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Abstract

In the setting of multiparty computation, a set of mutually distrusting parties wish to securely
compute a joint function of their private inputs. A protocol is adaptively secure if honest parties
might get corrupted after the protocol has started. Recently (TCC 2015) three constant-round
adaptively secure protocols were presented [CGP15, DKR15, GP15]. All three constructions
assume that the parties have access to a common reference string (CRS) whose size depends
on the function to compute, even when facing semi-honest adversaries. It is unknown whether
constant-round adaptively secure protocols exist, without assuming access to such a CRS.

In this work, we study adaptively secure protocols which only rely on a short CRS that is
independent on the function to compute.
• First, we raise a subtle issue relating to the usage of non-interactive non-committing en-

cryption within security proofs in the UC framework, and explain how to overcome it. We
demonstrate the problem in the security proof of the adaptively secure oblivious-transfer
protocol from [CLOS02] and provide a complete proof of this protocol.

• Next, we consider the two-party setting where one of the parties has a polynomial-size
input domain, yet the other has no constraints on its input. We show that assuming the
existence of adaptively secure oblivious transfer, every deterministic functionality can be
computed with adaptive security in a constant number of rounds.

• Finally, we present a new primitive called non-committing indistinguishability obfuscation,
and show that this primitive is complete for constructing adaptively secure protocols with
round complexity independent of the function.

Keywords: secure multiparty computation, adaptive security, non-committing en-
cryption, round complexity.
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1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrusting parties wish to jointly
compute a function on their private inputs in a secure manner. Loosely speaking, the security
requirements ensure that even if a subset of dishonest parties collude, nothing is learned from the
protocol other than the output (privacy), and the output is distributed according to the prescribed
functionality (correctness). This threat is normally modeled by a central adversarial entity, that
might corrupt a subset of the parties and control them. A protocol is considered secure if whatever
an adversary can achieve when attacking an execution of the protocol, can be emulated in an ideal
world, where an incorruptible trusted party helps the parties to compute the function.

Initial constructions of secure protocols were designed under the assumption that the adversary
is static, meaning that the set of corrupted parties is determined prior to the beginning of the
protocol’s execution [30, 20]. Starting from the work of Beaver and Haber [2] and of Canetti et al.
[7], protocols that remain secure facing adaptive adversaries were considered. In this setting, the
adversary can decide which parties to corrupt during the course of the protocol and based on its
dynamic view. Adaptive security forms a greater challenge compare to static security, in particular
because the adversary can corrupt honest parties after the protocol has completed. Furthermore,
it can corrupt all the parties, thus learning all the randomness that was used in the protocol.1

The first adaptively secure protocol, which remains secure facing an arbitrary number of cor-
rupted parties, was presented by Canetti, Lindell, Ostrovsky, and Sahai [8]. They showed that un-
der some standard cryptographic assumptions, any adaptively well-formed functionality2 can be se-
curely computed facing adaptive malicious adversaries. This result follows the GMW paradigm [20],
and consists of two stages: First, a protocol secure against adaptive semi-honest adversaries was
constructed. This protocol is secure in the plain model, where no setup assumptions are needed;
however, the number of communication rounds in this protocol depends on the circuit-depth of
the underlying functionality. In the second stage, the protocol was compiled into a protocol secure
against adaptive malicious adversaries; the semi-honest to malicious compiler, presented in [8],
maintains the round complexity, and is secure assuming that all parties have access to a common
reference string (CRS).3

Recently, three adaptively secure protocols that run in a constant number of rounds were inde-
pendently presented by Canetti et al. [10], Dachman-Soled et al. [11] and Garg and Polychroniadou
[15]. All three protocols are designed in the CRS model and share the idea of embedding inside
the CRS an obfuscated program that receives the circuit to compute as one of its input variables.
It follows that the size of the CRS depends of the size of the circuit, and moreover, the CRS is
needed even when considering merely semi-honest adversaries. Dachman-Soled et al. [11] and Garg
and Polychroniadou [15] raised the question of whether these requirements are necessary.

1In this work we do not assume the existence secure erasures, meaning that we do not rely on the ability of an
honest party to erase specific parts of its memory.

2An adaptively well-formed functionality is a functionality that reveals its random input in case all parties are
corrupted [8].

3Since the protocol of [8] is designed in the UC framework of Canetti [5], security against malicious adversaries
requires some form of a trusted-setup assumption, see [6, 9, 26].

1



1.2 Our Contribution

In this work we consider adaptive security with a short CRS. By this we mean two security notions:
adaptive security facing semi-honest adversaries in the plain model (i.e., without a CRS) and
adaptive security facing malicious adversaries in the CRS model, where the CRS does not depend
on the size of the circuit to compute.

Non-interactive non-committing encryption in the UC framework. A non-interactive
non-committing encryption scheme is a public-key encryption scheme augmented with the ability
to generate a fake public key and a fake ciphertext that can later be explained as an encryption of
any message. This primitive serves as a building block for several cryptographic constructions, e.g.,
instantiating adaptively secure communication channels [7], adaptively secure oblivious transfer
(OT) [8] and leakage-resilient protocols [3].

Although (interactive) non-committing encryption (NCE) was introduced well before the stan-
dard security models for adaptive security have been formalized, mainly the modular-composition
framework of [4] and the universal-composability (UC) framework of [5], it has been a folklore belief
that non-interactive NCE is secure in these frameworks. We revisit the security of non-interactive
NCE and show that although it is straightforward to prove the security in the framework of mod-
ular composition, it is not as obvious in the UC framework. The reason lies in a subtle difference
between the two frameworks: in the framework of [4], all the parties are initialized with their in-
puts prior to the beginning of the protocol, whereas in the UC framework, the environment can
adaptively provide inputs to the parties after the protocol has started.

This may lead to the following attack. The environment first activates the receiver that gen-
erates a public key. This is simulated by generating the (fake) non-committing public key and
ciphertext. Next, the adversary corrupts the receiver and learns its random coins (before the
sender has been activated with input). At this point, the simulator must explain the key genera-
tion before the plaintext has been determined. Finally, the environment activates the sender with
a random message. The problem is that once the random coins for the key generation have been
fixed, the ciphertext becomes committing, and with a non-negligible probability will fail to decrypt
to the random plaintext.

Not realizing these subtleties may lead to incomplete security proofs when using non-interactive
NCE as a building block for protocols in the UC framework. We show that the simulator can in fact
cater for such form of attacks, without any adjustments to the protocols, by carefully combining
between non-committing ciphertexts and committing ciphertexts during the simulation. We thus
prove that the definition of non-interactive NCE is valid in the UC framework. We further show
that the proof of security of the adaptively secure OT in Canetti et al. [8] is incomplete and explain
how to rectify it. We emphasize that the results in [8] are valid, and merely the proof is incomplete.

Functionalities with one-sided polynomial-size domain. We next consider deterministic
two-party functionalities f(x1, x2), where the input domain of P1, denoted D1, is of polynomial-
size. We observe that in this situation, P2 can locally compute f on its input x2 and every possible
input of P1 and obtain all possible outputs. All that P1 needs to do now is to select the output
corresponding to its input x1. Therefore, the computation of such functionalities boils down to the
ability to compute 1-out-of-|D1| adaptively secure oblivious transfer. Using the adaptively secure
OT from [8], we conclude that for every such functionality there exists a three-message protocol that
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is secure in the presence of adaptive semi-honest adversaries. Security against malicious adversaries
follows using the CLOS compiler.

This result can be interpreted in two ways. On the one hand, it shows that restricting the
domain of one of the parties yields a constant-round adaptively secure protocol. On the other
hand, it shows that in order to try and prove a lower bound for constant-round adaptively secure
protocols in general, one must consider either functionalities with super-polynomial input domains,
or probabilistic functionalities.

Non-committing indistinguishability obfuscation. An indistinguishability obfuscator iO [1]
is a machine that given a circuit, creates an “unintelligible” version of it, while maintaining its
functionality. “Unintelligible” means, in this case, that given two circuits of the same length that
compute exactly the same function, it is infeasible to distinguish between an obfuscation of the
first circuit from an obfuscation of the second. This primitive has been shown to be useful for a
vast amount of applications, and recently led to a construction of constant-round adaptively secure
protocols in the CRS model [10, 11, 15].

