
Statistical Analysis for Access-Driven Cache
Attacks Against AES

Liwei Zhang, A. Adam Ding, Yunsi Fei, and Zhen Hang Jiang

1 Department of Mathematics, Northeastern University, Boston, MA 02115
2 Department of Electrical and Computer Engineering

Northeastern University, Boston, MA 02115
zhang.liw@husky.neu.edu,a.ding@neu.edu,

yfei@ece.neu.edu,jiang.zhen@husky.neu.edu

Abstract. In recent years, side-channel timing attacks utilizing archi-
tectural behavior have been applied to cloud settings, presenting a re-
alistic and serious cyber threat. Access-driven cache attacks allow the
adversary to observe side-channel leakage (cache access pattern) of a crit-
ical cryptographic implementation to infer the secret key. However, what
the attackers observe may deviate from the real cache footprint of the
victim process, affecting the effectiveness of cache-based timing attacks
using the observed leakage. Various countermeasures, including secure
cache and architectures design, should also be evaluated accurately for
their side-channel resilience. To address this need, this paper proposes a
mathematical model for access-driven cache attacks, and derives explicit
success rate formulas for those attacks. It is the first theoretical model
that explicitly considers the misclassification errors for cache access and
cache non-access by the victim cryptographic process. We implement
several access-driven cache attacks and use our models to evaluate them.
We demonstrate that the proposed statistical model predicts the success
rate of cache-based timing attacks accurately. We also apply the model
onto various cache defense architectures for evaluation.

Keywords: AES, side-channel analysis, access-driven cache attacks, sta-
tistical model

1 Introduction

Side channel analysis (SCA) attacks based on cache behavior have been invented
to break various cryptographic implementations since the pioneer work of a
decade ago [1, 2]. For instance, Tsunoo et al. [3] studied the cache based attack
on Data Encryption Standard (DES). Bernstein applied it onto Advanced En-
cryption Standard (AES) [4]. A variety of cache-based side-channel attacks were
developed, falling into three categories, trace-driven, time-driven, and access-
driven attacks.

In trace-driven attacks [5–11], the adversary is able to derive information
about individual cache events from side-channel traces, such as power consump-
tion or electromagnetic emanation of the cryptographic execution. Time-driven

attacks exploit the execution time of an algorithm which depends on the cache
access pattern directed by the secret key value [4, 12, 13, 11]. Access-driven at-
tacks allow the adversary to gain information about cache lines being accessed
during the execution [14–17]. Recent work has shown the possibility of cross-
virtual machine side-channel attacks in cloud computing [18–22], making the
access-driven SCA a real and serious cyber threat.

Various secure cache design and architectures have been proposed [23–25] to
protect against cache-based SCA. Theoretical models play an integral role in un-
derstanding cache-based SCAs and guiding effective countermeasure design. For
trace-driven and time-driven attacks, Page [26, 27] first described and simulated
theoretical attacks. For time-driven attacks, Tiri et al. [28] presented an analytic
model, and provided formulas for the number of measurements needed for the
attack to succeed. Rebeiro and Mukhopadhyay [32] first quantified the leakage
due to sequential and arbitrary stride prefetching in time-driven attacks through
the probability distribution of cache access (non-access) for one cache line. Savas
and Yilmaz [11] proposed a generic model of conditional entropy (used as the
leakage metric) for trace-driven, time-driven and access-driven attacks. They
theoretically analyzed the access-driven model on the basic cache architecture
(without countermeasures) under the assumption that the adversary can detect
accesses to specific cache lines by the cryptographic implementations precisely.
And they simulated different noise levels and showed their overall effect on the
side-channel leakage. Domnitser et al. [30] proposed a framework to estimate
the probability of correctly identifying the leaky cache accesses under various
cache architecture. Zhang and Lee [31] further proposed a framework utilizing
mutual information to evaluate cache architectures’ vulnerability based on non-
interference property. While these works provided quantitative metrics for the
cache architecture’s side-channel vulnerability, these metrics were not explicitly
linked to effectiveness of concrete cache-based SCAs. To clearly quantify the
effects, two types of error should be separated: type I error, mistaking cache ac-
cess for cache non-access; and type II error, mistaking cache non-access as cache
access. Advanced cache architectures often utilize features such as prefetching,
partitioning and randomization [29], which can increase rates of these two types
of errors.

Our Contribution: In this work, we provide a theoretical statistical model for
cache access-driven attacks that explicitly accounts for these two types of errors.
We start from the basic cache architecture, establishing a statistic model and
presenting corresponding properties. Then we extend it to include the effects of
the two types of errors. Further more, we consider the cache access based attacks
and cache non-access based attacks, and derive, for the first time, their explicit
theoretical success rate formulas of retrieving individual key bytes in a divide-
and-conquer fashion. The formulas quantify the effect of each factor relating
to the countermeasures’ effectiveness, and thus provide valuable insights in the
directions of designing more secure cache architectures and countermeasures.

The rest of papers is organized as follows. Section 2 presents the background
of prime+probe attacks and some related probability theory. Section 3 proposes

2

our cache models, and provides some basic probability properties about the
basic and advanced cache architectures. Section 4 analyzes attacks focused on
the first and last rounds of AES, respectively, and derives the explicit success
rate formulas for attacks based on cache access or cache non-access. Finally,
Section 5 reports attack simulations and practical attack experiments that verify
the soundness of our models.

2 Preliminaries

We first present some basic probability formulas, and then describe the prime+probe
cache attacks.

2.1 Probability Theory

As cache attack is based on cache behavior, including cache conflicts where two
memory blocks map onto the same cache line and therefore resulting in a cache
line replacement, we first introduce basic probability theory for replacement.

On a sample space S = {s1, · · · , sm}, a subject randomly selects n items
with replacement. The output is represented by a vector O1 = {o1,1, · · · , o1,n}.
Then the number of times that object si being selected in the experiment is

m(si) =
n∑

j=1

I(o1,j = si), where I is the indicator function, yielding 1 when

o1,j = si, otherwise 0. Thus the expected number of times that si being selected

is E[M(si)] =
n∑

j=1

P(o1,j = si).

Furthermore, let nE subjects each repeat this experiment, then the number
of subjects who select object si is

N(si) =

nE∑
w=1

I(si ∈
n⋃

j=1

ow,j). (1)

Its expected value, assuming independence among these q subjects, is

E[N(si)] =

nE∑
w=1

P(si ∈
n⋃

j=1

ow,j) =

nE∑
w=1

[1−
n∏

j=1

P(si /∈ ow,j)]. (2)

2.2 Prime+Probe Cache Attacks

In this section, we describe some last-level Prime+Probe cache timing attacks [22]
that we have implemented and evaluated on a 2.5 GHz Intel Core i5 CPU, tar-
geting an OpenSSL1.0.1f implementation of AES. This is used as a concrete
example for the abstract and general model studied in Sections 3 and 4. The
numerical results from the evaluation are presented in Section 5 to confirm the
theoretical results. In this attack, we assume that the adversary (the spy process)
and victim (the encryption process) are sitting on the same physical machine
but on different cores, which share the last-level cache.

3

Targeted platform: Our targeted platform contains an Intel core i5, which is
an Ivy Bridge architecture, with 2 physical cores, and features a 3MB 12-way
set associative shared last-level cache (L3 cache). Since this CPU has two cores,
the L3 cache is split into two equal slices, which are connected by a ring bus,
for allowing parallel cache accesses by two cores. However, each core can access
either slice, but it will take more time to access the remote slice than its local
one. The size of each cache line is 64 bytes, and each slice therefore has 2048
cache sets.

Attack challenges: For the attack to be feasible in the cross-core setting, we
need to address two challenges: first, we should be able to evict data for different
cores from caches. In modern CPUs, most last-level caches have the inclusiveness
property, which means if any data in the last-level cache is being evicted, it will
also be evicted in all upper caches (L1 and L2 caches). Thus, further request
of access to the evicted data will be served by the main memory, resulting in
a distinguishably high latency. Second, we should be able to evict a targeted
cache line in the L3 cache using virtual addresses. Although the L3 cache is
physically tagged and physically addressed, we can utilize the 2MB (=221) large
page memory, which will have 21 offset bits that will be directly translated into
physical address. 21 offset bits are more than enough to address 2048 cache sets,
which only requires 11 index bits, in each cache slice in the L3 cache. Thus, we
can allocate two or more continuous large pages and select all addresses that
mapped to the targeted cache line. By accessing those selected addresses, we
can effectively evict the targeted cache line from the L3 cache.

Data collection: In this paper, we consider the aligned T-tables, i.e., the start-
ing memory address of a T table is mapped to the beginning of a cache line. We
assume that attackers know the location of T-tables in cache. After the T-tables
used by the victim are mapped into the main memory, we launch our spy pro-
cess to determine which sets in the L3 cache are used by the T-tables. We use
the algorithm in [22] and created one eviction data set for each cache set in the
L3 cache. We sweep every set in the L3 cache while the victim is continuously
encrypting the same plaintext so as to determine the range of 64 continuous sets
(for each T table used by AES, each occupies 16 continuous cache sets, with one
cache line in a set) that have the highest probing time. Once we find the loca-
tions of the 64 cache sets for AES, we know that the beginning 16 sets will be
used by the T0 table. By monitoring those 16 sets, we should be able to collect
timing information on T0 table.

