuit takes as input {Ci}i∈[d+1] and {Ci(xj)}i∈[d+1],j∈[ℓ], has a

randomly chosen string for rS and rA hardwired, and works as follows:
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1. Use S to generate a public key pk and ciphertexts ct∗1, . . . , ct
∗
nchal

. Give both to A1.

2. Provide {Ci}i∈[d] and {Ci(xj)}i∈[d],j∈[ℓ] to S. It generates secret keys sk1, . . . , skd, which are given to

A2.

3. Run the first phase of RO query collection. When A2 makes an RO query in this phase, forward it to S.

Give S’s response back to A2.

4. Run the encryption phase to get ciphertexts ct1, . . . , ctnenc
. (A2’s RO queries are handled in the same

way as before.)

5. Provide Cd+1 and {Cd+1(xj)}j∈[ℓ] to S. It generates a secret key skd+1, which is given to A2.

6. Run the second phase of RO query collection. Here ct1, . . . , ctnenc
is decrypted with skd+1. Let z1, . . . , zv

be the responses to RO queries in this phase, where zi ∈ {0, 1}
m.

7. Output skd+1 and z1, . . . , zv.

The decompression circuit takes {Ci}i∈[d+1] and {Ci(xj)}i∈[d],j∈[ℓ] together with the compressed string

str-cmp as inputs, which can be parsed as str-cmp = (skd+1, {zi}). It also has the random value chosen before

for rS and rA hardwired, and works as follows:

1. The first four steps are same as that in the compression circuit. Let Γ be the list of RO queries and

responses recorded in the third step.

2. Run the second phase of RO query collection. The RO responses required in this step are available as

part of the input (z1, . . . , zv). They are also added to Γ.

3. Run the test phase with the help of Γ. Let y′i denote the outcome of decrypting ct∗i with skd+1 for

i ∈ [nchal].

4. Output y′1, . . . , y
′
16t.

We need to show that the decompression property works with probability η. WhenC1, . . . , Cd+1, x1, . . . , x16t
are chosen uniformly at random, then it is easy to see that the decompression circuit emulates the ideal world

experiment perfectly. We know that A2 outputs 1 if and only if for at least 7/8th of the decryptions, y′i = yi.
Hence, if 1 is output with probability η, then the hamming distance is at most 1/8 with probability at least η.
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