All three protocols [10, 11, 15] share a clever idea of embedding an obfuscated program inside
the CRS, such that a certain amount of the randomness that is used in the execution of the protocol
is kept hidden, even if all parties are eventually corrupted. In this section we explore a different
approach to this problem, inspired by the concept of NCE. We present an adaptive analogue for
iO called non-committing indistinguishability obfuscator, which essentially allows the simulator
to produce an obfuscated circuit for some circuit class, and later, given any circuit in the class,
produce appropriate random coins explaining the obfuscation process. We then show that assuming
the existence of non-committing iO, every adaptively well-formed functionality can be computed
with adaptive security and round complexity that is independent of the functionality.

We emphasize that currently we do not know how to construct non-committing iO, or even
if such a construction is possible. Rather, this result serves as a reduction from the problem of
constructing adaptively secure protocols with round complexity independent of the function to the
problem of constructing non-committing iO.

Informally, by a non-committing indistinguishability obfuscator for some class of equivalent
circuits (i.e., circuits that compute the same function), we mean an iO scheme for this class,
augmented with a simulation algorithm that generates an obfuscated circuit C̃, such that later,
given any circuit C from the class, it is possible to generate random coins that explain the obfuscated
circuit C̃ as an obfuscation of the circuit C. It is not hard to see that if non-committing iO schemes
exist in general, then the polynomial hierarchy collapses (see Section 5). In order to overcome this
barrier, we consider a limited set of circuit classes, which turns out to be sufficient for our needs.
In particular, we consider classes of equivalent “constant circuits”, i.e., all circuits in the class are
of the same size, receive no input and output the same value.

We next explain how to use non-committing iO in order to construct a protocol for any two-
party functionality f , where the round complexity depends on the obfuscator rather than on f
(this idea extends in a straightforward way to the multiparty setting). First, the parties use any
adaptively secure protocol, e.g., the protocol from [8], to compute an intermediate functionality that
given the parties’ inputs and a circuit computing f , hard-wires the input values to the input wires
of the circuit. This way the intermediate functionality generates a “constant circuit” computing
the desired output. Next, the intermediate functionality obfuscates this “constant circuit” using
random coins provided by the parties and outputs to each party an obfuscated constant circuit.
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Finally, each party locally computes the output of the obfuscated constant circuit.
The underlying idea is that upon the first corruption request, the ideal-process adversary learns

both the input and the output of the corrupted party, and so can prepare a simulated obfuscated
constant circuit that outputs the correct value. Upon the second corruption request, the ideal-
process adversary learns the input of the second party and can prepare the constant circuit as
generated by the intermediate functionality. Using the non-committing properties of the obfusca-
tion, the random coins explaining the obfuscated circuit can be computed at this point, and so the
ideal-process adversary can correctly adjust the random coins that are used for the obfuscation.

1.3 Additional Related Work

Constant-round protocols that are secure facing adaptive adversaries corrupting an arbitrary num-
ber of parties that rely on a short CRS are not known to exist in general. Nonetheless, positive
and negative results have been established in weaker models.

In a model where the CRS can depend on the function, Canetti et al. [10], Dachman-Soled
et al. [11] and Garg and Polychroniadou [15] have independently presented constant-round protocols
that are adaptively secure facing an arbitrary number of corrupted parties. Garg and Sahai [16]
showed that in the plain model (without assuming a CRS) constant-round protocols that are
adaptively secure facing malicious adversaries, cannot be proven secure using a black-box simulator.
The authors further showed that using non-black-box techniques, there exists a constant-round
adaptively secure multiparty protocol, resilient to corruptions of all but one of the parties.

In case the adaptive adversary cannot corrupt all the parties, i.e., at least one party remains
honest, there exist several constant-round protocols. Katz and Ostrovsky [23] showed that any
statically secure constant-round two-party protocol can be transformed into an adaptive protocol
with a single corruption by wrapping the communication with non-committing encryption. Hazay
and Patra [21] achieved better efficiency using one-sided secure primitives. In the multiparty case,
Damgård and Ishai [12] constructed a constant-round adaptively secure protocol assuming an honest
majority. Compiling this protocol with the IPS compiler from Ishai et al. [22] yields a constant-
round adaptively secure protocol that tolerates corruptions of all but one of the parties. Damgård
et al. [14] used equivocal FHE to get better concrete constants for the round complexity.

Assuming the existence of secure erasures, Lindell [27] constructed a constant-round protocol
that UC-realizes any two-party functionality facing adaptive semi-honest adversaries.

Organization of the Paper

In Section 2 we discuss the subtleties relating to non-interactive NCE and in Section 3, the im-
plications to the security proof of the adaptive OT protocol from [8]. In Section 4 we construct
a constant-round two-party protocol for one-sided polynomial-size domain. In Section 5 we define
the notion of non-committing iO and show that this is a complete primitive for adaptively secure
protocols with round complexity independent of the function. The security model is defined in
Appendix A.

2 Universally Composable Non-Interactive NCE
Non-committing encryption (NCE) is a cryptographic tool, used mainly for constructing adaptively
secure multiparty protocols. This notion was first introduced by Canetti et al. [7] as an analogue
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in the adaptive setting to the instantiation of statically secure communication channels (using
“standard” public-key encryption schemes). Since the introduction of NCE, further applications
have been based on this primitive, for example, adaptively secure oblivious transfer [8] and leakage-
resilient protocols [3].

When constructing adaptively secure protocols, two security models are normally considered:
the framework of [4] which provides modular composition and the universal-composability (UC)
framework of [5]. The definition of NCE has evolved over the years, starting from a multiparty
protocol instantiating the secure message transmission functionality and stabilizing on a non-
interactive definition, which is an extension of standard public-key encryption schemes. Although
it is fairly easy to verify that the various definitions are equivalent in the framework of [4], certain
subtleties arise when considering non-interactive NCE in the UC framework. Not realizing these
subtleties may lead to incomplete security proofs when using non-interactive NCE as a building
block for UC-secure protocols. In this section, we prove that the definition of non-interactive NCE
is valid in the UC framework.

2.1 Non-Committing Encryption

Canetti et al. [7] introduced the notion of NCE as an analogue to the way that public-key encryption
is used to instantiate secure channels in the static setting. That is, NCE is defined as a multiparty
protocol realizing the n-party functionality fsmt(µ, λ, . . . , λ) = (λ, µ, λ, . . . , λ),4 for µ ∈ {0, 1}∗, that
is secure in the presence of adaptive semi-honest adversaries that can corrupt a subset of the parties.
The authors constructed an n-party protocol that is an (n− 1)-resilient NCE scheme assuming the
existence of a common-domain trapdoor system, and observed that basing the protocol on specific
number-theoretic assumptions, such as RSA or CDH, yields two-party protocols of two rounds.

The definition above encounters several weaknesses. It considers a multiparty protocol in order
to compute essentially a functionality involving two parties. In addition, the definition allows a
subset of the parties to remain uncorrupted, which is undesirable in order to achieve composition
of protocols in the adaptive setting. Furthermore, the adversary is limited to be semi-honest, and
finally, the security model of [7] is somewhat weak as it does not even allow for sequential compo-
sition. Following these observations, Damgård and Nielsen [13] introduced a stronger definition of
NCE as a two-party protocol for the two-party secure message transmission functionality fsmt, in
the presence of adaptive malicious adversaries, in the framework of Canetti [4].

Definition 2.1 (strong NCE). A strong non-committing encryption is a two-party protocol that
securely computes the two-party functionality fsmt(µ, λ) = (λ, µ), for µ ∈ {0, 1}∗, in the presence
of adaptive malicious adversaries that can corrupt an arbitrary number of parties.

The definition above does not require non-interactiveness, and indeed the authors proposed
an interactive strong NCE protocol, assuming the existence of simulatable public-key encryption
schemes.

Non-interactive NCE can be defined by extending Definition 2.1 and requiring that the protocol
will consist of 2 rounds. However, proving that a protocol is adaptively secure is quite a tedious
task. A simpler definition that captures the non-interactive property of non-committing encryption
is given by Canetti et al. [8]. According to this definition, an NCE scheme is a public-key encryption
scheme in which public keys and ciphertexts can be simulated and later be explained for any
message.

4The input of P1 is µ, the output of P2 is µ, and all other parties have no input nor output.
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Definition 2.2 (non-interactive NCE). A non-interactive non-committing (bit) encryption scheme
consists of four algorithms (Gen,Enc,Dec,Sim) such that the following properties hold:

• The triplet (Gen,Enc,Dec) forms a public-key encryption scheme.

• Sim is a simulation algorithm that on input 1κ, outputs (pk, c, ρ0
G, ρ

0
E , ρ

1
G, ρ

1
E), such that for

any µ ∈ {0, 1} the following distributions are computationally indistinguishable:

– the joint view of an honest sender and an honest receiver in a normal encryption of µ

{(pk, c, rG, rE) | (sk, pk) = Gen(1κ; rG), c = Enc(pk, µ; rE)} ,

– the simulated view of an encryption of µ{
(pk, c, ρµG, ρ

µ
E) | (pk, c, ρ0

G, ρ
0
E , ρ

1
G, ρ

1
E)← Sim(1κ)

}
.

