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Abstract

We present simple, practical, and powerful new techniques for garbled circuits. These techniques
result in significant concrete and asymptotic improvements over the state of the art, for several natural
kinds of computations.

For arithmetic circuits over the integers, our construction results in garbled circuits with free addition,
weighted threshold gates with cost independent of fan-in, and exponentiation by a fixed exponent
with cost independent of the exponent. For boolean circuits, our construction gives an exponential
improvement over the state of the art for threshold gates (including AND/OR gates) of high fan-in.

Our construction can be efficiently instantiated with practical symmetric-key primitives (e.g., AES),
and is proven secure under similar assumptions to that of the Free-XOR garbling scheme (Kolesnikov
& Schneider, ICALP 2008). We give an extensive comparison between our scheme and state-of-the-art
garbling schemes applied to boolean circuits.

1 Introduction

Garbled circuits were famously introduced by Yao in the 1980s [Yao86]. Since that time they have become an
invaluable technique for both practical and theoretical cryptographic constructions. Most notably, garbled
circuits form the conceptual core for the most practical approaches to secure two-party computation.
In these protocols, the garbled circuits are the major performance bottleneck both in computation and
communication.

A considerable amount of work [BMR90, NPS99, KS08, PSSW09, BHKR13, KMR14, ZRE15, GLNP15]
has been dedicated to reducing the cost of garbled circuits since Yao’s seminal construction. The current
state of the art provides highly efficient garbling for boolean circuits expressed using XOR, NOT, & AND
gates. Concretely, using the most recent half gates construction of Zahur, Rosulek and Evans [ZRE15], XOR
& NOT involve no computation or communication, while fan-in-2 AND gates require 4 AES calls to garble,
2 AES calls to evaluate, and 256 bits to communicate. Implementations like JustGarble [BHKR13], which
take advantage of hardware-accelerated AES, can garble circuits at a rate of 100s of millions AND gates per
second on consumer hardware.

Despite this success story, garbled circuits remain tied deeply to fan-in 2 boolean circuits. Many
computations of interest are cumbersome and expensive to express as fan-in 2 boolean circuits. As two
specific examples (which our contributions address directly):

• Threshold computations with very high fan-in (for example, the kinds of computations that might be
found in a neural-network-based classifier) do not have small fan-in 2 boolean circuits.

• Arithmetic computations (over the integers or in a ring mod m) are poorly suited to boolean circuits,
especially when compared to other techniques for secure computation that are based on secret sharing. In
particular, secret-sharing-based secure computation protocols allow additions for free, whereas addition
in a boolean circuit requires non-free AND gates (even ignoring a possible modular reduction step).

Our work aims to address these shortcomings of fan-in 2 boolean circuits and directly construct garbled
circuit techniques supporting these kinds of computations.
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1.1 Our Contributions

We show a practical garbling scheme that can be used to natively garble both boolean circuits and arithmetic
circuits (with arithmetic over a large modulus), applying insights and techniques from one domain to the
other. Our approach gives significant concrete & asymptotic improvements over the state of the art. In
particular, our most extreme improvements are for the following kinds of computations (below λ is a security
parameter, e.g., 128 bits):

Linear operations in arithmetic circuits. Our scheme supports addition and multiplication by a public
constant for free, over the integers. Other costs in the scheme (i.e., size of wire labels & cost of other
gates) depend only polylogarithmically on the maximum size of integers in the computation.

In this way, our construction combines the best aspects of the two main paradigms for secure
computation: free addition (beyond addition mod 2) as in secret-sharing-based MPC, and constant-
round protocols from garbled circuits.

Current garbled circuit techniques would represent integers in binary and incur O(λ `) cost to add two
`-bit numbers.

Other arithmetic operations. Our scheme supports exponentiation (by a fixed/public power) with cost
independent of the choice of exponent, and weighted threshold gates with cost that is independent of
the fan-in.

High fan-in boolean threshold gates. For gates of fan-in b, our construction requires O(λ log3 b) bits,
or only O(λ log2 b) bits in the special case of AND/OR gates. Current techniques are exponentially
worse, requiring Θ(λb) bits even for AND/OR gates.

On the other hand, our scheme does least well on comparison gates, where we are polynomially worse than
standard boolean circuits. We give more in-depth comparisons between our scheme and existing techniques
in Sections 7 and 8. We also explore the case of natural linear algebraic operations over the integers (e.g.,
matrix multiplication) and show that our techniques give close to an order of magnitude improvement.

Finally, we use our construction to circumvent the lower bound of [ZRE15]. They proved that any
garbling scheme using “known techniques” requires 2λ bits to garble a single AND-gate, while we show an
instantiation of our construction that garbles a single AND-gate using only λ bits. This instantiation is of
theoretical interest, but does not lead to improvements for general circuits.

1.2 Techniques

Our results build on a simple and powerful combination of techniques that were introduced in previous works
in several contexts. In particular, our garbling scheme is based on a natural generalization of the Free-XOR
technique of Kolesnikov & Schneider [KS08], allowing for free addition mod larger m, rather than just mod
2. This generalization was shown before, e.g. by Malkin, Pastro and shelat [MPs16], who used it to obtain
free addition in arithmetic (mod m) circuits. We observe that this technique is in fact useful not only for
mod-m addition, but for any operation that depends only on the Hamming weight of its inputs (namely,
symmetric operation): such operations can be garbled by first applying free addition to get the Hamming
weight, then applying a projection gadget which garbles a unary mapping of each sum to the correct output.
This projection gadget can be viewed as the trivial extension of Yao’s garbled gate, applied to unary gates
over mod m inputs (similar gadgets have been used before, at least implicitly, e.g. in [KS08, KMR14]).

In Section 4 we formally describe these simple components as a garbling scheme for what we call “mixed
moduli simple circuits”, which are circuits that allow only modular addition (under many moduli) and
projections. As we show in Section 5, these simple components already provide savings over the state of the
art, even for boolean circuits, through simple ways to represent boolean gadgets as mixed moduli circuits.
One example is a boolean fan-in-b AND gate, which has output equal 1 if and only if the sum of its inputs
equals b, and thus can be represented as a projection of sum. This representation can be viewed as an
extension of the one by Nielsen and Orlandi [NO09], who (in a different context) represent a fan-in-2 NAND
gate by adding the two inputs over the integers and then giving a gadget that checks whether or not the
result equals 2.
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While the above ideas directly handle symmetric operations like boolean AND and threshold gates, as
well as arithmetic addition, the cost grows prohibitively high as the modulus (or the fan-in) grows, and
other operations such as comparison or modular multiplication are also highly inefficient. We address this
in Section 6 by showing how to express those more complex operations with high moduli more efficiently
as mixed moduli circuits. In particular, we represent large-modulus values using the Chinese Remainder
Theorem (CRT), as well as another primorial mixed-radix representation, together with several other
optimizations (as we will explain). We note that CRT-based representations have also been used in many
other contexts, with the most relevant one being by Applebaum, Ishai, and Kushilevitz [AIK11] who (in
addition to their more efficient main result) outline a garbling scheme for arithmetic circuits, relying on first
encoding the inputs via CRT encoding, and then applying standard boolean garbled circuit techniques.

In Section 7 we discuss how to use our gadgets for better garbling of boolean and arithmetic circuits,
provide asymptotic and concrete comparison with standard garbled circuit techniques, and discuss a linear
algebraic application scenario. Finally in Section 8 we give a more in-depth comparison to the related work
discussed above, and to other 2PC techniques.

2 Preliminaries

Logarithms are taken to be base 2, unless otherwise noted. We take [n] to denote the set {1, 2, . . . , n}. We
take pi to denote the i-th prime. Let Z denote the integers, and N the natural numbers. Additionally,
Zm denotes the ring of integers modulo m ∈ N. We use [x]m to denote the residue of x mod m. In some
cases it is convenient to define < on Zm. For concreteness, if m = 2k + 1 for some k, then consider Zm
as {−k, . . . ,−1, 0, 1, . . . , k} and let x < y if y − x > 0 over Z. Otherwise if m = 2k, then consider Zm as
{−k + 1, . . . ,−1, 0, 1, . . . , k}, defining order identically.

2.1 Garbled Circuits

We use the garbling schemes abstraction and security definitions of Bellare, Hoang and Rogaway [BHR12].
Roughly speaking, a garbling scheme consists of the following algorithms:

Gb: given input a circuit f , generates garbled circuit F , encoding information e, and decoding information
d

En: given a circuit-input x, encoding information e, generates garbled input X

Ev: given garbled circuit F and garbled input X, generates garbled output Y

De: given garbled output Y and decoding information d, generates plaintext circuit-output y

Bellare et al. identify 3 natural security properties for a garbling scheme, which we summarize below. For
more details, we refer the reader to [BHR12]:

• Privacy (prv.sim security): intuitively, the distribution of values (F,X, d) — generated as above — leaks
no more than f(x). More specifically, there exists a simulator that can simulate the joint distribution of
(F,X, d) given just f and f(x).