After determining the targeted cache sets, we follow the standard Prime+Probe
attack procedure. First, the spy process primes its data to occupy all these tar-
geted 16 cache sets (including all the ways in each set); second, the spy process
sends one random 16-byte plaintext to the victim process and waits for the en-
cryption to complete; third, the spy process probes its data set by set, and record
the access time for each set. For each AES encryption, the spy process records
the plaintext, ciphertext, and a vector of probing times for targeted cache sets.

4

As in each cache set, there is at most one AES cache line, we will use cache line
and cache set interchangeably in this paper.

Because the modern cache is divided into two slices, a cache line mapped
to a set, say 0, can be in either cache slice depending on a hashed value of its
physical address. For our data collection, we only monitor one cache slice where
the first cache line of T-tables resides, and so we only probe all 16 continuous
cache sets in that slice. Thus, for some of cache lines of T-tables, we would not
be able to see any information leaked from our timing measurement.

Attack abstraction: Based on the probing times, the adversary classifies the
cache lines into two groups: those observed as being accessed (long probing time)
by the victim process, SA, and those not being accessed (short probing time),
SNA. The adversary then attacks one SBox, for example, in the last round of
AES with known ciphertext x. With a guessed key value k and known x, the
adversary can calculate which cache line was accessed by the SBox operation.
If the k value is correct, the calculated cache line must belong to the set SA

(cache line access). For an incorrect k value, the guess cache line access belongs
to SA with a probability less than one. Then over many random plaintexts, the
correct k value can be identified (as the one always lead to correct cache line
access guess). However, the observed set SA may not always correspond to real
accesses by the victim process due to misclassification errors. Such confusion
errors can arise in modern cache architectures with features like prefetching and
cache line randomization. In such cases, the adversary chooses the k value leading
to most frequent agreement between the calculated cache line accesses and the
observed group SA. We analyze such attacks and provide quantitative formulas
for their success rates in the next two sections.

3 Statistical Models

In this section, we establish a statistic model on cache line access probabilities.
Then we derive formulas for observed cache line accesses with confusion errors.
These formulas will be used in Section 4 to derive explicit success rate formulas
for the prime+probe attack.

3.1 Notations and Cache Models

We denote sets by calligraphic letters (e.g., X), denote one-dimensional random
variables by capital letters (e.g., X) which take values on the sets (e.g., X),
and denote observations of the random variables by lowercase letters (e.g. x).
Correspondingly, let the bold capital letters, calligraphic letters, and lowercase
letters denote multi-dimensional random variables, their values and observations
(e.g.,X, X , x), respectively. In this paper, we consider unprotected 128-bit AES
with 4 well aligned T-tables, and focus on the cache-access model for one chosen
T table on divide-and-conquer fashion. Let K,P , C and L denote the random
variables for the targeted key byte, plaintext, ciphertext and cache line for the

5

selected T table, respectively, and each takes values on sets K, P, C and L
respectively. Here, the values of L are dL-dimensional vectors, li = {i · dL, i ·
dL + 1, ..., i · dL + dL − 1}, for i = 0, ..., nL − 1, with nL = |L| being the number
of all possible cache lines in L and dL being the number of table elements in
one cache line. In general, for block ciphers, |K| = |P| = |L| = dL · nL. For
128-bit AES and the cache structure in our target platform, nK = |K| = 256,
dL = 16 and nL = 16. Let nA be the number of times that one certain T table
is accessed during one AES encryption execution. Let kc, kg denote the secret
(correct) key and some false key. P and E are the notations for the probability
and expectation.

The cache-based SCA attack utilizes the physical measurements (timing)
which relate to cache misses or cache hits, seen by the spy process, but caused
by the preceding table accesses of one execution of the victim AES process. Dur-
ing an AES execution, there are nA = 40 accesses in total of each T table for the
ten rounds. For each access, the cache line index can be calculated based on the
input and the key value according to the AES algorithm. After one execution,
the victim process leaves some footprint in the cache for the spy process to see,
but no details like when is a cache line accessed (by which byte), so the adversary
just observes the group of cache lines accessed by the victim based on the prob-
ing time through the monitoring process. Due to the interference of noise, the
adversary can not distinguish cache lines accesses from non-accesses. In general,
the adversary shall monitor all cache lines. With all cache lines being monitored,
we denote the two groups of all observed accessed and non-accessed cache lines
during one encryption by Sac and Sna respectively. We shall sometimes use the
notations with subscript Sac

w and Sna
w to indicate that the sets are for the wth

encryption.
The algorithm can be assumed to satisfy two common properties approxi-

mately. One is that the nA accesses are independent, because individual message
bytes are processed independently in block ciphers. The other is that, for each
access, every element in L has equal probability to be accessed (over random
plaintext inputs). So, when all cache lines are monitored, for the wth execu-
tion, the cache lines being taken as accessed cache lines by the adversary can be
written into Ow:

Ow = (ow,1, · · · ,ow,nA
). (3)

So, we have the group of all observed accessed cache lines Sac
w =

nA⋃
j=1

ow,j , while

the group of all observed non-accessed cache lines Sna
w = L\

nA⋃
j=1

ow,j . In what

follows, we use the word “observed” to emphasis that access/non-access is the
observation by the adversary, such as observed cache line access, observed non-
accessed cache lines, etc.

During the nA accesses of one encryption, there exists one access which di-
rectly determines the accessed cache lines by the input (P/C) and key. Let
f(x, k) denote the key-sensitive cache line predicted by the key value k calcu-
lated from the algorithm, where x is the input (known plaintext or ciphertext) of

6

one execution. In other words, with the input x, for some key hypothesis k ∈ K,
we would predict that the line f(x, k) is accessed during the encryption. In what
follows, we shall sometimes use the notations with subscript f last(·, ·)/f1st(·, ·)
to indicate that it is for the last/first round of AES. To emphasis key-sensitive
access, we call such cache lines f(·, k) as predicted cache lines by the key value
k. Since there are nA times of one T table being accessed during one encryption,
in addition of predicted accessed cache line, there may exist some other cache
lines being accessed by the encryption. We call all cache lines which should be
accessed/non-accessed during the nA accesses calculated by algorithm algorithm-
based accessed/non-accessed cache lines.

In this paper, we also consider the effects caused by the number of monitored
cache lines. We use Smo to denote the set of cache lines being monitored by the
adversary, where Smo ⊂ L. Only the cache lines belonging to Smo, the adversary
has the opportunity to observe and group into observed accessed/non-accessed
cache lines, while other cache lines (outside Smo), the adversary can not know
any information. During the wth encryption execution, with the monitored cache
line set Smo, the common cache lines in Sac

w and Smo are observed as accessed
cache lines by the adversary, while the common cache lines in Sna

w and Smo are
observed as non-accessed cache lines. The cache access/non-access based attack
only can utilize the information of cache lines in Smo.

For cache access/non-access based attacks, the adversary often use the num-
ber of encryptions corresponding to the predicted cache lines by each key k ∈ K
as statistics to retrieve the secret key. To do cache access based attacks, with the
wth encryption, for each key hypothesis k ∈ K, the adversary records as follows:
as follows: {

dacw (k) = 1, f(xw, k) ∈ Sac
w and f(xw, k) ∈ Smo,

dnaw (k) = 1, f(xw, k) ∈ Sna
w and f(xw, k) ∈ Smo.

(4)

Here, “dacw (k) = 1” means the predicted cache line by the k value is observed as
access by the adversary, while “dnaw (k) = 1” means the predicted cache line by
the k value is observed as non-access. In fact, with the wth input xw known, for
k ∈ K, dacw (k) = I(f(xw, k) ∈ Sac

w ,f(xw, k) ∈ Smo) and dnaw (k) = I(f(xw, k) ∈
Sna

w ,f(xw, k) ∈ Smo), where I is the indicator function. Suppose there are nE
encryptions, the number of encryptions that the predicted cache lines by the k
value are observed as accesses by the adversary is:

Nac(k) =

nE∑
w=1

dacw (k), (5)

while the number of encryptions that the predicted cache lines by the k value
are observed as non-accesses by the adversary is:

Nna(k) =

nE∑
w=1

dnaw (k). (6)

If the adversary monitors all cache lines and the observed cache line accesses
and non-accesses are correct, the predicated cache lines by the secret key kc are

7

observed, soNac(kc) is always nE andNac(kc) is always 0. Other key hypothesis
value kg would create some mismatch for large nE , allowing the adversary to
identify kc. However, with advanced cache architectures or due to execution
noise, adversaries may encounter two types of confusion errors, i.e., a cache
line access is observed as a cache line non-access or a cache line non-access is
observed as an access. We call these two errors by type I and type II errors.
Then Nac(kc) may not be nE , and Nna(kc) may not be 0. We next provide
the analysis of the quantity assuming no confusion errors in Section 3.2, and
accounting for confusion errors in Section 3.3.