It is easy to verify that in the framework of [4], non-interactive NCE as in Definition 2.2 implies
strong NCE. This follows since upon a corruption of either party, the simulator learns the message
µ and can provide the appropriate randomness.

2.2 Non-Interactive NCE in the UC Framework

The definition of strong NCE can be easily adjusted to the UC framework, by considering protocols
that UC-realize the secure message transmission ideal functionality F lsmt (see Appendix A.4.1). It
is also not hard to see that the (interactive) protocol presented in [13] is UC-secure. However, when
trying to use non-interactive NCE in the UC framework, things are not as immediate. Consider
the standard protocol πsmt for realizing F lsmt using non-interactive NCE, as presented in Figure 1.

Protocol πsmt

Let (Gen,Enc,Dec,Sim) be a non-interactive NCE scheme.

• Upon the first activation with sid, the receiver P2 computes (sk, pk) ← Gen(1κ) and sends
(sid, pk) to P1.

• Upon receiving (send, sid, µ) from Z and having received (sid, pk) from P2, party P1 encrypts
the message c← Encpk(µ) and sends (sid, c) to P2.

• Having received (sid, c) from P1, party P2 decrypts µ′ = Decsk(c) and outputs (sent, sid, µ′).

Figure 1: The adaptive, malicious secure message transmission protocol

The difficulty arises from a subtle difference between the framework of [4] and the UC framework.
In the former, the parties are set with their inputs before the protocol begins, whereas in the later,
the environment can adaptively set the inputs of the parties, meaning that parties may be set with
inputs after the protocol has started. This may lead into a potential attack on πsmt in the UC
framework. The environment first activates the receiver P2 (without input). The adversary waits
for the public key pk to be sent from P2 to P1, and corrupts P2 after it is sent. At this point, the
internal state of P2, which consists of the random coins rG, used to generate (sk, pk), is revealed
to the adversary which can pass it to the environment. Next, the environment activates the sender
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P1 with a uniformly chosen bit µ ∈R {0, 1}, and the protocol resumes: P1 encrypts c ← Encpk(µ)
and sends the ciphertext c to P2. Once the adversary receives c, it sends it to the environment.
The environment now has possession of rG and c, and can verify that c decrypts to µ.

The ideal-process adversary cannot use committing public key and ciphertext, generated by
Gen and Enc, during the simulation, since he must be able to explain the transcript upon a late
corruption of the parties (after the bit µ has been provided by the environment). However, if the
ideal-process adversary simulates this scenario using non-committing public key and ciphertext,
generated as (pk, c, ρ0

G, ρ
0
E , ρ

1
G, ρ

1
E)← Sim(1κ), it needs to guess whether to reveal ρ0

G or ρ1
G as the

random coins of P1 upon the first corruption, and the ciphertext c will fail to decrypt to µ with
probability 1/2.

Fortunately, there is a solution to this issue. The key observation is that although for any
simulated public key pk there exists a ciphertext c such that the pair (pk, c) is equivocal, the public
key pk can still be used to encrypt other messages, albeit in a committing way. Therefore, if
the ideal-process adversary S generates (pk, c, ρ0

G, ρ
0
E , ρ

1
G, ρ

1
E)← Sim(1κ) and receives a corruption

request of the receiver P2 after the first message pk has been simulated and before the sender P1
has been activated with an input, S can choose the random coins for P2 arbitrarily between ρ0

G

and ρ1
G. Say S sets ρ0

G as the random coins, this means that c is now a committing encryption
of 0, however, it will no longer be used. Next, once the environment activates P1 with some bit
µ, S receives µ from F lsmt and can use the public key pk with fresh random coins rE in order to
encrypt µ as c′ = Encpk(µ; rE). The second message is now simulated using c′ rather than c. Upon
a late corruption of P1, S sets the random coins to be rE . Indistinguishability from the view of A
in the real execution follows since otherwise the simulated public key generated using Sim can be
distinguished from a public key generated using Gen.

Theorem 2.3. If (Gen,Enc,Dec,Sim) is a non-interactive non-committing encryption scheme then
Protocol πsmt UC-realizes F lsmt, in the presence of adaptive malicious adversaries.

Proof. Let A be the dummy adversary and let Z be an environment.5 We construct an ideal-
process adversary S, interacting with the environment Z, the ideal functionality F lsmt and with
ideal (dummy) parties P̃1 and P̃2. S constructs virtual real-model parties P1 and P2, and simulates
the interaction of the dummy adversary A with πsmt.

Simulating the first message: Before the beginning of the simulation, the simulator S computes
(p̃k, c̃, ρ0

G, ρ
0
E , ρ

1
G, ρ

1
E) ← Sim(1κ). If the first message needs to be simulated (i.e., if P̃2 is honest

and has been activated by Z), S simulates it as (sid, p̃k).

Explain corruptions before the simulation of the second message: (Note that before the
simulation of the second message, either P̃1 has not been activated with input, or P̃1 has been
activated with input but P̃2 was not activated yet; in the later case the first message was not
simulated yet.)

• Explain a corruption of P1: Upon a corruption of P1, S corrupts P̃1 and proceeds as
follows. S sets the contents of the random tape to be a uniformly distributed string r1. If
P̃1 has already been activated with input (send, sid, µ), set the contents of P1’s input tape to

5Recall that following [5, Claim 10], security with respect to the dummy adversary implies security against
arbitrary adversaries.
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(send, sid, µ). Otherwise, upon a future activation of P̃1, set the contents of P1’s input tape
as above.

• Explain a corruption of P2: Upon a corruption of P2, S corrupts P̃2 and sets the contents
of P2’s random tape to be r2 = ρ0

G.

Simulating the second message (sid, c): The simulation of the second message is done based
on the status of P̃1 and P̃2 at that point in the simulation. (Note that the second message needs
to be simulated only after Z activates P̃1 with input.)

• If both P̃1 and P̃2 are honest, S sets the message to be (sid, c̃).

• If P̃1 is honest and P̃2 is corrupted, then S learns the output (sent, sid, µ) that P̃2 received
from F lsmt. Next:

– If P̃2 was honest when the first message was simulated as (sid, p̃k), S samples a uniformly
random string r1, computes c = Encp̃k(µ; r1) and sets the second message to be (sid, c).

– If P̃2 was corrupted before the first message, denote by (sid, pk) the message sent by the
environment. Next, S computes c = Encpk(µ; r1), using a uniformly random string r1,
and sets the second message to be (sid, c).

• In case P̃1 is corrupted, there is no need to simulate the second message. In this case, if P̃2
is honest, denote by (sid, c) the message sent by the environment, decrypt c using ρ0

G to a bit
µ and send (send, P̃1, P̃2, sid, µ) to F lsmt.

Explain corruptions after the simulation of the second message: (Note that the second
message is simulated after P̃1 has been activated with input; in this case P̃2 has received the output
message (sent, sid, µ) from F lsmt.)

• Explain a corruption of P1: Upon a corruption of P1, S corrupts P̃1, learns its input
(send, sid, µ), and proceeds by setting the contents of P1’s input tape to (send, sid, µ). Next:

– If P̃2 is honest: S sets the contents of the random tape to be r1 = ρµE .
– If P̃2 is corrupted: In case the second message was simulated using c̃, S sets and the

contents of P1’s random tape to be r1 = ρµE ; otherwise the contents of the random tape
is set to be r1 that was determined during the simulation of the second message.

• Explain a corruption of P2: Upon a corruption of P2, S corrupts P̃2, learns its output
tape (sent, sid, µ) and sets the content of P2’s output tape to be (sent, sid, µ). Next:

– In case the second message was simulated using c̃, S sets the contents of the random
tape to be r2 = ρµG.

– In case the second message was sent by the environment (i.e., if P̃1 was corrupted), S
sets the contents of the random tape to be r2 = ρ0

G.

We now prove computational indistinguishability between the view of Z when interacting with
the dummy adversary and parties P1 and P2 running πsmt and the view of Z when interacting with
S in the ideal computation of F lsmt. Let Z be an environment that distinguishes with probability
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1/2+ε between the real computation of πsmt with the dummy adversary and the ideal computation
of F lsmt with simulator S. We construct a distinguisher D for the non-interactive NCE scheme.
Initially, D receives a tuple (pk∗, c∗, r∗G, r∗E) and invokes the environment Z on the value written on
its advice tape. The environment Z can activate the parties and send corruption requests.

