
1

Testing the Trustworthiness of IC Testing:
An Oracle-less Attack on IC Camouflaging

Muhammad Yasin†, Ozgur Sinanoglu‡ and Jeyavijayan (JV)ξ Rajendran
yasin@nyu.edu†, ozgursin@nyu.edu‡, jv.ee@utdallas.eduξ,

† Electrical and Computer Engineering, NYU Tandon School of Engineering, NY, USA
‡ Electrical and Computer Engineering, New York University Abu Dhabi, Abu Dhabi, U.A.E.

ξ Erik Jonsson School of Engineering & Computer Science, The University of Texas at Dallas, TX, USA

Abstract—Test of integrated circuits (ICs) is essential to ensure
their quality; the test is meant to prevent defective and out-of-spec
ICs from entering into the supply chain. The test is conducted
by comparing the observed IC output with the expected test
responses for a set of test patterns; the test patterns are generated
using automatic test pattern generation algorithms. Existing
test-pattern generation algorithms aim to achieve higher fault
coverage at lower test costs. In an attempt to reduce the size of test
data, these algorithms reveal the maximum information about the
internal circuit structure. This is realized through sensitizing the
internal nets to the outputs as much as possible, unintentionally
leaking the secrets embedded in the circuit as well.

In this paper, we present HackTest, an attack that extracts
secret information generated in the test data, even if the test
data does not explicitly contain the secret. HackTest can break the
existing intellectual property (IP) protection techniques, such as
camouflaging, within two minutes for our benchmarks using only
the camouflaged layout and the test data. HackTest applies to all
existing camouflaged gate-selection techniques and is successful
even in the presence of state-of-the-art test infrastructure, i.e. test
data compression circuits. Our attack necessitates that the IC test
data generation algorithms be reinforced with security. We also
discuss potential countermeasures to prevent HackTest.

I. INTRODUCTION

Fabrication of integrated circuits (ICs) is not an entirely
controlled process; a percentage of the manufactured ICs may
not function as per the design specifications. Distribution of
low-quality ICs could not only result in unreliable consumer
products that jeopardize the reputation of a company, but also
lead to catastrophic failures if the ICs are used in safety-
critical applications. Thorough testing of ICs is essential to
ensure the reliability of electronic products. Each manufactured
IC, therefore, passes through a test that identifies whether the
chip is defective or defect-free. Additionally, many of these
ICs suffer from run-time defects that arise during in-field
operations. Thus, they are often appended with test structures
to enable test on the fly.

Apart from the Boolean logic gates that perform the desired
function, around 5% of gates are added in an IC design to
facilitate IC testing. The cost of IC testing occupies around
20-30% of the overall cost of an IC that includes its design,
fabrication, and testing [1].

Specialized test structures are added to an IC to support
the test conducted at the test facility. These test structures

enable the control and observation of the signals internal to an
IC. Many design-for-testability (DfT) techniques that achieve
high test quality in a cost-effective manner exist [2]. The most
commonly used DfT technique is scan testing [1]. In scan
testing, the flip-flops in the design are connected to form one or
more scan chains that enable access to internal nodes in the IC.
At the test facility, an IC is connected to the Automatic Test
Equipment (ATE), which stores the test data in its memory.
Test patterns are shifted in through the scan chains; the test
responses are shifted out and compared with the expected
responses.

The test patterns and the expected responses are com-
puted using Automatic Test Pattern Generation (ATPG) al-
gorithms [3]. The objective of the ATPG algorithms is to
achieve maximum test quality at minimum test cost, which
includes the DfT hardware, the test data volume, the time
required for testing, and the power consumed during test [1].
Test quality is measured in terms of the fault coverage, which
is the percentage of faults in the circuit that can be detected
by the test data. Effectively, scan-based test structures turn
every flip-flop into a one-bit input-output unit during testing,
(1) enabling the use of computationally-efficient combinational
ATPG algorithms to generate test data on sequential designs,
and (2) attaining high test quality as well.

G5

G6G4
G2

I1
I2

I3

I4
I5

O1

O2

G3 = ?
Secret:NAND

1
1

0

0
1

1

1/0

s-a-1
0/1

1

G1
0

1

Fig. 1. A test vector to detect the G4 stuck-at-1 fault. ‘1/0’ at the output
O2 indicates that the circuit output for fault-free/defective circuit are 1 and
0, respectively. The test vector 11001 along with the expected response 11
is provided to the test facility to test all the manufactured ICs (by a test set
including this test vector). The test data implies that G3 cannot be NOR.

Test data, generated under the assumption that the target
IC contains test structures that deliver deep access into the
design, naturally embeds critical information about the design.
An attacker in the test facility can therefore maliciously extract
design secrets by exploiting test data, though such secrets are

2

 Test facility /OSATFoundry

Original

netlistLogic

synthesis
Physical

synthesis
Fabrication

Functional ICSystem

specs.

Original

layout IC

Camouflaged

layoutIC

camouflaging

Test

data

Camouflaged

netlist Reverse

engineering

Test Deployment Final product

Attack
ATPG

Design house

Correct assignment revealing

original functionality

Fig. 2. IC camouflaging in the IC design flow. The test data generated during ATPG is sent to the test facility and used during the test. An adversary in the
test facility can misuse data to compromise the security of IC camouflaging.

TABLE I. DEFINITION OF KEY TERMS USED.

Term Description
Original netlist A network of Boolean gates obtained after logic synthesis. ATPG is conducted on the original netlist to generate test data.
Original layout The geometric (GDS-II) representation of the original netlist that is obtained after physical synthesis.
Camouflaged layout Selected gates in the original layout are replaced with their camouflaged counterparts to create camouflaged layout.

Functional IC The ICs that pass the manufacturing test conducted at the test facility. These ICs are deployed in electronic products. The
scan infrastructure of these ICs may be locked.

Camouflaged netlist The gate-level netlist obtained after imaging-based reverse engineering a functional IC. The functionality of camouflaged
gates is unknown in this netlist.

Correct assignment
An assignment refers to functionality assigned to the camouflaged gates (see Section III-B for an illustrative example). On
correctly assigning the functionality of all the camouflaged gates in the camouflaged netlist, the camouflaged netlist becomes
functionally equivalent to the original netlist.

not explicitly embedded in the test data.
Example: Figure 1 provides a circuit along with one test

vector and its response. This test vector was generated for a
particular fault in the netlist, but can be misused by the test
facility to unveil the type of the gate G3 (design secret: NAND)
that the IP owner wants to protect. For example, the adversary
can easily rule out the possibility of G3 being a NOR gate,
as that would result in an expected response of 10 rather than
11.

