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Abstract. We generalize the cryptographic notion of Order Revealing
Encryption (ORE) to arbitrary functions and we present a construction
that allows to determine the (partial) ordering of two vectors i.e., given
E(x) and E(y) it is possible to learn whether @ > y, y > @ or whether
x and y are incomparable. This is the first non-trivial example of a
Revealing Encryption (RE) scheme with output larger than one bit, and
which does not rely on cryptographic obfuscation or multilinear maps.

1 Introduction

Computing on encrypted data is a promising approach to privacy preserving
cloud computing. Using techniques such as (fully) homomorphic encryption
[RAD78] |Gen09], a client can upload sensitive data on a partially untrusted
cloud which can perform computation on the data without learning anything
about the data, including the result of the computation. However in many ap-
plications it is desirable for the server to learn the result of the computation,
so that the server can make decisions based on this result without further in-
teraction with the client. Imagine as an example a server running a encrypted
spam filter: using homomorphic encryption the server can, given an encrypted
message, determine whether the message is spam or not but, since the server
does not learn this bit, the server is unable to place the encrypted message in
the user’s spam folder.

Revealing Encryption. To solve the above class of problems a different kind
of cryptographic primitive is needed, which we refer to as revealing encryption or
RE. Intuitively, an RE scheme is an encryption scheme that allows to compute
(selected) functions of the plaintexts by having access to the encrypted data only.
In other words, given a target function f we want to construct an encryption
scheme F and a public function F'such that if X; = E(K, z1) and Xy = E(K, z2)
(for a random key K') then we have that

F(Xl,Xg) = f(l‘l,.%'g)

Order Preserving Encryption. The first attempt towards building RE was
taken by Agrawal et al. [AKSX04] when they introduced order preserving en-
cryption (OPE), which using our language can be phrased as the very special
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case of RE where both f and F are numeric comparison. The “preserving” part
of OPE is both a strength and a weakness: since f = F' it is very easy to use
OPE in practical applications (a client outsourcing an encrypted database using
OPE does not even need to inform the server that the database is encrypted,
as the database can compare encrypted data in the exact same way as it would
compare plaintext data). Unfortunately preserving numeric ordering implies that
OPE cannot achieve strong security guarantees, as shown by [BCLO09,[BCO11].
To overcome this limitation order revealing encryption (ORE) was introduced
by Boneh et al. [BLR™15|. One of the conceptual contributions of this paper is
to generalize the notion of ORE to arbitrary functions (the formal definition of
RE is given in Section .

While the first (fully-secure) ORE schemes could only be instantiated using
extremely heavy cryptographic tools (see below) and where therefore completely
impractical, Chenette et al. [CLWW 15| proposed a very elegant and simple con-
struction of ORE which is extremely efficient in practice (at the price of leaking
slightly more information than in the ideal case).

Obfuscation & Co. On the other end of the scale, it is trivial to construct
secure RE for any function using ideal circuit obfuscation. In a nutshell, one
can let F' be an obfuscated circuit that takes as input two ciphertexts X7, Xo,
contains a (hardwired) secret key K, and outputs

F(X17X2) = f(D(Ka Xl)vD(Kv X2))

i.e., the obfuscated program simply outputs the output of f evaluated on the
result of the decryption of its inputs.

Unfortunately general purpose ideal obfuscation or even virtual black-box 0b-
fuscation does not exist [BGIT01]. While a weaker notion of obfuscation (called
indistinguishability obfuscation), might be plausibly instantiated under crypto-
graphic assumptions (as shown by the fascinating research direction started by
Garg et al. [GGHT13|), it seems unlikely that this will turn into a practical
solution in the foreseeable future. Note that using obfuscation it is possible to
instantiate multi-input functional encryption (MIFE) |[GGG™ 14, [BLRT15]: us-
ing MIFE, one can implement RE in a similar way as we sketched above, where
the obfuscated program is replaced by a MIFE secret key sky for the function
f

Note that despite the fact that MIFE implies RE, RE does not imply MIFE.
The fact that RE is less powerful than MIFE might seem like an unwanted
limitation and an argument against this new notion. However, this also means
that it might be possible to instantiate RE more efficiently and under weaker
assumptions than MIFE. The main reason for this seems to be that a MIFE
scheme must not reveal any information (e.g., satisfy IND-CPA security) until
a secret key for a function f is released, while in an RE scheme anyone can
compute the authorized function on the encrypted data.

In this paper we show that this is indeed the case and it is therefore concep-
tually interesting to study the feasibility and efficiency of this weaker primitive.

Our Contributions. Given the state of affairs, it is natural to ask:



For which functions can we construct practically
efficient revealing encryption (RE) schemes?

In this paper we begin answering the question by showing a construction of
revealing encryption for partial order of vectors. This is a naturally interesting
function motivated by concrete applications such as privacy-preserving skyline
queries [BKS01, PTFS03|: given a dataset of d-dimensional vectors, the goal of
a skyline query is to determine the set of dominating vectors. As an example
assume that a client wants to find a hotel in Paris which is a cheap and close
to the city center. The service provider then provides the client with a skyline
containing all hotels in Paris that are either better or equally good in both price
and distance compared to all other hotels. Depending on the application it might
be desirable to be able to protect the confidentiality of the data but at the same
time being able to answer skyline queries.

Technical Overview. The starting point of our solution is the recent ORE
scheme of Chenette et al. [CLWW15|. In this scheme, a value x € {0,1}" is
encrypted using n PRF evaluations i.e., for each index i = 1,...,n the encryption
algorithm outputs a value

¢i = Fr ;(prefix(z,i — 1)) + z;

where prefix(x, i) is the function that outputs the ¢ most significant bits of 2 and
where + is integer addition.
Now, take two values x and y and let ¢* be the largest 7 such that

prefix(z,i — 1) = prefix(y,i — 1)

i.e., i* is the smallest index such that x;+ # y;«. Then the first ¢* — 1 ciphertexts
will be identical for both z,y (since the PRF is evaluated on exactly the same
value, and the added bit is the same), while the ¢*-th ciphertext will be “in the
right order” (since the PRF is evaluated on exactly the same value but in only
one of the two cases 1 will be added) and therefore one can compare = and y
by finding the first ciphertext component in which the encryptions differ and
perform a simple numerical comparison of this value. For security, note that the
bottom n — ¢ — 1 ciphertexts will be independently random since the PRF is
evaluated on different values. Therefore, the scheme reveals the order as well as
the first position in which the value differs. A very recent work shows that it
is possible to limit this leakage |[CLOZ16], but unfortunately their construction
requires heavy public key operations (we believe that similar techniques could
be applied to our scheme as well).

