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Abstract. Server-aided revocable identity-based encryption (SR-IBE), recently proposed by Qin et al.
at ESORICS 2015, offers significant advantages over previous user revocation mechanisms in the scope
of IBE. In this new system model, almost all the workloads on users are delegated to an untrusted
server, and users can compute decryption keys at any time period without having to communicate with
either the key generation center or the server.

In this paper, inspired by Qin et al.’s work, we design the first SR-IBE scheme from lattice assump-
tions. Our scheme is more efficient than existing constructions of lattice-based revocable IBE. We prove
that the scheme is selectively secure in the standard model, based on the hardness of the Learning with
Errors problem. At the heart of our design is a “double encryption” mechanism that enables smooth
interactions between the message sender and the server, as well as between the server and the recipient,
while ensuring the confidentiality of messages.

1 Introduction

Identity-based encryption (IBE), envisaged by Shamir [34] in 1984, allows to use arbitrary strings repre-
senting users’ identities (e.g., email addresses) as public keys, and thus, greatly simplifies the burden of key
management in traditional public-key infrastructure (PKI). In an IBE scheme, there is a trusted authority,
called the Key Generation Center (KGC), who is in charge of generating a private key corresponding to each
identity and sending it to the user through a secret channel. Such private key enables the user to recover
messages encrypted under his identity. Shamir’s ideas triggered an exciting search for provably secure IBE
systems, but the first realizations only appeared in 2001, when Boneh and Franklin [8] and Cocks [13] pre-
sented constructions based on pairings and on the quadratic residual problem, respectively. The third class
of IBE, pioneered by Gentry et al. [16] in 2008, is based on lattice assumptions.

As for many multi-user cryptosystems, an efficient revocation mechanism is necessary and imperative
in the IBE setting. If some identities have been revoked due to certain reasons (e.g., the user misbehaves
or his private key is stolen), the mechanism should ensure that: (i) the revoked identities no longer possess
the decryption capability; (ii) the workloads of the KGC and the non-revoked users in updating the system
are “small”. Designing an IBE scheme supported by efficient revocation turned out to be a challenging
problem. A näıve solution, suggested by Boneh and Franklin in their seminal work [8], requires users to
periodically renew their private keys by communicating with the KGC per time epoch, via a secure channel.
This solution, while yielding a straightforward revocation method (i.e., revoked identities are not given new
keys), is too impractical to be used for large-scale system, as the workload of the KGC grows linearly in
the number of users N . Later on, Boldyreva, Goyal and Kumar (BGK) [6] formally defined the notion of
revocable identity-based encryption (RIBE), and employed the tree-based revocation techniques from [27] to
construct the first scalable RIBE in which the KGC’s workload is only logarithmic in N . In the BGK model,
however, the non-revoked users have to communicate with the KGC regularly to receive the update keys.
Although this key updating process can be done through a public channel, it is somewhat inconvenient and
bandwidth-consuming.

To improve the situation, Qin et al. [30] recently proposed server-aided revocable identity-based encryp-
tion (SR-IBE) - a new revocation approach in which almost all workloads on users are outsourced to a server,



and users can compute decryption keys at any time period without having to communicate with either the
KGC or the server. Moreover, the server can be untrusted (in the sense that it does not possess any secret
information) and should just perform correct computations. More specifically, an SR-IBE scheme functions
as follows. When setting up the system, the KGC issues a long-term private key to each user. The update
keys are sent only to the server (via a public channel) rather than to all users. The ciphertexts also go through
the server who transforms them to “partially decrypted ciphertexts” which are forwarded to the intended
recipients. The latter then can recover the messages using decryption keys derived from their long-term keys.
This is particularly well-suited for applications such as secure email systems, where email addresses represent
users’ identities and the (untrusted) email server performs most of the computations. In [30], apart from
introducing this new model, Qin et al. also described a pairing-based instantiation of SR-IBE.

In this work, inspired by the advantages and potentials of SR-IBE, we put it into the world of lattice-based
cryptography, and design the first SR-IBE scheme from lattice assumptions.

Related Works. The subset cover framework, originally proposed by Naor, Naor and Lotspiech (NNL) [27]
in the context of broadcast encryption, is arguably the most well-known revocation technique for multi-user
systems. It uses a binary tree, each leaf of which is designated to each user. Non-revoked users are partitioned
into disjoint subsets, and are assigned keys according to the Complete Subtree (CS) method or the Subset
Difference (SD) method. This framework was first considered in the IBE setting by Boldyreva et al. [6].
Subsequently, several pairing-based RIBE schemes [24,33,18] were proposed, providing various improvements.
Among them, the work by Seo and Emura [33] suggested a strong security notion for RIBE, that takes into
account the threat of decryption key exposure attacks. The NNL framework also found applications in the
context of revocable group signatures [22,21].

The study of IBE with outsourced revocation was initiated by Li et al. [19], who introduced a method
to outsource the key update workload of the trusted KGC to a semi-trusted KGC. Indeed, revocation mech-
anisms with an online semi-trusted third party (called mediator) had appeared in earlier works [7,14,23,5].
However, all these approaches are vulnerable against collusion attacks between revoked users and the semi-
trusted KGC or the mediator.

Lattice-based cryptography has been an exciting research area since the seminal works of Regev [31] and
Gentry et al. [16]. Lattices not only allow to build powerful primitives (e.g., [15,17]) that have no feasible
instantiations in conventional number-theoretic cryptography, but they also provide several advantages over
the latter, such as conjectured resistance against quantum adversaries and faster arithmetic operations. In
the scope of lattice-based IBE and hierarchical IBE (HIBE), numerous schemes have been introduced, in
the random oracle model [16,2] and the standard model [10,1,36,37]. Chen et at. [11] employed Agrawal et
al.’s IBE [1] and the CS method to construct the first revocable IBE from lattices, which satisfies selective
security in the standard model. The second scheme, proposed by Cheng and Zhang [12], achieves adaptive
security, via the SD method. Both of these works follow the BGK model [6].