In this work, we describe why the test data can implicitly
embed design-critical information and how it can be misused
to undermine the security of the chip. More specifically, we
demonstrate how an attacker can extract secret information
using the test data; we call our attack HackTest. We demon-
strate HackTest using IC camouflaging as a case study [4]–
[7]. IC camouflaging is a technique that companies use to
prevent layout-level reverse engineering. Figure 2 depicts IC
camouflaging in the context of IC design, manufacturing, and
test.

A. Attack Model and Assumptions

The cost of owning and maintaining a foundry has be-
come expensive, forcing many design companies to outsource
their fabrication process to foundries. Such outsourcing has
introduced several security vulnerabilities, including hardware
Trojans, reverse engineering, and piracy. Over the last decade,
a gamut of solutions has been developed to detect and/or
prevent attacks from a rogue element in the foundry [8]–[11].

Similar to outsourcing fabrication, many design companies
have been outsourcing their testing and assembly phases to
offshore companies, such as Amkor [12], ASE [13], SPIL [14],
and STATS ChipPAC [15]. These companies are distributed
throughout the globe. Unfortunately, the security implications
of untrusted testing facilities have not been analyzed in great

detail. In this paper, we analyze security implications of un-
trusted testing facilities on an IP protection technique, namely,
IC camouflaging.

In IC camouflaging, the design secret is the functionality
of the camouflaged gates. The technique assumes that the
foundry is trusted and needs its cooperation to fabricate chips
with camouflaged cells built in. IC camouflaging assumes that
entities in the supply-chain post-fabrication are untrusted; IC
end-users have been best suited for reverse engineering an IC.
We define the important terms used throughout the paper in
Table I.

In our threat model, the attacker or his/her accomplice is
a rogue element in the test facility, consistent with the IC
camouflaging threat model, with access to:
1) The camouflaged netlist obtained by reverse engineering

the target IC; tools/techniques are available for this pur-
pose [6], [7], [16].

2) Test stimuli and responses leaked from/by the test facility.
Table II highlights the assets needed by each of the IC
Camouflaging attacks.

TABLE II. ASSETS EACH ENTITY HAS ACCESS TO AND
CAMOUFLAGING ATTACK CLASSIFICATION BASED ON ACCESS TO THE

REQUIRED ASSETS. ASSET REQUIRED (NOT REQUIRED) FOR AN ATTACK IS
MARKED WITH A 3 (7).

Entity Test facility End-user Reverse Engineer
Asset Test data Functional IC Camouflaged netlist
Sensitization [17] 7 3 3
DeCamo [18], [19] 7 3 3
HackTest 3 7 3

B. Why HackTest is More Dangerous
All attacks, including the previous ones [20], [18] as well

as the proposed attack, need the reverse-engineered (camou-
flaged) netlist for simulations. While previous attacks on IC

3

camouflaging [20], [18] have used the functional IC as oracle
assuming physical access to the test structures on the IC,
HackTest uses only the test data, which already contains the
fruits of such access; test data is generated by the designer
with deep access into the netlist. Yet HackTest does not require
physical access to the test structures on the IC, which are often
times protected.

Physical access to the chip through its test infrastruc-
ture is available only at the test facility, as this access is
blocked/restricted upon the completion of the test. Therefore,
this leaves the existing attacks with a limited window of
opportunity, during which it is very difficult to obtain the
reverse-engineered netlist. First, all tested chips, failing or
passing, must be returned to the designer, resulting in no
chips to reverse engineer. Second, by the time the chips are
available in the market and one can be obtained for reverse
engineering, it is too late to launch the attack as the access
to test infrastructures is no longer available, i.e., the window
of opportunity has already expired. The simultaneous access
to oracle (working chip) and reverse-engineered netlist that
the existing attacks need is therefore unrealistic; the existing
attacks are difficult to launch.

The proposed attack, on the contrary, has no deadlines,
as it does not require physical access to the chips (or its
test infrastructure). All it needs is test data in addition to
the reverse-engineered netlist that contains camouflaged gates.
When the reverse-engineered netlist becomes available, which
can be long after the testing of chips has been completed
by the test facility, the leaked test data can be used to
successfully obtain the functionality of the camouflaged gates.
The proposed attack is therefore more flexible and realistic.

C. Contributions
The contributions of this paper are:

1) We highlight the security vulnerabilities associated with the
test data and the ATPG algorithms. We show that HackTest
can break camouflaged benchmark circuits of realistic logic
depth within two minutes.

2) We demonstrate that HackTest can extract the correct circuit
assignment for a camouflaged IC:
a) irrespective of the camouflaged gate-selection tech-

nique,
b) even when the tools/algorithms employed for ATPG

and for the attack are different,
c) and despite the presence of industrial scan compression

circuitry, i.e., when applied on compressed test data.
3) We demonstrate potential countermeasures that a designer

can employ in an effort to thwart HackTest, albeit at the
loss of test quality.

II. PRELIMINARIES: TESTING

A. Test Pattern Generation
The test patterns used in IC testing are generated by ATPG

algorithms, which aim to maximize fault coverage. To model
the physical defects, such as a short or an open, various fault

models are used. The most prevalent model is the single stuck-
at fault model. This model assumes that the fault location is
tied to a logical value (0 or 1), and at most a single fault can
be present in the IC.

FF

D

SI

SE FF

D

SI

SE FF

D

SI

SE

Combinational logicPrimary
inputs

Scan in

Scan enable

Clock

Scan out
Q Q Q

0

1

0

1

0

1

... ... Primary
outputs

Scan chain

Fig. 3. An example scan chain with three scan cells. The flip-flops are
configured into scan cells by adding multiplexers at the flip-flop inputs. The
signal SE selects between the shift operation and normal operation.

Detection of a stuck-at fault involves fault activation and
fault propagation. Fault activation necessitates setting the fault
location to a value opposite to that of the stuck-at value, e.g.,
a value of 1 to detect a s a 0 fault. Fault propagation entails
forwarding the effect of the fault along a sensitization path1 to
a primary output. An input-output pattern that detects a given
fault by accomplishing both fault activation and propagation
is referred to as a test pattern.

For example, the G4 s a 1 fault in the circuit shown in
Figure 1 is activated by setting G4 to 0. To propagate the fault
to the primary output O2, G3 must be 1. An input pattern
that detects the fault is 11001. The output O2 will be 1 in the
fault-free circuit and 0 in the presence of G4 s a 1 fault; this
is represented using the notation 1/0. A single test pattern can
detect multiple faults, which are assumed to occur at most one
at a time in the single stuck-at fault model. ATPG algorithms
aim at maximizing the number of faults detected per pattern,
in order to reduce the number of test patterns, and hence, the
volume of the test data and test time.