3.2 Probability Properties Based on Cache Architecture without
Confusion Errors

In this section, for noise-free channel, we study probability properties about the
number of accessed cache lines for one AES encryption, which helps to set the
threshold value for using the probing time to detect cache access in the next
Section 3.3.

Without confusion errors, for one encryption, the set of observed accessed
cache lines is exactly same as the set of algorithm-based accessed cache lines. If
a certain cache line li ∈ L, i = 1, · · · , nL, is not accessed during one encryption,
we have li /∈ Sac. So, the corresponding probability of li being not accessed by
one encryption is P(li /∈ Sac

w) = (1 − 1/nL)nA . With nE executions, the two
number of times that li is accessed or non-accessed are

∑nE

w=1 I(li ∈ Sac
w) and∑nE

w=1 I(li /∈ Sac
w), denoted by Mac(li) and Mna(li), respectively. In Property 1,

we give the expected values of these two numbers.

Property 1 Among nE executions, the expected number of times that one cer-
tain cache line li ∈ L, i = 1, · · · , nL, is observed as access/non-access is:

E[Mac(li)] = nE · [1− (1− 1

nL
)nA], E[Mna(li)] = nE · (1−

1

nL
)nA , (7)

where nL and nA are the total number of cache lines in the cache and the total
number of accesses during one execution, respectively.

For one execution, the number of cache lines in the set L being not accessed
| Sna | ranges from max(0, nL−nA) to nL−min(1, nA). In the following property,
we give the probability that there are exactly r non-accessed cache lines lines,
(see proofs in Appendix 8.1).

Property 2 For one execution, the probability that there are exactly r cache
lines that are not accessed is

P(| Sna |= r) =

(
nL

r

) r∑
j=0

(−1)j
(
r
j

)
(nL − j)nA

(nL)
nA

. (8)

8

3.3 Mixture Distribution of Probe Timing

Some recent advanced cache architectures can cause confusion errors, so that
cache lines accesses observed by the adversary may differ from the real cache
line accesses by the victim process [30–32]. Even without any advanced cache
architectures, confusion errors can occur due to interference effects from other
concurrently running processes or operations. Therefore an observed cache line
access (identified by the probing time) does not always mean that this cache
line is accessed by the algorithm. It may be accessed by other interfering or
operating system processes. The same is true for an observed cache non-access
(due to prefetching etc). In this section, we explicitly consider the effect of these
two types of errors occurring during the executions.

For one monitored cache line, the adversary uses the probing time to classify
this line into observed cache access (long timing) or non-access (short timing).
There will be confusion errors unless the cache accesses and non-accesses based
on algorithm correspond to two apart groups of probing time range. Fig. 1 plots
the probability density functions (pdf) of probing timing (number of cycles) for
algorithm-based cache line accesses (solid blue line) and cache line non-accesses
(dash green line), respectively, for the first cache line and last cache lines on one
real AES data set. This figure shows that the timing can not completely separate

120 130 140 150 160 170 180 190
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Timing

P
df

Access
Non−Access

(a) The first cache line

110 120 130 140 150 160 170 180 190
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Timing

P
df

Access
Non−Access

(b) The last cache line

Fig. 1: The probability density functions of timing corresponding to accessed and
non-accessed cache lines for the first cache line and last cache line

the two types of cache line behavior (access vs non-access). Typically a timing
threshold is used to separate the behaviors (shown as red vertical solid lines in
the figure, where timing falling to the left of the line is taken as non-access, and
timing falling to the right of the line is taken as access). Type I error rate accounts
for the area under the solid blue line to the left of the threshold line (mistaking
access as non-access), and type II error rate is for the area under the dash
green line to the right of the threshold line. As the timing threshold increases,

9

Type I error rate increases but Type II error rate decreases. Fig. 2 shows the
classification error rate corresponding to different thresholds. Comparing the
pdf of the first and last cache lines in Fig. 1a and Fig. 1b, they have similar but
different patterns which corresponds to different type I and II errors.

0.99 0.97 0.930.9243 0.9 0.85 0.8 0.75 0.6 0.5 0.3 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The cumulative probabilities corresponding to thresholds

P
ro

ba
bi

lit
ie

s

Error I : Access to Non−Access
Error II: Non−Access to Access
Misclassification

(a) The first cache line

0.99 0.97 0.930.9243 0.9 0.85 0.8 0.75 0.6 0.5 0.3 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The cumulative probabilities corresponding to thresholds
P

ro
ba

bi
lit

ie
s

Error I : Access to Non−Access
Error II: Non−Access to Access
Misclassification

(b) The last cache line

Fig. 2: The misclassification error on real data for the first cache line and last
cache line

From equation (7), on average a proportion (1−1/nL)nA of times a cache line
should be classified as being non-access. Let F (t) denote the cumulative density
distribution (CDF) of probing time. Hence the threshold t0, which satisfies

F (t0) = (1− 1/nL)nA , (9)

will yield the expected number of observed cache accesses agreeing to the ex-
pected number of algorithm-based cache accesses. If the algorithm-based cache
line accesses and non-accesses are well separated, this threshold would result in
100% correct classification. However, this threshold t0 value may not be opti-
mal for one attack when there are indeed confusion errors. The adversary can
use a threshold value tg different from t0. Abstractly, for the chosen threshold
tg, we can consider that there is one (observed) number of cache lines accesses
ngA(tg) = log(F (tg))/ log(1 − 1/nL). When tg = t0, we have ngA = nA. In what
follows, instead of nA accesses by the algorithm, we focus on the ngA abstract
observed accesses to derive the success rate formulas in next Section 4. The ngA
is determined by the Type I and Type II error rates.

For a cache line li, i = 0, · · · , nL − 1, using a threshold value tg, let p1(tg)
and p2(tg) denote the Type I error rate and the Type II error rate, respectively.
That is, p1 is the probability that one algorithm-based access to li is observed
as non-access by the adversary, p2 is the probability that one algorithm-based
non-access to li is observed as access by the adversary. Let r1 be the average
proportion of algorithm-based cache accesses, then the average proportion of

10

algorithm-based cache non-accesses is 1 − r1. Then the adversary observes an
average number of cache accesses as

r0(tg) = r1 · (1− p1(tg)) + (1− r1) · p2(tg). (10)

On the other hand, r0(tg) = 1− (1−1/nL)n
g
A . Match this to the above equation,

we get ngA = log(1−r1 +r1p1(tg)− (1−r1)p2(tg))/ log(1−1/nL). For simplicity,
in what follows, we use r0, p1, p2 and ngA instead of r0(tg), p1(tg),p2(tg) and
ngA(tg). Smaller p1 or larger p2 values would lead to larger ngA values.

Recall that f(x, kc) denotes the cache line accessed in one targeted SBox
operation, which is calculated from the secret key kc and input x. This access
can be missed by the adversary, and we denote the probability by 1 − p0. In
the next section, we derive the success rate formulas in terms of ngA and p0
instead of p1 and p2. This leads to somewhat simpler formula for the probability
of observing the targeted operation f(x, kc) access below. For the adversary to
report that the line f(x, kc) is not accessed after one execution of AES, it has to
be observed as non-access for the key-sensitive access, also for the other ngA − 1
operations.

P(f(x, kc) /∈ Sac) = (1− p0)(1− 1/nL)n
g
A−1. (11)

On the other hand, we have P(f(x, kc) /∈ Sac) = p1. So, we get p0 = 1− p1(1−
nL)/(1− r0).

4 Success Rate Formulas

In this section, we consider two kinds of attacks, one utilizing the cache access
and the other utilizing cache non-access. We present the success rate formulas for
these attacks on the first round and the last round of AES, typically conducted
for cache timing attacks.

The attacks based on the number of cache accesses (or non-access) over
nE executions are in fact additive distinguisher as defined in [33]. Hence the
central limit theorem yields their success rate described by multivariate Gaussian
distribution [33, 34]. We shall find explicit formulas for the mean and variance
of the Gaussian distribution.

For cache analysis, after the wth execution, we would have three groups of
cache lines. The first group contains the predicted accessed cache lines which
depend on the algorithm; the second group Sac

w contains all observed (in ab-
straction) accessed cache lines; and the last one Smo being the cache lines which
are monitored by the adversary. The adversary only observes the cache lines
in Smo and concludes these cache lines accessed or non-accessed. For the wth
execution, the adversary observes a set of cache accesses Sac

w

⋂
Smo and a set of

cache non-accesses Sna
w

⋂
Smo.

11

4.1 Success Rate for Attacks on the Last Round

For the last round of AES algorithm, the cache accesses leak key information
through the operation add round key, i.e.,

c = SBox(s)⊕ kc (12)

where c is the ciphertext byte, and s is some intermediate state that will lead to
the predicted cache line index. Since there are dL T-table elements in one cache
line (corresponding to dL continuous s values), given a ciphertext cw, for one ob-
served accessed cache lines li ∈ L, a set of dL key values {k | f last(cw, k) = li}
can cause such an access. Here, f last(cw, k) is the cache line which includes
InvSBox(cw, k), where InvSBox(·, ·) is the operation of inverse SBox. We call
all k values in the set as observed cache-access keys. Since the operation (in-
verse SBox) is non-linear, the adversary can recovery the secret key, while based
the first round the adversary only can recover the secret key-line explained in
Section (4.2).