Our Results and Techniques. We introduce the first construction of lattice-based SR-IBE. We inherit the
main efficiency advantage of Qin et al.’s model over the BGK model for RIBE: the system users do not have
to communicate with any party to get update keys, as they are capable of computing decryption keys for any
time period on their own. As for previous lattice-based RIBE schemes [11,12], our proposal works with one-bit
messages, but multi-bit variants can be achieved with small overhead, using standard techniques [16,1]. The
public parameters and the ciphertexts produced by the scheme have bit-sizes comparable to those of [11,12].
The long-term private key of each user has size constant in the number of all users N , but to enable the
delegation of decryption keys, it has to be a trapdoor matrix with relatively large size. The full efficiency
comparison among the schemes from [11,12] and ours is given in Table 1.

As a high level, our design approach is similar to the pairing-based instantiation by Qin et al., in the
sense that we also employ an RIBE scheme [11] and a two-level HIBE scheme [1] as the building blocks.
In our setting, the server simultaneously plays two roles: it is the decryptor in the RIBE block (i.e., it
receives ciphertexts from senders and performs the decryption mechanism of RIBE - which is called “partial
decryption” here), and at the same time, it is the sender in the HIBE block. The users (i.e., the message
recipients), on the other hand, only work with the HIBE block. Their identities are placed at the first level
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Table 1. Comparison among known lattice-based revocable IBE schemes. Here, λ is the security parameter, N is
the maximum number of users, r is the number of revoked users. For the scheme from [12], the number ε is a small
constant such that ε < 1/2. The notation “-” means that such an item does not exist in the corresponding scheme.

of the hierarchy, while the time periods are put at the second level. This enables the user with private key
for id to delegate a decryption key for an ordered pair of the form (id, t).

However, looking into the details, it is not straightforward to make the two building blocks operate
together. Qin et al. address this problem by using a key splitting technique which currently seems not
available in the lattice setting. Instead, we adapt a double encryption mechanism, recently employed by
Libert et al. [20] in the context of lattice-based group signatures with message-dependent opening [32],
which works as follows. The sender encrypts the message under the HIBE to obtain an initial ciphertext of
the form (c2, c0), where c0 is an element of Zq (for some q > 2) and is the ciphertext component carrying
the message information. Next, he encrypts the binary representation of c0, i.e., vector bin(c0) ∈ {0, 1}dlog qe,
under the RIBE to obtain (c1, ĉ0). The final ciphertext is then set as (c1, c2, ĉ0) and is sent to the server. The
latter will invert the second step of the encryption mechanism to get back to the initial ciphertext (c2, c0).
Receiving (c2, c0) from the server, the user should be able to recover the message.

The security of our SR-IBE scheme relies on that of the two lattice-based building blocks, i.e., Agrawal et
al.’s HIBE [1] and Chen et al.’s RIBE. Both of them are selectively secure in the standard model, assuming
the hardness of the Learning with Errors (LWE) problem - so is our scheme.

Organization. The rest of this paper is organized as follows. Section 2 provides definitions of SR-IBE and
some background on lattice-based cryptography. Our construction of lattice-based SR-IBE and its analysis
are presented in Sections 3 and 4, respectively. We summarize our results and discuss open problems in
Section 5.

2 Background and Definitions

Notations. The acronym PPT stands for “probabilistic polynomial-time”. We say that a function d : N→ R
is negligible, if for sufficient large λ ∈ N, |d(λ)| is smaller than the reciprocal of any polynomial in λ. The
statistical distance of two random variables X and Y over a discrete domain Ω is defined as ∆(X;Y ) ,
1
2
∑
s∈Ω |Pr[X = s]− Pr[Y = s]|. If X(λ) and Y (λ) are ensembles of random variables, we say that X and Y

are statistically close if d(λ) , ∆(X(λ);Y (λ)) is a negligible function of λ. For a distribution χ, we often
write x ←↩ χ to indicate that we sample x from χ. For a finite set Ω, the notation x

$← Ω means that x is
chosen uniformly at random from Ω.

We use bold upper-case letters (e.g., A,B) to denote matrices and use bold lower-case letters (e.g.,
x,y) to denote column vectors. For two matrices A ∈ Zn×m and B ∈ Zn×m1 , [A|B] ∈ Zn×(m+m1) is the
concatenation of the columns of A and B. For a vector x ∈ Zn, ||x|| denotes the Euclidean norm of x. We
use Ã to denote the Gram-Schmidt orthogonalization of matrix A, and ||A|| to denote the Euclidean norm of
the longest column in A. If n is a positive integer, [n] denotes the set {1, .., n}. For c ∈ R, let bce = dc− 1/2e
denote the integer closest to c.
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2.1 Server-Aided Revocable Identity-Based Encryption

We first recall the definition and security model of SR-IBE, put forward by Qin et al. [30]. A server-aided
revocable identity-based encryption (SR-IBE) scheme involves 4 parties: KGC, sender, recipient, and server.
Algorithms among the parties are as follows:

Sys (1λ) is run by the KGC. It takes as input a security parameter λ and outputs the system parameter-
s params.

Setup (params) is run by the KGC. It takes as input the system parameters params and outputs public
parameters pp, a master secret key msk, a revocation list RL (initially empty), and a state st. We assume
that pp is an implicit input of all other algorithms.

Token (msk, id, st) is run by the KGC. It takes as input the master secret key msk, an identity id, and state
st. It outputs a token τid and an updated state st. The token τid is sent to the server through a public
channel.

UpdKG (msk, t,RL, st) is run by the KGC. It takes as input the master secret key msk, a time t, the current
revocation list RL, and state st. It outputs an update key ukt, which is sent to the server through a public
channel.

TranKG (τid, ukt) is run by the server. It takes as input a token τid and an update key ukt, and outputs a
transformation key tkid,t.

PrivKG (msk, id) is run by the KGC. It takes as input the master key msk and an identity id, and outputs
a private key skid, which is sent to the recipient through a secret channel.

DecKG (skid, t) is run by the recipient. It takes as input the private key skid and a time t. It outputs a
decryption key dkid,t.

Enc (id, t,M) is run by the sender. It takes as input the recipient’s identity id, a time t, and a message M .
It outputs a ciphertext ctid,t, which is sent to the server.