• Obliviousness (obv.sim security): the values (F,X) alone (i.e., without d) leak nothing about x. That is,
there exists a simulator that can simulate (F,X) given just f .

• Authenticity (aut security): Given (F,X), it is infeasible for an adversary to generate Ỹ 6= Ev(F,X) such
that De(d, Y ) 6= ⊥.

3 Background on Garbled Circuits

We give a brief and self-contained overview of standard garbled circuit constructions and optimizations.
Readers familiar with garbled circuits may safely skip this section.
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3.1 Yao’s Classical Construction

In (the modern interpretation of) Yao’s scheme [Yao86], the garbler chooses two random wire labels W 0 and
W 1 for each wire, where W x is a bit-string encoding the truth value x. Then for each (boolean, fan-in 2)
gate, the garbler generates a garbled gate consisting of 4 ciphertexts. If a gate has input wires indexed i and
j, output wire index k, and functionality g : {0, 1}2 → {0, 1}, then the 4 ciphertexts are:

EW 0
i ,W

0
j
(W

g(0,0)
k ), EW 0

i ,W
1
j
(W

g(0,1)
k ),

EW 1
i ,W

0
j
(W

g(1,0)
k ), EW 1

i ,W
1
j
(W

g(1,1)
k )

where Ek(m) is a suitable encryption scheme. Intuitively, the wire labels encoding (a, b) on the input wires
are used as keys to encrypt the wire label encoding g(a, b) on the output wire.

An evaluator evaluates the garbled circuit by holding one wire label per wire. Hence, she can decrypt
only one ciphertext per gate, and learn one label for the output wire.

We point out that Yao’s classical scheme can be trivially extended to support garbling of non-boolean
circuits of any fan-in. In particular, for m-ary wires we choose m different wire labels on each wire. Then
to garble a fan-in-k gate, we include mk ciphertexts (one for each entry in the gate’s truth table). While
this trivial extension is obviously not efficient, we will rely on this observation for unary gates (fan-in 1) as
a component in some of our gadgets.

3.2 Standard Elementary Optimizations

Arranging the 4 ciphertexts in order of truth values leaks information, so in the classical scheme these
ciphertexts are given in random order. The evaluator performs trial decryption on each one, and the
construction uses an encryption scheme that makes it obvious when decrypting the “correct” ciphertext.

A better approach is to use the point-and-permute optimization of Beaver, Micali and Rog-
away [BMR90]. A random “color bit” is appended to each wire label, so that W 0

i and W 1
i have opposite

color bits. Because the association between colors and truth values is random, it is safe to arrange the 4
ciphertexts according to color bits of the input wire labels (i.e., the first ciphertext should be the one that
uses two keys having both 0 color bits, regardless of what truth value they represent).

Using point-and-permute, the evaluator need only decrypt one ciphertext — the one indicated by the color
bits of the input wire labels. Hence, it is possible to use a simple one-time encryption scheme Ek1,k2(m) =
H(g; k1‖k2)⊕m, where g is the index of the gate and H is a key derivation function or random oracle.

The number of ciphertexts can also be reduced from 4 to 3 by the following row reduction trick of
Naor, Pinkas and Sumner [NPS99]. Instead of choosing the output wire labels W 0

k and W 1
k at random, we

choose one of them so that the first of the 4 ciphertexts is always the all-zeroes string. For example, if the
first ciphertext for a gate is EW 0

i ,W
1
j
(W 0

k ) = H(g;W 0
i ‖W 1

j ) ⊕W 0
k , then we choose W 0

k not uniformly, but

as H(g;W 0
i ‖W 1

j ). Since this choice of W 0
k makes the first ciphertext all zeroes, that ciphertext need not be

sent, and only 3 are required. Note that this method constrains the selection of one of W 0
k ,W

1
k . A more

sophisticated approach, constraining the selection of both labels, can further reduce the garbled gate to 2
ciphertexts, as shown by Pinkas et al. [PSSW09] (see also a simpler construction in [GLNP15]).

3.3 Free-XOR

Arguably the optimization to garbled circuits with the highest practical impact is the Free-XOR optimization
of Kolesnikov & Schneider [KS08]. When using Free-XOR, wire labels are chosen so that W 0

i ⊕W 1
i = ∆,

where ∆ ∈ {0, 1}λ is a secret value that is common to the entire circuit. In other words, the wire label that
encodes x can be written as W x

i = W 0
i ⊕ x∆. The result of this choice of wire labels is that (W x

i ⊕W
y
j ) =

(W 0
i ⊕W 0

j ) ⊕ (x ⊕ y)∆; that is, simply XORing two wire labels that encode x & y results in a wire label

encoding x⊕ y, if we take W 0
k = W 0

i ⊕W 0
j to be the “false” wire label of the output wire. As a consequence,

garbled values can be XOR’ed without any cryptographic operations by the evaluator or any garbled-gate
information in the garbled circuit.

To support point-and-permute, consider appending an additional bit to both ∆ and each wire label to
represent the color bits. Suppose this last bit of ∆ is 1, and we extend the relation W 0

i ⊕W 1
i = ∆ to include
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these color bits, then on every wire the two wire labels W 0
i and W 1

i will still have opposite and random color
bits. This is all that is required for point-and-permute.

The Free-XOR optimization is easily compatible with the row reduction trick above, allowing for 3
ciphertexts per AND gate and 0 per XOR. It is not compatible with the 2-row reduction of [PSSW09], since
that technique constrains the selection of both output wire labels, and thus does not allow to maintain the
required ∆ relation. However, the half-gates technique of [ZRE15] provides a way to achieve a 2 ciphertext
AND that is compatible with free-XOR.

4 Our Building Blocks

4.1 Generalizing Free-XOR & Point-Permute

Our starting point is a natural generalization of Free-XOR which permits free addition mod m for any fixed
m (collapsing to Free-XOR when m = 2). This generalization was also used by [MPs16]. In this section,
and throughout the rest of this paper, we interpret wire labels as vectors of Zm-elements. We use bold-face
symbols to denote wire labels (Zm-vectors).

Each wire carries a logical value in Zm. The wire label encoding x ∈ Zm is W x
i = W 0

i + x∆m, where
now addition refers to component-wise addition in Zm. The value ∆m is a random vector of Zm-elements
that is global across the circuit. Our construction will involve wires with different moduli, and we use a
different ∆m for each modulus m (but all wires with associated modulus m will share the same ∆m).

Like Free-XOR, this generalization supports several computations on garbled values for free:

• Addition mod m: We can add garbled values mod m for free, since (W x
i + W y

j ) = (W 0
i + W 0

j ) + (x+
y)∆m (where additions are mod m).

• Multiplication by a public/constant c mod m, provided that c is coprime to m: This becomes
nontrivial only when generalizing beyond m = 2. Indeed, let c ∈ Zm be a known constant, then cW x

i =
c(W 0

i + x∆m) = cW 0
i + (cx)∆m, where the operations are component-wise mod m. We require c to be

coprime to m for technical reasons in the security proof — intuitively, multiplying W 0
i by c preserves its

uniform distribution.

We can similarly generalize the point-permute optimization. As described in Section 3, imagine appending
an extra color “digit” (now a Zm element rather than a single bit) to each wire label and a 1 ∈ Zm digit
to ∆m (any other digit value that is coprime to m would also work). Let τm(W ) denote the last component
of such a wire label, then we have

τm(W x
j ) = τm(W 0

j ) + x · τm(∆m) = τm(W 0
j ) + x.

In other words the m possible wire labels for this wire are assigned a random cyclic shift of the set Zm of
possible colors, with the cyclic shift amount being determined by the random value τm(W 0

j ). This turns
out to be sufficient to prove security of this generalization of point-permute. In short, seeing the color of a
single label W x

i on a wire leaks no information about its truth value x.

Length of the wire labels. Let λ denote the global security parameter, and define λm = dλ/ logme.
Suppose wire labels mod m have λm components, each from Zm. Then the length of wire labels when written
as strings is at least λ bits, which is important for security.

When accounting for the point-permute optimization, we add an extra component to wire labels. In the
end, wire labels mod m are elements of Zλm+1

m . Their length in bits is therefore at most λ+ 2 logm bits.