We use the number of cache accesses Nac
last (cache non-accesses Nna

last) as the
distinguisher, selecting the key as the secret key which is observed most (least)
often in nE observed sets among all key hypothesis, where

Nac
last(k) =

nE∑
w=1

dacw (k), Nna
last(k) =

nE∑
w=1

dnaw (k). (13)

with dacw (k) = I(f last(cw, k) ∈ Sac
w ,f last(cw, k) ∈ Smo) and dnaw (k) = I(f last(cw, k) ∈

Sna
w ,f last(xw, k) ∈ Smo) with input cw known. For cache access and non-access

based attacks, we denote the (|K| − 1)-dimensional comparison vectors between
the secret key kc and false candidate keys as δaclast and δnalast respectively, with
the element corresponding to kg ∈ K\kc as

δaclast(kg) =
Nac

last(kc)−Nac
last(kg)

nE
=

1

nE

nE∑
w=1

[dacw (kc)− dacw (kg)], (14)

δnalast(kg) =
Nna

last(kc)−Nna
last(kg)

nE
=

1

nE

nE∑
w=1

[dnaw (kc)− dnaw (kg)]. (15)

An attack is successful if and only if all coordinates in the comparison vector
δaclast (δnalast) are positive (negative). If there is only one access, i.e., nA = 1, the dis-
tinguisher δaclast(kg) (δnalast(kg)) follows a binomial distribution

(
nE

p0

)
(
(

nE

1−p0

)
), the

exact success rate formula can be gotten. When nA 6= 1, the access/non-access
counts follow more complicated distributions from the Property 2. However, for
kg ∈ K\kc, the distinguisher δaclast(kg) (δnalast(kg)) is the average of the difference
between the indicator functions under kc and kg, then it is additive. So, we can
apply the central limit theorem, and the success rate SRac

last and SRna
last based

on the cache accesses and non-accesses are

SRac
last = P(δaclast > 0) = ΦΣac

last
(µac

last),
SRna

last = P(δnalast < 0) = ΦΣna
last

(−µna
last),

(16)

12

where ΦΣ(·) denote the CDF of a mean zero Gaussian distribution with co-
variance matrix Σ, µac

last and Σac
last (or µna

last and Σna
last) are mean-vector and

covariance-matrix of dac1 (kc)− dac1 (kg) (or dna1 (kc)− dna1 (kg)).

Theorem 1. When the adversary monitors all NM = NL cache lines, the suc-
cess rate of the cache non-access/access based attack is given by (16). And

• each element in the mean µna
last is:

dL − p0 · nK
nK − 1

(1− 1

nL
)n

g
A−1; (17)

and µac
last = −µna

last;
• each diagonal element of Σna

last/Σ
ac
last is:

(2− p0 − dL−p0

nK−1)(1− 1
nL

)n
g
A−1 − (p0·nK−dL

nK−1)2(1− 1
nL

)2(n
g
A−1)

−2(1− p0)nK−dL−1
nK−1 ((nK−dL)(nK−dL−1)

nK(nK−1))n
g
A−1;

(18)

• each off-diagonal element in Σna
last/Σ

ac
last is:

(1− p0)(1− 1
nL

)n
g
A−1 − (p0·nK−dL

nK−1)2(1− 1
nL

)2(n
g
A−1)

+ (nK−dL−1)(−nK−dL+2−2p0+2p0·nK)
(nK−1)(nK−2) ((nK−dL)(nK−dL−1)

nK(nK−1))n
g
A−1,

(19)

where nK , nL, dL are the dimensions of key space, cache lines space, and one
single cache line size, respectively. And nK = nL · dL.

Remark 1. When the adversary monitors all cache lines, the set of observed
accessed cache lines is the complementary of the set of of observed non-accessed
cache lines in the cache line space L. Hence the attack based on cache access
is exactly the same as the attack based on cache non-access. Otherwise, these
two attacks can differ. When the adversary monitors only a subset of nM < nL

cache lines, the attack based on cache non-access is usually better.

Remark 2. When the adversary monitors only a subset of nM < nL cache lines,
the mean and covariances formulas are more complicated. In fact, the proof in
the Appendix 8.2 provides the formulas for this general case. The diagonal (off-
diagonal) elements of Σna

last are not all the same there, and simplify to the same
value in the special case of nM = nL. Formulas for the general cases are used in
Section 5 for attacks monitoring a subset only.

Remark 3. When there is no confusion error so that p0 = 1, the predicted cache
lines by the secret key are always observed to be accessed. The mean elements
in µna

last are negative since dL − 1 · nK < 0, so as the number of encryptions nE
increases, the success probability of the attack increases to one. As p0 decreases,
the confusion error increases, and the success rate of the attack decreases. When
p0 = dL/nK = 1/nL, a cache line access by the victim becomes a totally ran-
dom observation by the adversary. Hence no information is leaked in that case,
reflected as mean zero in the Gaussian formula. For even smaller p0 < 1/nL,

13

the predicted cache lines corresponding to the secret key are more likely ob-
served to be non-accessed than random observations. In other words, a cache
access (non-access) by the victim tends to be observed by the adversary as the
opposite: non-access (access). In that case, the adversary will need to reverse
the attack: instead of selecting the k value that is most frequently observed in
the cache-access-keys, select the least frequently observed. We call such a attack
reversed attack. This is a very rare case for various architectures. In Section 5,
we point out that the random-permutation cache architecture satisfies and the
reversed attack can be used. The experimental results in Fig. 9b.

Remark 4. The Type II error rate p2 affects the success rate through ngA, the
apparent observed number of accesses to the adversary. The ngA increases as
p2 increases (when p0 is fixed). This leads to increase in both the mean and
variance. While the increases in the mean is due to the factor (1 − 1/nL)n

g
A−1,

the increase in the variance is slower than corresponding rate (1−1/nL)2(n
g
A−1).

So the overall effect of increase in Type II error rate p2 is to decrease the success
rate of the attack.

Remark 5. For the last round attack, the cache line index is determined by the
XOR result between the ciphertext and the SBox-inverse of the guessed key.
In this paper, we assume that the joint distribution of the predicted caches
lines corresponding to two different key candidates follows the distribution of
randomly selecting two balls from [0 : nL − 1] without replacement. However,
due to the SBox structure, the distribution actually slightly deviates from that
which will cause a small discrepancy between the theoretical success rate and
the empirical one, shown in Fig. 3.

4.2 The First Round Attack

For the first round of AES, the cache accesses leak information through the
operation

pw ⊕ kc (20)

where pw is one plaintext and kc is the secret key. The operation is linear. Given
plaintext pw, the set of key values that will cause the SBox in the first round
to access the line li ∈ L is {k | f1st(pw, k) = li}, where f1st(pw, k) is the cache
line including p ⊕ k. When nL is a positive power of 2 (nL = 16 in our AES
example implementation), a cache line li = {i ·dL, i ·dL+1, ..., i ·dL+dL−1} (for
i = 0, ..., nL − 1) includes all the possible values with the same higher log2(nL)
bits. Since the operation of pw ⊕ k is linear, the set {k | f1st(pw, k) = li} also
contains all possible k values with the same higher log2(nL) bits. We denote
such a set by 〈k〉, calling a key-line. Then there are nL such key-lines, and we
denote the set of these key-lines as K corresponding to the set of cache lines
L. For each plaintext pw, f1st(pw, ·) is a bijective mapping between K and L.
Therefore the first round cache-based attack can only recover the key line 〈kc〉
that contains the true secret key kc. In contrast, due to the nonlinear SBox
operation, the key-line {k | f last(cw, k) = li} for last round is not restricted to

14

these nL possible key-lines values only, which allows the adversary to recover kc
instead of only the key-line 〈kc〉. In this paper, the success rate of the first round
attack is defined as the probability to correctly retrieve the key-line 〈kc〉.

Similarly to before, we define

Nac
1st(k) = 1

nE

nE∑
w=1

I(f1st(pw, k) ∈ Sac
w ,f1st(pw, k) ∈ Smo)

Nna
1st(k) = 1

nE

nE∑
w=1

I(f1st(pw, k) ∈ Sna
w ,f1st(pw, k) ∈ Smo)

,

(21)

which have the same values for all dL key values in the same key-line 〈k〉. So
the success rates of revealing the secret-key line 〈k∗〉 are SRac

1st = ΦΣac
1st

(µac
1st)

and SRna
1st = ΦΣna

1st
(−µna

1st), with the mean-vector µac
1st(µ

na
1st) and the covariance-

matrix Σac
1st(Σ

na
1st) given in the following Theorem 2.