Transform (ctid,t, tkid,t) is run by the sever. It takes as input a ciphertext ctid,t, and a transformation key
tkid,t. It outputs a partially decrypted ciphertext ct′id,t, which is sent to the recipient through a public
channel.

Dec (ctid,t, dkid,t) is run by the recipient. On input a partially decrypted ciphertext ct′id,t and a decryption
key dkid,t, this algorithm outputs a message M or a symbol ⊥.

Revoke (id, t,RL, st) is run by the KGC. It takes as input an identity id to be revoked, a revocation time t,
the current revocation list RL, and a state st. It outputs an updated revocation list RL.

The correctness requirement for an SR-IBE scheme states that: For any λ ∈ N, all possible state st, and
any revocation list RL, if id is not revoked on a time t, and if all parties follow the prescribed algorithms,
then Dec(ctid,t, dkid,t) = M .

Qin et al. [30] defined semantic security against adaptive-identity chosen plaintext attacks for SR-IBE.
Here, we will consider selective-identity security - a weaker security notion suggested by Boldyreva et al. [6],
in which the adversary announces the challenge identity id∗ and time t∗ before the execution of algorithm
Setup.

Definition 1 (SR-sID-CPA Security). Let O be the set of the following oracles:

1. Token(·): On input an identity id, return a token τid by running Token(msk, id, st).
2. UpdKG(·): On input a time t, return an update key ukt by running UpdKG(msk, t,RL, st).
3. PrivKG(·): On input an identity id, return a private key skid by running PrivKG(msk, id).
4. DecKG(·, ·): On input an identity id and a time t, return dkid,t by running DecKG(skid, t), where skid

is from PrivKG(msk, id).
5. Revoke(·, ·): On input an identity id and a time t, update RL by running Revoke(id, t,RL, st).

An SR-IBE scheme is SR-sID-CPA secure if any PPT adversary A has negligible advantage in the
following experiment:

4



ExpSR-sID-CPA
A (λ)

params← Sys(1λ); id∗, t∗ ← A
(pp,msk, st,RL)← Setup(params)
M0,M1 ← AO(pp)

r
$← {0, 1}

ctid∗,t∗ ← Enc(id∗, t∗,Mr)
r′ ← AO(ctid∗,t∗)
Return 1 if r′ = r and 0 otherwise.

Beyond the conditions that M0,M1 belong to the message space M and they have the same length, the
following restrictions are made:

1. UpdKG(·) and Revoke(·, ·) can only be queried on time that is greater than or equal to the time of all
previous queries.

2. Revoke(·, ·) can not be queried on time t if UpdKG(·) has already been queried on time t.
3. If PrivKG(·) was queried on the challenge identity id∗, then Rovoke(·, ·) must be queried on (id∗, t) for

some t ≤ t∗.
4. If id∗ is non-revoked at time t∗, then DecKG(·, ·) can not be queried on (id∗, t∗).

The advantage of A in the experiment is defined as:

AdvSR-sID-CPA
A (λ) =

∣∣∣∣Pr
[
ExpSR-sID-CPA
A (λ) = 1

]
− 1

2

∣∣∣∣ .
2.2 Background on Lattices

Let n,m, and q ≥ 2 be integers. For matrix A ∈ Zn×mq , define the m-dimensional lattice:

Λ⊥q (A) =
{
x ∈ Zm : A · x = 0 mod q

}
⊆ Zm.

For any u in the image of A, define the coset Λu
q (A) =

{
x ∈ Zm : A · x = u mod q

}
.

Trapdoors for Lattices. A fundamental tool of lattice-based cryptography is an algorithm that generates
a matrix A ∈ Zn×mq that is statistically close to uniform, together with a short trapdoor basis for the
associated lattice Λ⊥q (A).

Lemma 1 ([3,4,26]). Let n ≥ 1, q ≥ 2 and m ≥ 2n log q be integers. Then, there exists a PPT algorithm
TrapGen(n, q,m) that outputs a pair (A,TA) such that A is statistically close to uniform over Zn×mq and
TA ∈ Zm×m is a basis for Λ⊥q (A) satisfying ‖T̃A‖ ≤ O(

√
n log q) and ‖TA‖ ≤ O(n log q).

Meanwhile, there exist matrices with particular structures, that admit easy-to-compute short bases.
Micciancio and Peikert [26] consider such a matrix G, which they call primitive matrix.

Lemma 2 ([26,29]). Let q ≥ 2, n ≥ 1 be integers and let k = dlog qe. Let g = (1, 2, · · · , 2k−1) ∈ Zk and
G = In ⊗ g. Then the lattice Λ⊥q (G) has a known basis TG ∈ Znk×nk with ||T̃G|| ≤

√
5 and ||TG|| ≤

max{
√

5,
√
k}.

We also define bin : Zq → {0, 1}k as the function mapping w to its binary decomposition bin(w). Note that,
for all w ∈ Zq, we have g · bin(w) = w.
Discrete Gaussians over Lattices. Let Λ be a lattice in Zm. For any vector c ∈ Rm and any parameter

s ∈ R>0, define ρs,c(x) = exp(−π ‖x− c‖2

s2 ) and ρs,c(Λ) =
∑

x∈Λ ρs,c(x). The discrete Gaussian distribution
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over Λ with center c and parameter s is DΛ,s,c(y) = ρs,c(y)
ρs,c(Λ) , for ∀y ∈ Λ. If c = 0, we conveniently use ρs

and DΛ,s.
Sampling Algorithms. It was shown in [16,10,1] that, given a lattice Λ⊥q (A) equipped with a short basis,
one can efficiently sample short pre-images, as well as delegate an equally short basis for a super-lattice. We
will employ algorithms SamplePre, SampleBasisLeft and SampleLeft from those works, defined below.

SamplePre (A,TA,u, s): On input a full-rank matrix A ∈ Zn×mq , a trapdoor TA of Λ⊥q (A), a vector u ∈ Znq ,
and a Gaussian parameter s ≥ ‖T̃A‖·ω(

√
logm), it outputs a vector e ∈ Zm sampled from a distribution

statistically close to DΛu
q (A),s.