The distinguisher follows the operations of the simulator S with the following exceptions.

• The first message is simulated as (sid, pk∗) (recall that this is needed only if P2 is honest).

• Upon a corruption of P2 (before or after the simulation of the second message) D sets the
random coins of P2 to be r2 = r∗G.

• When simulating the second message:

– If the environment did not issue yet any corruption requests, i.e., both parties are honest,
D simulates the second message as (sid, c∗).

– If P2 is corrupted but was honest during the simulation of the first message, D simulates
the second message as (sid, c), where c = Encpk∗(µ; r1).

– If P2 was corrupted before the simulation of the first message, D simulates the second
message as (sid, c), where c = Encpk(µ; r1) and pk was sent by Z.

• If after the simulation of the second message P2 is honest, D sets the contents of its output
tape by decrypting the ciphertext from the second message (sid, c) (either simulated or sent
by Z) using r∗G and sets the output to be the decrypted bit.

• Upon a corruption of P1 after the simulation of the second message, then if the second message
was simulated using c∗, D sets the random coins of P1 to be r1 = r∗E (otherwise to the string
r1 that was set during the simulation of the second message).

Whenever Z outputs a bit b, D outputs b and halts, with the following exceptions, in which case
D outputs a uniformly distributed bit b′.:

1. If D simulated both messages as (sid, pk∗) and (sid, c∗), and at least one of the parties has
been corrupted afterwards, and the decryption of c∗ using r∗G is different from the bit µ that
was sent by Z to P1 as (send, sid, µ), before the simulation of the second message.

2. If Z sent the second message as (sid, c), while P2 is honest, and the decryption of c under r∗G
is different than the decryption of c∗) under r∗G.

Denote by BAD the event that one of the above cases happened. It can be seen by inspection
that if the event BAD did not happen, then:

• If the tuple (pk∗, c∗, r∗G, r∗E) is generated as (pk∗, c∗, ρ0
G, ρ

0
E , ρ

1
G, ρ

1
E) ← Sim(1κ), where

(r∗G, r∗E) = (ρµG, ρ
µ
E) for some µ ∈ {0, 1}, then the view of Z is identically distributed as

its view in the ideal computation of F lsmt with simulator S.

• If the tuple (pk∗, c∗, r∗G, r∗E) is generated as (sk∗, pk∗) = Gen(1κ; r∗G) and c∗ = Enc(pk∗, µ; r∗E),
for some µ ∈ {0, 1}, then the view of Z is identically distributed as its view in the real
computation of πsmt with the dummy adversary.
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Therefore, we conclude that:

Pr [D succeeds] ≤ Pr [D succeeds | BAD] · Pr [BAD] + Pr
[
D succeeds | BAD

]
· Pr

[
BAD

]
= 1

2 · Pr [BAD] +
(1

2 + ε

)
· (1− Pr [BAD])

= 1
2 + ε (1− Pr [BAD]) .

From the security of the non-interactive NCE scheme it follows that ε·(1−Pr [BAD]) is negligible,
and therefore so is ε.

3 Proof of the Adaptively Secure Oblivious Transfer from CLOS
In this section we show that the proof of security of the adaptively secure OT in [8] (see also Lindell
[26]) is incomplete and explain how to rectify it. We emphasize that the results in [8] are valid,
and merely the proof is incomplete.

Canetti et al. [8] used an augmented version of non-interactive NCE in order to construct
a protocol instantiating the adaptively secure 1-out-of-` oblivious-transfer functionality F `ot (see
Appendix A.4.2). They considered a non-interactive NCE scheme with the additional algorithm
OGen which allows to obliviously sample public keys without knowing their secret keys.

Definition 3.1 (augmented non-interactive NCE). An augmented non-interactive non-committing
encryption scheme is a non-interactive NCE scheme (Gen,Enc,Dec,Sim) augmented with an
oblivious-sampling algorithm for public keys pk ← OGen(1κ). We require that the distribution
of a public key generated by Gen is computationally indistinguishable from a public key generated
by OGen, i.e.,

{pk | (sk, pk)← Gen(1κ)} c≡ {pk | pk ← OGen(1κ)} .
Furthermore, the algorithm OGen has invertible sampling, meaning that there exists an algorithm
IOGen such that the following distributions are computationally indistinguishable

{(1κ, pk, r) | pk = OGen(1κ; r)} c≡ {(1κ, pk, IOGen(1κ, pk)) | (sk, pk)← Gen(1κ)} .

Protocol πot in Figure 2 describes the adaptive OT protocol from [8]. The idea behind this
construction is for the receiver to generate ` public keys such that it knows the secret key only to
the ith one. The sender encrypts every message using the corresponding public key and sends all
the ciphertexts to the receiver. The receiver can decrypt only the ith ciphertext and thus obtain
only xi.

Canetti et al. [8, Claim 4.2] proved that assuming (Gen,OGen,Enc,Dec,Sim) is an augmented
non-interactive NCE scheme, then πot UC-realizes F `ot in the presence of adaptive semi-honest
adversaries. The idea behind the proof is for S to produce a non-committing transcript, i.e.,
for every j ∈ [`], to generate (pkj , cj , ρ0

G,j , ρ
0
E,j , ρ

1
G,j , ρ

1
E,j) ← Sim(1κ). Next, the first message is

simulated as (sid, pk1, . . . , pk`) whereas the second message is simulated as (sid, c1, . . . , c`). Upon
a corruption of the ideal sender, S learns its input (sender, sid, x1, . . . , x`) and sets the virtual
sender’s random coins to be (ρx1

E,1, . . . , ρ
x`
E,`). Upon a corruption of the ideal receiver, S learns

its input (receiver, sid, i) and output (sid, xi) and for every j ∈ [`] \ {i} it computes the invertible
sampling ρjG ← IOGen(1κ, pkj), denotes ρiG = ρxiG and finally sets the virtual receiver’s random coins
to be (ρ1

G, . . . , ρ
`
G).
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Protocol πot

Let (Gen,OGen,Enc,Dec,Sim) be a augmented non-interactive NCE scheme.

• Given input (receiver, sid, i), the receiver R computes (sk, pki)← Gen(1κ) and runs `− 1 times
pkj ← OGen(1κ) for j ∈ [`] \ {i}. Then R sends (sid, pk1, . . . , pk`) to T .

• Given input (sender, sid, x1, . . . , x`), and having received (sid, pk1, . . . , pk`) from R, sender T
computes cj ← Encpkj

(xj) for j ∈ [`], and sends (sid, c1, . . . , c`) to R.

• Having received (sid, c1, . . . , c`) from T , receiverR computes xi = Decsk(ci) and outputs (sid, xi).

Figure 2: The adaptive, semi-honest oblivious-transfer protocol [8]

However, during the security proof of the protocol, it is assumed that upon a corruption of the
ideal receiver, the ideal-process adversary knows its output xi and so can denote ρiG = ρxiG . As we
discussed, although valid in the framework of [4], such an assumption cannot be made in the UC
framework. Hence, the security proof should be adjusted to cater for the corruption strategy in
which the environment activates the receiver and the adversary corrupts the receiver immediately
after the first message is sent from R to T and before the sender is activated with its input.
Proposition 3.2. If (Gen,OGen,Enc,Dec,Sim) is an augmented non-interactive non-committing
encryption scheme then Protocol πot UC-realizes F `ot, in the presence of adaptive semi-honest
adversaries.
Proof. The proof proceeds identically as the proof of [8, Claim 4.2] with the following modifications
to the section Dealing with “corrupt” commands. This section explains the operations of S upon
corruption requests after the first message has been sent. If the sender is corrupted before the
receiver, the operations remain unchanged. Upon a corruption of the receiver (while the sender is
honest), S must check whether the sender has been activated. If so, S resumes as in the original
proof. Otherwise, if the sender has not yet been activated, S proceeds as follows: S corrupts the
ideal receiver R̃, obtains its input (receiver, sid, i) (but not its output – the output is not determined
yet) and constructs a virtual real-model receiver R. The contents of the input tape of R is set to
(receiver, sid, i). In order to set the contents of R’s random tape, for every j ∈ [`] \ {i} S computes
the invertible sampling rjG ← IOGen(1κ, pkj), denotes riG = ρ0

G and finally sets the receiver’s random
coins to be (r1

G, . . . , r
`
G).