In a nutshell, we generalize the construction of Chenette et al. [CLWW15| in
the following way: consider for simplicity the 2-dimensional case & = (z!,2?).
Then for each pair of indices 4, j we compute

¢; i = Fre ;i (prefix(z!,i — 1), prefix(z2,  — 1)) + o(z', 22
5] HJ(p ’ , P 5] )

where « is a carefully chosen function that allows to perform the comparison
between two vectors in such a way that no information is leaked when the vectors



are incomparable. The main challenge in coming up with the right function «,
is that we are trying to encode a non-binary output (i.e., > y, y > @, or
incomparable) into a binary relation (i.e., the numerical comparison between
the scalars a(x) and a(y)). Details of the constructions are given in Section
and in Section [5| we give a performance analysis of our scheme.

Revealing Encryption Beyond Partial Ordering. We think that discov-
ering which functions admit revealing encryption schemes is an exciting and
important future research direction. In Section |§| we discuss simple (uncondi-
tionally secure) examples of revealing encryptions for absolute distance and for
hamming distance (which unfortunately is only secure for a limited number of
queries).

Other related work. During recent years, OPE and ORE has been active
research areas: Bun and Zhandry |[BZ15] has studied the connection between
ORE and differentially private learning [DMNS06, KLNT11|. Concurrent with
this work, Lewi and Wu [LW16] presented a new and efficient ORE construction
based on the work of Chenette et al. [CLWW15]. This construction splits the
message in blocks (i.e. a sequence of bits) and the scheme leaks the position of
the first block in which the messages differ. Roche et al. [RACY15] proposed a
new primitive called partial order preserving encoding, which achieves ideal OPE
security (IND-OCPA [BCLOO09]) while providing fast insertion and search in an
encrypted database. Furthermore, interactive OPE |[PLZ13| [KS14) Kerl5] was
introduced to achieve stronger security guarantees (like ideal security) for OPE
schemes. In these schemes, ciphertexts are mutable, meaning that whenever a
new value is encrypted the existing ciphertexts can be updated.

During the last couple of decades there has been a long line of work con-
cerning encryptions schemes, where either the ciphertexts preserve some infor-
mation about the underlying messages or it is possible to perform a public
test that reveals some information about the encrypted data: searchable en-
cryption [SWP00, | GSW04, BBOO07, BHJP14] allows users to outsource their
data in a private manner, while maintaining the possibility to do efficient search
over it. Variants of searchable encryption are public-key encryption with keyword
search [BCOPO03, (CGKOO06), secure indexes [Goh03], and (privacy-preserving)
attribute-based searchable encryption [WLLX13, KHY 13| |ZXA14} |[CD15]. Other
related encryption schemes are prefix preservering encryption [XFAMO02, XY12]
and format preserving encryption [BRRS09, [WRB15|, which are concerned with
preserving some specific information about the encrypted data. Pandey and
Rouselakis [PR12] introduced the notion of property preserving symmetric en-
cryption, which is a generalization of OPE to arbitrary predicates and they give
a construction for inner product.

The applications of RE is closely related to the applications of encryption
schemes, like attribute-based encryption |GPSWO06,|(GVW13|, functional encryp-
tion |BSW11|, (anonymous) identity-based encryption [Sha84, KSWOS|, pred-
icate encryption [KSWO8], and access control encryption |[DHO16]. All these
encryption schemes deal with payload privacy, user privacy, computation on
outsourced encrypted data, fine-grained access control on data, etc.



In a recent independent work, Joye and Passelgue [JP16] presented several
practical realizations of MIFE for specific functions and with a relaxed security
notion. Among these is an efficient construction of ORE with limited leakage
under standard assumptions.

Finally, in Appendix [A] we review the (in)security of some existing systems
which offer alternative solutions to privacy-preserving skyline queries.

2 Preliminaries

For n,ny,ne € N, let [ng : no] be the set {ny1,n1 +1,...,n5 — 1,n2} and [n] be
the set [1 : n]. For « € Z, let |z| denote the absolute value of . Let © < S
denote that = is sampled uniform random from the set S.

Definition 1 (Pseudorandom Function). We say F : {0,1}" x {0,1}* —
{0,1}* is a pseudorandom function (PRF) if for all PPT adversaries A

adv.q =2 - |PrlA9O)(1%) = b] — 1/2| < negl(x)
with Oy a uniform random function and Oy = Fk for some key K € {0,1}".

We interpret « € {0,1}" both as a string of bits i.e. x = (x1,...,2,) and
as an integer © = Y1 2'x,_,; i.c., x; is the most significant bit of z. Given
such an x and an index ¢ € [n] it is convenient to define the function prefix :
{0,1}"™ x [n] — {0,1}" x [n]

prefix(z,4) = (x1,...,2;,0" "% 1)

so that prefix(z,1) = (x1,0""1,1), prefix(z,2) = (x1,22,0""2,2) and so on.
Note that prefix has the useful property that for all x € {0,1}™ prefix(z,i) #
prefix(x,j) if i # j. Given a d-dimensional vector x € ({0,1}")¢ we define
prefix(x, (i1,...,1q4)) to output the vector (prefix(xy,i1),. .., prefix(zq,iq))-

Given two strings z,y € {0, 1}" we define pos(z, y) to return the largest ¢ such
that prefix(x,i—1) = prefix(y, i — 1) or equivalently the smallest ¢ such that z; #
y;. Given two d-dimensional vectors x, y we define pos(x, y) to output the vector
(pos(z1,¥1), .., pos(zq,ya)), where x; (resp. y;) denotes the jth coordinate in
the d-dimensional vector = (resp. y).

3 Revealing Encryption

In this section we formally define Revealing Encryption (RE).

Authorized Function. Let M be the input space and Z the output space, then
a RE scheme is parametrized by f-ary authorized function

fMT

Revealing Encryption. Given an authorized function f, a RE scheme for f is
a triple of algorithms II; = (Setup, Enc, Eval) defined as follows:



Setup: On input the security parameter k, the randomized algorithm Setup
outputs a secret key sk and the public parameters pp.

Encryption: On input a message m € M and a secret key sk, the randomized
algorithm Enc outputs a ciphertext c.

Eval: On input £ ciphertexts {c; = Enc(sk,m;)};c|q and the public parameters
pp, the Eval algorithm outputs f(mg,...,my) € Z.

Remark 1. Note that here and in the rest of the paper we do not mention the
decryption algorithm, since any RE can be enhanced to allow for decryption by
appending an IND-CPA secure encryption to the RE ciphertext.