SampleBasisLeft (A,M,TA, s) : On input a full-rank matrix A ∈ Zn×mq , a matrix M ∈ Zn×m1
q , a trapdoor

TA of Λ⊥q (A) and a Gaussian parameter s ≥ ‖T̃A‖ ·ω(
√

log(m+m1)), it outputs a basis TF of Λ⊥q (F),
where F = [A |M] ∈ Zn×(m+m1)

q , while preserving the Gram-Schmidt norm of the basis (i.e., such that
||T̃F|| = ||T̃A||).

SampleLeft (A,M,TA,U, s) : On input a full-rank matrix A ∈ Zn×mq , a matrix M ∈ Zn×m1
q , a trapdoor TA

of Λ⊥q (A), a matrix U = [u1| . . . |uk] ∈ Zn×kq , and a Gaussian parameter s ≥ ‖T̃A‖ · ω(
√

log(m+m1)),
it outputs a matrix E = [e1| . . . |ek] ∈ Z(m+m1)×k, where for each j = 1, . . . , k, the column ej is sampled
from a distribution statistically close to D

Λ
uj
q (F),s. Here we also define F = [A |M] ∈ Zn×(m+m1)

q .

2.3 The LWE Problem and Its Hardness Assumption

The Learning With Errors (LWE) problem, first introduced by Regev [31], plays the central role in lattice-
based cryptography.
Definition 2 (LWE). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z. For s ∈ Znq , let As,χ

be the distribution obtained by sampling a $← Znq and e←↩ χ, and outputting the pair
(
a,a>s + e

)
∈ Znq ×Zq.

The (n, q, χ)-LWE problem asks to distinguish m samples chosen according to As,χ (for s $← Znq ) and m
samples chosen according to the uniform distribution over Znq × Zq.

If q is a prime power, B ≥
√
n · ω (logn), γ = O (nq/B), then there exists an efficient sampleable B-

bounded distribution χ (i.e., χ outputs samples with norm at most B with overwhelming probability) such
that (n, q, χ)-LWE is as least as hard as worst-case lattice problem SIVPγ (see [31,28,25,26]).

Since its introduction in 2005, the LWE problem has been used in hundreds of lattice-based cryptographic
constructions. In the following, we will recall 2 such schemes, which are the building blocks of our SR-IBE
in Section 3.

2.4 The Agrawal-Boneh-Boyen (H)IBE Scheme

In [1], Agrawal, Boneh, and Boyen (ABB) constructed a lattice-based IBE scheme which is proven secure in
the standard model, and then extended it to the hierarchical setting. In their system, the KGC possesses a
short basis TB for a public lattice Λ⊥q (B), generated via algorithm TrapGen. Each identity in the hierarchy
is associated with a super-lattice of Λ⊥q (B), a short basis of which can be delegated from TB using algorithm
SampleBasisLeft. Given such a trapdoor basis, each identity can run algorithm SamplePre to compute a short
vector that allows to decrypt ciphertexts generated via a variant of the Dual-Regev cryptosystem [16].

Let n,m, q, s be the scheme parameters and let χ be the LWE error distribution. The scheme makes
use of an efficient encoding function H : Znq → Zn×nq , that is full-rank differences (FRD). Namely, for all
distinct u,w ∈ Znq , the difference H(u) − H(w) is a full-rank matrix in Zn×nq . In this work, we will employ
the two-level variant of the ABB HIBE.

SetupHIBE: Generate (B,TB)← TrapGen(n, q,m). Pick v $←− Znq and B1,B2
$←− Zn×mq . Output

ppHIBE = (B,B1,B2,v); mskHIBE = TB.
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ExtractHIBE: For an identity id ∈ Znq at depth 1, output the private key skid by running

SampleBasisLeft (B,B1 + H(id)G,TB, s) .

DeriveHIBE: For an identity id = (id′, id′′) ∈ Znq ×Znq at depth 2, let skid′ be the private key of id′ and Bid′ =[
B|B1 + H(id′)G

]
∈ Zn×2m

q . Output skid by running

SampleBasisLeft
(
Bid′ ,B2 + H(id′′)G, skid′ , s

)
.

EncHIBE: To encrypt a message bit b ∈ {0, 1} under an identity id = (id′, id′′) ∈ Znq ×Znq at depth 2, let Bid =[
B|B1 + H(id′)G|B2 + H(id′′)G

]
∈ Zn×3m

q . Choose s $← Znq , x←↩χm, y←↩χ and S1,S2
$← {−1, 1}m×m.

Set c1 = B>ids+
[
x|S>1 x|S>2 x

]> ∈ Z3m
q and c0 = v>s+y+b · b q2c ∈ Zq. Output ctid = (c1, c0) ∈ Z3m

q ×Zq.
DecHIBE: Sample eid ← SamplePre(Bid, skid,v, s). Compute d = c0 − e>idc1 ∈ Zq and output b 2

qde ∈ {0, 1}.

Agrawal, Boneh and Boyen showed that their scheme satisfies the notion of indistinguishability of cipher-
texts under a selective-identity chosen-plaintext attack (IND-sID-CPA), proposed by Canetti et al. [9]. We
restate their result in Theorem 1.

Theorem 1 (Excerpted from [1]). The ABB HIBE scheme is IND-sID-CPA secure, provided that the
(n, q, χ)-LWE assumption holds.

2.5 Chen et al.’s RIBE Scheme

In [11], Chen et al. proposed the first RIBE scheme from lattice assumptions. Their revocation mechanism
relies on the Complete Subtree (CS) method of Naor et al. [27], which was first adapted into the context of
RIBE by Boldyreva et al. [6]. We will briefly recall this method.

The CS method makes use of the node selection algorithm KUNode. In the algorithm, we use the following
notation: If θ is a non-leaf node, then θ` and θr denote the left and right child of θ, respectively. Path(θ)
denotes the set of nodes on the path from θ to root. Each identity id is randomly assigned to a leaf node νid
and (νid, t) ∈ RL if id is revoked at time t. KUNode algorithm takes as input a binary tree BT, revocation list
RL and time t, and outputs a set of nodes Y . The description of KUNode is given below and an example is
illustrated in Figure 1.