The simulation can now proceed in several ways: either the second message needs to be simulated
while the sender is honest or the sender is corrupted before the simulation of the second message.
• If a corruption request of the sender is before the simulation of the second message and before
the ideal sender T̃ has been activated with input, S first corrupts T̃ and constructs a virtual
real-model sender T . Since the sender has not yet been activated, the input tape need not
be set, but only the random tape. For this, S samples uniformly distributed random coins
(r1
E , . . . , r

`
E) as the random tape of T . Later, upon an activation of the ideal sender T̃ with

input (sender, sid, x1, . . . , x`), S sets the input tape of T with (sender, sid, x1, . . . , x`). The
second message is then simulated by computing c′j = Encpkj (xj ; r

j
E) for every j ∈ [`] and

setting it to be (sid, c′1, . . . , c′`).

• If a corruption request of the sender is before the simulation of the second message and
after the ideal sender T̃ has been activated with input, S first corrupts T̃ , obtains its input
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(sender, sid, x1, . . . , x`) and constructs a virtual real-model sender T as follows. The input
tape of T is set to (sender, sid, x1, . . . , x`). In order to set the contents of T ’s random tape,
for every j ∈ [`], S samples random coins rjE and encrypts c′j = Encpkj (xj ; r

j
E). The random

coins of T are set as (r1
E , . . . , r

`
E) and finally the second message is set to be (sid, c′1, . . . , c′`).

• If the second message needs to be simulated while the sender is honest, then the sender must
have been activated with its input, hence S obtains the output of the receiver xi from the ideal
functionality. Next, S samples riE , computes c′i = Encpki(xi; riE) and sets the message to be
(sid, c1, . . . , ci−1, c

′
i, ci+1, . . . , c`). Upon a corruption request of the sender, S first corrupts the

ideal sender T̃ , obtains its input (sender, sid, x1, . . . , x`) and constructs a virtual real-model
sender T as follows. The contents of the input tape of T is set to (sender, sid, x1, . . . , x`),
whereas in order to set the contents of T ’s random tape, for every j ∈ [`] \ {i}, S denotes
rjE = ρ

xj
E,j . The random coins of T are set as (r1

E , . . . , r
`
E).

The sections Simulating the receiver and Simulating the sender in the proof in [8] also require
adjustments, in order to cater for the scenarios where the protocol starts when one of the parties is
corrupted, but one (or both) of the parties has not been activated with input. These adjustments
follow similarly to the changes above.

We note that adding initialization messages, such that a party sends OK once it is activated
and the protocol begins only after both parties have been initialized, does not solve the problem.
Consider an environment that activates the receiver R with input; R then sends OK to the sender.
Next, the adversary corrupts R (before the sender is activated with input). The random tape of R
should contain now the key generation random coins that will be used to generate (sk, pki) using
Gen and pkj using OGen for j ∈ [`] \ {i}. This means that although the message (sid, pk1, . . . , pk`)
has not been transmitted, it is essentially determined because the random coins that will generate
it have been fixed.

4 Functionalities with One-Sided Polynomial-Size Domain
In this section, we focus on two-party deterministic functionalities for which the size of the input
domain of one of the parties is polynomial in the security parameter, there are no restrictions on
the input domain of the other party. More specifically, we consider functionalities of the form

f : D1 × {0, 1}l2 → {0, 1}m1 × {0, 1}m2 ,

where D1 ⊆ {0, 1}l1 and |D1| = O(poly(κ)).6 The reason we consider D1 to be a subset of {0, 1}l1 ,
rather than requiring that l1 = O(log(poly(κ))), is that we do not limit the functionality to receive
short inputs. The input of P1 may consists of l1 bits, however there are polynomially many inputs.

In this situation, since P2 knows the input domain of P1, it can locally compute all possible values
(y1
x, y

2
x) = f(x, x2), for every x ∈ D1. P1 should retrieve only y1

x1 , i.e., the output corresponding to
its input x1. This is exactly the requirement of oblivious transfer, therefore using adaptively secure
OT, P1 obtains y1

x1 and nothing else whereas P2 does not learn anything about x1.
If P2 also receives an output, then it may learn something about P1’s input, in particular,

P2 learns that the input of P1 lies in the preimage of its output y2
x1 under the function f2(·, x2).

6The idea of using OT over domain which is of polynomial size first appeared in Poupard and Stern [29].
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However, this is valid in the setting of secure function evaluation, because this information is leaked
from the output of the functionality, and therefore can also be learned in the ideal process. In order
for P2 to get its output y2

x1 without revealing it to P1, P2 masks every output it computes with a
random string u. Now, during the OT, P1 receives y2

x1 ⊕ u in addition to y1
x1 and returns it to P2

that can remove the mask.

Protocol πpoly
sfe

Common input: A description of a two-party function f : D1 × {0, 1}l2 → {0, 1}m1 × {0, 1}m2 and
of the domain D1 of P1.

• Upon receiving (input, sid, x1) from Z, party P1 sends (receiver, sid, x1) to F`ot.

• Upon receiving (input, sid, x2) from Z, party P2 operates as follows:

1. Sample a random string u ∈ {0, 1}m2 .
2. For every x ∈ D1, compute (y1

x, y
2
x) = f(x, x2).

3. Denote by Y the ordered tuple (y1
x, y

2
x ⊕ u) for every x ∈ D1.

4. Send to F`ot the message (sender, sid, Y ).

• Upon receiving the message (sid, (w1, w2)) from F`ot, party P1 sends (sid, w2) to P2 and outputs
(output, sid, w1).

• Upon receiving (sid, w2) from P1, party P2 outputs (output, sid, w2 ⊕ u).

Figure 3: The adaptive, semi-honest two-party SFE protocol, in the F `ot-hybrid model

Theorem 4.1. Let f be a deterministic two-party functionality where the cardinality of the domain
of P1 is polynomial in the security parameter. Then Protocol πpoly

sfe UC-realizes Ffsfe in the F `ot-
hybrid model in the presence of adaptive semi-honest adversaries.

Proof. LetA be an adaptive, semi-honest adversary attacking πpoly
sfe in the F `ot-hybrid model and let

Z be an environment. We construct an ideal-process adversary S, interacting with the environment
Z, the ideal functionality Ffsfe and with ideal (dummy) parties P̃1 and P̃2. S constructs virtual
real-model parties P1 and P2, and runs the adversary A. S must simulate the view for A, i.e., its
communication with Z, the messages sent by the uncorrupted parties and the internal states of the
corrupted parties (including the interface to the ideal functionality F `ot).

In order to simulate the communication with Z, every input value that S receives from Z is
written on A’s input tape. Likewise, every output value written by A on its output tape is copied
to S’s own output tape.

We next explain how S simulates the message (sid, w2) and how it behaves upon receiving
corruption requests. Note that the message (sid, w2) is sent in the protocol only after both P1 and
P2 have been activated with input. In addition, each dummy party forwards its input immediately
to Ffsfe (both when it is honest and when it is corrupted) and Ffsfe immediately computes the output
once it receives both inputs. It follows that if a dummy party is corrupted after the simulation of
the message, S learns both its input and its output.
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Explain corruptions before simulating the message (sid, w2):

• Explain a corruption of P1: Upon a corruption of P1, S corrupts P̃1 and continues as fol-
lows. If P̃1 has already been activated with input (input, sid, x1), S proceeds by setting the con-
tents of P1’s input tape to (input, sid, x1) and the outgoing message to Fot to (receiver, sid, x1).
(Note that P1 acts deterministically throughout the protocol, hence it has no random tape).
In case P̃1 has not been activated with input yet, S waits until it is activated and proceeds
as above.

• Explain a corruption of P2: Upon a corruption of P2, S corrupts P̃2 and continues as
follows. If P̃2 has already been activated with input (input, sid, x2), S proceeds by setting the
contents of P2’s input tape to (input, sid, x2), samples a random string u ∈ {0, 1}m2 , sets the
random tape of P2 to u, computes Y as in the protocol and sets the outgoing message to
F `ot to (sender, sid, Y ). In case P̃1 has not been activated with input yet, S waits until it is
activated and proceeds as above.

Simulating the message (sid, w2): Note that the message is sent after P1 has received the
output from F `ot, i.e., after both parties have been activated with input.

• Case 1: P2 is honest. S samples a uniformly random string w2 ∈ {0, 1}m2 and sets the
message to be (sid, w2).

• Case 2: P2 is corrupted. In this case P̃2 must have received the output message
(output, sid, y2) from Ffsfe (and the value u has been already set). S computes w2 = y2 ⊕ u
and sets the message to be (sid, w2).