Definition 2 (Correctness). Let f be an authorized function and k be the
security parameter. Let IT; = (Setup, Enc, Eval) be a RE scheme for f, then for
all messages {m;}icjy € M we ask that the following probability

Pr [Eval (pp, {Enc(sk,m;)}icjq) # f ({mitici)]

must be negligible in k, where (sk,pp) <+ Setup(1®) and the probabilities are
taken over the random coins of all algorithms.

Leakage Function. Following the work of Chenette et al. [CLWW15], our def-
inition also allows for a leakage function £ : M* — {0, 1}* that exactly charac-
terizes the information leaked by our constructions. In the best case L({m;}ic[q)
outputs f({m;};es) for every subset S C [g] of size ¢, and in this case we talk
about optimal leakage. Note that the work of Chenette et al. leaks extra infor-
mation as well (the first digit at which two integers z,y are different) and our
main construction inherits this leakage.

Definition 3 (Security, [CLWW15|). Let k be the security parameter, let
g € N, and let f be an authorized function. Let II; = (Setup, Enc, Eval) be
a RE scheme for f. Consider the experiments REALY (x) and IDEALi%S,ﬁ(n)
in Figure |1, where A = (Ay,...,Aq) is an adversary, S = (So,...,Sy) is a
simulator, and L(-) is a leakage function.

We say that II; is a g-secure RE scheme wrt L(-) if for all adversaries A that
makes no more than q queries, there exists a simulator S such that the output
distributions of the two experiments are computationally indistinguishable

REAL' (k) ~¢ IDEALS s £ (k)
We say a scheme is simply secure if it is g-secure for every q = poly(k).

Definition [3| captures the requirement that given an a priori bounded num-
ber of ciphertexts, the adversary should not be able to learn more than the
allowed leakage. The security experiments formalize this requirement by creat-
ing the challenge ciphertexts either as real encryptions of the adversarial chosen
plaintexts or simulated based on the allowed leakage of the adversarial chosen
plaintexts.

Note that the output of the experiment contains an arbitrary output from the
adversary (i.e., st4), which is a very conservative way of allowing the adversary
to output any information that might be useful to distinguish between the ideal
experiment and the real experiment.



Fig. 1. Security Experiments for Revealing Encryption

4 Partial Order Revealing Encryption (PORE)

In this section, we present a construction of revealing encryption for partial or-
dering of vectors. For the sake of presentation, we will start by showing our con-
struction in the 2-dimensional case (which already requires a significant amount
of notation and indices). Afterwards we generalize to the multidimensional case.

REALFRE ()

- =

(sk, pp) < Setup(1%);
(ma,sta) < A1(1%, pp);
c1 < Enc(sk,m1);
for2<i<gq:

a. (mi,stA) — Ai(stA,cl, .. .,Cifl);

b. ¢ < Enc(sk,m;);
output (c1,...,¢q) and sta;

IDEALS s £ (k)

e

(sts,pp) « So(17);
(mlvstA) <~ A1(1N7pp)§
(c1,sts) = Si(sts, L(m1));
for2<i<gq:

a. (mz‘,StA) <—Az‘(St_A,C1,...,Ci,1);
b. (Ci,StS) (—Si(sts,ﬁ(ml,...,mi));
output (c1,...,¢q) and sta;

The authorized function for a 2-dimensional PORE is

f:MxM—{0,0),(0,1),(1,0),(1,1)}

where M = {0,1}" x {0,1}". For m! = (z',y') € M and m? = (22,9%) € M

we define a function that determines the order

ord(m ) i~ {

if 21 <22 Ayl <92
otherwise

Then we can define the authorized function as

which means that

I

f(m',m?) = (ord(m*, m?), ord(m? m'))
(1,1) ifm! =m?
L o) (1,0)  ifm!<m?
MM =N (0.1) i ml > m?
(0,0) if they are incomparable



We will prove the security of our scheme with respect to the following leakage
function (with f as defined above and pos as defined in Section :

L(m',---,m7) = {f(m',m),pos(m’,m) | i, € [q]}
Given a pseudorandom function
F:{0,1}" x {0,1}* — {0,1}"
we define the following four functions:

FU FD M x [n+1]* - {0,1,2}
Pﬁf@{MW[]»mn

where given a plaintext m = (z,y) € M and two indices i,j € [n + 1] we define

Fg)(m, (4,7)) = Fr (1, prefix(z,i — 1), prefix(y, 5 — 1)) mod 3
FI(?) (m, (i,7)) = Fx(2, prefix(z,i — 1), prefix(y, 5 — 1)) mod 3
FI((B) (x,41) = Fk (3, prefix(z,i — 1)) mod 2
F\P(y, ) = Fi (4, prefix(y,j — 1)) mod 2

Construction 1 Fix a security parameter k € N. We define a PORE scheme
Ipore = (Setup, Enc, Eval) as follows

Setup: On input the security parameter x € N, sample and output a key K <—g

{0, 1}~
Encryption: Given a point m = (x,y) € M and a secret key K compute for
all 4,7 € [n+1]

0 if (zi,y;) = (0,0)

1 if (zg,95) = (1,1)

z; ifi<n,j=n+1

y; ifi=n+1,j<n

0 ifi=n+1,j=n+1
z;j  otherwise

where z;; = F[((l)((an7 y), (4,7)), and then compute

emi; = Fi$((2,y), (i.4)) + ai; mod 3
bzi:FI(?)(x,i)+xi mod 2
by; = Fl(f)(y,j) +y; mod 2

Finally, output the ciphertext

C= ({cmlj} i,jEn+1]> {bx; }ze {byj}Je n])



Evaluation: On input two ciphertexts
C' = (em!, ba!, by*) = Enc(K,m")
C? = (ecm?,b2?, by?) = Enc(K,m?)
Let i be the first index such that bz} # bx? (i = n+ 1 if ba! = bx?), and let
j be the first index such that by} #+ by? (j=n+1ifby' =by?). Ifi=n+1

and j = n + 1, the algorithm outputs (1,1) (since m!
compute

= m?). Otherwise,

— el 2
t =cm;; —cmy;  mod 3

Next, the algorithm branches on the value of ¢:
— If t = —1, output (1,0) (since m! < m?);
— If t = 1, output (0,1) (since m* > m?);
— Otherwise output (0,0), since the two points are incomparable.

Correctness. Let m! = (2!, 4') and m? = (22,%?) be two plaintexts such that
pos(m!,m?) = (£,,0,).
We first argue that bx} = bx? for i < £,. This is easy to see:

b} = F}?)(ml,i) +2! mod 2
= Fk (3, prefix(x',i — 1)) + 2} mod 2
= Fk(3, prefix(z?,i — 1)) + 27 mod 2
= bz?