While the traditional ATPG algorithms, such as D-algorithm,
PODEM, and FAN, have focused on structural properties of a
circuit [1], modern ATPG algorithms make use of techniques
such as Boolean satisfiability [21]. The ATPG algorithms can
be applied directly and scale well for combinational circuits;
however, the computational complexity of these algorithms
increases significantly for sequential circuits, where it is dif-
ficult to control and/or observe internal signals because of
the presence of memory elements. Specialized DfT structures,
such as scan chains, are inserted in the sequential circuits to
improve the controllability and observability of the internal
signals, enabling efficient ATPG.

B. Scan-Based Testing
DfT structures are inserted in an IC, early in the design

cycle, to enable high-quality testing. The most commonly
deployed DfT structures are the scan chains. In scan testing,
the flip-flops in a design are reconfigured as scan cells.
Effectively, every flip-flop is controllable and observable via

1Sensitization of a net to an output denotes the bijective mapping between
the two.

4

C
om

pressor

D
ec

om
pr

es
so

r

Scan chains

ATE

Circuit under test

Compressed
test stimulus

Compressed
test response

Fig. 4. Test data compression and decompression to reduce test data volume.
Single channel supports five scan chains; CR = 5.

shift operations. Consequently, test generation algorithms can
treat the flip-flops as inputs and outputs; the sequentiality is
therefore eliminated, enabling the use of combinational test
generation algorithms at reduced computational complexity.

As shown in Figure 3, each scan cell comprises a flip-flop
and a multiplexer. The select line of the multiplexer, scan
enable (SE) signal, decides the inputs to the flip-flops. When
SE = 1, the flip-flops behave as a shift register, and each flip-
flop is loaded with the output value of the previous flip-flop in
the scan chain. Test operations involve 1) scanning in the test
pattern, 2) capturing the response of the combinational logic
into scan cells, and 3) scanning out the captured response.
The scanned-out response is then compared with the expected
response to decide whether the IC is defective or functional [1].

C. Test Compression
The test patterns are applied to the IC using an ATE. For

larger designs, test data volume and the ATE pin count can
become enormous, adding to the overall production cost. On-
chip compression and decompression circuitry are used to
reduce the pin count and the test data volume. Scan chains are
accessed through the compression and decompression circuits,
which reduce the test data volume and test time. As shown in
Figure 4, the decompressor decompresses the stimulus coming
from the tester and broadcasts/spreads it to the scan chains; the
compressor compresses the responses prior to sending them to
the ATE [22]. Various test compression schemes are available,
which include code-based and linear schemes [22]. Linear
schemes employ only XOR-networks and Linear Feedback
Shift Registers (LFSRs).

The compression ratio, CR, is denoted as the ratio of
the number scan chains to the number of input (or output)
pins attached to the tester. In every cycle, the compressor
compresses the response in one group of scan cells, while the
decompressor simultaneously expands compressed stimulus
into one group of scan cells. This group of scan cells is referred
to as a scan slice. The number of scan slices is referred to as
the scan depth.

While test compression reduces the test data volume, it
also leads aliasing and encodability problems due to reduced
controllability and observability [23], [24]. Aliasing refers to

the phenomena where the compressor maps multiple responses
onto the same value, leading to a lossy compression; a
reduction in the fault coverage is the end result as faulty
responses corresponding to some of the faults can no longer be
differentiated from the expected responses at the output of the
decompressor [23]. On the decompressor side, uncompressed
test stimulus is computed as a linear combination of the input
bits (i.e., compressed stimulus). As a consequence, certain
input patterns may not be encodable through the decompressor.
Because of the exclusion of the unencodable input patterns
from the test input space, certain faults may remain undetected,
resulting in a loss of fault coverage [25]. Consequently, test
compression-induced controllability and observability loss re-
flects into test quality loss; this loss increases for larger CR
values (more aggressive compression).

III. PRELIMINARIES: IP PROTECTION

A. Reverse Engineering
IP piracy is a major concern for the semiconductor in-

dustry, which loses billions of dollars each year due to IP
infringement [26]. A major enabler for IP piracy attacks is
reverse engineering [27], [28]. Reverse engineering an IC
involves de-packaging, delayering and imaging the individual
layers, annotating the images, and extracting the netlist of
the design [27]. Reverse engineering can identify IC’s func-
tionality, the device technology used in the IC, or its design
features [27]. Many commercial ICs, such as TI 4377401
baseband processor an Intel’s 22nm Xeon processor, have
been reported to be successfully reverse engineered [6], [7].
Commercial and open-source tools for reverse engineering are
available [29], [16].

B. IC Camouflaging
IC camouflaging is a layout-level countermeasure against

imaging-based reverse engineering [4], [5]. It introduces cells
that look alike from the top view, but can implement one
of many functions. On reverse engineering a camouflaged
IC, an attacker cannot infer the correct functionality of the
camouflaged cells by inspecting the layout through imaging
techniques [27]. Selected gates in the layout can therefore
be replaced with their camouflaged counterparts in order to
generate ambiguity for a reverse engineer. Camouflaged cells
incur higher area, power, and delay overhead over their regular
counterparts, thus constraining the number of gates that can be
camouflaged [20].

IC camouflaging can be performed by using dummy con-
tacts [4], filler cells [5], or diffusion programmable standard
cells [30], [31]. IC camouflaging using dummy contacts is
illustrated in Figure 5, where each camouflaged cell can
implement one of two functions: NAND or NOR.

Example. An example of a camouflaged circuit is shown
in Figure 6. The original circuit is denoted as Corig, and
its camouflaged version as Ccamo. Both Corig and Ccamo
have n inputs and m outputs. L represents the set of possible
functionalities that a camouflaged gate can implement. k
denotes the number of gates that have been camouflaged.

5

(a) (b) (c) (d)

Fig. 5. Layout of typical 2-input (a) NAND and (b) NOR gates. The metal
layers look different from the top, and it is easy to distinguish by visual
inspection. Camouflaged layout of 2-input (c) NAND and (d) NOR gates [20].
The metal layers are identical, and the two gates cannot be distinguished from
the top view. Source: [20].

G1#

G2#

G3#

Gates#to##
camouflage

I0
I1

I2
I3

Y

(a)

G1#

G2#

G3#

I0

I1

Y

I2

I3

(b)

Fig. 6. a) Original circuit Corig , b) Camouflaged circuit Ccamo, with
each gate implementing either NAND or NOR. Gates in red depict the actual
functionality. Source: [18].