Theorem 2. When the adversary monitors all nM = nL cache lines, then

• each element in the mean µna
1st is

1− p0 · nL
nL − 1

(1− 1

nL
)n

g
A−1, (22)

and µac
1st = −µna

1st;

• each diagonal element of Σna
1st/Σ

ac
1st is

(2− p0 − 1−p0

NL−1)(1− 1
NL

)N
g
A−1 − (p0·NL−1

NL−1)2(1− 1
NL

)2(N
g
A−1)

−2(1− p0)(1− 1
NL−1)(1− 2

NL
)N

g
A−1;

(23)

• each off-diagonal element of Σna
1st/Σ

ac
1st is

(1− p0)(1− 1
nL

)n
g
A−1 − (p0·nL−1

nL−1)2(1− 1
nL

)2(n
g
A−1)

+(−1 + 2p0 − (1−p0)(p0nL−1)
(nL−1)3)(1− 2

nL
)n

g
A−1

(24)

The derivation of Theorem 2 is very similar to that of Theorem 1, and omitted
here. The first round attack generally has a success rate higher than that of
the last round attack. Note that the first round attack only recovers a dL-sized
key-line 〈kc〉 while the last round attack recovers the exact key value kc.

5 Numerical Results

We evaluate the theoretical success rates formulas on synthetic data and the
physical measurement data described in Section 2.2. We also use these formulas
to evaluate effects of some secure cache architectures against timing attacks
described in [31].

15

5.1 Success Rates on Synthetic Data

First we simulate prime+probe attack data on AES, with confusion error rate
p0 = 0.30 for the key-sensitive access. We simulate the attacks with varying
number of monitored cache lines by the adversary. Fig. 3 plots the success rates
of the first round and last round attacks. For the first round attack, there are
very good agreements between the theoretical success rate curve and empirical
one. For the last round attack, there are a small discrepancies as we mentioned
in Remark 5. Also, we can see that more leakage information is extracted (higher
success rate) when more cache lines are monitored. But the marginal incremental
value of monitoring an extra cache line decreases when more cache lines are
monitored.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numbers of measurements

S
uc

ce
ss

 R
at

e

Empirical
Theoretical

N
M

=1
N

M
=16

N
M

=13

N
M

=5

N
M

=9

(a) The first round attacks

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Numbers of measurements

S
uc

ce
ss

 R
at

e

Empirical
Theoretical

N
M

=13

N
M

=16

N
M

=9

N
M

=5

N
M

=1

(b) The last round attacks

Fig. 3: Empirical and theoretical success rates based on cache non-access on
simulated AES data.

The success rate formulas in Section 4 quantify the leakage resilience of cache
architectures against AES through the confusion error rate p0 value. Fig. 4 plots
the number of traces required to achieve SR = 0.8 on simulated data for different
p0 values. Without confusion errors being taken into account, it is equivalent to
assuming p0 = 1, thus needing only around 100 traces to break AES as shown
in Fig. 4. A perfect protection against cache leakage means that p0 = 1/NL.
In practice, the confusion rate p0 lies between those two extreme values, the
practitioners can decide if a system meets security specifications based on the
quantitative metrics in Fig. 4. Some advanced cache architectures do increase se-
curity by decreasing p0. Their effect can then be quantitatively assessed through
our formulas as done in Section 5.3 later.

16

0.070.080.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1e2

1e3

1e4

1e5

1e6

1e7

p0

N
um

be
r o

f M
ea

su
re

m
en

ts

Fig. 4: Sample size for achieving SR = 0.8 for different values of p0.

5.2 Experimental Results on Physical Implementations

We now apply the statistical model on the physical measurement data for the
AES implementation described in Section 2.2. As shown in Fig. 1, the misclassi-
fication error of accesses and non-accesses are different for different cache lines.
In Table 1, we present the probability estimation value of one predicated cache

Table 1: The values of p0 for nL cache lines

L0 L1 L2 L3 L4 L5 L6 L7

0.5385 0.0766 0.4642 0.1182 0.2707 0.1134 0.2473 0.0871

L8 L9 L10 L11 L12 L13 L14 L15

0.2909 0.0753 0.4395 0.0938 0.4265 0.0648 0.4399 0.4611

line being observed due to this access for each cache line Li, i = 0, · · · , NL − 1.
Large value of p0 means less confusion error, according to the success rate formu-
las in Section 4. Then more secret information leaks through the first cache line
than others. Since the values of p0 for cache lines L1, L3, L5, L7, L9 and L11 and
L13 are small, near the random probability 1/NL, there are a little information
leaked through monitoring these lines here. Notice that the modern last-level
cache is sliced into two slices, and depending on the physical address, it can be
stored into one of slices. Since we only monitor one of cache slices, we cannot
observe the information leaking from cache sets of the other slice. Therefore, we
are seeing low p0 values for those cache lines. Fig. 5 draw the empirical success
rate curves of last round attacks using cache misses with all cache lines versus

17

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements

S
uc

ce
ss

 R
at

e

Part cache lines
All cache lines

Fig. 5: Success rates of last round attacks using all or part cache lines on the
AES implementation.

without these low leakage cache lines. The attack success rate is improved when
using only the high leakage lines.

Now, we verify the success rate formulas on the first round attack. As dis-
cussed in Section 3.3, we need to select the threshold value to classify cache access
and cache non-access using the probing time. First, we set the Ng

A to the theoret-
ical AES value NA = 40 for each cache line, which corresponds to r0 = 0.9243.
This is the ideal threshold value assuming no confusion errors. Fig. 6 draws
the theoretical and empirical success rate curves for attacks monitoring the first
cache line or monitoring all NL = 16 caches lines. When all NL = 16 caches lines
are monitored, the cache accesses and non-accesses provide the equivalent infor-
mation for adversaries. For the single cache line monitoring, the cache non-access
attack is stronger than the cache access attack.

The first round attacks and the last round attacks are compared assuming
all cache lines are monitored. Since the first-round attack can only retrieve the
higher nibble of a key byte, with each nibble corresponding to 16 key byte values
(enumerating the lower 4-bit nibble) while the last-round attack recovers the
entire key byte. For a fair comparison, in Fig. 7(b), in addition to the common
used first order success rates curves, we also add the 16-th success rate (the
probability that the true key value is in the top 16 key candidates) for the last-
round attack. The 16-th order success rate curve of the last round attack is close
to the first order success rate of the first round attack. Thus, some method of
disrupting aligned T-tables would improve the first round attack to achieve the
performance of last round attacks.

The above threshold selection assumes no confusion errors, which is not true
for this data set. Using the above threshold value, we find the probability to
correctly observe a cache access is p0 = 0.5385 when monitoring only the first

18

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements

S
uc

ce
ss

 R
at

e

Empirical
Theoretical

Non−Access (Access)
 N

M
=16

Access
N

M
=1

Non−Access
N

M
=1

Fig. 6: Success rates of first round attacks for different numbers of cache lines
monitored on the AES implementation.

cache line. When monitoring all cache lines, since plaintext follows an discrete
uniform distribution, so does the predicated cache lines, so we estimate p0 by the
average of all p0 values, approximating to 0.2630. These probabilities still exceeds
1/NL = 1/16 = 0.0625, therefore our formulas predict that the attacks succeed
for large number of executions q. But different threshold values can be used in
the attacks. We consider the threshold values shown in Fig. 1 for the attacks
monitoring all cache lines. The numbers of measurements needed to achieve the
80% success rate are plotted in Fig 8. It shows that the attack does better with a
threshold value of r0 = 0.93 and Ng

A = 41.2, slightly different from the threshold
r0 = 0.9243 value which corresponds to assuming no confusion errors.

5.3 Quantification of Effects on SCA by Cache Architectures

Different cache architectures protect against side-channel attacks through in-
terference occurred between the input (victims’) and the output (adversaries’).
No matter how these cache architectures work, only two types of error in the
observations of adversaries can affect the efficiency of revealing the secret in-
formation, one is taking access as non-access, the other is taking non-access as
access. Zhang and Lee [31] considered several advanced architectures and used
mutual information to compare them. They showed several example interference
probability tables, and it would decide the type I and type II error rates when
the adversary classifies the cache accesses versus cache non-accesses.

In Table 2, we give the notations of general interference probabilities for
some Cache. Now, we apply the abstract statistical model to evaluate effects of
different architectures on the access-driven SCA. For the example abstract cache
architecture described in Table 2, there are three normal cache lines NL = 3, and

19

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements

S
uc

ce
ss

 R
at

e

Empirical
Theoretical

Last Round

First Round

(a) Comparison of success rates between
the first round and the last round attacks
on the AES implementation.

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements

S
uc

ce
ss

 R
at

e

First Round: SR
Last Round: SR

Last Round: SR16

(b) Theoretical success rates of last round
attacks including the 16-th order success
rate, where SR denotes the common used
first order success rate, while SR16 is the
16-th order success rate.

Fig. 7: Comparison of success rates when monitoring all cache lines.