Since by definition of £, we know that Vi < ¢,, prefix(z!,i—1) = prefix(z2,i — 1)
and z] = z2. The same can be argued about the y part. We then argue that if
l, < n+ 1, then there 3i < n + 1 such that bz} # bx?. This is easy to see since
by definition of £, the output of prefix is the same but z; # x7 .

So, we turn our attention to the comparison between cm%w 0 and cmz » by
computing

t= cmézgy — cmzzy mod 3

Note that by definition of ¢,,¢,, the output of prefix is the same for both ci-

phertexts and therefore the output of FI((2 ) is the same so we can rewrite this
as
_ 1 2
t= aezgy — afzey mod 3

We now have the following cases:

1. £y <n+1AL, <n+1: In this case we know that x5 # 7 A yt}y #
yl?y, which means that we are either in the case (comparable) {(0,0), (1,1)}
or (incomparable) {(0,1),(1,0)}. In the comparable case we have that ¢ €
{+1, -1} (since one of the « is 1 and the other is 0). In the incomparable
case we have that ¢ = 0 since the value z;; is the same in both cases (since
as argued before prefix’s output is the same and so is F(1)’s output).

2. 4y =n+ 1AL, <n+1: following a similar reasoning in this case xéT =
xg A yl}y + yl?y therefore t = yl}y - yl?y € {+1,-1}. )



4.1 Security

In the proof we replace the pseudorandom function F' with a truly random
function f, and we define the following four functions

fO @ Mx [n+1)? = {0,1,2}
O {0,137 x [n] — {0,1}

where given a plaintext m = (z,y) € M and two indices 4, j € [n + 1] we define

fV(m, (4,5)) = f(1, prefix(z,i — 1), prefix(y, 7 — 1)) mod 3
@ (m, (i,7)) = f(2, prefix(z,i — 1), prefix(y,j — 1)) mod 3
O (x,i) = f(3, prefix(z,i — 1)) mod 2
W (y,5) = f(4, prefix(y, 7 — 1)) mod 2

These functions fulfil the following property

Lemma 1. For all m' = (2%, y') and m? = (22,4?) in M if pos(m!',m?) =

(U, Ly), then for all i < £y and all j < £, it holds that

7)) (m?, (i, 7))

f(z)(mlv (17])) = f(z)(m27 (17]))
f(3)(.’[717i) = f(3)(5(:2,i)
FON5) = %9

The lemma follows directly form the definition of the functions (), ..., f®),
prefix and pos.

Simulator. Denote the adversarial chosen message as m',--- ,m9, where m’ =
(2%, y%) € M. Initially, simulator Sy is empty and S; sets C1 = (em?!, bat, by'),
where em!, bz, by' are all drawn uniformly at random. Furthermore, it sets the
state sts = (C1). Next, define the simulator S; (for 2 < i < q) as in Figure

Theorem 1. The RE scheme Ilporg from Construction 18 secure with leakage
function L.

Proof. We prove that the above defined simulator generates ciphertexts, which
are indistinguishable from the actual ciphertexts. We start by defining a series
of hybrid games:

Ho: The real experiment: REALZORE(/{), where the ciphertexts are generated by
the encryption algorithm.

Hi: Same as Hy, except we replace the PRF F' with a truly random function f.

Hy: The ideal experiment: IDEALZ?SRE:(K), where the ciphertexts are generated
by the simulator.
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(Ci,sts) — Si(Stg,,C(ml, C ,mi))

For each cell (s,t) in em®:

1. If 3j < i such that pos(m®,m?) = (¢, £,) with ¢, > s, £, > t, then set
eml ;= em ;.
2. Else if 3j < i such that pos(m’, m?) = (s,t), then
— if m" >m/, set em!; = eml, +1 mod 3;
— if m* <m7, set em?; = cmg’t —1 mod 3;
— if they are incomparable, set em? , = cmg .
3. Else set cm! , < {0,1,2}. 7 7

For each cell s in bx':

4. If 3j < i such that pos(m’,m’) = ({;,£,) with £, > s or m" =m7, then
set bxl = ba?.

5. Else if 3j < i such that pos(m’,m/) = (s,£,), then set bz’ = bz + 1
mod 2.

6. Else set bz’ «g¢ {0,1}.

For each cell ¢ in by":

7. If 35 < i such that pos(m®,m?) = (¢, £,) with £, >t or m* = m7, then
set by! = by{. ‘

8. Else if 3j < i such that pos(m’,m?) = ({,t), then set by = by] + 1
mod 2.

9. Else set by} < {0,1}.

Output C* = (em?, bz’, by") and stg = (C1,...,C%).

Fig. 2. Simulator S; (for 2 < ¢ < q) for 2-dimensional PORE.
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From the definition of pseudo-random function it is given that H; is indistin-
guishable from Hg (the real experiment). Next, we prove by induction that the
ciphertexts (C*,---,C%) generated by the simulator have same distribution as
the ciphertexts (51, e ,@q) generated by H; (i.e. that H; is indistinguishable
from Hj). From the construction of hybrid H; and the simulator, we notice that
the distribution of ¢m, bz and by are independent of each other. Thus, to prove
that the distributions are indistinguishable, we can look at each part separately
(i.e. we look at each of the nine cases defined in the simulator, separately).

Assume that (C1, ..., C"1) is indistinguishable from (C?, ..., C?~1) for some
0 < i < ¢. Then, we prove that C* = (em?,bz", by’) and Ci = (Eﬁii,az7@z)
are indistinguishable distributed. Denote the adversarial chosen message by
mt = (z%,y%) fori =1,...,q.

For each cell (s,t) in em!:

1. If 35 < i such that pos(m®,m?) = ({;,£,) with £, > s,¢, > t, then 2! = zJ
and y! = yJ. Thus, from the definition of hybrid H; and by Lemma [l| we get

aﬁit = f(2)(mla (Sat)) + aét

= A, (s,1) + o,
— ]

= CM'y

From the definition of the simulator (in Figure [2) it is given that em?, =

J

em?,, and by assumption we have CV ~ C7, which means that em?, ~ ém?,.