For Ccamo in Figure 6, n = 4, m = 1, and k = 3. Further,
L = {NAND,NOR}, i.e., a camouflaged gate will be either a
NAND or a NOR. The correct function of each camouflaged
gate is illustrated in red.

The number of possible functions that Ccamo can implement
is |L|k, only one of which is the function implemented by
Corig

2. An assignment refers to the mapping of a function
from the set L to one of the camouflaged gates in Ccamo.
The set of assignments to all the camouflaged gates in Ccamo
is referred to as a circuit assignment. A circuit assignment
that leads to a correct circuit output for all inputs i, i.e.,
∀i ∈ {0, 1}n, Ccamo(i) = Corig(i), is referred to as a cor-
rect circuit assignment3. In Figure 6(b), (NAND,NOR,NAND)
is the correct circuit assignment for the camouflaged gates
(G1, G2, G3), respectively.

C. Camouflaged Gate-selection Techniques
An important step in IC camouflaging is to select the gates

to be camouflaged. Random selection (RS) of gates is not
secure [20] (elaborated in Section III-D). To increase security,
clique-based selection (CBS) camouflages a set of gates such
that the output of a camouflaged gate in the set cannot
be sensitized to an output without accounting for the other
camouflaged gates in the set; this set of camouflaged gates is
referred to as a clique [20]. Output corruption-based selection

2Here, we do not consider the associative, commutative, and distributive
properties of the functions.

3An assignment that is not correct is referred to as an incorrect assignment.

(OCS) maximizes the corruption at the circuit’s output when
an attacker makes a random circuit assignment, by selecting
gates that have high impact on circuit’s outputs. CBS and OCS
can be integrated to maximize both clique size and output
corruptibility, resulting in OCS+CBS [20].

D. Attacks on Camouflaging
Sensitization attack utilizes the VLSI test principle of

sensitization to break random IC camouflaging [20]. Sensi-
tization of a net requires setting the side inputs of each gate
on the path from the wire to the output to their non-controlling
values4. The attack needs (1) a functional IC: the IC that has
passed the manufacturing test, and (2) a camouflaged netlist:
the netlist obtained through reverse engineering the IC. In
the camouflaged netlist (e.g. the netlist shown in Figure 1),
the functionality of the camouflaged cells is unknown. The
attacker analyzes the camouflaged netlist and computes the
input patterns that sensitizes the output of a camouflaged
gate to an output. By applying the computed patterns to the
functional IC and analyzing the responses, the attack can infer
the correct assignment to the camouflaged gates, iteratively.

DeCamo attack breaks all existing camouflaged gate-
selection techniques using Boolean satisfiability (SAT) based
techniques5 [18], [19]. DeCamo attack, similar to the sen-
sitization attack, needs a functional IC and a camouflaged
netlist. DeCamo attack generates and uses discriminating input
patterns (DIP) [18]. Each DIP, when used in conjunction
with the correct output of the functional IC, has the ability
to eliminate one or more incorrect circuit assignments. By
repeatedly applying the DIPs, an attacker can eliminate all
incorrect assignments and find the correct assignment [18],
[19]. The computation of DIPs can be formulated as a Boolean
formula, which can be solved using a SAT solver. In each
iteration of the attack, the Boolean formula grows as new
clauses based on the previous DIPs are appended to it. The
number of DIPs needed for a successful DeCamo attack
depends on the camouflaged circuit under attack and dictates
the attack time.

IV. HACKTEST-V0 – BASIC SCAN

As the ATPG process is dependent on the structure of the
netlist, information about the netlist structure is embedded in
the generated test patterns. A designer who wants to keep
certain nodes in the circuit as a secret is faced with the problem
of information leakage through these test patterns. The existing
ATPG algorithms are not designed to protect design secrets.
Instead, they have been developed to expose/reveal maximum
information about the circuit structure for every test pattern,
so that a high fault coverage can be achieved using a smaller
number of test patterns. The test data is therefore the key
enabler of HackTest.

4The controlling value of a gate, when applied to one of its inputs,
determines the gate output regardless of the values applied to the other inputs
of the gate. The non-controlling value of gate is the opposite of the controlling
value, e.g., 1 for the AND gate and 0 for the OR gate.

5Decamouflaging refers to the identification of the functionality of a
camouflaged gate.

6

A. Threat Model

The attacker has the following capabilities:
1) Access to a camouflaged netlist. The attacker obtains the

gate-level camouflaged netlist by reverse engineering the
target IC. To this end, he/she can use existing reverse-
engineering techniques [6], [7] and tools [16].

2) Information on test structures. From the netlist, he can
identify the test structures: scan chains, compressor, and
decompressor. The structure of scan flip-flops is different
than that of combinational logic gates, thus making them
easier to detect. Furthermore, their connectivity through
wires and buffers reveals the scan-chains.

3) Test stimuli S and responses R. An attacker in the
test facility can access the test stimuli and their expected
responses because the designer has provided them to the
attacker.

B. Attack Methodology

The objective of the attacker is to determine the correct
assignment of the camouflaged circuit using the knowledge of
test data and test structures. To achieve the objective, he/she
performs the following steps:
1) Generate an equivalent gate-level netlist CamoCkt from

the camouflaged netlist Ccamo, where the possible as-
signments to the camouflaged gates are represented using
assignment vector A [18], [19].

2) Apply the test stimuli S as input constraints, the test
responses R as output constraints to CamoCkt, and solve
for the assignment vector A that satisfies the given I/O
constraints and maximizes the fault coverage FC under
the constraints, as represented in Equation 3.

Problem formulation. Let A be the correct assignment
of functionalities to a camouflaged circuit CamoCkt. In this
paper, the type of fault t ∈ {s a 0, s a 1}, while it can easily
be extended for other fault models as well (see Section IX). A
fault fg,t at the output of a gate g of type t is detected, if there
exists an input i for which the outputs of fault-free circuit and
circuit with fault fg,t are different. Detectability of a fault fg,t
is

fdg,t =

{
1 ∃i CamoCkt(i, A, ·)⊕ CamoCkt(i, A, fg,t)
0 otherwise

(1)
The fault coverage FC for the camouflaged circuit with N
gates and T types of faults is

FC =

N∑
i=1

T∑
j=1

fdi,j

N × T
(2)

The attack is an optimization problem: the objective is to
maximize the fault coverage FC with M test stimuli (S) and

responses (R) and described as follows:

maximize FC

subject to CamoCkt(S1, A, ·) = R1

CamoCkt(S2, A, ·) = R2

...
CamoCkt(SM , A, ·) = RM

solve for A

(3)

Equation 3 formulates a system of Boolean equations that
can be solved using techniques such as mixed integer linear
programming. ATPG algorithms are capable of solving a
system of Boolean equations while simultaneously maximizing
fault coverage even in the presence of unknown values; ATPG
is, therefore, a natural candidate for solving the optimization
problem in Equation 3. Here, the unknown values are the
assignments to the camouflaged gates. Computing a set of test
patterns that maximizes the fault coverage in a circuit is an NP-
hard problem [32]. However, practical circuits exhibit certain
structural properties, such as limited circuit depth, that make
it possible to solve the ATPG problem efficiently [33].