Instead of starting with λ-bit wire labels and adding a few bits for the “color digit,” one could alternatively
think of all wire labels having exactly λ bits (including color digits), but the color digits slightly degrading
the effective security parameter by logm bits. For instance, in practice one would typically use AES-128 to
implement garbled circuits. Then it is convenient if all wire labels are exactly 128 bits. One would require
AES to provide security when the last logm bits of the key are known. In all our constructions, the modulus
m is quite small: in the arithmetic case m = O(logZ), where Z is a global bound on intermediate absolute
values; or in the boolean case m = O(log b) where b is a global bound on fan-in for any gate. In practice,
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this m will never be larger than, say, 256. So in practice our construction would degrade the AES security
by only 8 bits. We note that all implementations of garbled circuits take this approach, but for the case of
simple point-permute where the degradation of security is only 1 bit.

4.2 Garbling Mixed Moduli Simple Circuits

Next, we construct a simple and practical garbling scheme for a special subclass of circuits. In the following
sections we will show how to efficiently express more general computations with this subclass.

A mixed-modulus simple circuit is a circuit (directed acyclic graph) where each wire has an associated
modulus (i.e., the wire can carry values from Zm for its preferred m; all outgoing wires from a single gate
will have the same associated modulus). In addition to standard input/output gates, the circuit is allowed
to have the following types of internal gates:

• An addition-mod-m gate (of unbounded fan-in) is allowed if all the wires touching the gate are mod-m
wires.

• A unary gate that multiplies by a constant mod m is allowed if both the input and output wire are mod
m, and if the constant is coprime to m.

• Arbitrary unary “projection” gates: if the input wire is mod-m and the output wire is mod-n, then the
gate can apply an arbitrary function ϕ : Zm → Zn. We refer to a gate with this functionality as Projϕ.

In our construction, the first two types of gates are “free”, and the third type uses at most m−1 ciphertexts
(the “−1” follows from the row-reduction technique). The main idea follows the discussion above. For each
modulus m that appears in the circuit, we choose a global value ∆m (interpreted as a vector in Zλm+1

m ), and
use the generalized free-XOR method of choosing wire labels. That is, W 0

i is random and W x
i = W 0

i +x∆m.
Addition mod m and multiplication by a (coprime) constant can be garbled for free, as described above.

A projection gate Projϕ can be garbled using m ciphertexts, where each wire label W x
i is used to encrypt

the associated payload W
ϕ(x)
j . These m ciphertexts can be ordered by the color digits of the input wire

labels, namely by x+ τ , where τ = τm(W 0
i ). Thus, the garbled gate consists of the following m ciphertexts

(one for each x):

Ĝx+τ = H(g,W 0
i + x∆m) + W 0

j + ϕ(x)∆n

= H(g,W x
i ) + W

ϕ(x)
j ,

where H is a hash/key derivation function (see below) and g is the gate index (used as a tweak in the
hash function). The outer vector addition (as well as the value of ϕ(x)) is over Zn, while the inner vector
addition (as well as the values of x, τ) are over Zm. The evaluator will decrypt only one of these ciphertexts,
specifically the one whose subscript is the color digit of the input wire label she holds.

Using the row reduction trick described above [NPS99], we can remove one of the ciphertexts (getting

m− 1) by setting Ĝ0 = 0. To do this, choose W 0
j = −H(g,W−τ

i )− ϕ(−τ)∆n.

We could also remove 2 ciphertexts (getting m − 2) using the approach of [PSSW09, GLNP15], but at
the cost of having the output wire labels no longer satisfy the ∆m-correlation property.

The scheme is presented formally in Figure 1.

4.3 Security

Here we prove security of the basic garbling scheme we just presented. We point out that the security of our
constructions in later sections will then follow from the fact that we express the desired functionality as a
mixed-modulus simple circuit, to be garbled using our basic scheme.

The original free-XOR construction of [KS08] was proven secure in the random oracle model. Choi
et al. [CKKZ12] later proved that the security depends only on a specific property of the oracle (hash
function) that they called circular correlation-robustness. Let H be a hash function and define an oracle
OH∆ (g,X, Y, a, b, c) = H(g,X ⊕ a∆, Y ⊕ b∆) ⊕ c∆. Here X,Y,∆ are string of length λ, while a, b, c are
bits, and g is an arbitrary string. Then H is circular-correlation-robust if the outputs of this oracle appear
random, to adversaries that query on distinct g values with a, b not both zero, when ∆ is chosen uniformly.
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procedure Gb(1λ, f)
for m ∈ f.wiredomains do

λm ←
⌈

λ
logm

⌉
∆m

u← Zλm
m ‖1

for i ∈ f.inputs do
Zm ← i.domain
W 0

i
u← Zλm+1

m

ê← (W 0
1 , . . . ,W

0
q ,∆m1

, . . . ,∆mr
)

for g ← f.gatestopo do
a← g.inputs
Zm ← g.domain
if g is Addm-gate then

W 0
g ←

∑b
i=1 W

0
ai

else if g is Multc-gate then
W 0

g ← c ·W 0
a1

else if g is Projϕ gate then
Zn ← g.range
τ ← τ(W 0

a1)
W 0

g ← −H(g,W 0
a1 − τ∆m)− ϕ(−τ)∆n

for x ∈ Zm do
Ĝg
x+τ ← H

(
g,W 0

a1 + x ·∆m

)
+ W 0

g + ϕ(x)∆n

Ĝg ← (Ĝg
1, . . . , Ĝ

g
k−1)

F̂ ← (Ĝ1, . . . , Ĝ|gates.proj|)
for i ∈ f.outputs do

Zm ← i.domain,
for k ∈ Zm do

dki ← H(out‖i‖k,W 0
i + k∆m)

di ← (d0
i , . . . , d

m−1
i )

d̂← (d1, . . . , d`)

return (F̂ , ê, d̂)

procedure En(ê, x̂)
for xi ∈ x̂ do

Zm ← i.domain
Xi ←W 0

i + xi ·∆m

return X̂ ← (X1, . . . , Xq)

procedure De(d̂, Ŷ )

for di ∈ d̂ do
Zm ← i.domain
(h1, . . . , hm)← di
for k ∈ Zm do

if H(out‖i‖k, Yi) = hk then
yi ← k

if yi unassigned then return ⊥
return ŷ ← (y1, . . . , y`)

procedure Ev(F̂ , X̂)
for i ∈ f.inputs do

Wi ← Xi

for g ← f.gatestopo do
a← g.inputs
Zm ← g.domain
if g is Addm-gate then

Wg ←
∑b
i=1 Wai

else if g is Multc-gate then
Wg ← c ·Wa1

else if g is Proj gate then
τ̂ ← τ(Wa1)

Wg ← Ĝg
τ̂ −H(g,Wa1)

for i ∈ f.outputs do
Yi ←Wi

return Ŷ ← (Y1, . . . , Y`)

Figure 1: Our garbling scheme for mixed moduli simple circuits

We use the corresponding generalization to multiple ∆ values (one for each modulus). We define the
following oracle:

OH∆m1 ,...,∆mn
(g, i, j,X, a, c) = H(g,X + a∆mi) + c∆mj

We assume that the inner addition is mod mi and the outer addition is mod mj . The parameter a is
interpreted as a value mod mi and c as a value mod mj . We also assume that the inputs and outputs of H
can be interpreted as vectors of Zm-elements for appropriate m whenever needed.

Definition 1. We say that H is mixed-modulus circular correlation robust if for all polynomial time
adversaries that query their oracle on distinct g values and a 6= 0, the oracle OH∆m1

,...,∆mn
(with ∆mi

values

chosen uniformly) is indistinguishable from a random function.

As usual, this assumption can be abstracted away if one is willing to use the random oracle model.

Theorem 1. The scheme in Figure 1 satisfies the prv.sim, obv.sim, and aut security definitions (Section
2.1), when the function H is mixed-modulus circular correlation robust (Definition 1).

Proof Sketch. The proofs follow very closely the security proof for Free-XOR in [CKKZ12] and a similar
proof in [KMR14].
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We start out with (F,X, d) generated via (F, e, d)← Gb(f) and X ← En(e, x). The main idea is to first
perform a conceptual shift to this hybrid. The garbling procedure is normally written from the garbler’s
point of view, maintaining the “false” wire labels W for each wire. We can instead compute for every wire
i in the circuit the value vi that is on that wire when the circuit’s input is x. Note that this hybrid still
requires knowing the circuit input x — only in later hybrids can we argue that x is not used. Then we
can identify for each wire which wire label W ∗

i will be visible to the evaluator. Finally, we replace every
reference to a wire label W z

i with W ∗
i + (z − vi)∆m.