Thus, we can conclude that
cmy, = cmgt ~ C/T\ngt = C/T\nit
2. Else if 3i < j such that pos(m’,m’) = (s,t), then z% # xJ and y; # yJ.
The relation between ém?, and ém?, is defined from the relation between m’
and m? as follows o o
— If m* > m/, then (z%,y;) = (0,0) and (27, y/) = (1, 1), which means that
aly =0 and o, = 1. Thus
aml, =aml, +1 mod 3
— If m* <mJ, then (2%, y;) = (1,1) and (22, y7) = (0,0), which means that
aly =1 and o, = 0. Thus
aml, =aml, —1 mod 3
— If m* and m? are incomparable, then it must be the case that

(2%, 1), (x2,97)] = [(0,1),(1,0)] or [(1,0),(0,1)]
Thus, by Lemma [I] we get

ay = fO(m, (s,1)) = [P (m?, (5,1) = o]

st

which implies that em?, = cm?,.
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By the definition of the simulator (see Figure [2)) and the assumption that
C? ~ C7, we can conclude that ¢m}, and em!, are indistinguishable in all
three cases.

. Else Vj < i, pos(m®, m?) = ({,,¢,), we have that £, < s or £, <t.

— Iff, < sand ¢, <t, then c/n\@it is uniformly random, since the input to
f® has never been used before.
- Ifl, = s or{, =t, then either rl = 2yl # yi or xt # zl Yt = yf
Thus, exactly one of ai, and o, is random, and the other one is ﬁxed
Thus, we can conclude that c/n\”tit is uniformly random and independent from
c/*/\nit Since the simulator choose e¢m?, uniformly random, we can conclude
that c’fnit and cm?, are indistinguishable.

For each cell s in bz’

4. If 35 < i such that pos(m®,m?) = (¢, £,) with £, > s, then 2’ = zJ. Thus,
from the definition of hybrid H; and by Lemma [I] we get

boy = [Pl 5) + 2l = [P (2l 5) + 2] = ba

Thus, by the definition of the simulator and the assumption that I~ CF ,

we can conclude that bz’ and 35: are indistinguishable.

. Else if 3j < i such that pos(m’,m/) = (s,£,), then 2% # 2, and by the
definition of hybrid H; we have

be, = [ (a',5) + at

bz, = O (al, ) +
Thus, we can conclude that 6;;: # EEZ, which implies that
g:;: = 5:2 +1 mod 2

By the definition of the simulator and the assumption that CJ ~ CI , We can

conclude that bz’ and ga\c; are indistinguishable.

. Else Vj < i, pos(m’,m?) = ({,,£,), we have that £, < s. In this case, the
input to f® has never appeared before, thus EEZ is uniform random. Since

the simulator choose bxi uniformly at random, they are indistinguishable.

3 This follows directly from the way o, and ozgt is chosen in the encryption algorithm,
and the fact that the two messages differs in exactly one coordinate (e.g. (z5,y1) =
(0,0) and (z, /) = (0,1)).
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For each cell ¢ in by’ the arguments follow closely the arguments for case 4-6.
Thus, C; and C; are indistinguishable, if (Cy,...,Ci_1) and (Ci,...,Ci_1) are
indistinguishable distributed. By induction, we can conclude that the simulator
generates a distribution, which is indistinguishable from the one generated by
Hi. Thus, we can conclude that

REALECRE (k) ~¢ IDEALDOSS (k)

4.2 d-dimensional

In this section we will generalize the 2-dimensional construction from the pre-
vious section into d dimensions. The authorized function for a d-dimensional
PORE is f : M x M — {(0,0),(0,1),(1,0), (1,1)}, where M = ({0,1}")*. For
mt = (z},...,2L) € M and m? = (2%,...,2%) € M we define a function that
determines the order

1oy 1 ifzl <a?Vield]
ord(m”,m”) := {0 otherwise

Then we can define the authorized function similar to the 2-dimensional case:
Fm*,m?) = (ord(m”, m?), ord(m?, m"))

We will prove the security of our scheme with respect to the following leakage
function (similar to the one defined for the 2-dimensional case):

Lm', - m {fm m?), pos(m?, m3)|zg€[q]}
Given a pseudorandom function
F:{0,1}" x {0,1}* — {0,1}"
we define the following d + 2 functions:
FO PP Mx [n+14 - {0,1,2}
FE 10,13 x [n] — {0,1} for k € [d]

where given a plaintext m = (x1,...,24) € M and d indices i1,...,iq € [n+ 1]
we define

F[((l)(m, (i1,...,1q)) = Fr (1, prefix(z1,41 — 1), ..., prefix(z4,iq — 1)) mod 3
Fi(f)(m, (i1,...,1q)) = Fr (2, prefix(z1,i1 — 1), ..., prefix(z4,iq — 1)) mod 3
and for k € [d] we define
FE) (20) = Fre(k + 2, prefix(zp, i — 1)) mod 2
Construction 2 Fix a security parameter k € N. We define a PORE for d-

dimensional points ITpore = (Setup, Enc, Eval) as follows
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Setup: On input the security parameter x € N, sample and output a key K <—g
{0,1}".

Encryption: Given a point m = (z1,...,24) € M and a secret key K. Com-
pute for all k € [d] and for all i, € [n+ 1]: let S = {k € [d]|ir, < n},

0 ifzg;,, =0VkeSVvS=0
Qiyoig = 1 ifag;, =1Vee SAS#0
z otherwise

where z = Fg)(m, (i1,...,1q)) and xy ;, is the ig-th bit in z4. Then compute
CMyjy iy = F[(f)(m, (i1y...,%4)) + @y.iy, mod 3
by i), = Fi((kﬁ) (xg, i) + T4, mod 2

Output C = (em, bz, ..., bxyg). E|
Evaluation: On input two ciphertexts

C' = (em*,bal, ... bak) = Enc(K,m")

C? = (em?,ba?,. .. br?) = Enc(K,m?)

For k € [d], let i), be the first index such that by ; and bz} ; are different
(ix =n+1if bxj = bx2). If iy, = n+ 1 for all k € [d], the algorithm outputs
(1,1) (since m' = m?). Otherwise, compute

.| 2
t=cmy .., —cmg ., mod3

Next, the algorithm branches on the value of ¢:
— If t = —1, output (1,0) (since m!' < m?);
— Ift = 1, output (0,1) (since m* > m?);
— Otherwise output (0,0), since the two points are incomparable.

Correctness. Given two points m! = (z1,...,z}) and m? = (22,...,2%) such
that pos(m!,m?) = (I1,...,lq). Then, by the same arguments as in the 2-
dimensional case, we can prove for all k € [d] that bsc,lcmc = bxiw for i, < 4,
and if /;, < n + 1 then there exists i, < n + 1 such that bx}mk #* bxilk Thus,
we can identify the cell (I1,...,l;) in em! and ¢m? that determines the partial
order of the points. Next, we can do the same case analysis as in the proof for 2
dimensions by a natural extensions to d dimensions.