The rationale for the attack to be successful is:
1) In ATPG, the objective is to maximize the fault coverage

through minimal amount of test data. ATPG applied on the
original netlist produces test patterns that will maximize the
fault coverage for the correct circuit assignment. The same
set of test patterns may fail to detect certain faults when
an incorrect assignment is made to the circuit, leading to a
reduction in the fault coverage. Thus, an attacker can use
fault coverage as a guiding metric for the attack.

2) In IC camouflaging, the test patterns are generated by
conducting ATPG on the original netlist, as depicted in
Figure 2. Thus, the expected test responses match the
correct IC output and can provide a hint to the attacker in
distinguishing incorrect assignments from the correct one.
Thus, an attacker can use test stimulus-response pairs to
guide the attack.

G5

G6G4
G2

I1
I2

I3

I4
I5

O1

O2

Fig. 7. Camouflaged circuit Ccamo, with each gate implementing either
a NAND or a NOR. Gates in red depict the correct assignment to the
camouflaged gate.

Example. On performing ATPG on the circuit shown in
Figure 7, six test patterns are generated, as listed in Table III;
the corresponding stuck-at fault coverage is 100%.

In the camouflaged circuit shown in Figure 7, two gates,
G1 and G3, are camouflaged using NAND/NOR camouflaged
cells. There are four possible circuit assignments. The correct
assignment is (NAND,NAND). Table IV reports the fault

7

TABLE III. TEST PATTERNS FOR THE NETLIST IN FIGURE 7.

Stimulus (S) Response (R)
10100 10
11010 11
10011 01
11100 00
01101 11
01111 00

coverage for different assignments to the camouflaged gates by
using the test patterns listed in Table III. The attacker computes
the fault coverage using the test stimuli and responses. As
shown in the table, the fault coverage is maximum for the
correct assignment, because the test data has been generated to
maximize fault coverage for the original netlist (i.e., the correct
assignment). Therefore, an attacker can use fault coverage as
a metric to guide his/her attack and extract the correct circuit
assignment.

TABLE IV. FAULT COVERAGE ACHIEVED FOR DIFFERENT
ASSIGNMENTS TO THE NETLIST IN FIGURE 7. CORRECT ASSIGNMENT:

(NAND,NAND).

G1 G2 Fault coverage (%)
NAND NAND 100
NAND NOR 90.9
NOR NAND 90.9
NOR NOR 59.1

C. Computational Complexity of HackTest
Theorem 1: The complexity of HackTest is NP-hard.
Proof: See Appendix 1.

D. Experimental Results
Experimental setup. We performed HackTest on IS-

CAS [34] benchmark circuits and the controllers of
OpenSPARC processor [35]. In the OpenSPARC processor,
fpuDiv is the controller of the floating-point divider, and
fpuIn manages the operands of the floating-point divider.
ifuDcl and ifuIfq are in the instruction fetch unit of
the processor controlling the decoder logic and fetch queue,
respectively. lsuExp, lsuStb, and lsuRw are in the load-
store unit managing the exceptions, store-buffer units, and the
read-write units. These circuits have been used to benchmark
the performance of traditional and modern ATPG tools, as the
circuit structure is representative of the industrial circuits [36].

TABLE V. OUTPUT OF THE NETLIST SHOWN IN FIGURE 7 FOR
DIFFERENT TEST PATTERNS. EACH COLUMN REPRESENTS A CIRCUIT

ASSIGNMENT. THE INCORRECT OUTPUTS ARE SHOWN IN GRAY.

Assignment

Test stimulus NAND,
NAND

NAND,
NOR

NOR,
NAND

NOR,
NOR

10100 10 11 10 11
11010 11 11 11 11
10011 01 01 11 11
11100 00 01 10 11
01101 11 11 11 11
01111 00 01 10 11

(a)

(b)

Fig. 8. Execution time (s) of HackTest-v0 on circuits with a) 64 camouflaged
gates b) 128 camouflaged gates. The attack completes within one minute for
any given circuit.

Table VI lists the circuits used in experiments, number of
gates in each circuit (# gates), and the logic depth of the
circuit. Logic depth denotes the maximum number of gates on
any path between two flip-flops in a circuit. The higher the
logic depth, the higher the complexity of ATPG.

The number of faults for the circuit, the number of test
patterns generated during the ATPG (# patterns) and the
corresponding fault coverage values are also shown, assuming
full scan. It can be noted that the ATPG achieves almost
100% fault coverage in almost all the circuits. The number of
camouflaged gates in each circuit is either 64 or 128. Synopsys
Tetramax ATPG [37] is used to generate the test patterns
during the ATPG phase and to perform the attack described in
Equation 3. Since, in IC camouflaging, the ATPG is performed
on the original netlist, the same set of test patterns will be
generated and sent to the test facility, regardless of the:
• IC camouflaged gate-selection technique, such as RS,

CBS, and OCS,
• technique6 employed for camouflaging, such as dummy

contacts or programmable cells, and
• number of gates camouflaged.
HackTest results. The success of HackTest is measured by

the number of camouflaged gate assignments that are retrieved
correctly. HackTest successfully retrieves the correct as-
signment for 100% (64 out of 64, and 128 out of 128)
of the camouflaged gates in each circuit, irrespective of
the camouflaged gate-selection technique. This is because

6Although camouflaged cells have different physical structures compared
to standard cells, test generation algorithms/tools target faults on the circuit
wires. Thus, the same test data is generated irrespective of the camouflaged
cell structures.

8

TABLE VI. STATISTICS OF THE BENCHMARKS.

Benchmark # gates Logic depth # faults # patterns Fault coverage (%)
s5378 1110 21 7012 245 99.9
c5315 1252 30 7770 118 99.9
c7552 1290 48 7820 165 99.4
s9234 1573 27 9672 331 99.9
fpuDiv 1197 34 6836 181 100
fpuIn 916 37 5234 124 100
ifuDcl 771 40 4384 110 100
ifuIfq 2027 36 11290 267 100

lsuExp 936 42 5640 168 100
lsuStb 1360 38 7566 174 100
lsuRw 899 26 5338 65 100

HackTest exploits the principle behind the ATPG algorithms,
i.e., maximizing fault coverage.