After this conceptual shift, we see that all garbled gate ciphertexts (and decoding information d) can be
written in the following form:

H(g,W ∗
i + a∆m) + c∆m′ + Q

where W ∗
i and Q are known to the evaluator (Q is either another visible wire label, or an empty string in

the case of the decoding information). Because of the shift to the evaluator’s point of view, whenever a = 0,
we also have c = 0. Hence all of these ciphertexts can be computed without the ∆m values, and only oracle
access to the mixed-modulus-correlation-robustness oracle of Definition 1. Hence all ciphertexts, apart from
the ones where a = 0 above, can be replaced with uniformly chosen values.

After doing such a replacement, we see that the vi values (the truth values on each wire of the circuit)
are no longer needed. They were used to compute a and c values in the above. The only other place there
were used is to determine which cyclic shift of the decoding information d to apply on each output wire. But
the vi values for output wires are simply the circuit output f(x). Hence, the final result is a simulator that
depends only on f(x).

For obv.sim security, we simply observe that in the above simulator, f(x) is used only to compute d. So
when d is not given, the simulator does not require f(x).

For aut security, we observe that all other entries in d (apart from the ones obtainable by Ev(F,X)) are
chosen uniformly by the simulator. Hence, the probability that the evaluator guesses any other output wire
label correctly is 1/2λ.

5 Simple Improvements to Garbled Symmetric Boolean Gates

In the previous section we saw a gadget extending Free-XOR to allow free addition-mod-m for m > 2
(assuming all wires have mod-m labels). Perhaps surprisingly, this turns out to be useful not only for
(arithmetic) modular addition, but even for boolean computations. For example, consider an AND gate
x1 ∧ · · · ∧xb with fan-in b. We observe that this gate can be expressed as χb(

∑
i xi) where χb(n) = 1 if n = b

and χb(n) = 0 otherwise.1 In the terminology above, we have expressed an AND as a projection of a sum.

If the input wires to this AND gate have mod-(b+ 1) wire labels, then the addition is free (and will not
wrap around). So the total cost of the AND gate is that of the Zb+1 projection gate, which is b ciphertexts.

By comparison, the best-known way to garble a fan-in-b AND gate using existing boolean techniques is
to make a tree of b− 1 binary AND gates and use a construction (e.g. that of [ZRE15]) costing 2 ciphertexts
per AND gate for a total of 2b − 2 ciphertexts. Thus, generalization on its own our basic building blocks
already give a constant size improvement (from 2b− 2 to b).

It is also clear that any t-out-of-b threshold gate can be garbled at the same cost (b ciphertexts) by
substituting χb for an appropriate projection function. Most generally, we can garble at a cost of b ciphertexts
any symmetric fan-in-b Boolean gate (a symmetric gate is one whose output depends only on the Hamming
weight of its inputs).

While these improvements are already significant, we later show how to do exponentially better for
threshold gates in the case of very high fan-in.

Circumventing a lower bound. For b = 2, this gives us a boolean AND gate at a cost of 2 ciphertexts,
which matches the half-gates construction of [ZRE15]. The half-gates construction is compatible with Free-
XOR (in our terminology, it uses wire labels that are ∆2-correlated), while ours requires input wire labels
to be mod-3 (the output labels in our construction can use any modulus).

1As previously mentioned, this can be viewed as generalizing the representation of fan-in-2 NAND gates in [NO09].
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Looking more closely at our construction, we express an AND as a projection of a sum. As explained
above, the nominal cost of the projection is b + 1 ciphertexts, which we reduce to b using the simple row-
reduction idea. However, as we pointed out, we can further reduce it to b − 1 using the more involved row
reduction technique of [PSSW09, GLNP15], at the price of having both output wire labels constrained, and
thus not satisfying the required ∆ correlation.

Consider now a single boolean AND gate (thus, correlation of the output wire labels is unimportant). We
can garble this AND gate with just a single ciphertext. This construction is not very useful in itself, since
it does not compose even with itself (although it may give some savings for boolean circuits of a certain
structure, that doesn’t require all wires to have a ∆ correlation). However, it is of theoretical interest, since
it circumvents a lower bound. Specifically, [ZRE15] show not only a 2-ciphertext upper bound for garbled
AND gates, but also that the cost of 2 ciphertexts is optimal in a model they define, capturing all previously
known garbling schemes.

The reason our construction is able to circumvent the lower bound is that their model includes the
implicit assumption that there is a single color bit per wire label. Our construction breaks the bound by
using a generalized color digit from Z3 instead of from Z2. This underscores the power of our point-permute
generalization, whose main technical difference from Free-XOR is the use of generalized color digits for wire
labels.

6 Garbling Arithmetic Gates Over Large Moduli

Our basic construction (Figure 1) can in principle be used to represent any boolean circuit. However, while
it supports free addition mod m, the cost of the non-free projection gates is linear in the modulus m,
which is clearly impractical for large values of m. We are interested in large values of the modulus, both
for boolean circuits with massive fan-in (say ∼ 1000), and even more so for arithmetic circuits (with, e.g.,
modulus ∼ 264). Indeed, one of the most natural uses of arithmetic circuits is to carry out computations
over the integers, by choosing a modulus that is larger than any intermediate value in the computation. In
this section we suggest new representations and gadgets that allow for radically more efficient garbling over
large moduli. Despite the arithmetic nature of the gadgets, we will show applications for both boolean and
arithmetic circuits.

Rather than choosing a prime modulus, we choose a composite primorial modulus Pk = 2 ·3 · · · pk, the
product of the first k primes. Then, values can be represented in terms of smaller moduli Z2 × Z3 × · · ·Zpk
using the Chinese Remainder Theorem (CRT), (because the product ring is isomorphic to ZPk

). Define the
residue representation of x as:

[[x]]crt := ([x]2, [x]3, . . . , [x]pk)

In terms of mixed-modulus circuits, we represent [[x]]crt with a bundle of wires having wire-moduli 2, 3, and
so on. This representation directly faciliates efficient computation whenever the desired functionality can be
computed by a simple combination of the results of separate computations over each modulus. We will take
advantage of this in the following subsections.

Bounds on parameter sizes. Suppose we wish to support arithmetic over the integers, and we require
a modulus at least as large as some bound Z on the possible intermediate values in the computation. We
have the following facts from number theory:

Lemma 1. Let k be the smallest integer such that
∏
i≤k pi > Z (where pi denotes the ith prime). Then,

asymptotically:

(1) k = O(logZ/ log logZ); (2) pk = O(k log k) = Θ(logZ);

(3)

k∑
i=1

pi = O(log2 Z/ log logZ); (4)

k∑
i=1

dlog2 pie = Θ(logZ).

Concrete example parameters are given below:
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Z k pk
∑k
i=1 pi

∑k
i=1dlog2 pie

28 5 11 28 13
216 7 17 58 22
232 10 29 129 37
264 16 53 381 72
2128 27 103 1264 147

Our constructions in this section have cost either O(
∑
i pi) = O(log2 Z/ log logZ) or O(k

∑
i pi) =

O(log3 Z/ log logZ) ciphertexts (each of length λ bits). To represent a single value [[x]]crt requires a bundle of
k = O(logZ) wires and hence that many wire labels (each λ bits long). This is comparable to representing
the number x in binary for a standard boolean garbled circuit, which would also require logZ wires/labels.

6.1 Basic Arithmetic

Addition & multiplication by a constant. To add [[x]]crt and [[y]]crt (modulo the primorial composite),
one simply adds their CRT residues component-wise. The cost is free in our garbling scheme.

Similarly, to multiply [[x]]crt by a constant c, one simply multiplies by c within each individual CRT
residue. For residues p where c is coprime to p, the operation is free in our garbling scheme. For residues
where c is not coprime to p, this only happens when c ≡ 0 (mod p) by our choice of prime CRT moduli.
Hence the result of the multiplication-by-c will be zero (and since c is public, it is known that the result will
be zero). For these CRT residues, we instead use a global wire label representing [0]p (this is common to the
whole circuit and sent as part of the garbling procedure - independent of the number of gates). Overall the
cost of multiplying by any constant c is free.

Exponentiation. To raise [[x]]crt to the power n (modulo the primorial composite), for a public constant
n, it again suffices to do so within each CRT residue. This can be done with a simple projection gate
φp(x) = [xn]p within each modulus p. The cost of a mod-p projection gate is p− 1 ciphertexts, so the total
cost of exponentiation is

∑
i(pi − 1) ciphertexts. For the use case of arithmetic over integers bounded by Z,

the cost is O(log2 Z) ciphertexts.