Explain corruptions after the simulation of (sid, w2):

• Explain a corruption of P1: Upon a corruption of P1, S corrupts P̃1, learns its input
(input, sid, x1) and its output (output, sid, y1), and proceeds by setting the contents of P1’s
input tape to (input, sid, x1), the output tape to (output, sid, y1), the outgoing message to F `ot
to (receiver, sid, x1) and the incoming message from F `ot to (sid, (y1, w2)).

• Explain a corruption of P2: Upon a corruption of P2, S corrupts P̃2, learns its input
(input, sid, x2) and its output (output, sid, y2), and proceeds by setting the contents of P2’s
input tape to (input, sid, x2) and of the output tape to (output, sid, y2). Next, S sets the
contents of P2’s random tape to be u = y2 ⊕ w2, computes Y as in the protocol and sets the
message to F `ot to be (sender, sid, Y ).

Proving (perfect) indistinguishability between the view of A when interacting with Z, parties
P1, P2 and with the ideal functionality F `ot and the view of A when interacting with S follows in a
straight-forward way.

Using the adaptively secure ot presented in [8] (see Section 3) and using the composition
theorem from [5], we obtain the following corollary:

Corollary 4.2. Assuming the existence of augmented non-interactive NCE schemes, every deter-
ministic two-party functionality, for which the cardinality of the domain of P1 is polynomial in the
security parameter, can be securely UC-realized, in the presence of adaptive semi-honest adversaries
using a three-message protocol.
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We note that this approach does not extend to probabilistic functionalities. The reason is that if
P2 locally computes f , then it must know the random coins used in the computation. However, this
information is not available to the ideal-process adversary if only P2 is corrupted. Alternatively,
when using the standard transformation from a randomized functionality into a deterministic one,
by computing g((x1, r1), (x2, r2)) = f(x1, x2; r1⊕r2), the input domain of P1 is no longer polynomial.

Another important corollary from Theorem 4.1 is that in order to prove impossibility of
constant-round adaptively secure two-party protocols, one must consider either functionalities
where both parties have super-polynomial domains, or probabilistic functionalities.

5 Non-Committing Indistinguishability Obfuscation
An indistinguishability obfuscator [1, 17] for a circuit class {Cκ} is a ppt machine iO satisfying the
following conditions:

Correctness: For every κ and every C ∈ Cκ, it holds that C and iO(C) compute the same function.

Polynomial slowdown: There is a polynomial p such that for all C ∈ Cκ, |iO(1κ, C)| ≤ p(κ) · |C|.

Indistinguishability: For any sequence {Cκ,0, Cκ,1, auxκ}κ, where Cκ,0, Cκ,1 ∈ Cκ, |Cκ,0| = |Cκ,1|
and Cκ,0, Cκ,1 compute the same function, and for any non-uniform ppt distinguisher D,
there exists a negligible function negl such that:

|Pr [D (iO (1κ, Cκ,0) , auxκ) = 1]− Pr [D (iO (1κ, Cκ,1) , auxκ) = 1]| ≤ negl(κ).

Indistinguishability obfuscation has recently led to a construction of a two-round statically
secure protocol [18] and to constant-round adaptively secure protocols in the CRS model [10, 11, 15].
We consider an adaptive analogue for iO called non-committing indistinguishability obfuscation
and show that this primitive is complete for constructing adaptively secure protocols with round
complexity that is independent of the function to compute. We emphasize that currently we do not
know how to construct non-committing indistinguishability obfuscation, and that this result serves
as a reduction from the problem of constructing adaptively secure protocols with round complexity
independent of the function to the problem of constructing non-committing iO.

Given a circuit class consisting of circuits that compute the same function, we would like to have
an indistinguishability obfuscator iO augmented with a simulation algorithm Sim1 that outputs a
“canonical” obfuscated circuit and some state s, such that later, given any circuit from the class
and the state, a second algorithm Sim2 can explain the randomness for the obfuscation algorithm
to generate the canonical circuit as an obfuscation of this circuit. We note that such a notion of
non-committing iO is unlikely to exists in general, since this will provide an efficient solution to the
circuit equivalence problem, which is co-NP complete, and so will imply a collapse of the polynomial
hierarchy. Given two circuits C0, C1, if and only if the circuits are equivalent, then there exists a
non-committing iO for this family and it is possible to first compute (C̃, s) ← Sim1(1κ) and later
explain C̃ both as r0 ← Sim2(s, C0) and as r1 ← Sim2(s, C1).

We overcome this difficulty by considering equivalent circuits that do not receive any input, i.e.,
a family of constant circuits that produce the same output. The circuit equivalence problem is easy
in this scenario since one simply runs both circuits and compares the outputs. More specifically,
consider a circuit C computing a function f and an input vector x. We hard-wire to each input
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wire (i.e., to each input terminal in the terminology of Goldreich [19]) the corresponding input
value. This yields a circuit that computes the constant function fx = f(x). We say that a circuit
is a constant circuit if all its input wires have hard-wired values (an so it computes a constant
function).

Definition 5.1. A non-committing indistinguishability obfuscator scheme for a circuit class {Cκ},
consisting of constant circuits, is a triplet of PPT algorithms Π = (iO,Sim1,Sim2) such that:

• iO is an indistinguishability obfuscator for {Cκ}.

• Upon receiving 1κ, an integer m and a value y, Sim1 outputs a constant circuit C̃ (of size m
and output y) and a state s.

• Upon receiving a circuit C ∈ Cκ and a state s, Sim2 outputs a string r.

• For any non-uniform ppt D and for large enough κ ∈ N, it holds that:∣∣∣Pr
[

Exptreal
Π,D (κ) = 1

]
− Pr

[
Exptideal

Π,D (κ) = 1
]∣∣∣ ≤ negl(κ),

where the experiments Exptreal
Π,D and Exptideal

Π,D are defined below, and the probability is over the
random coins of the experiments and of D.

Experiment Exptreal
Π,D (κ) Experiment Exptideal

Π,D (κ)

Send 1κ to D and get back a circuit C ∈ Cκ.
Sample a uniformly distributed string r.
Compute C̃ = iO(1κ, C; r).
Send (C̃, r) to D and get back a bit b.
Return b.

Send 1κ to D and get back a circuit C ∈ Cκ.
Run the circuit C and compute the output y.
Compute (C̃, s)← Sim1(1κ, |C|, y).
Compute r ← Sim2(s, C).
Send (C̃, r) to D and get back a bit b.
Return b.

For our usage, we require that the depth of the circuit representing the obfuscator iO is in-
dependent of the depth of the (input variable) circuit C. This requirement is motivated by the
construction of Garg et al. [17] for “standard” iO, which satisfies this property.

We note that the technique of Katz et al. [25] does not seem to rule out non-committing iO for
constant circuits, since the function that can be computed using the simulator is fixed in advance.
Likewise, the technique of Nielsen [28] does not seem to work, since the number of constant circuits
that can be explained is bounded in advance.

5.1 Adaptively Secure Protocol with Round Complexity Independent of f

We define the protocol in a hybrid model where the parties have access to an ideal obfuscate-
circuit-with-input functionality FCocwi. For simplicity we present the protocol for public-output
deterministic functionalities, and the extension to private-output randomized functionalities follows
using standard techniques. FCocwi is parametrized by a circuit C, each party sends its input to FCocwi,
which hard-wires the inputs to the circuit, obfuscates it and returns the obfuscated circuit to the
parties. Each party sends an additional random string that is used as a share of the random coins
for the obfuscation. The obfuscate-circuit-with-input functionality is described in Figure 4.
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Functionality FC
ocwi

The functionality FCocwi proceeds as follows, interacting with parties P1, . . . , Pn and an adversary S,
and parametrized by a circuit C and a non-committing iO scheme for constant circuits. For every
party Pi initialize values xi ← ⊥ and ri ← 0.

• Upon receiving (ocwi-input, sid, (x, r)) from Pi, set xi ← x and ri ← r and send a message
(ocwi-input, sid, Pi) to S.

• Upon receiving (ocwi-output, sid) from Pi, do:

1. If xi = ⊥ for some honest party Pi, return ⊥.
2. If the circuit C̃ has not been set yet:

(a) Prepare the circuit C1 by hard-wiring the values x1, . . . , xn to C.
(b) Obfuscate the circuit C1 as C̃ = iO(1κ, C1; r1 ⊕ . . .⊕ rn).

3. Send to Pi the obfuscated circuit (ocwi-output, sid, C̃).

Figure 4: The obfuscate-circuit-with-input Functionality

Based on the properties of non-committing iO, the depth of a circuit computing FCocwi depends
only on the depth of the obfuscator iO and not the depth of C.

Protocol πncio
sfe

Common input: an n-party functionality f : ({0, 1}∗)n → ({0, 1}∗)n and a circuit C computing f .