0.99 0.97 0.930.92430.9 0.85 0.8 0.75 0.6 0.5 0.3 0.1
1e3

2e3

4e3

8e3

16e3

32e3

64e3

128e3

The cumulative probabilities corresponding to thresholds

N
um

be
r o

f M
ea

su
re

m
en

ts

Theoretical
Empirical

Fig. 8: Sample sizes (on log-scale) for achieving 80% success rates for attacks
using the last round on real AES data.

an extra input cache line I−1. Here, we focus on the effects caused by the cache
architecture, ignoring other noise. When attackers use this cache architecture
to launch implementations, they can distinguish accesses and non-accesses, and
the classification errors only come from the cache architecture. In Table 2, there
is p0,0 + p1,0 + p2,0 probability of input cache line I0 occuring, and the input
cache line I0 and the output cache line O0 coincide with the probability p0,0. So,
when the victim input the cache line I0, the corresponding output O0 is observed

20

Table 2: Interference Probability for cache

PI,O(I,O) I0 I1 I2 I−1

O0 p0,0 p0,1 p0,2 p0,−1

O1 p1,0 p1,1 p1,2 p1,−1

O2 p2,0 p2,1 p1,3 p2,−1

with the probability p0,0/(p1,0 + p1,0 + p2,0), and then the rate of Type I error
(p1), taking accesses as non-accesses, is 1 − p0,0/(p0,0 + p2,0 + p2,0). When the
victim does not input the cache line I0, O0 should not be observed, so there is
1− p0,0 + p1,0 + p2,0 possibility of cache line I0 non-accessed. Hence, the rate of
Type II error (p2), taking non-accesses as accesses, is (

∑
j 6=0

p0,j−p0,0)/(1−
∑
j

pj,0).

Further more, by the equation (10) in Section 3.3, with the values of p1 and p2,
we have r0 = r1(1 − p1) + r2p2 and p0 = 1 − p1(1 − 1/NL)/(1 − r0), where NL

is the number of cache lines, r1 and r2 are determined by the algorithm.
We investigate the performance of five example cache architectures in [31]:

conventional cache, partition-locked cache without preload (PL-w/o preload),
random-eviction cache (RE), random-permutation cache (RP), newcache (New).
Letting NA = 3, then r1 = 0.7037 and r2 = 0.2963, we show the values of
some intermediate quantities of our formulas for these cache architectures in
Table 3. From this table, the conventional cache and partition-locked cache

Table 3: Quantities for cache architectures when NA = 3

Cache Architectures p1 p2 p0 r0

Conventional 0.00 0.00 1.00 0.7037

PL-w/o preload 0.00 0.00 1.00 0.7037

RE 0.00 0.2614 1.00 0.7811

RP 0.6687 0.3337 0.3326 0.3320

New 0.6667 0.3333 0.3333 0.3333

without preload share the same values of quantities, no Type I and Type II
error occurring, so both of these caches lead the largest leakage information and
they have no difference from the view of attackers. Using random-eviction cache,
p1 = 0 but p2 = 0.2614, then the predicted accesses can be observed correctly,
but more non-accesses would be taken as accesses. So more traces are required
to detect the secret key than under the first two cache architectures. For the
newcache, since p0 equals to the probability 1/NL corresponding to perfectly
random distribution on all cache lines, so theoretically there is no information
leaked. For the random-permutation cache, p0 = 0.3326 which is less than 1/NL,

21

then there is a little secret information leaked. However, since p0 < 1/NL, if the
adversaries want to recover the secret key, they need take the observed access
(non-access) data set as non-access (access) data to do attack, as in Remark 3
in Section 4.1.

Here, we consider AES with NA = 40 and compare the vulnerabilities of these
cache architectures. Fig. 9 shows the success rate curves of the last round attack
on AES from our theoretical formula on the five example architectures. From
this figure, we can see that conventional and PL-w/o preload caches leak most
information, and cache attack is equally effective on these two architectures.
The random-eviction cache architecture provides some protection, lowering the
success rate of the attack significantly. Since p0 < 1/NL for random-permutation
cache, it can protect against the normal attack, but the reversed attack can help
to recovery the secret key with larger number of traces than the first three
cache architectures, as shown in Fig. 9b. The new cache architecture is most
effective against the SCA, eliminate the leakage almost entirely, corresponding
to its p0 = 1/NL.

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements

S
uc

ce
ss

 R
at

e

Conventional
PL−w/o Preload
RE
RP
New

(a) Normal Attacks

0 2 4 6 8 10

x 10
19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Measurements

S
uc

ce
ss

 R
at

e

Reversed Attack under RP

(b) Reversed attack under RP

Fig. 9: Theoretical success rates for attacks using the last rounds under some
advanced cache architectures.

6 Discussions

6.1 Related Work

How to evaluate an advanced cache architecture vulnerability comprehensively
and accurately is an important issue. Previous work can be classified into two
groups based on the metrics studied.

22

Success rate: such work predicts the probability that an attack succeeds given
the number of side-channel measurements. This is indeed the ultimate practi-
cal measure to reflect the architecture’s vulnerability. However, for cache-driven
attacks, the previous success rate model [28] bases on the conventional cache ar-
chitecture and perfect implementation environment, i.e., no confusion between
accesses and non-accesses. The model can not differentiate the advanced archi-
tecture, and often overestimates the side-channel attacks. Savas and Yilmaz [11]
showed the average number of keys recovered on simulated data for different
overall noise level which did not separate further the effect of the two types of
errors on the side-channel leakage.

Intermediate security related quantities: those work study some quantities
related to the cache architectures. One is the probability distribution of some
events, such as correctly identifying the predicted cache access for different cache
architectures [30], a cache hit (miss) occurring by the qth random access to one
table for cache memories with prefetching [32]. The other one is the mutual
information, serving as a measure to evaluate effects of misclassification, and
compare different architectures [31]. To some extend, these quantities measure
the effects caused by misclassification. However, the probability quantities and
mutual information are intermediate measures. There is still a gap between the
intermediate quantity and the ultimate security measure (success rate). The
relationship between these probability distributions and success rate is unclear,
while the relationship between mutual information and success rate is not always
monotone.

Our success rate model considers two types of confusion error as impact
factors. The explicit success rate formulas well indicate the architecture security,
and well evaluate the effects caused by the algorithm, the system architecture
and the specific implementation.

6.2 Extension to Time-Driven and Trace-Driven Attacks

Trace-driven attacks: suppose that the adversary can observe the cache activity
that results from running the algorithm. The resulting traces record whether a
particular cache access is a hit or miss. With nA accesses for the wth encryption,
the adversary gets a observed vector with the elements being cache hit or miss,
denoting by Otr:

Otr = (otrw,1, · · · ,otrw,nA
). (25)

and otrw,i ∈ {H,M}, for i = 1, · · · , nA, with H and M denoting the cache hit
and cache miss respectively. Since the development of cache architectures, the
cache hits and misses can not perfectly coincide with the calculated results from
algorithm any more. Similar with the analysis for the access-driven attacks, there
also exist these two kinds of confusion errors: type I error, taking cache access
as cache non-access, type II error, taking cache non-access as cache access. We
denote the two types of error rates by p1 and p2 respectively.

23

Take nA = 2 as an example, suppose the first access is cache miss and there
are nL cache lines, we have

P(ow,1 =M,otrw,2 =M) = 1
nL
p1 + nL−1

nL
(1− p2)

P(ow,1 =M,otrw,2 = H) = nL−1
nL

p2 + 1
nL

(1− p1).
(26)

Based on the principal, further analysis with confusion errors can be done. The
probability of obtained trace with any pattern can be calculated.

Time-driven attacks: the adversary utilizes the total execution time in a
cryptographic operation which is related to the numbers of cache misses and
hits. Instead of a trace for the trace-driven attack, here, the adversary can only
get two numbers: the number of cache hits Nhi and the number of cache misses
Nmi

Nhi =
nA∑
j=2

I(H = ow,j),

Nmi =
nA∑
j=2

I(M = ow,j) + 1.
(27)

Based on the probabilities gotten for trace-driven attack, the properties of time-
driven attacks can be achieved.

6.3 Relationship to Other New Cache Attacks

In this paper, we just use last-level cache Prime+Probe attack with dis-aligned
T-tables to illustrate our model. Recently some new variants of cache-drive at-
tacks, such as Flush+Reload, CacheBleed, attracted more interest, including to
applications to cloud-based environment and new cache systems. Meanwhile,
misaligned T-tables are often employed to improve the first round attack. Our
abstract mathematical model can be applied to analyze these attacks also.

Flush+Reload attack [35, 36] relies on the memory duplication feature, and
uses clflush instruction to flush all cache lines that contains the target from the
cache system. While the last-level Prime+Probe attack uses an eviction set and
cache inclusiveness property to evict the target from the cache system. Although
Flush+Reload and last-level Prime+Probe attacks differ on how to evict a target
from the cache, they have the similar methodology. To launch either of these two
cache-driven attacks, adversaries need to find out the access and non-access data
sets based on collected timing values. Obtaining the corresponding parameters
(misclassification rates, etc), our abstract model can predict the success rate
of Flush+Reload attack, facilitating the security evaluation without extensive
empirical assessment of success rate.