This construction works also when the exponent is secret but known only to the circuit garbler. This is
because our projection gates hide the actual choice of projection function.

Remainder mod pi. Suppose we wish to transform [[x]]crt into [[x mod pi]]crt for some pi that is among the
primes in our CRT representation. Note that the value [x]pi already exists within [[x]]crt. All that is needed is
to “copy” that value to the other residues. This is achieved by using an identity projection gate [x]pi 7→ [x]pj
for each other prime pj . The cost is pi − 1 ciphertexts for each projection, for a total of (k − 1)(pi − 1). As
a special case, when the remainder is mod 2, the total cost is k − 1 ciphertexts.

General Multiplication. To multiply two (private) values [[x]]crt and [[y]]crt, we again simply multiply
their residues component-wise.

A näıve way to multiply two values mod p would be to generate a truth table of all p2 combinations,
resulting in p2 ciphertexts. However, we can take advantage of the fact that each p is prime and instead
garble a multiplication with only O(p) ciphertexts, with small constants. One way to do this was suggested
by Malkin, Pastro & shelat [MPs16], via generalizing the “half-gate” approach (low-cost multiplication over
Z2) of [ZRE15]. Here we suggest the following alternative approach (which conveniently scales well with
high fan-in). First, let us blatantly ignore the case where 0 ∈ {x, y}. Doing so, we may write

x · y = gdlogg(x)+dlogg(y)

where g is any primitive root mod p. The addition in the exponent is mod p− 1.

Hence, our approach for multiplication is to first use a projection gate to map Zp values to their discrete
logs (in Zp−1). The cost is p−1 ciphertexts for each input. While the discrete logarithm problem is of course
difficult in general, we are only asking for a lookup table of discrete logarithms to be precomputed for very
small p (e.g., p ≤ 103 for all of our proposed instantiations). The discrete logs can then be added mod p− 1
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for free, and finally the result promoted to the final product using a projection gate z 7→ gz (mod p). The
final projection gate uses p− 2 ciphertexts, for a total cost so far of 2(p− 1) + (p− 2) = 3p− 4 ciphertexts.

However, to handle the case where one of the multiplicands may be zero mod p, we use a different
approach. Write:

x · y =

{
0 if OR(x = 0, y = 0)

gdlogg(x)+dlogg(y) else

To compute the comparisons x = 0 and y = 0 requires 2(p− 1) total ciphertexts (they are a projection that
maps Zp \ {0} to 0 and 0 7→ 1). We arrange for these projections/comparisons to have output wires with
modulus 2. That way, we can compute their OR for only 2 ciphertexts. The two dlog projections require
2(p− 1) total ciphertexts.

The final operation is

f(z, b) =

{
gz if b = 0

0 else
.

We can garble this operation with the standard Yao truth-table approach, using 2(p− 1)− 1 ciphertexts if
we use a row-reduction trick. The total cost of the entire multiplication mod p is 6p− 5 ciphertexts. For the
entire CRT representation, the cost of multiplication is

∑
i(6pi − 5) ciphertexts.

For the use case of arithmetic over integers bounded by Z, the cost is O(log2 Z/ log logZ) ciphertexts.

In the special case where one of the multiplicands y is a (secret) value known to the garbler, the cost
can be reduced. The idea is to garble a projection gate [x]p 7→ [xy]p within each residue. The total cost is∑
i(pi − 1) ciphertexts. The asymptotic cost is the same as a general multiplication, but the concrete cost

is roughly 6 times better.

6.2 Equality Tests & Exact Weighted Threshold

To test whether [[x]]crt = [[y]]crt, we observe that

[[x]]crt = [[y]]crt ⇐⇒ AND([x− y]p1 = 0, . . . , [x− y]pk = 0).

The subtractions mod each pi are free. We can test whether z ≡ 0 (mod p) using a simple projection gate.
The cost of such a projection gate is p − 1 ciphertexts. Note that the output of this projection gate can
be any modulus, and we choose the output modulus to be k + 1 where k is the number of primes in the
CRT representation. That way, we can garble the final AND gate using k ciphertexts using the construction
described in Section 5.

The total cost to garble this equality test is therefore k +
∑
i(pi − 1) =

∑
i pi ciphertexts. However, this

assumes an output of a single mod-2 wire. To use the output of the equality test in other gadgets, the output
would have to be represented as [[x]]crt — that is, as a bundle of wires with distinct moduli. This simply
requires an identity projection Z2 → Zpi for each prime pi. The cost is 1 ciphertext per projection, bringing
the total cost of a composable equality test to k +

∑
i pi =

∑
i(pi + 1) ciphertexts, where k is the number of

CRT moduli.

For the use case of arithmetic over integers bounded by Z, the cost is O(log2 Z/ log logZ) ciphertexts.

Application to exact-weighted-threshold gates. An exact weighted threshold gate refers to the
following kind of computation:

Tht,c1,...,cb(x1, . . . , xb) =

{
1 if t =

∑
i cixi

0 otherwise

For example, an AND gate is an exact weighted threshold, corresponding to the case where c1 = · · · = cb = 1
and t = b and where the xi’s are bits.

We can garble these kinds of gates efficiently in our scheme when the inputs are in our CRT residue
encoding. The computation consists of a weighted sum followed by equality test. The equality test requires∑
i pi ciphertexts. When the weights ci are public, the weighted sum is free, so there is no additional cost.
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
[x]3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
[x]5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

[x]3 − [x]5 0 0 0 -3 -3 2 -1 -1 -1 -4 1 1 -2 -2 -2
[[x]3 − [x]5]7 0 0 0 4 4 2 6 6 6 3 1 1 5 5 5

[bx/3c]5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

Figure 2: An example of the gadget computing [bx/pc]q.

In the case of boolean circuits (where xi’s and ci’s are bits), this construction gives exponential
improvements over the state of the art for AND/OR gates. To use this construction in a boolean circuit, the
inputs must still be CRT-encoded, and the CRT encoding must be spacious enough to not overflow during
the addition step. The maximum possible sum is equal to the fan-in b, hence we must have k primes where∏k
i=1 pi > b. Compared to the boolean case, each bit will have k wire labels rather than just one, but the

cost of the AND/OR gate will be asymptotically O(log2 b) ciphertexts rather than 2b− 2 ciphertexts (via a
tree of binary AND gates).

6.3 Comparisons & Weighted Threshold Gates

While the CRT representation is effective for arithmetic operations, it does not lend itself to simple
comparisons. In this section we discuss how to compare [[x]]crt and [[y]]crt. Our approach has several steps.

Our high-level idea is to convert the CRT representation into a positional number system. Specifically,
we use a primorial mixed-radix (PMR) system. This number system is defined as [[x]]pmr := (dk, . . . , d1) ∈
Zpk × · · · × Zp1 , where:

di =

⌊
x

p1p2 · · · pi−1

⌋
(mod pi)

Whereas binary has a 1s-digit, 2s-digit, 4s-digit, 8s-digit, and more generally a 2i-digit, PMR has a 1s-digit,
2s-digit, 6s-digit, 30s-digit, and more generally a

∏
j<i pj digit.2

Once a number is converted into PMR form, a comparison can be done easily, as we show.

First steps. We will first show how to efficiently compute
[
bx/pc

]
q
, given [x]p, [x]q and using the

operations we have previously discussed (namely, free modular additions and projections). A running
example corresponding to p = 3, q = 5 is given in Figure 2.

The idea is to consider the function δ(x) = [x]p − [x]q, where we interpret the terms [x]p and [x]q as
integers (from {0, . . . , p− 1} and {0, . . . , q − 1}, respectively), and the subtraction also over the integers. δ
has the property that it is piecewise constant, with a constant “run” ending each time x is a multiple of p
or of q. In Figure 2, the “runs” are shown divided by vertical lines. In particular, if bx/pc 6= bx′/pc, then x
and x′ will be in different “runs” of δ.

With p and q relatively prime, there are p+ q− 1 runs. Furthermore, each run gives a distinct output of
δ mod p+ q − 1. In other words, if bx/pc 6= bx′/pc then δ(x) 6≡ δ(x′) (mod p+ q − 1). This implies that we
can write [

bx/pc
]
q

= ϕ
([

[x]p − [x]q
]
p+q−1

)
for a suitable projection ϕ. For the example in Figure 2, we can obtain [bx/3c]5 as ϕ([[x]3 − [x]5]7) where
ϕ is the projection 0 7→ 0; 1 7→ 3; 2 7→ 1; 3 7→ 3; 4 7→ 1; 5 7→ 4; 6 7→ 2. A more complete proof of this fact is
provided in the appendix.