KUNode(BT,RL, t)

X,Y ← ∅
∀(θi, ti) ∈ RL, if ti ≤ t, then add Path(θi) to X
∀θ ∈ X, if θ` 6∈ X, then add θ` to Y ; if θr 6∈ X, then add θr to Y
Return Y

Chen et al.’s RIBE scheme employs two instances of the ABB IBE scheme to deal with user’s identity
and time, respectively. To link identity to time for each tree node, the syndrome u ∈ Znq , which is part of
the public parameter, is split into two random vectors u1,u2 for each node. We adopt a variant of Chen et
al.’s RIBE scheme, described below, to encrypt k-bit messages instead of one-bit messages.

SetupRIBE: Generate (A,TA) ← TrapGen(n, q,m). Pick A1,A2
$←− Zn×mq and U $←− Zn×kq . Initialize the

revocation list RL = ∅ and let st := BT where BT is a binary tree. Output

RL; st; ppRIBE = (A,A1,A2,U) ; mskRIBE = TA.

PrivKGRIBE: Randomly issue an identity id ∈ Znq to an unassigned leaf node νid in BT. For each θ ∈
Path(νid), if U1,θ,U21,θ are undefined, then pick U1,θ

$← Zn×kq and set U2,θ = U−U1,θ. Return skid =
(θ,E1,θ)θ∈Path(νid) where

E1,θ ← SampleLeft (A,A1 + H(id)G,TA,U1,θ, s) .
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Fig. 1. Assuming that id4, id6 and id7 have been revoked at time t, then {θ11, θ13, θ14} are nodes in RL. We can get
KUNode(BT,RL, t) → {θ4, θ10, θ12, θ15}. For identity id2 assigned to node θ9, Path(θ9) = (root = θ1, θ2, θ4, θ9) and
has an intersection with KUNode(BT,RL, t) at node θ4. For the revoked identity id6 at node θ13, Path(θ13) does not
contain any nodes in KUNode(BT,RL, t).

UpdKGRIBE: For each θ ∈ KUNodes(BT,RL, t), retrieve U2,θ. Output ukt = (θ,E2,θ)θ∈KUNodes(BT,RL,t) where

E2,θ ← SampleLeft (A,A2 + H(t)G,TA,U2,θ, s) .

EncRIBE and DecRIBE are similar as in the ABB HIBE scheme. When encrypting a k-bit message, one obtains
a ciphertext of the form ctid,t = (c′1, c′0) ∈ Z3m

q × Zkq . A non-revoked identity id at time t can obtain the
pair (E1,θ,E2,θ) at the intersection node θ ∈ Path(νid) ∩ KUNodes(BT,RL, t), which satisfies

[A|A1 + H(id)G] ·E1,θ + [A|A2 + H(t)G] ·E2,θ = U,

and which allows him to perform decryption.
RevokeRIBE: Add (id, t) to RL for all nodes associated with id and return RL.

In [11], Chen et al. proved that the one-bit version of their scheme satisfies the IND-sRID-CPA security
notion defined in [6], assuming the hardness of the LWE problem. The security proof can be easily adapted
to handle the multi-bit case, based on the techniques from [16,1]. We thus have the following theorem.

Theorem 2 (Adapted from [11]). The RIBE scheme described above is IND-sRID-CPA secure, provided
that the (n, q, χ)-LWE assumption holds.

3 Our Lattice-Based SR-IBE Scheme

Our SR-IBE scheme is a combination of the ABB HIBE and Chen et al.’s RIBE schemes via a double
encryption technique. The KGC, who holds master secret keys for both schemes, issues HIBE private keys
to users, and gives tokens consisting of RIBE private keys to the server. At each time period, the KGC sends
RIBE update keys to the server. The encryption algorithm is a two-step procedure:

1. Encrypt the message M under the HIBE, with respect to an ordered pair (id, t), to obtain an initial
ciphertext of the form (c2, c0) ∈ Z3m

q × Zq.
2. Encrypt the binary representation bin(c0) ∈ {0, 1}k of c0, where k = dlog qe, under the RIBE, with

respect to id and t, to obtain (c1, ĉ0) ∈ Z3m
q ×Zkq . The final ciphertext is defined as ctid,t = (c1, c2, ĉ0) ∈

Z3m
q × Z3m

q × Zkq .

If id is not revoked at time t, then the server can partially decrypt ctid,t, using a transformation key
which is essentially the RIBE decryption key. Note that the “partially decrypted ciphertext” is nothing but
the initial ciphertext (c2, c0). Receiving (c2, c0) from the server, the user decrypts it using a decryption key
delegated from his long-term private key.

In the following, we will formally describe the scheme.

8



Sys(1λ): On input security parameter λ, the KGC works as follows:

1. Set n = O (λ), and choose N = poly(λ) as the maximal number of users that the system will support.
2. Let q = Õ

(
n4) be a prime power, and set k = dlog qe,m = 2nk. Note that parameters n, q, k specify

vector g, function bin(·) and primitive matrix G (see Section 2.2).
3. Choose a Gaussian parameter s = Õ (

√
m).

4. Set B = Õ (
√
n) and let χ be a B-bounded distribution.

5. Select an FRD map H : Znq → Zn×nq (see Section 2.4).
6. Let the identity space be I = Znq , the time space be T ⊂ Znq and the message space be M = {0, 1}.
7. Output params = (n,N, q, k,m, s,B, χ,H, I, T ,M).

Setup(params): On input the system parameters params, the KGC works as follows:

1. Generate two independent pairs (A,TA) and (B,TB) by using TrapGen(n, q,m).
2. Select U $← Zn×kq , v $← Znq and A1,A2,B1,B2

$← Zn×mq .
3. Initialize the revocation list RL = ∅. Obtain a binary tree BT with at least N leaf nodes and set the

state st = BT.
4. Set pp = (A,A1,A2,U,B,B1,B2,v) and msk = (TA,TB).
5. Output (pp,msk,RL, st).