CacheBleed [37, 38] relies on the same principle with the Prime+Probe at-
tack, which monitors the cache bank instead of the entire cache line (which con-
tains multiple banks). It thus can detect more detailed leakage that the whole
line does not provide. Tackling with cache banks and using the corresponding
misclassification rates, our model can also be applied to the CacheBleed attack.

Misaligned T-tables [39–41] can improve the first round attack to recover
the whole secret key (rather than just half) through randomizing the locations

24

of the first element of Sbox table and expanding the cache-access patterns. By
considering the probability distribution of the modified cache lines, our model
can be extended to cover the misaligned T-tables attacks. However, the last
round attack model remain the same for misaligned T-tables, whose success rate
dominates the first round attack.

6.4 Other New Techniques

Our model is based on access-driven attacks which exploit the memory access on
the cache. The techniques of circumventing cache leaks, such as bitslice, AES-NI,
can completely resist against the access-driven attacks, so thoroughly vitiate our
model.

Bitslice implementations [42–44] convert an algorithm into a series of logi-
cal bit operations and implement different encryptions in parallel. Such imple-
mentations do not use any lookup tables whose address is dependent on secret
information, thus they are inherently immune to cache-access attacks, so to our
model.

Finally, Intel has announced a new AES-NI instruction set [45] that will pro-
vide dedicated hardware support for AES encryption and thus avoiding cache
leaks on future CPUs. The AES-NI option makes cache attacks on AES infea-
sible. However, there are still a lot of platforms that do not have such option,
and existing software libraries (like OpenSSL) are also based on table look-up,
especially in cloud-environment. So cache-timing attacks will continue to be a
threat to AES.

7 Conclusions

In this paper, we present a detailed statistical analysis for cache access-driven
SCA, taking two types of errors as impact factors. We derive an explicit success
rate formulas for the first time, accounting for the adversary’s confusion errors
between cache access and non-access. The model accuracy is confirmed through
simulations and physical experimental data sets. These formulas provide clear
quantification of cache architecture vulnerability to access-driven cache timing
attacks. Therefore, the proposed model provides insight on important security-
cognizant design parameters. By providing accurate quantitative success rate for-
mulas, for the first time, our model enables exploration of quantitative security-
performance tradeoff consideration.

8 Appendix

8.1 Proof of Property 2

Proof. We find the probability from counting the combinations of possible nA
accessed lines. The total number of possible combinations is nnA

L . Consider a
subset B ⊆ L with |B| = b. There are (nL − b)nA possible combinations such

25

that no line in B was accessed. By the inclusion-exclusion rule of combinators,
the number of possible combinations with at least one element in B not being
accessed is

b∑
j=1

(−1)j−1
(
b

j

)
(nL − j)nA .

So the number of combinations with all cache lines in B being accessed is

nnA

L −
b∑

j=1

(−1)j−1
(
b

j

)
(nL − j)nA =

b∑
j=0

(−1)j
(
b

j

)
(nL − j)nA .

Since there are
(
nL

r

)
subsets with exactly r cache lines, we get the probability

that exactly r cache lines not being accessed as

P(nna = r) =

(
nL

r

) r∑
j=0

(−1)j
(
r
j

)
(nL − j)nA

nnA

L

.

8.2 The Proof of Theorem 1

Attack Based on Cache Non-access: Since the procedure of execution is
independent with the monitoring procedure,

P(l /∈ Sac
w , l ∈ Smo) = P(l /∈ Sac

w)P(l ∈ Smo) = P(l /∈ Sac
w)

nM
nL

. (28)

For the first access, P(f last(cw, kc) 6= ow,1) = 1 − p0, and for other access i =
2, · · · , ngA, P(f last(cw, kc) 6= ow,i) = 1− 1/nL due to the uniform distribution of
L. By the independence of ngA accesses,

P(f last(cw, kc) /∈ Sac
w) = (1− p0)(1− 1

nL
)n

g
A−1. (29)

Consider a key kg 6= kc. If f last(cw, kc) 6= ow,1, then for f last(cw, kg) 6= ow,1, kg
has to be one of the other nK−dL−1 keys not in the set {k | f last(cw, k) = ow,1}.
Hence P(f last(cw, kg) 6= ow,1,f last(cw, kc) 6= ow,1) = (1−p0)(nK−dL−1)/(nK−
1). Similarly P(f last(cw, kg) 6= ow,1,f last(cw, kc) = ow,1) = p0(nK − dL)/(nK −
1). So

P(f last(cw, kg) 6= ow,1) = (1− p0)
nK − dL − 1

nK − 1
+ p0

nK − dL
nK − 1

= 1− dL − p0
nK − 1

.

Hence for kg1 6= kg2 ∈ K\kc, we have the following equations:

P(f last(cw, kg1) /∈ Sac
w) = (1− dL − p0

nK − 1
)(1− 1

nL
)n

g
A−1, (30)

26

P(f last(cw, kc) /∈ Sac
w ,f last(cw, kg1) /∈ Sac

w) = (1−p0)
nK − dL − 1

nK − 1
·

((
nK−dL

2

)(
nK

2

))ng
A−1

,

(31)

P(f last(cw, kg1) /∈ Sac
w ,f last(cw, kg2) /∈ Sac

w)

=

(
p0

(nK−dL
2)

(nK−1
2)

+ (1− p0)
(nK−dL−1

2)
(nK−1

2)

)
·
(

(nK−dL
2)

(nK
2)

)ng
A−1

.

(32)

By equations (28), (29) and (30), the element of µna
last is

µna
last(kg) = E[dnaw (kc)− dnaw (kg)]

= [P(f last(cw, kc) /∈ Sac
w)− P(f last(cw, kg) /∈ Sac

w)]nM

nL

= dL−p0·nK

nK−1 (1− 1
nL

)n
g
A−1 nM

nL

(33)

The diagonal element of Σna
last corresponding to kg ∈ K\kc, by equations

(28), (29), (30) and (31), is

Σna
last(k, k)

= E[{I(f last(cw, kc) /∈ Sac
w ,f last(cw, kc) ∈ Smo)− I(f last(cw, kg) /∈ Sac

w ,f last(cw, kg) ∈ Smo)}2]

−[µna
last(kg)]2

= P(f last(cw, kc) /∈ Sac
w)P(f last(cw, kc) ∈ Smo) + P(f last(cw, kg) /∈ Sac

w)P(f last(cw, kg) ∈ Smo)

−2P(f last(cw, kc) /∈ Sac
w ,f last(cw, kg) /∈ Sac

w)P(f last(cw, kc) ∈ Smo,f last(cw, kg) ∈ Smo)

−µna
last(kg)2

= (2− p0 − dL−p0

nK−1)(1− 1
nL

)n
g
A−1 nM

nL

−2(1− p0)nK−dL−1
nK−1

(
(nK−dL)(nK−dL−1)

nK(nK−1)

)ng
A−1 · P(f last(cw, kc) ∈ Smo,f last(cw, kg) ∈ Smo)

−
(

p0·nK−dL

nK−1 (1− 1
nL

)2n
g
A−2

)2 (
nM

nL

)2
.

(34)
This is the formula for the general case, and the P(f last(cw, kc) ∈ Smo,f last(cw, kg) ∈
Smo) depends on the values of kc and kg and also the SBox property. When
all nM = nL cache lines are monitored, P(f last(cw, kc) ∈ Smo,f last(cw, kg) ∈
Smo) = 1, and the formula simplifies to equation (18).

27

The element of Σna
last corresponding to kg1 , kg2 ∈ K\kc, by equations (28),

(29), (30), (31) and (32), is

Σna
last(kg1 , kg2)

= E{[I(f last(cw, kc) /∈ Sac
w ,f last(cw, kc) ∈ Smo)− I(f last(cw, kg1) /∈ Sac

w ,f last(cw, kg1) ∈ Smo)]

·[I(f last(cw, kc) /∈ Sac
w ,f last(cw, kc) ∈ Smo)− I(f last(cw, kg2) /∈ Sac

w ,f last(cw, kg2) ∈ Smo)]}

−[µna
last(kg)]2

= P(f last(cw, kc) /∈ Sac
w)P(f last(cw, kc) ∈ Smo)

−P(f last(cw, kc) /∈ Sac
w ,f last(cw, k1) /∈ Sac

w)P(f last(cw, kc) ∈ Smo,f last(cw, k1) ∈ Smo)

−P(f last(cw, kc) /∈ Sac
w ,f last(cw, k2) /∈ Sac

w)P(f last(cw, kc) ∈ Smo,f last(cw, k2) ∈ Smo)

+P(f last(cw, k1) /∈ Sac
w ,f last(cw, k2) /∈ Sac

w)P(f last(cw, k1) ∈ Smo,f last(cw, k2) ∈ Smo)

−[µna
last(kg)]2

= (1− p0)(1− 1
nL

)n
g
A−1 nM

nL

−(1− p0)nK−dL−1
nK−1 [(nK−dL)(nK−dL−1)

nK(nK−1)]n
g
A−1

·[P(f last(cw, kc) ∈ Smo,f last(cw, kg1) ∈ Smo) + P(f last(cw, kc) ∈ Smo,f last(cw, kg2) ∈ Smo)]

+ (nK−dL−1)(nK−dL−2+2p0)
(nK−1)(nK−2) · [(nK−dL)(nK−dL−1)

nK(nK−1)]n
g
A−1

·P(f last(cw, kg1) ∈ Smo,f last(cw, kg2) ∈ Smo)

−
(

dL−p0·nK

nK−1

)2
(1− 1

nL
)2n

g
A−2

(
nM

nL

)2
.