The execution time of HackTest is shown in Figure 8 for
circuits with 64 and 128 camouflaged gates. The execution
time is less than a minute for all the circuits, though it varies
across the benchmarks and for different camouflaged gate-
selection techniques. The attack is formulated as a constrained
optimization problem; the execution time of the attack depends
on the number of patterns (shown in Table VI), which dictates
the number of constraints. The execution time for s9234 is
the highest as its number of test patterns is also the highest.
The circuit ifuIfq, which has the highest number of gates
and the second highest number of test patterns, has the second
highest execution time.

As the number of camouflaged gates is increased from 64 to
128, HackTest’s execution time increases by 24% on average.
The maximum increase is observed for circuits camouflaged
with the CBS technique — 44% on average; in CBS, cam-
ouflaged gates maximally interfere each other, resulting in
linearly inseparable constraints.

E. Special Case: Attack ATPG 6= Test Generation ATPG
In practical scenarios, the attacker does not know which

ATPG tool has been used for test pattern generation, or an
attacker may not have access to the same ATPG tool. To
illustrate the effectiveness of HackTest in these scenarios, we
generated test patterns using Atalanta, an open-source ATPG
tool [38], and performed HackTest using Synopsys Tetramax
ATPG [37]. HackTest is again successful on 100% of the
circuits. The execution time of HackTest for circuits with 128
camouflaged gates is shown Figure 9. The ratio of execution
time of HackTest when performed using Atalanta and when
performed using Tetramax is around 0.9 for most circuits,
indicating that the attack time slightly decreases. This is
because, compared to Tetramax, Atalanta generates fewer test
patterns, as listed in Table VII.

V. HACKTEST-V1 – TEST COMPRESSION

A. Threat Model
Till now, we assumed that the attacker has access to raw test

data that is loaded to the IC. Modern ICs employ compressor
and decompressor circuits at the start and the end of the scan
chains. Thus, HackTest needs to be modified to operate on the
compressed test data.

s5378
c5315

c7552
s9234

fpuDiv
fpuIn

ifuDcl
ifuIfq

lsu
Excp

lsu
Stb

lsu
Rw

0.0

0.4

0.8

1.2

1.6

R
a
ti

o
 o

f
e
x
e
c.

 t
im

e

RS

OCS

CBS

OCS+CBS

Fig. 9. Execution time of HackTest-v0 for test patterns generated using
Atalanta normalized with respect to the execution time when the patterns are
generated using Tetramax. The attack is launched using Tetramax.

The compressor and decompressor structures are public
knowledge and can be identified easily [1]. Having proprietary
test infrastructure does not guarantee security, as even such
structures have been successfully reverse engineered [39]. Let
C and D be the compressor and decompressor functions,
respectively, obtained by reverse engineering these structures.
Now, detectability of a fault fg,t is

fdg,t =


1 ∃i C(CamoCkt(D(i), A, ·))⊕

C(CamoCkt(D(i), A, fg,t))

0 otherwise

(4)

B. Attack Methodology
As explained in Section II-C, the decompressor and the

compressor lead to controllability and observability loss, which
degrades test quality. From the attacker’s perspective, the
decompressor poses no inconvenience, as it can be reverse
engineered, and the uncompressed data that the scan chains
receive can be computed from the compressed stimuli. The
attacker can therefore perform the attack as if decompressor
was absent. The compressor, on the other hand, hampers the
attack. The secret that the test data leaks is transformed by the
compression operation, resulting in an extra effort for the at-
tacker. The attacker has to effectively consider the compressor
as part of the netlist under attack. The compressor needs to
be instantiated within the netlist as many times as the number
of scan slices, as response fragments in slices are compressed
individually (for combinational compressors). The attack com-
plexity is therefore expected to increase and the success rate

9

TABLE VII. THE RATIO OF # OF PATTERNS GENERATED BY ATALANTA TO THE # OF PATTERNS GENERATED BY TETRAMAX.

Benchmark s5378 c5315 c7552 s9234 fpuDiv fpuIn ifuDcl ifuIfq lsuExcp lsuStb lsuRw
patterns 0.82 0.75 0.63 0.69 0.72 0.75 0.74 0.74 0.68 0.67 0.63

TABLE VIII. IMPACT OF TEST COMPRESSION ON # PATTERNS. A
COMPRESSION RATIO OF 1 IMPLIES NO COMPRESSION.

Benchmark 1 10 20 30
s5378 245 63 41 30
c5315 118 47 29 18
c7552 165 61 41 28
s9234 331 153 96 61
fpuDiv 181 44 32 21
fpuIn 124 22 19 12
ifuDcl 110 32 17 11
ifuIfq 267 58 44 30

lsuExp 168 52 30 23
lsuStb 174 66 26 17
lsuRw 65 38 28 25

TABLE IX. IMPACT OF TEST COMPRESSION ON FAULT COVERAGE (%).
A COMPRESSION RATIO OF 1 IMPLIES NO COMPRESSION.

Benchmark 1 10 20 30
s5378 99.9 62.0 57.1 53.1
c5315 99.9 73.7 68.8 63.3
c7552 99.4 77.8 69.4 61.0
s9234 99.9 78.2 70.7 60.4
fpuDiv 100 66.0 63.9 55.8
fpuIn 100 49.5 45.4 43.6
ifuDcl 100 68.8 60.9 54.5
ifuIfq 100 51.5 47.8 44.3

lsuExp 100 72.2 60.7 56.3
lsuStb 100 70.9 57.4 51.9
lsuRw 100 82.9 77.8 73.6

is expected to decrease. The more aggressive the compression
(the larger the CR), the more challenging the attack is expected
to become. HackTest constraints in the presence of compressor
and decompressor are ∀

1≤i≤M
C(CamoCkt(D(Si), A, ·)) =

Ri. The rest of the HackTest formulation remains the same.

C. Experimental Results

We used CR values of 10, 20, and 30, and camouflaged
64 gates. The compressor and the decompressor are XOR
networks. The experimental setup is the same as described
in Section IV-D. We first report the number of test patterns
and the fault coverage as a function of CR; these parameters
are independent of camouflaged gate-selection techniques. Ta-
ble VIII presents the number of test patterns generated for dif-
ferent values of CR, and Table IX presents the corresponding
fault coverage. The trend with more aggressive compression
is a decrease in fault coverage as well as the number of
patterns. The average number of patterns is 177, 57, 36, and
14 for compression ratio of 1, 10, 20 and 30, respectively. The
corresponding average fault coverage is 99.9%, 68.5%, 61.8%,
and 56.2%, respectively.