4 Note that c¢m is a d-dimensional matrix with entries on the form My, ...iy, and for
k € [d], bz = (bxk,,...,brky) is a vector of length n.
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Security. The security proof of the d-dimensional PORE scheme is a direct
generalization of the security proof for the 2-dimensional PORE from Section[£.1}

Simulator. Denote the adversarial chosen message as m!, ..., m?, where m’ =
(z%,...,2%) € M. Initially, simulator Sy is empty, and simulator S; sets C! =
(em*,bxl, ... bxl), where em!, bz, for k € [d] are all drawn uniformly at ran-
dom. Furthermore, it sets sts = (C). Define the simulator S; (for 2 < i < q) as
in Figure [3|

(Ci,sts) — Si(Stg,,C(ml, C ,mi))

For each cell (iy,...,iq) in cm®:

1. If 35 < i such that pos(m*,m’) = (l1,...,1q) with [, > iy for all k € [d],
and Jk such that [ > ik, then set cmﬁl_,,id = cmglmid.
2. If 35 < i such that pos(m’, m?) = (i1,...,44), then
— if m* >m7, set em] ; =em] ;. +1 mod3
iy {1 L1 mod 3
— if they are incomparable, set cmglmid = cmglmid
3. Else set cmj ., ¢ {0,1,2}.

— if m" <m, set cmﬁ1 =cmy, ..,

For each cell 4y, in bz}, for all k € [d]:

4. If 3j < i such that pos(m’,m?) = (l1,...,lg) and l, > i), then set
by, = by, -

5. If 3j < i such that pos(m',m?) = (I1,...,lq) and Il = iy, then set
bry,;, = bry,;, +1 mod 2.

6. Else set bxy ; <5 {0,1}.

Output C* = (em?, bx}, ... bxly) and sts = (C*,...,C?)

Fig. 3. Simulator S; (for 2 < i < ¢) for the d-dimensional PORE.

Theorem 2. The RE scheme Ilporg from Constmction s secure with leakage
function L.

Proof. We state a series of hybrid games, which are similar to the 2-dimensional
case:

Hp: The real experiment: REALZORE(/{), where the ciphertexts are generated by
the encryption algorithm.

Hi: Same as Hy, except we replace the PRF F with a truly random function f.
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Hy: The ideal experiment: |DEALZ(’)§7EL(I€), where the ciphertexts are generated
by the simulator.

The first step of the proof is to replace the pseudorandom function F' with a
truly random function f. Thus, from the property of the pseudorandom function,
we get that hybrid Hg (the real experiment) and hybrid H; are indistinguish-
able. Next, we prove by induction that hybrid H; generates ciphertexts, which
are indistinguishable from simulated ciphertexts (hybrid H). This is proven in
the same manner as for the 2-dimensional PORE. Separately, we study each
cell in the d-dimensional matrix ¢m and each cell in the n-dimensional vectors
bxy,...,bry, and prove that the cell created using the random function f is in-
distinguishable from the simulated version. From the definition of the simulator
and hybrid H; we get that each cell is independent from the others. Thus, we
can conclude that the construction is secure with leakage function L.

5 Efficiency of PORE

In this section we analyze the efficiency of our PORE construction.

5.1 Theoretical Efficiency

Let k be the security parameter, d the number of dimensions and n the bit length
of each entry. Then we can compute the storage and computational complexity
of our scheme.

Storage Complexity. The bit length of a ciphertext in our PORE scheme is
exactly:

1.6(n 4+ 1) 4+ nd = O(n?)
Computational Overhead. Performing an encryption requires
2(n + 1) + nd = O(n?)

calls to a PRF (with unbounded domain). Note that running the evaluation
algorithm requires no invocation of the PRF (only d binary searches into vectors
of n bits each and a single addition modulo 3).

5.2 Implementation Choices
In this section we describe the result of our experimental validation of the effi-
ciency of our PORE scheme.

Plaintext Space. We have implemented our scheme for a range of parameters d
and n. We report here the results for all combinations (d,n) with d € {2,...,8}
and n = 2" for i € {1,...,13} s.t. the ciphertext size is less than 20MB.
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PRF Choice. We implement the PRF F : {0,1}" x {0,1}* — {0,1}" using
AES-CBC mode, with key size k = 128 bits. This is a particularly convenient
choice thanks to the AES native instruction in modern CPUs.

Note that in the theoretical analysis we stated that the complexity of the
encryption is O(n?) when measured as the number of calls to a PRF with un-
bounded domain. However in practice, when instantiating F' with AES in CBC
mode the running time (in terms of number of calls to AES) grows linearly with
the number of blocks needed for the plaintext, namely [dn/128]. Therefore, a
naive implementation would be significantly slower than promised. We notice,
however, that thanks to the special structure of the inputs of our PRF it is pos-
sible to get rid of this extra factor. In particular, we note that in our matrix of
ciphertexts we evaluate the PRF on inputs of the form

Fg (prefix(xz1,i1), . . ., prefix(zq,i4))

where each value prefix(zy, i) is given as input to n different PRFs. Therefore
we modify the way we evaluate the PRF by first precomputing

ug; = Fi(prefix(zy, 1)) Vk € [d],i € [n]
and then implement
Fg (prefix(z1,i1), .. ., prefix(za, ia)) = F(u1,i, © - O ud,)

so that the inputs to FY is of fixed length 128. Therefore (even adding the
O(n?d) extra AES invocations on “long” n-bit values used to precompute the
u’s), the total number of calls to AES and hence the running time is O(n) as
initially promised.

Note, the XOR operation over d strings takes O(d) time. However, the
points which are in the same position in the first £ dimensions shares the value
U1, D - Dug, . By making these values reusable, we can reduce the amortized

complexity to 3%, L+ = O(1).

i=1 ni-1

5.3 Experimental Setup

The reported encryption timings (Table are the average taken over a 100
executions of the encryption algorithm. For the evaluation timings (Table , we
randomly pick 500 pairs from the 100 ciphertexts and take the average of the 500
executions of the evaluation algorithm. To measure the size of the ciphertexts
(Table[3]), we keep track of the size of the required space each time the encryption
algorithm applies the memory.