• Upon receiving (input, sid, xi) from Z, party Pi samples a random string ri ∈R {0, 1}∗ and sends
(ocwi-input, sid, (xi, ri)) to FCocwi.

• Upon receiving (ocwi-output, sid, C̃) from FCocwi, Pi runs the circuit C̃, receives an output y and
outputs (output, sid, y).

Figure 5: The adaptive, semi-honest protocol computing Ffsfe, in the FCocwi-hybrid model

Theorem 5.2. Let f be an n-party functionality and let C be a circuit computing f . If Π =
(iO,Sim1,Sim2) is a non-committing iO scheme for constant circuits, then Protocol πncio

sfe UC-
realizes Ffsfe in the FCocwi-hybrid model, in the presence of adaptive semi-honest adversaries.

Proof. Let A be an adaptive, semi-honest adversary attacking πncio
sfe in the FCocwi-hybrid model and

let Z be an environment. We construct an ideal-process adversary S, interacting with the envi-
ronment Z, the ideal functionality Ffsfe and with ideal (dummy) parties P̃1, . . . , P̃n. S constructs
virtual parties P1, . . . , Pn, and runs the adversary A. S must simulate the view for A, i.e., its
communication with Z, the internal states of the corrupted parties and the interface with FCocwi.
Note that there is no communication between the parties during the protocol, therefore S need not
simulate the messages sent by the uncorrupted parties,

In order to simulate the communication with Z, every input value that S receives from Z is
written on A’s input tape. Likewise, every output value written by A on its output tape is copied
to S’s own output tape.
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Simulating corruptions requests of party Pi: S corrupts P̃i and continues as follows:

• If P̃i has not been activated with input yet: S samples ri ∈R {0, 1}∗ and sets the
contents of Pi’s random tape to ri.

• If P̃i has been activated with input, but did not receive output yet: S samples ri ∈R
{0, 1}∗ and proceeds by setting the contents of Pi’s input tape to (input, sid, xi), the contents
of the random tape to ri and the message Pi sends to FCocwi to (ocwi-input, sid, (xi, ri)).

• If P̃i has been activated with input, and has received output: S sets the contents of
Pi’s input tape to (input, sid, xi). Next:

– If C̃ has not been set yet (i.e., first time S learns the output y). S samples ri ∈R {0, 1}∗
and proceeds by setting the contents of Pi’s random tape to ri and the message Pi sends
to FCocwi to (ocwi-input, sid, (xi, ri)). Next, S computes (C̃, s) ← Sim1(1κ, |C|, y), and
sets the messages from FCocwi to be (ocwi-output, sid, C̃) for each corrupted party.

– If C̃ has already been set:
∗ If not all parties are corrupted, S samples ri ∈R {0, 1}∗ and proceeds by set-
ting the contents of Pi’s random tape to ri, the message Pi sends to FCocwi to
(ocwi-input, sid, (xi, ri)) and the message it receives to (ocwi-output, sid, C̃).
∗ Upon the n’th corruption, S computes the circuit C1 by hard-wiring the input
values x1, . . . , xn to C and computes r ← Sim2(s, C1). Next, S computes ri =
r ⊕ (⊕j 6=irj) and proceeds by setting the contents of Pi’s random tape to ri, the
message Pi sends to FCocwi to (ocwi-input, sid, (xi, ri)) and the message it receives to
(ocwi-output, sid, C̃).

Upon an activation of a corrupted party: Once a corrupted dummy party P̃i is activated
with input (input, sid, xi), S forward the input mesage to the ideal functionality Ffsfe on behalf of
party Pi and proceeds by setting the contents of Pi’s input tape to (input, sid, xi) and the message
Pi sends to FCocwi to (ocwi-input, sid, (xi, ri)). (Recall that the random tape ri has been set during
the corruption.) In case all the parties have already been activated with input, S learns the output
of the corrupted party (output, sid, y) and operates as follows:

• If all parties are corrupted, S computes C̃ as in FCocwi using the values (xj , rj) for every
j ∈ [n], and sets the messages from FCocwi to be (ocwi-output, sid, C̃) for each party.

• If not all parties are corrupted, S computes (C̃, s) ← Sim1(1κ, |C|, y), and sets the messages
from FCocwi to be (ocwi-output, sid, C̃) for each corrupted party.

We now prove computational indistinguishability between the view of Z when interacting with
A, parties P1, . . . , Pn running πncio

sfe and the view of Z when interacting with S in the ideal compu-
tation of Ffsfe. Let Z be an environment that distinguishes between the real computation of πncio

sfe
with adversary A and the ideal computation of Ffsfe with simulator S. We construct a distinguisher
D for the NCIO scheme. Initially, D receives 1κ and invokes the environment Z on its advice and
the adversary A; the distinguisher follows the operations of the simulator S, and in particular
forwards all messages between Z and A.
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Initially, Z sends input messages to the parties and A may send corruption requests. When D
receives from Z an input value xi for party Pi, D stores the value.7 When D receives a corruption
request for some Pi, it follows the operations of S, i.e., samples a random string ri, returns ri to
Z as Pi’s random coins and sets the value for FCocwi to be (xi, ri). If Z outputs a bit b before
distributing input values for all the parties, D sends a constant circuit of size |C| with output 0 to
the challenger, receives back (C̃, r̃), returns b and halts.

Otherwise, once D received input values for all the parties, it prepares the circuit C1 by hard-
wiring the input values to the circuit C, sets the output value for each (corrupted and uncorrupted)
party to be the output value of C1, sends C1 to the challenger and gets back the response (C̃, r̃).
We consider two cases:

• If the adversary A corrupts all the parties before all the input values were set, D ignores the
response it received from the challenger.8 Instead, D obfuscates the circuit C̃ = iO(C1;⊕ri)
and sets the response from FCocwi to be C̃ for all the parties.

• If the environment gave inputs to all the parties before the adversary corrupted all of them,
D sets the output from FCocwi to be C̃ for each corrupted party. D continues to answer a
corruption request to party Pi as S, by using uniformly distributed random coins ri. Upon the
n’th corruption request, for some party Pi, D computes the random coin as ri = r̃⊕ (⊕j 6=irj).

It can be seen by inspection that:

• In case D runs in the experiment Exptreal
Π,D (κ) the view of Z is identically distributed as its

view in an execution of πncio
sfe in the focwi-hybrid model with adversary A.

• In case D runs in the experiment Exptideal
Π,D (κ) the view of Z is identically distributed as its

view in an ideal computation of Ffsfe with S.

It follows that D succeeds with the same probability as Z.

When instantiating the ideal functionality FCocwi using the protocol from Canetti et al. [8],
the round complexity depends on the circuit representing FCocwi, which is independent from the
depth of f . Hence, using the composition theorem from Canetti [5] we conclude with the following
corollary.

Corollary 5.3. Assume that enhanced trapdoor permutations, augmented non-committing encryp-
tion and non-committing iO scheme for constant circuits exist. Then for any adaptively well-formed
multiparty functionality f , there exists a protocol that UC-realizes Ffsfe in the presence of adaptive
semi-honest adversaries, with round complexity that is independent of f .
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A The UC Framework
In this section we describe the universal-composability framework, for more details see [5].

A.1 The Real Model

An execution of a protocol π in the real model consists of n ppt interactive Turing machines (ITMs)
P1, . . . , Pn representing the parties, along with two additional ITMs, an adversary A, describing
the behavior of the corrupted parties and an environment Z, representing the external network
environment in which the protocol operates. The environment gives inputs to the honest parties,
receives their outputs, and can communicate with the adversary at any point during the execution.
The adversary controls the operations of the corrupted parties and the delivery of messages between
the parties.

In more details, each ITM is initialized with the security parameter κ and random coins, where
the environment may receive an additional auxiliary input. The protocol proceeds by a sequence
of activations, where the environment is activated first and at each point a single ITM is active.
When the environment is activated it can read the output tapes of all honest parties and of the
adversary, and it can activate one of the parties or the adversary by writing on its input tape. Once
a party is activated it can perform a local computation, write on its output tape or send messages
to other parties by writing on its outgoing communication tapes. After the party completes its
operations the control is returned to the environment. Once the adversary is activated it can send
messages on behalf of the corrupted parties or send a message to the environment by writing on its
output tape. In addition, A controls the communication between the parties, and so it can read the
contents of the messages on outgoing tapes of honest parties and write messages on their incoming
tapes. We assume that only messages that were sent in the past by some party can be delivered,
and each message can be delivered at most once.9 A can also corrupt an honest party, gain access
to all its tapes and control all its actions. Whenever a party is corrupted the environment is
notified. If A wrote on the incoming tape of an honest party, this party is activated next, otherwise
the environment is activated. The protocol completes once Z stops activating other parties and
outputs a single bit.