(35)
The off-diagonal elements, in the general case, are different from different

kg1 and kg2 values. Similarly, when all nM = nL cache lines are monitored,
P(f last(cw, kg1) ∈ Smo,f last(cw, kg2) ∈ Smo) = 1 , and the formula simplifies to
equation (19) for all off-diagonal elements.

References

1. P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems,” in Proceedings of the 16th Annual International Cryptology Con-
ference on Advances in Cryptology, ser. CRYPTO ’96, 1996, pp. 104–113.

2. J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanalysis of
product ciphers,” J. Comput. Secur., vol. 8, no. 2,3, pp. 141–158, Aug. 2000.

3. Y. Tsunoo, T. Saito, T. Suzaki, and M. Shigeri, “Cryptanalysis of des implemented
on computers with cache,” in Proc. of CHES 2003, Springer LNCS. Springer-
Verlag, 2003, pp. 62–76.

4. D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
5. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo, “Aes

power attack based on induced cache miss and countermeasure,” in Proceedings

28

of the International Conference on Information Technology: Coding and Comput-
ing (ITCC’05) - Volume I - Volume 01, ser. ITCC ’05, 2005, pp. 586–591.

6. C. Lauradoux, “Collision attacks on processors with cache and countermeasures.”
WEWoRC, vol. 5, pp. 76–85, 2005.

7. O. Acıiçmez and c. K. Koç, “Trace-driven cache attacks on aes (short paper),” in
Proceedings of the 8th International Conference on Information and Communica-
tions Security, ser. ICICS’06, 2006, pp. 112–121.

8. J. Fournier and M. Tunstall, “Cache based power analysis attacks on aes,” in
Information Security and Privacy. Springer, 2006, pp. 17–28.

9. X.-J. Zhao and T. Wang, “Improved cache trace attack on aes and clefia by consid-
ering cache miss and s-box misalignment.” IACR Cryptology ePrint Archive, vol.
2010, p. 56, 2010.

10. J.-F. Gallais, I. Kizhvatov, and M. Tunstall, “Improved trace-driven cache-collision
attacks against embedded aes implementations,” in Information Security Applica-
tions. Springer, 2010, pp. 243–257.

11. E. Savaş and C. Yılmaz, “A generic method for the analysis of a class of cache
attacks: A case study for aes,” The Computer Journal, p. bxv027, 2015.

12. J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,” in Cryp-
tographic Hardware and Embedded Systems-CHES 2006. Springer, 2006, pp. 201–
215.

13. O. Acıiçmez, W. Schindler, and Ç. K. Koç, “Cache based remote timing attack on
the aes,” in Topics in Cryptology–CT-RSA 2007. Springer, 2007, pp. 271–286.

14. C. Percival, “Cache missing for fun and profit,” BSDCan 2005, 2005.
15. D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures:

The case of aes,” in Proceedings of the 2006 The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, ser. CT-RSA’06, 2006, pp. 1–20.

16. M. Neve and J.-P. Seifert, “Advances on access-driven cache attacks on aes,” in
Proceedings of the 13th International Conference on Selected Areas in Cryptogra-
phy, ser. SAC’06, 2007, pp. 147–162.

17. E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes, and coun-
termeasures,” J. Cryptol., vol. 23, no. 2, pp. 37–71, Jan. 2010.

18. Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side channels and
their use to extract private keys,” in Proc. ACM Conf. on Computer & Commu-
nications Security, 2012, pp. 305–316.

19. G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! A
fast, Cross-VM attack on AES,” in Research in Attacks, Intrusions and Defenses
(RAID), 2014, pp. 299–319.

20. ——, “Fine grain Cross-VM Attacks on Xen and VMware are possible!” in Int.
Symp. on Privacy & Security in Cloud & Big Data, Dec. 2014.

21. G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A shared cache attack that works
across cores and defies VM sandboxing - and its application to AES,” in IEEE Int.
Symp. on Security & Privacy, 2015, pp. 591–604.

22. F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in IEEE Symposium on Security and Privacy, 2015, pp.
605–622.

23. Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based
side channel attacks,” in Proceedings of the 34th Annual International Symposium
on Computer Architecture, ser. ISCA ’07, 2007, pp. 494–505.

24. ——, “A novel cache architecture with enhanced performance and security,” in Mi-
croarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium
on. IEEE, 2008, pp. 83–93.

29

25. L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev, “Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 8, no. 4,
p. 35, 2012.

26. D. Page, “Theoretical use of cache memory as a cryptanalytic side-channel,” De-
partment of Computer Science, University of Bristol, Tech. Rep. CSTR-02-003,
June 2002.

27. ——, “Defending against cache-based side-channel attacks,” Information Security
Technical Report, vol. 8, no. 1, pp. 30 – 44, 2003.

28. K. Tiri, O. Aciiçmez, M. Neve, and F. Andersen, “An analytical model for time-
driven cache attacks,” in Proceedings of the 14th International Conference on Fast
Software Encryption, ser. FSE’07, 2007, pp. 399–413.

29. Z. Wang and R. B. Lee, “Covert and side channels due to processor architecture,”
in null. IEEE, 2006, pp. 473–482.

30. L. Domnitser, N. Abu-Ghazaleh, and D. Ponomarev, “A predictive model for cache-
based side channels in multicore and multithreaded microprocessors,” in Computer
Network Security. Springer, 2010, pp. 70–85.

31. T. Zhang and R. B. Lee, “New models of cache architectures characterizing in-
formation leakage from cache side channels,” in Proceedings of the 30th Annual
Computer Security Applications Conference, 2014, pp. 96–105.

32. C. Rebeiro and D. Mukhopadhyay, “A formal analysis of prefetching in pro-
filed cache-timing attacks on block ciphers,” Cryptology ePrint Archive, Report
2015/1191, 2015.

33. V. Lomné, E. Prouff, M. Rivain, T. Roche, and A. Thillard, “How to estimate
the success rate of higher-order side-channel attacks,” in Proceedings of the 16th
International Workshop on Cryptographic Hardware and Embedded Systems —
CHES 2014 - Volume 8731, 2014, pp. 35–54.

34. Y. Fei, A. A. Ding, J. Lao, and L. Zhang, “A statistics-based success rate model
for dpa and cpa,” Journal of Cryptographic Engineering, vol. 5, no. 4, pp. 227–243,
2015.

35. Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise, l3 cache
side-channel attack,” in 23rd USENIX Security Symposium (USENIX Security 14),
2014, pp. 719–732.

36. B. Gülmezoğlu, M. S. Inci, G. Irazoqui, T. Eisenbarth, and B. Sunar, “A faster and
more realistic flush+ reload attack on aes,” in Constructive Side-Channel Analysis
and Secure Design. Springer, 2015, pp. 111–126.

37. Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: A timing attack on openssl
constant time rsa,” Cryptology ePrint Archive, Report 2016/224, Tech. Rep., 2016.

38. G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against
cache attacks,” arXiv preprint arXiv:1603.02187, 2016.

39. Z. Xinjie, W. Tao, M. Dong, Z. Yuanyuan, and L. Zhaoyang, “Robust first two
rounds access driven cache timing attack on aes,” in Computer Science and Soft-
ware Engineering, 2008 International Conference on, vol. 3. IEEE, 2008, pp.
785–788.

40. J. Takahashi, T. Fukunaga, K. Aoki, and H. Fuji, “Highly accurate key extrac-
tion method for access-driven cache attacks using correlation coefficient,” in Aus-
tralasian Conference on Information Security and Privacy. Springer, 2013, pp.
286–301.

41. R. Spreitzer and T. Plos, “Cache-access pattern attack on disaligned aes t-tables,”
in International Workshop on Constructive Side-Channel Analysis and Secure De-
sign. Springer, 2013, pp. 200–214.

30

42. C. Rebeiro, D. Selvakumar, and A. Devi, “Bitslice implementation of aes,” in
International Conference on Cryptology and Network Security. Springer, 2006,
pp. 203–212.

43. M. Matsui and J. Nakajima, “On the power of bitslice implementation on intel
core2 processor,” in International Workshop on Cryptographic Hardware and Em-
bedded Systems. Springer, 2007, pp. 121–134.

44. E. Käsper and P. Schwabe, “Faster and timing-attack resistant aes-gcm,” in Cryp-
tographic Hardware and Embedded Systems-CHES 2009. Springer, 2009, pp. 1–17.

45. S. Gueron, “Advanced encryption standard (aes) instructions set,” Intel,
http://softwarecommunity. intel. com/articles/eng/3788. htm, accessed, vol. 25,
2008.

31