Table X lists the attack success when the ATPG and test
are conducted in the presence of scan compression. Attack
success is shown in terms of the number of assignments that
are retrieved correctly by the attack. On average, the attack

retrieves 52 out of 64 assignments for CR = 10. The attack
success reduces drastically for CR values of 20 and 30, with
the average number of assignments retrieved being 32 and
26. This can be attributed to the associated loss in fault
coverage with aggressive test data compression. Thus, the
attack success correlates well with test quality; the higher
the test quality, the higher the attack success rate. OCS [20]
exhibits the highest resistance against the attack. The average
number of assignments retrieved correctly in the case of OCS
is only 30 for CR = 10.

The execution time of the attack, as a function of CR, is
shown in Figure 10. The execution time decreases as CR gets
larger, due to a smaller number of patterns. The execution time,
on average, is the highest for OCS [20].

VI. POTENTIAL COUNTERMEASURE 1: HACKTEST-V2
(ON SECRET-OBLIVIOUS ATPG) – BASIC SCAN

A designer/defender may consider a simple countermeasure
that hides the secret during the ATPG, resulting in test gen-
eration in a secret-oblivious manner. This way, the attacker
will only be able to utilize the input-output constraints driven
by the test vectors and expected responses. In this section, we
evaluate if such a simple countermeasure can thwart HackTest.
We also evaluate the ability of current ATPG tools to support
such countermeasures.

Secret-oblivious ATPG can be performed by hiding the
functionality of the camouflaged gates from the ATPG tool.
They can be black-boxed for this purpose. The ATPG tool then
sets the output of the camouflaged gates to unknown values,
denoted as x’s. The set of test vectors generated in the presence
of x’s will fail to attain the same fault coverage level as that
obtained on the original netlist with all the secrets exposed to
the ATPG tool. Test generation in the presence of unknown x’s,
and the associated controllability and observability challenges
have been well studied and understood in VLSI testing [40].

The example in Figure 11 illustrates the challenging task
of test generation in the presence of the unknown (secret) G3
functionality. The stuck-at-1 fault at the output of G4 remains
undetected, as it cannot be propagated to O2 in the presence
of the unknown generated by G3. The expected response will
be 11 regardless of the functionality of G3, while the faulty
response will depend on G3’s functionality; chips that contain
a defect corresponding to the targeted fault may or may not
be detected depending on G3’s functionality. The ATPG tool
will conservatively assume that the fault remains undetected
and make other attempts to detect it; for this netlist, there is
no test that can detect the G4 stuck-at-1 fault in the presence
of the unknown.

For the same example, the generated test pattern does
not reveal any information about the secret, as the expected
response given to the test facility is 11 irrespective of the
functionality of G3. A test vector that propagates an x to the
output as the expected response, however, leaks information

10

TABLE X. SUCCESS RATE OF HACKTEST-V1. NUMBER OF ASSIGNMENTS (OUT OF 64) RETRIEVED CORRECTLY BY THE ATTACK ON COMPRESSED
TEST DATA FOR DIFFERENT VALUES OF CR.

Benchmark RS [20] OCS [20] CBS [20] OCS+CBS [20]
10 20 30 10 20 30 10 20 30 10 20 30

s5378 43 41 42 58 58 0 52 51 50 54 54 49
c5315 58 0 0 57 0 0 53 53 0 56 50 0
c7552 60 0 0 0 0 0 58 0 0 56 53 0
s9234 62 57 49 62 0 57 63 58 58 57 49 49
fpuDiv 50 53 42 61 59 0 53 0 0 51 51 47
fpuIn 50 43 38 54 0 0 43 0 35 47 33 38
ifuDcl 48 0 43 43 0 35 0 0 0 45 39 36
ifuIfq 48 53 53 57 54 0 54 51 0 46 45 41
lsuExp 60 54 49 63 0 0 54 0 0 50 50 43
lsuStb 53 40 42 50 0 0 53 0 0 49 52 44

100
300

600
10 20 30

s5378
c5315

c7552
s9234

fpuDiv
fpuIn

ifuDcl
ifuIfq

lsuExcp
lsuStb

lsuRw
0

10
20
30
40
50

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

(a)

300
600
900

1200
10 20 30

s5378
c5315

c7552
s9234

fpuDiv
fpuIn

ifuDcl
ifuIfq

lsuExcp
lsuStb

lsuRw
0

50
100
150
200
250

E
x
e
cu

ti
o
n
 t

im
e
 (

s)
(b)

300
600
900

1200
10 20 30

s5378
c5315

c7552
s9234

fpuDiv
fpuIn

ifuDcl
ifuIfq

lsuExcp
lsuStb

lsuRw
0

50
100
150
200
250

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

(c)

100
200
300
400

10 20 30

s5378
c5315

c7552
s9234

fpuDiv
fpuIn

ifuDcl
ifuIfq

lsuExcp
lsuStb

lsuRw

10
20
30
40

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

(d)

Fig. 10. Execution time of HackTest-v1 on compressed test data for different compression ratios. a) RS [20], b) OCS [20], c) CBS [20], and d) OCS+CBS [20].

G5

G6
G4

G2

I1
I2

I3

I4

I5

O1

O2

G3 = ?
Secret:NAND

1
1

0

0

1

1

1/x

s-a-1
0/1

1

G1
0

x

Fig. 11. Secret-oblivious ATPG. G3 is set to an unknown value, denoted as
x. G4 stuck-at-1 remains undetected.

about the secret. The test facility will be provided with the
responses with the x’s turned into known values, so they can
conduct the test; otherwise, x’s in the responses would mask
out defective chips, lowering test quality further.

From the security perspective, the attacker will then be
obtaining a set of test vectors that maximizes fault coverage in
a secret-oblivious manner. This will prevent the attacker from

using the fault coverage maximization criterion to guide the
attack. The test vectors and the expected responses may still
provide useful information to the attacker – if and only if they
propagate secret x’s to the outputs in the expected response –
and can still be used in the form of input and output constraints
to guide the attack.

The threat model is identical to that in HackTest-v0. The
attack formulation, however, is different. The attack problem
becomes a decision problem that solves a set of constraints
with no fault coverage maximization objective as follows.

solve for A

subject to CamoCkt(S1, A, ·) = R1

CamoCkt(S2, A, ·) = R2

...
CamoCkt(SM , A, ·) = RM

(5)

Experimental results. As can be seen in Table XI, HackTest-
v2 is almost 100% successful even with secret-oblivious

11

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
ul

t
co

ve
ra

ge

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

#
 p

at
te

rn
s

s5378
c5315

c7552
s9234

fpuDiv
fpuIn

ifuDcl
ifuIfq

lsuExcp
lsuStb

lsuRw
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
ti

m
e

RS
OCS

CBS
OCS+CBS

Fig. 12. Normalized fault coverage, # patterns, and execution time for
HackTest-v2 on secret-oblivious ATPG. Fault coverage and # patterns are
normalized with respect to the values shown in Table VI. Execution time is
normalized with respect to the time displayed in Figure 8(a).