The cost to compute this in a garbled circuit is the cost of Projϕ (p+ q − 2 ciphertexts) plus the cost to
project [x]p and [x]q to Zp+q−1 (another p+ q − 2 ciphertexts). The subtraction mod p+ q − 1 is free. The
total cost is 2p+ 2q − 4 ciphertexts.

2In fact, one can obtain the binary number system by setting every pi = 2.
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Full conversion. Now we show how to use the previous gadget to convert [[x]]crt to [[x]]pmr. Define:

xi,j :=

[⌊ x

p1 · · · pi

⌋]
pj

To compute [[x]]pmr it suffices to compute xi,i+1 for all i. We proceed recursively. In the base case, x0,j = [x]pj ,
which is given as part of [[x]]crt. For the recursive step, we use the identity bba/bc/cc = ba/bcc and observe
that

xi,j =

[⌊ x

p1 · · · pi

⌋]
pj

=

[⌊⌊ x
p1···pi−1

⌋
pi

⌋]
pj

which is just the previous gadget applied to xi−1,i and xi−1,j . In other words, xi,j can be written as:

xi,j = ϕ

([[⌊ x

p1 · · · pi−1

⌋]
pi︸ ︷︷ ︸

xi−1,i

−
[⌊ x

p1 · · · pi−1

⌋]
pj︸ ︷︷ ︸

xi−1,j

]
pi+pj−1

)

for a suitable projection ϕ. A proof of the identity is provided in the appendix.

Inductively, the total cost to obtain [[x]]pmr is the cost to apply the gadget for all pairs pi, pj with i < j:

∑
1≤i<j≤k

(2pi + 2pj + 4) = 2(k − 1)

k∑
i=1

pi + 4

(
k

2

)

Comparing values via PMR representation. Suppose we wish to determine whether [[x]]crt < [[y]]crt
(note the CRT representation, not PMR). This is equivalent to the comparison [[x− y]]crt < 0. Suppose our
CRT representation uses one more prime modulus than is necessary. Then by assumption, all intermediate
values in the circuit are at most p1 · · · pk−1 in absolute value.

Then, assuming the most significant moduli is 2, if x−y is positive, the most significant digit of [[x−y]]pmr

will be zero. If x − y is negative, the sum will wrap around mod p1 · · · pk and be a number larger than
p1 · · · pk−1. Hence the most significant digit of [[x− y]]pmr will be nonzero.

Hence, to compare [[x]]crt to [[y]]crt, we obtain [[x − y]]crt for free, convert to [[x − y]]pmr at the above cost,
then do a simple projection on the most significant digit of [[x− y]]pmr, costing pk ciphertexts.

If we desire to have the result of the comparison as a CRT-encoded wire bundle, an additional k ciphertexts
are required, as was the case for exact thresholds. Overall, the total cost will be

2(k − 1)

k∑
i=1

pi + 2k2 − k + pk

For the use case of arithmetic over integers bounded by Z, the cost of a comparison is O(log3 Z) ciphertexts.

Application to weighted threshold gates. A weighted threshold gate refers to the following kind of
computation:

Tht,c1,...,cb(x1, . . . , xb) =

{
1 if t >

∑
i cixi

0 otherwise

Since a weighted threshold gate is simply a weighted sum followed by a comparison, the cost of such a
threshold gate is simply the cost of a comparison as described above. The weighted sum is free if the weights
are public.
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7 Using our Scheme and Comparison to Standard Garbling

We have now introduced all of the low-level gates that are supported compactly by our garbling scheme.
In this section we discuss the costs involved when using our scheme in the context of a secure computation
protocol. In particular, we focus on the “hidden” costs involved in: (1) transferring garbled inputs via
oblivious transfers (2) ensuring that all of our low-level gate gadgets interoperate within a common circuit.
We discuss these costs in the context of a natural application scenario, and provide a comprehensive
comparison of our scheme to standard state-of-the-art garbling techniques.

Our focus is on the communication costs: size (number of ciphertexts) of the garbled circuits, and costs
of OTs. With the use of hardware-accelerated AES instructions, current 2PC applications of garbled circuits
are usually network-bound,3 so communication cost reflects the dominant bottleneck.

7.1 Transferring Wire Labels via OT

In Yao’s protocol paradigm, the circuit evaluator obtains her garbled input via oblivious transfer (OT). For
boolean circuits, there are two possible wire labels per input wire, and 1-out-of-2 OT is the natural way for
the evaluator to obtain the one wire label of her choice on each wire.

In practice, OT instances are realized via OT extension protocols [Bea96, IKNP03]. The main idea behind
OT extension is that after performing only λ so-called base OTs on random strings, the parties can obtain
a large number N � λ of effective OTs using only cheap symmetric-key operations. Only the base OTs
require expensive public-key operations. When discussing the cost of OT, we ignore the fixed cost of the
base OTs. The marginal cost incurred by each 1-out-of-2 OT instance (for OT of λ-bit messages) is 2λ bits.
However, when using OT to transfer wire labels in particular, it is possible to use an optimization similar to
row-reduction for garbled circuits. One can allow the OT protocol itself to randomly choose one of the two
possible wire labels. This reduces the marginal cost of each OT to just λ bits (cf. [ALSZ13]).

In our scheme, we consider circuits whose wires carry values in Zp for some prime p. There are p possible
wire labels for each such wire. When these wires are the input wires of a circuit, we must provide a way
for the receiver to obtain appropriate garbled input. The naive way to do this is using 1-out-of-p OTs, at
the cost of (p− 1)λ bits. However, we suggest the following superior approach which takes advantage of the
specific form of the strings.

Consider a mod-p input wire w to the circuit. Set ` = dlog pe and write w in binary as w =
∑`−1
j=0 wj2

j .
Our idea is to use ` 1-out-of-2 OTs to obtain garbled inputs encoding the bits of w. While these wj inputs

are bits, we require them to be represented as mod-p wire labels. Then the computation w =
∑`−1
j=0 wj2

j

can be done for free within the circuit, as the values 2j are public. We note that the free addition will be
mod p, but by construction the result of the weighted sum is w < p.

The total cost of these OTs (using the OT-row-reduction optimization described above) is only `
ciphertexts. For an input value [[x]]crt represented by k primes, the total cost of all OTs under this method
is λ

∑
idlog pie ≤ λ(log

∏
pi + k).

7.2 Arithmetic Circuits

Consider the setting of garbling an arithmetic circuit involving operations over the integers. Let bZ−1
2 c be

an upper bound on the absolute value of intermediate values within the circuit. Then our scheme should
be instantiated using CRT representations with k primes, where

∏
i≤k pk > Z to avoid any wrap-arounds.

We make a distinction between the logical values of the arithmetic circuit (i.e., values in {−bZ−1
2 c,−Z +

1, . . . , bZ−1
2 c}) and the physical (encoding) values in our mixed-modulus simple circuit (i.e., values mod p

for some prime p).

In Figure 3 we summarize the cost of various arithmetic gates in our scheme, including concrete costs
for Z ∈ {216, 232, 264}. The numbers in the table reflect gates whose (logical) input and output wires are
all [[x]]crt bundles (e.g., not just single boolean wires in the case of comparisons). A single logical value in

3As a concrete example, the garbling scheme of Zahur et al. [ZRE15] reduced garbled circuit size by 33% but doubled the
number of AES calls for the evaluator (compared to prior work). The changes were still a significant net improvement.
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scheme asymptotic cost
concrete cost

Z = 216 Z = 232 Z = 264

fan-in-2 addition gate
us 0 0 0 0
standard logZ 30 62 126

multiplication-by-constant gate
us 0 0 0 0

standard log1.585 Z 232 758 3744

exponentiation-by-constant gate
us log2 Z/ log logZ 51 119 365

standard log2 Z 44 1864 8496

fan-in-2 multiplication gate
us log2 Z/ log logZ 313 724 2206

standard log1.585 Z 330 1200 4494

comparison gate
us log3 Z/ log logZ 804 2541 11979
standard logZ 32 64 128

OT cost per input integer value
us logZ 22 37 72
standard logZ 16 32 64

total wire label size per integer value
us logZ/ log logZ 7 10 16
standard logZ 16 32 64

Figure 3: Cost of various operations garbling an arithmetic circuit, where bZ−1
2 c is an upper bound on the

magnitude of any intermediate value in the computation. Costs are in # of ciphertexts (multiples of λ bits).
“Standard” scheme refers to encoding values in binary and using the half-gates garbling scheme [ZRE15] on
the best available boolean circuit.

scheme asymptotic cost
concrete cost

b = 10 b = 100 b = 1000

arbitrary fan-in XOR gate
us log b 2 3 4
standard 0 0 0 0

fan-in-≤ b AND/OR gate
us log2 b/ log log b 13 21 33
standard b 18 198 1998

fan-in-≤ b threshold/majority gate
us log3 b/ log log b 60 137 280
standard b log b 36 948 30082

OT cost per input bit
us log b 6 9 13
standard 1 1 1 1

total wire label size per logical bit
us log b/ log log b 3 4 5
standard 1 1 1 1

Figure 4: Cost of various operations garbling a boolean circuit consisting of high fan-in gates. b is an upper
bound on the fan-in of any AND/OR/threshold gate in the circuit. Costs are in # of ciphertexts (multiples
of λ bits). “Standard” scheme refers to using the half-gates garbling scheme [ZRE15] on the best available
boolean circuit.
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the circuit is encoded by k = O(logZ/ log logZ) wire labels. The total OT cost for a logical circuit input is∑
idlog pie = O(logZ).