Token(msk, id, st): On input the master secret key msk, an identity id ∈ I and state st, the KGC works as
follows:

1. Randomly choose an unassigned leaf node νid in BT and assign it to id.
2. For each θ ∈ Path(νid), if U1,θ,U2,θ are undefined, then pick U1,θ

$← Zn×kq , set U2,θ = U−U1,θ and
store the pair (U1,θ,U12,θ) in node θ. Sample E1,θ ← SampleLeft (A,A1 + H(id)G,TA,U1,θ, s). Let
Aid = [A|A1 + H(id)G] ∈ Zn×2m

q . Note that E1,θ ∈ Z2m×k and Aid ·E1,θ = U1,θ.
3. Output the updated state st and τid = (θ,E1,θ)θ∈Path(νid).

UpdKG(msk, t, st,RL): On input the master secret key msk, a time t ∈ T , state st and the revocation list
RL, the KGC works as follows:

1. For each θ ∈ KUNodes(BT,RL, t), retrieve U2,θ (note that U2,θ is always pre-defined in the Token
algorithm), and sample E2,θ ← SampleLeft (A,A2 + H(t)G,TA,U2,θ, s). Let At = [A|A2 +H(t)G] ∈
Zn×2m
q . Note that E2,θ ∈ Z2m×k and At ·E2,θ = U2,θ.

2. Output ukt = (θ,E2,θ)θ∈KUNodes(BT,RL,t).

TranKG(τid, ukt): On input a token τid = (θ,E1,θ)θ∈I and an update key ukt = (θ,E2,θ)θ∈J for some set of
nodes I, J , the server works as follows:

1. If I ∩ J = ∅, output ⊥.
2. Otherwise, choose θ ∈ I ∩ J and output tkid,t = (E1,θ,E2,θ). Note that Aid ·E1,θ + At ·E2,θ = U.

PrivKG(msk, id): On input the master secret key msk and an identity id ∈ I, the KGC works as follows:

1. Sample Tid ← SampleBasisLeft (B,B1 + H(id)G,TB, s).
2. Output skid = Tid ∈ Z2m×2m.

DecKG(skid, t): On input a private key skid = Tid and a time t ∈ T , the recipient works as follows:

1. Sample eid,t ← SampleLeft (Bid,B2 + H(t)G,Tid,v, s) where Bid = [B|B1 + H(id)G] ∈ Zn×2m
q .

2. Output dkid,t = eid,t ∈ Z3m.

Enc(id, t, b): On input an identity id ∈ I, a time t ∈ T and a message M ∈M, the sender works as follows:

1. Set Aid,t = [A|A1 + H(id)G|A2 + H(t)G]∈ Zn×3m
q and Bid,t = [B|B1 + H(id)G|B2 + H(t)G]∈ Zn×3m

q .
2. Sample s, s′ $← Znq , x,x′←↩χm, y←↩χk, and y′←↩χ.
3. Choose R1,R2,S1,S2

$← {−1, 1}m×m.
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4. Set c1 = A>id,ts +

 x
R>1 x
R>2 x

 ∈ Z3m
q and c2 = B>id,ts′ +

 x′
S>1 x′
S>2 x′

 ∈ Z3m
q .

5. Compute c0 = v>s′+ y′+M · b q2c ∈ Zq, and then set ĉ0 = U>s + y + bin(c0) · b q2c ∈ Zkq . (Recall that
bin(c0) is the binary decomposition of c0.)

6. Output ctid,t = (c1, c2, ĉ0) ∈ Z3m
q × Z3m

q × Zkq .
Transform(ctid,t, tkid,t): On input a ciphertext ctid,t = (c1, c2, ĉ0) and a transformation key tkid,t = (E1,E2),

the server works as follows:

1. Parse c1 =

c1,0
c1,1
c1,2

 where c1,i ∈ Zmq , for i = 0, 1, 2. Compute w = ĉ0 −E>1
[

c1,0
c1,1

]
−E>2

[
c1,0
c1,2

]
∈ Zkq .

2. Compute ĉ′0 = g · b 2
qwe ∈ Zq. (Recall that g =

(
1, 2, · · · , 2k−1) ∈ Zk.)

3. Output ct′id,t = (c2, ĉ
′
0) ∈ Z3m

q × Zq.
Dec(ct′id,t, dkid,t): On input a partially decrypted ciphertext ct′id,t = (c2, ĉ

′
0) and a decryption key dkid,t = eid,t,

the recipient works as follows:
1. Compute w′ = ĉ′0 − e>id,tc2 ∈ Zq.
2. Output b 2

qw
′e ∈ {0, 1}.

Revoke(id, t,RL, st): On input an identity id, a time t, the revocation list RL and state st = BT, the KGC
adds (id, t) to RL for all nodes associated with identity id and returns RL.

4 Analysis

In this section, we analyze the efficiency, correctness and security of our SR-IBE scheme.

4.1 Efficiency and Correctness

Efficiency. The efficiency aspect of our SR-IBE scheme is as follows:

– The bit-size of the public parameters pp is (6nm+ nk + n) log q = Õ
(
λ2).

– The private key skid is a trapdoor matrix of bit-size Õ
(
λ2).

– The bit-size of the token τid is O(logN) · Õ (λ).
– The update key ukt has bit-size O

(
r log N

r

)
· Õ (λ).

– The ciphertext ctid,t has bit-size (6m+ k) log q = Õ (λ).
– The partially decrypted ciphertext ct′id,t has bit-size (3m+ 1) log q = Õ (λ).

Correctness. When the scheme is operated as specified, if recipient id is non-revoked at time t, then
tkid,t = (E1,E2) satisfies that Aid · E1 + At · E2 = U. During the Transform algorithm performed by the
server, one has:

w = ĉ0 −E>1
[

c1,0
c1,1

]
−E>2

[
c1,0
c1,2

]
= U>s + y + bin(c0) · bq2c −E>1

(
A>ids +

[
x

R>1 x

])
−E>2

(
A>t s +

[
x

R>2 x

])
= bin(c0) · bq2c+ y−E>1

[
x

R>1 x

]
−E>2

[
x

R>2 x

]
︸ ︷︷ ︸

error

.

Note that if the error term above is bounded by q/5, i.e., ||error||∞ < q/5, then in Step 2 of the Transform
algorithm, one has that b 2

qwe = bin(c0) which implies ĉ′0 = g · b 2
qwe = c0.