Hardware. The experiments were executed on a machine with the following
characteristics:

— OS: Linux TitanX1 3.19.0-15-generic #15-Ubuntu SMP

CPU: Intel(R) Xeon(R) CPU E5-2675 v3 1.80GHz

Memory: 128GB

GCC: gee version 4.9.2 (Ubuntu 4.9.2-10ubuntul3) (Compile option -02)
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d 2 3 4 5
n
2 2.0 (£0.42) ps| 4.0 (£0.61) ps| 18.2 (£4.56) ps| 45.1 (£7.53) wus
4 7.0 (£0.76) ps| 23.9 (£1.98) ws [100.2 (£4.81) us |411.4 (£36.60) us
8 16.2 (£0.98) ws [107.5 (£4.31) ws |749.3 (£95.20) us| 5.6 (£0.60) ms
16 | 49.2 (+1.81) ws |622.3 (£63.24) us| 7.6 (+1.12) ms|110.6 (+6.49) ms
32 |154.8 (£5.05) ps| 3.5 (£0.37) ms| 93.0 (£6.40) ms| 3.2 (£0.01) s
64 |546.8 (£47.95) us | 21.9 (£2.21) ms| 1.4 (£0.01) s
128 1.8 (+0.22) ms|162.5 (+8.32) ms
256 | 6.5 (£0.83) ms| 1.3 (£0.02) s
512 | 21.8 (£2.53) ms
1024| 83.3 (£5.95) ms
2048|326.5 (£7.58) ms
4096| 1.3 (£0.02) s
8192| 5.3 (£0.03)
d 6 7 8
n
2 [124.1 (£7.18) us |342.8 (£25.00) ps |744.3 (£21.90) us
4 1.6 (£0.22) ms| 7.4 (£1.03) ms| 33.7 (£4.03) ms
8 | 39.3 (£0.59) ms|358.0 (£12.67) ms
16 1.9 (£0.01) s
Table 1. Encryption time and standard deviation
5.4 Results

In this section, we analyze the results of the experiments.

Encryption Complexity. Table [I| shows how long it takes to encrypt a sin-
gle plaintext for different values of d and n. As expected, we observe that the
encryption time grows as the dimension d and bit lengths n increases.

Evaluation Complexity. Note that the theoretically complexity of the eval-
uation algorithm is O(d). However, the actual running time of the evaluation
algorithm from Table [2| indicates that the algorithm is so fast that for most
choices of parameters it is hard to appreciate the theoretical complexity.

When the combined size of all 100 ciphertext from the experiments does not
exceed 6MB (i.e. each ciphertext does not exceed 60kB), then all ciphertexts fits
inside the L2 cache of the CPU. By observing the variation of the evaluation
timings in Table 2] and the ciphertext size in Table [3] we can conclude that
there is a tendency that when the ciphertexts fits inside the L2 cache, then the
variation stays below 0.07 us.

6 Revealing Encryption For Other Functions

In this section we present some ideas for constructing simple revealing encryption
schemes for other natural functions.
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d 2 3 4 5
n
2 [0.27 (£0.02)[0.56 (+0.05)]0.59 (+0.05)[0.62 (£0.06)
4 (0.54 (£0.05)|0.57 (+0.05)[0.61 (£0.05)|0.54 (£0.06)
8 |0.54 (40.05)|0.58 (40.06)|0.43 (£0.05)|0.37 (£0.05)
16 |0.55 (£0.05)]0.42 (40.05)|0.35 (£0.04)|0.91 (+0.57)
32 [0.43 (£0.04)|0.32 (£0.02)|0.30 (£0.22)|0.35 (+0.28)
64 |0.42 (£0.05)0.56 (40.51)[0.95 (+0.79)
128 |0.37 (£0.04)[0.71 (+0.62)
256 [0.30 (£0.04)|0.80 (+0.73)
512 |0.39 (+0.31)
1024/0.40 (£0.35)
2048/0.52 (£0.60)
4096(0.50 (+0.44)
8192(0.24 (+0.02)
d 6 7 8
n
2 [0.61 (£0.06)[0.64 (£0.73)[0.48 (+0.06)
4 ]0.49 (£0.07)|0.41 (£0.06)|3.78 (43.24)
8 [0.91 (£0.53)|1.40 (+0.76)
16 |1.27 (+£0.78)

Table 2. Evaluation time and standard deviation (us)

6.1 Difference Revealing Encryption

Modular Difference. Given a plaintext space Z,, (for any integer n), it is easy
to see that one-time pad encryption, with key re-use, is a perfectly secure RE
scheme for the function f : Z, x Z,, = Z,

f(z,y) =2 —ymodn
In particular, let k <— Z, be a random key and pp = n, then given a plaintext

m; € Ly,
¢; = Enc(k,m;) =m; + k mod n

Given two ciphertexts c;, ¢; it is now possible to compute
Eval(pp, ¢;, ¢j) = ¢; — ¢; mod n = m; — m; = f(m;, m;)
The scheme can be easily proven secure according to the optimal leakage function
L(ma,...,mq) ={f(mi,m;)|i,j € [q]}

since the simulator only needs to pick a random ciphertext ¢; g Z, to start
with, and then compute each following ciphertext ca,...,c, as

cj = c1 — f(m1,my)
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d 2 3 4 5 6 7 8

2 32B 84 B 232 B 668 B 1.9kB 5.7kB | 17.1 kB
4 48 B 212B | 1016 B 49kB | 24.4kB |122.1 kB [610.4 kB
8 80 B 660 B 5.7kB | 51.3 kB |461.3 kB 4.1 MB

16 | 144 B 2.3 kB | 38.4kB [652.5 kB | 10.8 MB
32 | 536 B 17.0 kB |561.5 kB | 18.1 MB
64 1.5kB | 99.0 kB 6.3 MB
128 | 5.1 kB [650.1 kB
256 | 18.1 kB 4.5 MB
512 | 68.3 kB
1024(264.5 kB
2048| 1.0 MB
4096 4.0 MB
8192| 16.1 MB

Table 3. The size of the ciphertexts

Absolute Difference. More interestingly, the above simple construction can
be turned into a revealing encryption for absolute difference between integers

of bounded magnitude B i.e., for the function f(x,y) : [B] x [B] = [0: B — 1]

defined as

(Note that the challenge here is to construct a scheme where the output of the
Eval function should be the same no matter what the order of its input is). Our
construction is as follows: The setup algorithm outputs a secret key sk = (s, k),
where k < [2B—1] and s <—g {—1,+1}, and pp = B. The encryption algorithm

on input a plaintext m; € [B] outputs
¢; = Enc(sk,m;) = s-m; + kmod 2B — 1
and given two ciphertexts c;, c¢; the evaluation function outputs
Eval(pp, ¢;, ¢;) = min{|c; — ¢;|,2B — 1 — |¢; — ¢}
For correctness, we observe that
¢i —c¢j mod 2B — 1 = s(m; —m;) mod 2B — 1

Given that m;,m; € [B] we have that —B < s(m; — m;) < B. Thus we can
conclude that the evaluation algorithm outputs the absolute difference of the
two messages:

Eval(pp, ¢, ¢;) = [s(mi — m;)| = f(ms, m;)
Also in this case the scheme can be proven secure according to the optimal

leakage function

L(ma, ... ,mg) = {f(mi,my)li, j € [q]}
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using the following simulation strategy: start by picking a random ciphertext
¢1 <3 [2B—1], and for any ¢ € [¢] such that f(m;, m1) =0, set ¢; = ¢;. Let k € [g]
be the smallest index such that f(mg, m1) # 0, then let ¢ = ¢1 + s+ f(my, m1).
For 2 < i < ¢ do the following

L fma,ma) = | £(mgs ma) — F(me,ma)], then compute
ci=c1+s- f(mi,my)

2. otherwise compute

Ciiclfs'f(mi,ml)

Note, the reason why we distinguish between these two cases is to determine
whether m; is on the same side (or opposite side) of m; compared to myg. In case
1) my is the maximum or minimum among my, my, m;, thus, my and m; are on
the same side. In case 2) they are on opposite sides.