The figure also includes a comparison to the “standard boolean garbled circuit” approach. To obtain
these numbers, we consider directly converting the arithmetic circuit into a boolean circuit, and representing
its logical values as binary integers of length logZ bits. In particular, this means that the outputs of the
multiplication/exponentiation gates, not the inputs, are taken to be logZ bits long. To generate optimized
boolean subcircuits for these operations, we first used Cryptol [Gal] to convert the input/output specification
into an unoptimized circuit. We then used the ABC [Ber] and Yosys [Wol] circuit synthesis tools to create
an optimized Verilog sequential circuit. Yosys was configured to treat XOR and NOT gates as free and
otherwise minimize the circuit. The numbers in the table reflect the cost to garble each such subcircuit using
the state-of-the art half-gates garbling scheme [ZRE15]. For multiplication- and exponentiation-by-constant,
we chose arbitrary constants to obtain the subcircuits.

We see that, with the exception of comparison gates, our scheme results in less cost in almost all
dimensions. Both the size of the garbled circuit and the memory requirement (to store garbled values)
are smaller in our construction. The cost of OTs is slightly higher (12-37%). Additionally, we emphasize
that linear operations (addition and multiplication by a constant) are free in our scheme.

7.3 Boolean Circuits with High Fan-In Gates

Our construction also gives improvements for Boolean circuits, specifically when gates have high fan in. In
this setting, we consider Boolean circuits consisting of AND, OR, XOR, and threshold gates. Let b be an
upper bound on the fan-in of any non-XOR gate in a circuit.

Our approach is to encode boolean values in a CRT representation with k primes, where Pk :=
∏
i≤k pi >

b. This suffices for us to use the boolean AND/OR and threshold gates described in Sections 6.2 & 6.3. The
costs are summarized in Figure 4, and they reflect composable gates whose logical outputs are also in the
CRT representation.

A side-effect of using a CRT representation to encode single bits is that we no longer have XOR for
free. Rather, we have addition mod Pk for free. However, since 2 | Pk, the cost of XOR is indeed low. To
compute the XOR of values x1, . . . , xn, we add them mod Pk (for free), and then perform the transformation
[[
∑
i xi]]crt 7→ [[

∑
i xi mod 2]]crt using the method in 6.1. The total cost of the final transformation is k − 1

ciphertexts, regardless of the fan-in of this XOR gate.

As above, the figure also contains a comparison to the standard boolean garbled circuit paradigm. The
corresponding numbers reflect the cost of garbling the best available boolean circuit using the half-gates
construction. The numbers for threshold gates are for a majority gate (whereas the numbers for our scheme
are for any threshold gate).

For circuits of this kind, our cost for OTs and for XOR gates is certainly higher. However, our exponential
improvement for AND/OR/threshold gates is striking even for the modest values of fan-in that we consider.

7.4 Application Scenario

We now focus our comparison to a specific application. Suppose Alice and Bob have private vectors
(a1, . . . , an) and (b1, . . . , bn), respectively, and they would like to privately compute the inner product

∑
i aibi,

in the presence of semi-honest adversaries (i.e., using Yao’s protocol). The entries of these vectors are 32-
bit nonnegative integers (for example, these matrices could be a 32-bit fixed-point representation of real
numbers), and so the inner product may contain 64-bit values. Such a computation is representative of a
natural class of elementary linear-algebraic computations — for example, a matrix multiplication consists of
many such inner products.

The computation consists of (1) an OT, (2) a multiplication gate, and (3) an addition gate, for each
component of the parties’ input vectors (of course there are n multiplications and n − 1 additions, but we
assume n is large enough that the difference of 1 addition is insignificant).

• Using our scheme, the parties would choose a CRT encoding large enough to avoid overflow — i.e., so
that

∏
i≤k pi > 264. In this case, k = 16. Alice can garble the simple arithmetic circuit using the approach

outlined in Section 6.1. Since Alice knows one argument of each of the multiplication gates, the cost to
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garble each multiplication gate is
∑16
i=1(pi − 1) = 365 ciphertexts. Additions are free, and the cost of OT

per input element is 74 ciphertexts.

• Using the standard boolean approach, the parties must generate a boolean circuit that expresses
the arithmetic computation. For each component of the vectors, the circuit includes a 32-bit × 32-bit
multiplication and 64-bit addition circuit. Using Figure 3, we see that the cost of an addition subcircuit
is 126 ciphertexts, and the cost of a multiplication-by-constant is at least 3744 ciphertexts. Note that in
the desired functionality, the garbled circuit must hide Alice’s argument to the multiplication gate, so it
is perhaps rather optimistic to use the cost of a multiplication-by-constant gate in our calculation. The
OT cost per input element is 32 ciphertexts.

Overall, our total protocol cost per vector-component is 365 + 74 = 439 ciphertexts compared to 3744 +
126 + 32 = 3902 for the boolean case — an improvement of 88%.

This simple example demonstrates that our construction provides significant concrete improvement for
secure computations of arithmetic operations. In larger and more realistic computations each input values
is likely to be used many times, so the cost of the garbled circuit itself easily dominates the cost of the OTs.
We note that our garbled circuit cost in this example is 365 vs 3744 + 12 = 3870, a factor 10 difference. This
example used the fact that Alice knew one of the inputs to every multiplication gate. Even when that is not
the case, our construction is more efficient by a non-trivial factor.

8 Comparison to Other Secure Computation Techniques

Above we have extensively compared our scheme with the state of the art for standard garbling of boolean
circuits, and its application to arithmetic circuits (when those are first converted to boolean). In this section
we compare our results to other approaches to 2PC (the most natural application of garbled circuits) and
other relevant work on garbled circuits & randomized encodings.

Secret-sharing-based 2PC. A completely different paradigm for 2PC uses secret sharing, and natively
supports addition and multiplication operations over a prime modulus (cf. [CDN15]) In this paradigm,
addition is free and (depending on the required security) multiplication can be performed by exchanging a
constant number of GF (p)-elements.

Garbled-circuit-based and secret-sharing-based 2PC are fundamentally different, so direct comparisons
are difficult. We simply point out the similarities and differences. Certainly secret-sharing-based 2PC is and
will likely always be better for some cases. Our focus here is on improving the garbled circuit paradigm for
computations that are currently expensive/cumbersome in that paradigm, thus significantly closing the gap
with secret-sharing-based 2PC in these cases.

Our scheme allows addition for free, just as in secret-sharing protocols. We require a particular type of
modulus which makes our scheme likely only useful for computations over the integers (where any modulus
large enough to prevent overflows works), whereas secret-sharing can use any prime modulus. Our other
non-free operations are certainly more expensive than in a secret-sharing protocol, but we highlight that the
garbled circuit paradigm results in a constant-round protocol while multiplications require interaction in a
secret-sharing protocol. Hence, our work can be thought of combining some of the best features of both
worlds for arithmetic computations (free addition, but constant-round).

While we support arithmetic computations, we also allow easy mixing of the boolean/arithmetic
paradigms within a single secure computation. It is often desirable to favor one low-level representation
over another in secure computation (e.g., [CHK+12]), and sometimes even within the same computation. In
related work, the “ABY framework” of [DSZ15] gives techniques for converting between different protocol
paradigms (Arithmetic, Boolean, Yao), for intermediate values in a single computation. Their conversion
techniques are generally interactive and involve different protocol paradigms, while we stay entirely within
the (non-interactive) garbled circuit paradigm.