10



Then, in the Dec algorithm run by the recipient, one has:

w′ = ĉ′0 − e>id,tc2

= v>s′ + y′ +M · bq2c − e>id,t

B>id,ts′ +

 x′
S>1 x′
S>2 x′


= M · bq2c+ y′ − e>id,t

 x′
S>1 x′
S>2 x′


︸ ︷︷ ︸

error′

.

Similarly, if the error term is less than q/5, i.e., |error′| < q/5, then the recipient should be able to recover
the plaintext.

As in [1,11], the two error terms above are both bounded by sm2B · ω(logn) = Õ
(
n3), which is much

smaller than q/5, as we set q = Õ
(
n4). This implies the correctness of our scheme.

4.2 Security Analysis

In the following theorem, we prove the selective security of our SR-IBE scheme in the standard model.

Theorem 3. The SR-IBE scheme described in Section 3 is SR-sID-CPA secure, provided that the (n, q, χ)-
LWE assumption holds.

Proof. We will demonstrate that if there is a PPT adversary A succeeding in breaking the SR-sID-CPA
security of our SR-IBE scheme, then we can use it to construct a PPT algorithm S breaking either the IND-
sRID-CPA security of Chen et al.’s RIBE scheme or the IND-sID-CPA security of the ABB HIBE scheme.
The theorem then follows from the facts that the two building blocks are both secure under the (n, q, χ)-LWE
assumption (see Theorem 1 and Theorem 2).

Let id∗ be the challenge identity and t∗ be the challenge time. We consider two types of adversaries as
follows.

Type I Adversary: The adversary issues a query to the private key oracle PrivKG(·) on the challenge
identity id∗. In this case, the challenge identity id∗ must be revoked before the challenge time t∗.

Type II Adversary: The adversary never issues a query to the private key oracle PrivKG(·) on the
challenge identity id∗. Nevertheless, it may query the decryption key oracle DecKG(·, ·) on (id∗, t) as
long as t 6= t∗.

Algorithm S begins by randomly guessing the type of adversaries it is going to deal with. We separately
describe the S’s progress for the two types of adversaries.

Lemma 3. If there is a PPT Type I adversary A breaking the SR-sID-CPA security of the SR-IBE scheme
from Section 3 with advantage ε, then there is a PPT algorithm S breaking the IND-sRID-CPA security of
Chen et al.’s RIBE scheme with the same advantage.

Proof. Let B be the challenger in the IND-sRID-CPA game for Chen et al.’s RIBE scheme. Algorithm S
interacts with A and B as follows.

Initial: S runs algorithm Sys
(
1λ
)

to output params = (n,N, q, k,m, s,B, χ,H, I, T ,M). The adversary A
announces to S the target id∗ and t∗, and S forwards them to the RIBE challenger B.

Setup: S sets an empty revocation list RL and a binary tree BT as the sate st. Then S prepares the public
parameters as follows:
1. Receive ppRIBE = (A,A1,A2,U) from B, where A,A1,A2 ∈ Zn×mq ,U ∈ Zn×kq .
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2. Generate (B,TB) by running TrapGen(n, q,m). Select B1,B2
$← Zn×mq and v $← Znq .

3. Let pp = (A,A1,A2,U,B,B1,B2,v), and send pp to the adversary A. Note that the distribution of
pp is exactly the one expected by A.

Token and Update Key Oracles: If A queries a token for identity id, algorithm S forwards id to B.
Receiving an RIBE private key from B, algorithm S sets it as τid and forwards to A. Similarly, when
A queries an update key for time t, algorithm S sets ukt as the RIBE update key it gets by interacting
with B. Recall that for Type I adversaries, the challenge id∗ must be revoked before the challenge time
t∗, which means that A is allowed to query token for id∗ and also update key for t∗.

Private Key and Decryption Key Oracles: As S knowns the master secret key part TB, it can answer
all private key and decryption key queries exactly as in the real scheme.

Challenge: A gives two messages M0,M1 ∈M to S who prepares the challenge ciphertext as follows:

1. Choose s′ $← Znq , x′←−χm and y′ ←− χ. Choose S1,S2
$← {−1, 1}m×m.

2. Compute Bid∗,t∗ = [B|B1 + H(id∗)G|B2 + H(t∗)G] and set c∗2 = B>id∗,t∗s′ +

 x′
S>1 x′
S>2 x′

 ∈ Z3m
q .

3. Compute M ′0 = v>s′ + y′ +M0

⌊q
2

⌋
∈ Zq and M ′1 = v>s′ + y′ +M1

⌊q
2

⌋
∈ Zq.

4. Pick d $← {0, 1} and set

M ′′0 = bin(M ′d) ∈ {0, 1}k; M ′′1 = bin(M ′1⊕d) ∈ {0, 1}k,

where ⊕ denotes the addition modulo 2.
Then forward M ′′0 ,M ′′1 as two challenge messages to the RIBE challenger B. The latter will return an
RIBE ciphertext (c′1, c′0) ∈ Z3m

q × Zkq of M ′′c under identity id∗ and time t∗, where c $← {0, 1}.
5. Set c∗1 = c′1, ĉ∗0 = c′0 and send the challenge ciphertext (c∗1, c∗2, ĉ∗0) ∈ Z3m

q × Z3m
q × Zkq to A. Note

that, by construction, we have M ′′c = bin(M ′d⊕c), and thus, (c∗1, c∗2, ĉ∗0) is an SR-IBE encryption of the
message Md⊕c under (id∗, t∗). Note also that, the bit d⊕ c is uniformly distributed in {0, 1}.

Guess: After being allowed to make additional queries, A outputs d′ ∈ {0, 1}, which is the guess that the
challenge ciphertext (c∗1, c∗2, ĉ∗0) is an encryption of Md′ . Then S computes c′ = d⊕ d′ and returns it to
B as the guess for the bit c chosen by the latter.

Recall that we assume that A breaks the SR-sID-CPA security of our SR-IBE scheme with advantage ε, which
means

AdvSR-sID-CPA
A (λ) =

∣∣∣∣Pr[d′ = d⊕ c]− 1
2

∣∣∣∣ = ε.