6.2 Hamming distance

Given a plaintext space {0,1}", we define a RE scheme for the function f :
{0,1}™ x {0,1}" — Z,

where dg(z,y) = {z; # y;|j € Z,}| is the Hamming distance between the bit
vectors x and y.

Our construction is as follows: the setup algorithm outputs pp = n and
sk = (m,r), where 7 : [n] — [n] is a random permutation and r <g {0,1}" is a
random n-bit string. The encryption algorithm on input m € {0,1}" outputs

¢ = Enc(sk,m) = (mﬂ-(l)a e amw(n)) er

(i.e. we permute the bits of the message m and XOR the result with a random
value r). Given two ciphertexts ¢, co the evaluation algorithm outputs

Eval(pp, c1,¢c2) = dr(c1, c2)

Note that when computing the Hamming distance between the two cipher-
texts, the random value r will cancel out. This leaves the permuted plaintexts,
which has the same Hamming distance as the original plaintexts. Thus, the
scheme enjoys correctness. Next, the scheme can be proven secure according to
the following leakage function for ¢ < 3

L(ma,...,mq) = {du(mi,m;)li,j € [q]}

To prove that the scheme is secure we take a look at the general case for
an arbitrary ¢, and investigate what the ciphertexts leak about the structure
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and relation between the queried messages mq, ..., m,. For all s € {0,1}9 and
i € [n], define A, as follows:

i€ Agiff s = (ml,i,...,mqﬂ-)

where m;; denotes the ith bit of message m; for j € [¢]. Denote the leaked
structure by

T(my,....mg) = {(s,|As| + [As]) | s1 = 0}

where 5 is defined such that 5; # s; for all j € [¢]. Thus, we define a new leakage
function

LX(ma,...,mq) =L(m1,...,mg) UT(m,...,mg)

The simulator then proceeds by picking random ciphertexts ci,...,c, under
the condition that 7 (mi,...,mq) = T(c1,...,¢q). Then it can be proven that
c1,...,Cq is indistinguishable from real encryptions of messages my, ..., my un-

der leakage function L£*. Finally, we can prove that for ¢ < 3 the information
leaked by L£* can be computed given the information leaked by L.

Insecurity when ¢ > 3. We will now give a concrete example of why leakage
function £ is not enough for ¢ > 3. For two different set of queried messages
{mi,...,mg} and {m},...,m;} with the same leakage under £, they can have
different structure of 7. For example (for ¢ = 4):

my = 0000 m} = 0000
mg = 0011 mébp = 0011
mg = 0101 my = 0101
my = 1001 m}y = 0110

Here we observe that dp(m;,m;) = du(mj,m}) for all 1 < i < j < 4.
However, for s = (0,0,0,0) we note that (s,0) € T (m,mz,ms, myg), while
(s,1) € T(m},mb, m5, m}). Thus, the two sets of queries have different structure,
which for ¢ > 3 cannot be computed given only the information provided by
leakage function L.

7 Conclusion

In this work, we introduced a generalization of order-revealing encryption (ORE)
called revealing encryption (RE), which is an encryption scheme that allows
to compute a (selected) function f of the plaintexts given only the encrypted
data. We adopt the simulation-based security notion presented by Chenette et
al. [CLWW15|, which define security with respect to a leakage function. This
enables one to determine the exact information that the ciphertexts leak about
the underlying messages (which will always include the function f evaluated on
all possible ciphertexts).
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Revealing encryption is of special interest in relation to applications like
computation or queries on outsourced encrypted data. However, these encryp-
tion schemes leak potentially sensitive information about the encrypted data
depending on the actual application in which RE is used. This means that be-
fore using RE in a concrete application one should make a proper analysis to
understand whether the leakage provided is problematic or not. As an example,
Naveed et al. [NKW15] presented several attacks on databases encrypted using
order preserving encryption (OPE). In these attacks, they were able to recover
sensitive data using only the encrypted data and public auxiliary information.
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A Review of Existing Privacy-Preserving Skyline Queries
Systems

In this section we review the security of two existing systems for performing
privacy-preserving skyline queries.

A.1 eSkyline

Bothe et al. [BKV13| present a system called eSkyline with the goal of process-
ing skyline queries over encrypted data. They propose a deterministic secret-key
encryption scheme to encrypt each data vector. However, the scheme is clearly
not IND-CPA secure (as the authors also observe themselves), since a chosen-
plaintext attack will allow an adversary to determine the encryption key. Fur-
thermore, an encryption of the zero-vector will always result in the zero-vector.
Thus, the encryption scheme reveals too much unwanted information, even to
an adversary that only is allowed to observe the encrypted data.

A.2 EPSC

Liu et al. [LLM™16|] propose a new system called EPSC (efficient and privacy-
preserving skyline computation). To implement this system they design a new
additive homomorphic public key encryption scheme as follows: let 7, ¢ and 1 be
large primes, and compute Cy = 7~ mod ¢, p = Cy + ko - g such that p is a
prime, and ¢ = p - n. Let pk = (P, q) be the public key, and sk = (p,7,n) be
the private key. Then they propose to encrypt a message x as follows: choose a
random number 7 (of size significantly smaller than ¢) and compute

C=®-r+x modqg

In the paper, the following parameters are suggested: |¢| = 1024, |®| = 2048
and |r| = 512. This encryption scheme is unfortunately not secure: given a
ciphertext C, we can determine whether C' encrypts ' by computing

a=(C—2)(®' modq)=r+(x—2") &' modgq

If z = 2/ then a = 7, which means that a will be small (ie. a < 2°12
with probability 1), while in all other cases a will be large (i.e., a > 2%'2 with
overwhelming probability). Thus, the system does not satisfy IND-CPA security.
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