Garbled Arithmetic Circuits & Arithmetic Model. Like us, Applebaum, Ishai, and Kushile-
vitz [AIK11] also describe a scheme for directly garbling arithmetic circuits over the integers, and like
us, their scheme supports additions for free.
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Their construction requires a particular assumption, namely LWE over the integers, whereas our
construction uses a simpler correlation-robust hash function assumption. As a practical consequence, our
scheme can be instantiated using concrete primitives like AES to give much lower overhead (than LWE) in
the constant factors and also to take advantage of hardware-accelerated AES that has already been extremely
successful for traditional garbled circuits.

We also point out that our scheme uses the conventional paradigm for garbled circuits, making our scheme
easier to integrate into existing systems, and combine with other garbling schemes (e.g., garble part of a
computation using our scheme, and other parts using standard boolean garbling).

Finally, we note that [AIK11] also outline a construction for garbling arithmetic circuits based on one-way
functions, and relying on CRT encoding. The CRT encoding use as a technical tool is thus similar in our
construction and the one they outline. However, their construction uses the CRT encoding simply to get the
integer input into more efficient eventual bit-wise representation (with bit-wise representation of the input
modulo each of the CRT components); after this, standard boolean garbled circuit techniques (e.g., Yao) are
applied. As a result, that scheme is more efficient than directly transforming the circuit from arithmetic to
boolean, but less efficient than either their main LWE construction or our constructions here.

Applebaum, Avron & Brzuska [AAB15] define an arithmetic model for cryptography, in which primitives
work by manipulating field elements in a black-box way. In this work they prove some lower bounds related
to garbled circuits & randomized encodings. While our construction takes advantage of certain algebraic
structures, it does not fall within this arithmetic model. An important feature of the arithmetic model is
that the construction is oblivious to the choice of underlying field, whereas we rely on specific choices of the
underlying algebraic structure. Furthermore, their model focuses on information-theoretic constructions, or
at least constructions that can be constructed in a black-box way from an arbitrary field. This does not
capture our use of generic cryptographic assumptions like correlation-robust hash functions.

Fully Homomorphic Encryption. Fully homomorphic encryption [Gen09] can be used for secure
computation in a natural way. One party sends an encryption of his input E(x), while the other party
uses the homomorphic properties to compute E(f(x, y)) (here we assume semi-honest parties). While we
cannot compete with such a protocol in terms of its asymptotically optimal communication overhead, our
construction requires only symmetric-key operations and has small concrete constants.

Other Related Work. We mention the recent work of Malkin, Pastro & shelat [MPs16], which bears
some similarities with our work in terms of high level themes explored, though the goals and directions they
take and the concrete results obtained are quite different from ours.

First, as we already pointed out, they also use the free-XOR generalization to a larger modulus, yielding
the same basic (free) addition as us. However, their multiplication is linear in the modulus size, and thus they
can only apply this to small fields (they suggest fields of size up to 27). In contrast, we can handle moduli
that are orders of magnitude larger, with CRT based polylogarithmic multiplication (and other gadgets).

In fact, garbling arithmetic gates is only a small part of their work, and their main focus is boolean
circuits. There, similarly to us, they consider direct garbling of more complex gates, with higher fan-in,
rather than the standard fan-in 2 gates. Specifically, they provide a garbling scheme for gates computing
low-degree polynomials with many terms. However, their scheme does not yield any improvement when
applied to the type of boolean gadgets that we consider here, e.g., a high fan-in AND gate. On the technical
level, they do not use their generalized free-XOR technique in the boolean domain (it’s only used for an
arithmetic circuits over the given field). In contrast, for us, the free-XOR generalization is a major insight
we use in obtaining improvements in the boolean domain. It would be interesting to explore whether a
combination of their techniques and ours can yield even more significant improvements for specific, useful
circuits.

Finally, they bypass the [ZRE15] lower bound of 2 ciphertexts per AND gate, by directly garbling a
composition of several binary gates together, while [ZRE15] only consider a gate-by-gate garbling model (for
binary gates). We bypass the lower bound in a very different way, breaking it even for a single binary AND
gate. As explained above, we do so by exposing an implicit assumption embedded in the model of [ZRE15],
namely that there’s a single color bit.
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9 Conclusions

We have introduced new techniques for garbled circuits, based on a generalization of Free-XOR that yields
free addition mod m. Starting with rather simple building blocks, we show how to construct gadgets for
garbling boolean and arithmetic gates with significantly lower cost (both asymptotically and concretely) than
state-of-the-art garbling techniques. In particular, we can garble arithmetic circuits over the integers with
free addition and multiplication by a constant, and we can garble boolean circuits of high fan-in exponentially
better than standard techniques.
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A Proof of Lemma 1

Lemma 1 follows from 3 simple theorems about numbers.

Theorem 2.
∏
i≤k pi = Ω(kk).

Proof. By seiving out 2 and 3, and applying Stirling’s Approximation, we have for r ≥ 11:

P (2r) ≥ 1 · 2 · 3 · · · 6r
2 · 3 · 4 · 6 · 8 · 9 · · · 6r

=
(6r)!6rr!

23r(3r)!32r(2r)!

∼
√

12πr(6r)6r6r
√

2πrrre5r

22r
√

6πr(3r)3r3r
√

4πr(2r)2re7r
=

(
2436

2434e2

)r
· (2r)2r ≥ (2r)2r

Theorem 3 ([BS96]). For k ≥ 6,
k ln k < pk < k(ln k + ln ln k)

Theorem 4 ([BS96]).
k∑
i=1

pi ∼
k2 ln k

2

Now, we will use the above to prove the lemma. Let k be an integer such that
∏
i≤k pi > Z.

1. k = O(logZ/ log logZ).

First note that Z < kk for k =
√

2 logn
log logn . Thus it follows from Theorems 3 and 2, k = O

(
logZ

log logZ

)
.

2. pk = Θ(k log k) = O(logZ).

This fact follows from applying Theorem 3 to the bound on k.

3.
∑k
i=1 pi = O(log2 Z/ log logZ).

This follows from applying Theorem 4 to the bound on k.

4.
∑k
i=1dlog2 pie = Θ(logZ).

By Theorem 3 and the bound on pk, we know that Z <
∏
i≤k pk = O(Z logZ). Therefore,∑

i≤kdlog pie ≤ log(
∏
i≤k pi) + k = O(log(Z logZ) + logZ) = O(logZ). And,

∑
i≤kdlog pie ≥

log(
∏
i≤k pi) ≥ logZ.

B Facts Related to General Mixed Radix Conversion

Fact 1. If x ∈ Z and n,m ∈ N, then ⌊
bx/mc
n

⌋
=
⌊ x

nm

⌋
.

Proof. Let q, t ∈ Z, r ∈ {0, . . . ,m− 1}, s ∈ {0, . . . , n− 1} such that

x = m · q + r & q = n · t+ s

Then, ⌊
bx/mc
n

⌋
=
⌊ q
n

⌋
= t =

q − s
n

=
x−r
m − s
n

=
x− r − sm

nm

Note that by our assumptions on s, r r + sm ∈ {0, . . . , nm}. Thus,

x = t(nm) + (r + sm) =⇒
⌊ x

nm

⌋
= t.
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Fact 2. For p, q ∈ N relatively prime, let f : Zpq → Zp+q−1 be defined such that x 7→ ((x mod p) − (x
mod q) mod (p + q − 1)). Then, f is a (p + q − 1)-wise constant function where each piece has a distinct
constant.

Moreover, there exists a function ϕ : Zp+q−1 → Zq such that ϕ ◦ f : y 7→
⌊
y
p

⌋
mod q.

Proof. First note:
f(x) = f(x+ 1) ⇐⇒ p - (x+ 1) and q - (x+ 1).

This follows from the fact the p and q are relatively prime (for any x ∈ {0, . . . , pq − 1}, only one of p, q can
divide).

Thus, f is composed of p+ q − 1 constant functions. To show all these constants are distinct, it suffices
to show f is surjective. This follows immediately from the chinese remainder theorem: Zpq ∼= Zp ×Zq. (Let
z ∈ Zp+q−1 and x ∈ {0, . . . , p− 1}, y ∈ {0, . . . , q − 1} such that x− y = z.)

The final claim in the fact follows because f has distinct values on each interval [0, p−1], [p, 2p−1], . . . , [(q−
1)p, qp− 1].

To compute ϕ(z) explicitly, first find x ∈ {0, . . . , p − 1}, y ∈ {0, . . . , q − 1} such that x − y = z ∈
{0, . . . , p+q−1}. (One can always take at least one of x, y to be 0.) Then, evaluate b(xq[q−1]p+yp[p−1]q)/p)c
mod p.
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