If the adversary is semi-honest, it always instructs the corrupted parties to follow the protocol.
If the adversary is malicious, it may instruct the corrupted parties to deviate from the protocol
arbitrarily.

9We assume that all the communication is authenticated yet visible to the adversary; formally, we work in the
Fauth-hybrid model.
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Let REALπ,A,Z(κ, z, r) denote Z’s output on input z and security parameter κ, after in-
teracting with adversary A and parties P1, . . . , Pn running protocol π with random tapes
r = (r1, . . . , rn, rA, rZ) as described above. Let REALπ,A,Z(κ, z) denote the random variable
REALπ,A,Z(κ, z, r), when the vector r is uniformly chosen.

A.2 The Ideal Model

A computation in the ideal model consists of n dummy parties P1, . . . , Pn, an ideal-process adver-
sary (simulator) S, an environment Z, and an ideal functionality F . As in the real model, the
environment gives inputs to the honest (dummy) parties, receives their outputs, and can communi-
cate with the ideal-process adversary at any point during the execution. The dummy parties act as
channels between the environment and the ideal functionality, meaning that they send the inputs
received from Z to F and vice-versa. The ideal functionality F defines the desired behaviour of
the computation. F receives the inputs from the dummy parties, executes the desired computation
and sends the output to the parties. The ideal-process adversary does not see the communication
between the parties and the ideal functionality, however, S can communicate with F .

Hiding the communication between the ideal functionality and the parties from the adversary
may be too restrictive; it is often desired to provide the adversary the power to determine when a
party will receive the message. We say that the ideal functionality F sends a delayed output v to a
party P if F first sends to the adversary a message that it is ready to generate an output to P . In
case the output is public F sends v to the adversary. When the adversary replies to the message,
F outputs the value v to P .10

Let IDEALF ,S,Z(κ, z, r) denote Z’s output on input z and security parameter κ, after interacting
with ideal-process adversary S and dummy parties P1, . . . , Pn that interact with ideal functionality
F with random tapes r = (rS , rZ) as described above. Let IDEALF ,S,Z(κ, z) denote the random
variable IDEALF ,S,Z(κ, z, r), when the vector r is uniformly chosen.

Definition A.1. We say that a protocol π UC-realizes an ideal functionality F in the presence
of adaptive malicious (resp., semi-honest) adversaries, if for any ppt adaptive malicious (resp.,
semi-honest) adversary A and any ppt environment Z, there exists a ppt ideal-process adversary
S such that the following two distribution ensembles are computationally indistinguishable

{REALπ,A,Z (κ, z)}κ∈N,z∈{0,1}∗
c≡ {IDEALF ,S,Z (κ, z)}κ∈N,z∈{0,1}∗ .

A.3 The Hybrid Model

The F-hybrid model is a combination of the real and ideal models, it extends the real model with
an ideal functionality F . The parties communicate with each other in exactly the same way as
in the real model described above, however, they can interact with F as in the ideal model. An
important property of the UC framework is that the ideal functionality F in a F-hybrid model can
be replaced with a protocol that UC-realizes F .

10The ideal-process adversary may never release messages from the ideal functionality to the dummy parties and
so termination of the computation is not guaranteed. In order to rule out trivial protocols that never produce output,
we follow [8] and consider non-trivial protocols that have the following property: if the real-model adversary delivers
all messages and does not corrupt any parties, then the ideal-process adversary also delivers all messages and does
not corrupt any parties. We note that using techniques from [24] guaranteed termination can be enforced.
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Let the global output HYBRIDFπ,A,Z(κ,x, z) denote Z’s output on input z and security parameter
κ, after interacting in a F-hybrid model with adversary A and parties P1, . . . , Pn with input x and
uniformly distributed random tapes r = (r1, . . . , rn, rA, rZ) running protocol π.

Theorem A.2 (Canetti [5]). Let F be an ideal functionality and let ρ be a protocol that UC-realizes
F in the presence of adaptive semi-honest (resp., malicious) adversaries, and let π be a protocol
that UC-realizes G in the F-hybrid model in the presence of adaptive semi-honest (resp., malicious)
adversaries. Then for any ppt adaptive semi-honest (resp., malicious) real-model adversary A and
any ppt environment Z, there exists a ppt adaptive semi-honest (resp., malicious) adversary S in
the F-hybrid model such that

{REALπρ,A,Z (κ, z)}κ∈N,z∈{0,1}∗
c≡
{

HYBRIDFπ,S,Z (κ, z)
}
κ∈N,z∈{0,1}∗

.

We emphasize an important point when analyzing protocols in the F-hybrid model. In addition
to the input, output, randomness and incoming messages, the internal state of a party contains
its interface with the ideal functionality F , i.e., the input the party sent to F and the output it
received. Therefore, upon a corruption of a party after an ideal call to F has been made, the
simulator must also provide to the adversary the party’s interface with F .

A.4 Some Ideal Functionalities

We next describe several ideal functionalities that are used throughout the paper.

A.4.1 Secure Message Transmission

The secure message transmission (SMT) functionality models a secure and private channel between
two parties. The sender can send a message to the receiver such that the adversary learns only
a specified leakage of the message, e.g., its length. If the sender is corrupted before the message
was delivered to the receiver, the adversary is allowed to change the message. The secure message
transmission functionality is described in Figure 6.

Functionality F l
smt

F lsmt proceeds as follows, parametrized with leakage function l and running with a sender T , a receiver
R and an adversary S.

• Upon receiving a message (send, T,R, sid,m) from T , send the message (sent, T,R, sid, l(m)) to
S, generate a private delayed output (sent, T, sid,m) to R and halt.

• Upon receiving a message (corrupt, sid, P ) from S, where P ∈ {T,R}, disclose m to S. Next,
if S provides a value m′ and P = T , and no output has been written yet to R, then output
(sent, T, sid,m′) to R and halt.

Figure 6: The secure message transmission functionality

A.4.2 Oblivious Transfer

A 1-out-of-` oblivious transfer is a two-party functionality involving a sender and a receiver. The
sender has ` messages as its input x1, . . . , x`, whereas the receiver has an index i ∈ [`] as its input.
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At the end of the computation, the receiver should obtain xi and nothing else whereas the sender
should not learn anything new. We describe the ideal functionality F `ot in Figure 7, for simplicity,
for assume that every xj is a bit.

Functionality F`
ot

F`ot proceeds as follows, parametrized with an integer ` and running with an oblivious transfer sender
T , a receiver R and an adversary S.

• Upon receiving a message (sender, sid, x1, . . . , x`) from T , where each xj ∈ {0, 1}, record the
tuple (x1, . . . , x`).

• Upon receiving a message (receiver, sid, i) from R, where i ∈ [`], send (sid, xi) to R and sid to S,
and halt. (If no (sender, . . .) message was previously sent, then send nothing to R.)

Figure 7: The oblivious-transfer functionality

A.4.3 Secure Function Evaluation

Secure function evaluation (SFE) is a multiparty primitive where a set of n parties wish to compute
a (possibly randomized) function f : ({0, 1}∗)n×{0, 1}∗ → ({0, 1}∗)n, where f = (f1, . . . , fn). That
is, for a vector of inputs x = (x1, . . . , xn) ∈ ({0, 1}∗)n and random coins r ∈R {0, 1}∗, the output-
vector is (f1(x; r), . . . , fn(x; r)). The output for the i’th party (with input xi) is defined to be
fi(x; r). The secure function evaluation functionality, Ffsfe, is presented in Figure 8.

Functionality Ffsfe

Ffsfe proceeds as follows, running with parties P1, . . . , Pn and an adversary S, and parametrized by
an n-party function f : ({0, 1}∗)n×{0, 1}∗ → ({0, 1}∗)n. For every Pi initialize an input value xi = ⊥
and an output value yi = ⊥.

• Upon receiving a message (input, sid, v) from some party Pi, set xi = v and send a message
(input, sid, Pi) to S.

• Upon receiving a message (output, sid) from some party Pi, do:

1. If xj = ⊥ for some honest Pj , ignore the message.
2. Otherwise, if y1, . . . , yn have not been set yet, then choose r ∈R {0, 1}∗ and compute

(y1, . . . , yn) = f(x1, . . . , xn; r).
3. Generate a delayed output (output, sid, yi) to Pi and send (output, sid, Pi) to S.

Figure 8: The secure function evaluation functionality
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