On the other hand, by construction, we have d′ = d⊕ c⇔ d′ ⊕ d = c⇔ c′ = c. It then follows that:

AdvIND-sRID-CPA
S,RIBE (λ) =

∣∣∣∣Pr[c = c′]− 1
2

∣∣∣∣ = ε.

ut

Lemma 4. If there is a PPT Type II adversary A breaking the SR-sID-CPA security of our SR-IBE scheme
with advantage ε, then there is a PPT adversary S breaking the IND-sID-CPA security of the ABB HIBE
scheme with the same advantage.

Proof. We proceed in a similar manner as in the previous lemma. Let B be the challenger in the IND-sID-CPA
game for the ABB HIBE scheme. Algorithm S interacts with A and B as follows.

Initial: S first runs Sys
(
1λ
)

to output params = (n,N, q, k,m, s,B, χ,H, I, T ,M). Then A announces to
S the target identity id∗ and time t∗, and S forwards (id∗, t∗) to the HIBE challenger B.
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Setup: S sets an empty revocation list RL and a binary tree BT as the sate st. Then S prepares the public
parameters as follows:

1. Receive ppHIBE = (B,B1,B2,v) from B where B,B1,B2 ∈ Zn×mq ,v ∈ Znq .
2. Generate (A,TA) by running TrapGen(n, q,m). Select A1,A2

$← Zn×mq and U $← Zn×kq .
3. Let the public parameters be pp = (A,A1,A2,U,B,B1,B2,v) and send pp to the adversary A.

Token and Update Key Oracles: As S knows the master secret key part TA, it can answer all token
and update key queries.

Private Key and Decryption Key Oracles: When A issues a private key query for an identity id where
id 6= id∗, S forwards id to B. The answer received from the latter is then set as skid and is sent to A. When
A queries a decryption key for an identity id at a time t, where (id, t) 6= (id∗, t∗), algorithm S forwards
(id, t) ∈ Znq ×Znq to B, and obtains a matrix E ∈ Z3m×3m, which is a short trapdoor for Λ⊥q (Bid,t) where
Bid,t = [B|B1 + H(id)G|B2 + H(t)G] ∈ Zn×3m

q . Then S samples eid,t ← SamplePre(Bid,t,E,v, s), sets
dkid,t = eid,t, and sends dkid,t to A. Note that, if t 6= t∗ then id can be the same as id∗.

Challenge: A gives two messages M0,M1 ∈ {0, 1} to S, who prepares the challenge ciphertext as follows:

1. Choose s $← Znq , x←−χm and y←− χk. Choose R1,R2
$← {−1, 1}m×m.

2. Set c∗1 = A>id∗,t∗s +

 x
R>1 x
R>2 x

 ∈ Z3m
q where Aid∗,t∗ = [A|A1 + H(id∗)G|A2 + H(t∗)G].

3. Pick d
$← {0, 1}. Set M ′0 = Md and M ′1 = M1⊕d. Forward M ′0,M

′
1 as two challenge messages to

the HIBE challenger B. The latter will return a ciphertext (c′′1 , c′′0) ∈ Z3m
q × Zq, which is an HIBE

encryption of message M ′c under “identity” (id∗, t∗), where c $← {0, 1}.

4. Set c∗2 = c′′1 and ĉ∗0 = U>s + y + bin(c′′0) ·
⌊q

2

⌋
∈ Zkq .

5. Send (c∗1, c∗2, ĉ∗0) ∈ Z3m
q ×Z3m

q ×Zkq to the adversary A. Note that (c∗1, c∗2, ĉ∗0) is an SR-IBE encryption
of the message Mc⊕d = M ′c under identity id∗ and time t∗.

Guess: After being allowed to make additional queries, A outputs d′ ∈ {0, 1}, which is the guess that the
challenge ciphertext (c∗1, c∗2, ĉ∗0) is an encryption of Md′ . Then S computes c′ = d⊕ d′ and returns it to
B as the guess for the bit c chosen by the latter.

Recall that we assume that A breaks the SR-sID-CPA security of our SR-IBE scheme with probability ε,
which means

AdvSR-sID-CPA
A (λ) =

∣∣∣∣Pr[d′ = d⊕ c]− 1
2

∣∣∣∣ = ε.

On the other hand, by construction, we have d′ = d⊕ c⇔ d′ ⊕ d = c⇔ c′ = c. It then follows that:

AdvIND-sID-CPA
S,HIBE (λ) =

∣∣∣∣Pr[c = c′]− 1
2

∣∣∣∣ = ε.

ut

Finally, recall that algorithm S can guess the type of the adversary correctly with probability 1/2 and
the adversary’s behaviour is independent from the guess. It then follows from the results of Lemma 3 and
Lemma 4 that

AdvSR-sID-CPA
A (λ) = 1

2

(
AdvIND-sRID-CPA

S,RIBE (λ) + AdvIND-sID-CPA
S,HIBE (λ)

)
.

By Theorem 1 and Theorem 2, we then have that AdvSR-sID-CPA
A (λ) = negl(λ), provided that the (n, q, χ)-LWE

assumption holds. This concludes the proof. ut
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5 Conclusion and Open Problems

We present the first server-aided RIBE from lattice assumptions. In comparison with previous lattice-based
realizations [11,12] of RIBE, our scheme has a noticeable advantage in terms of computation and communi-
cation costs on the user side. The scheme only satisfies the weak notion of selective security. Nevertheless,
adaptive security in the standard model can possibly be achieved (at the cost of efficiency) by replacing the
two building blocks by adaptively-secure lattice-based constructions, e.g., the RIBE from [12] and the HIBE
schemes from [35,37]. One limitation of the scheme is the large size of user’s long-term secret key: while being
independent of the number of users, it is quadratic in the security parameter λ. Reducing this key size (e.g.,
making it linear in λ) is left as an open question.

Another question that we left unsolved is how to construct a lattice-based scheme secure against de-
cryption key exposure attacks considered by Seo and Emura [33]. Existing pairing-based RIBE schemes
satisfying this strong notion all employ a randomization technique in the decryption key generation pro-
cedure, that seems hard to adapt into the lattice setting. Finally, it is worth investigating whether our
design approach (i.e., using a double encryption mechanism with an RIBE and an HIBE that have suitable
plaintext/ciphertext spaces) would yield a generic construction for SR-IBE.
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