ATPG. Secret-oblivious ATPG affects the attack success for
some of the circuits, where the number of assignments re-
trieved correctly is less than 64. The reason for the high attack
success is the fact that secret-oblivious ATPG results in a lot
of x’s in the test responses. The designer specifies these x’s
for the test facility so the test can be applied in a meaningful
way, indirectly revealing the design secret in the process.

The fault coverage for secret-oblivious ATPG is shown in
Figure 12, normalized with respect to the fault coverage for
the regular secret-aware ATPG, shown in Table VI. The fault
coverage is 75% or higher in all the circuits, and is sufficient
for the attack success. The same figure also displays the
number of patterns, which is ∼50% of the number of patterns
for regular ATPG.

TABLE XI. HACKTEST-V2 SUCCESS RATE IN TERMS OF NUMBER OF
ASSIGNMENTS RETRIEVED CORRECTLY (OUT OF 64).

Benchmark RS [20] OCS [20] CBS [20] OCS+CBS [20]
s5378 64 64 64 64
c5315 64 64 64 64
c7552 63 64 64 60
s9234 60 64 64 63
fpuDiv 60 64 64 62
fpuIn 62 63 64 61
ifuDcl 63 64 62 59
ifuIfq 63 64 64 64

lsuExp 61 62 64 61
lsuStb 58 64 64 63
lsuRw 64 64 64 64

VII. POTENTIAL COUNTERMEASURE 2: HACKTEST-V3
(ON SECRET-OBLIVIOUS ATPG) – TEST COMPRESSION

Unknown x’s produced in a test compression environment
further exacerbate the test quality loss [40]. When the attack
is performed on a compressed test set produced in a secret-
oblivious manner, the attack complexity is therefore expected
to increase, lowering the attack success rate. The threat model
is identical to that in HackTest-v1; however, the attack is a
decision problem, rather than an optimization problem, as
there is no fault coverage metric guiding the attack. The
following constraints replace the ones in Equation 5:

∀
1≤i≤M

C(CamoCkt(D(Si), A, ·)) = Ri.

Experimental results. Table XII lists the impact of secret-
oblivious ATPG on fault coverage for compressed test data.
For some designs, the fault coverage is zero, indicating that
the constraints imposed on the ATPG to hide the secret are
so restrictive that the ATPG is unable to detect any fault in
the circuit. The number of patterns is also zero in these cases,
and the attack is not successful as shown in Table XIII; the
ICs cannot be tested either, and thus it is of no use to the
designer. For CR = 10, the attack can retrieve 37 (out of
64) assignments, on average, compared to 51 assignments in
the case of secret-aware compression-based ATPG (HackTest-
v1). For the same CR value, the fault coverage achieved, on
average, is only 56.0%, as compared to 68.1% for secret-aware
compression-based ATPG.

VIII. COMPARISON WITH EXISTING ATTACKS

Beyond the limitations explained in Section 1.2, the sensi-
tization and DeCamo attacks have several other limitations, as
listed in Table XIV.
• Sequentiality. Neither the sensitization nor DeCamo attack

is efficient on sequential circuits, even though their effective-
ness has been illustrated on combinational circuits. These
attacks have not been applied on sequential circuits, al-
though most of the real-world designs are sequential circuits.
To make these attacks applicable, design sequentiality can
be overcome in two ways, each leading to a fundamental
problem for the sensitization and DeCamo attacks.
To eliminate sequentiality, these attacks can unroll the
sequential circuit d+ 1 times, in a way similar to bounded
model checking, where d is the diameter of the finite state
machine (FSM) of the circuit [18]. However, an attacker,
who is trying to decamouflage a circuit does not know the
circuit FSM and consequently the value of d. Extracting
the FSM for a sequential circuit from its netlist is an NP-
complete problem [41]. d can be large in sequential circuits.
As the circuit has to be unrolled d times, DeCamo and
sensitization attacks do not scale well for sequential circuits.
Moreover, the exact value of d is often computationally
infeasible to determine and needs a QBF solver [42]. Ap-
proximations using recurrence diameter (rd) as upper bound
on d are typically used. However, even computing rd for
large circuits is NP-complete and computationally infeasible
for large circuits even with use of heuristic approaches [43].

12

TABLE XII. FAULT COVERAGE FOR SECRET-OBLIVIOUS ATPG. A FAULT COVERAGE VALUE OF ZERO INDICATES THAT NO FAULTS COULD BE
DETECTED IN AN ATTEMPT TO HIDE THE SECRETS.

Benchmark RS [20] OCS [20] CBS [20] OCS+CBS [20]
10 20 30 10 20 30 10 20 30 10 20 30

s5378 64.7 59.3 31.3 60.3 0 0 62.4 44.7 0 63.4 57.1 0
c5315 63.6 50.4 39.5 31.2 0 0 52.7 36.1 0 63.0 57.9 0
c7552 67.5 45.0 49.8 58.5 48.4 0 56.5 47.7 0 70.5 47.7 37.7
s9234 70.6 64.7 34.8 54.6 37.9 0 57.4 0 0 74.4 61.9 0
fpuDiv 62.0 56.8 38.0 44.2 0 0 53.6 0 0 62.8 46.3 0
fpuIn 39.6 28.4 0 20.8 0 0 37.9 0 0 32.1 25.0 0
ifuDcl 50.8 36.7 0 38.9 31.1 0 38.0 16.3 0 47.6 0 0
ifuIfq 53.8 50.2 36.9 48.8 0 0 52.5 45.1 0 52.3 48.8 0
lsuExp 68.8 44.9 45.1 45.6 22.4 22.4 53.0 0 0 66.5 54.9 0
lsuStb 56.5 47.9 36.1 53.2 36.0 36.0 56.3 37.4 0 55.8 45.7 36.0
lsuRw 82.0 72.8 38.5 66.4 36.6 0 76.9 42.1 0 74.5 36.3 0

TABLE XIII. HACKTEST-V3 SUCCESS RATE IN TERMS OF NUMBER OF ASSIGNMENTS RETRIEVED CORRECTLY (OUT OF 64).

Benchmark RS [20] OCS [20] CBS [20] OCS+CBS [20]
10 20 30 10 20 30 10 20 30 10 20 30

s5378 43 39 37 57 0 0 52 0 0 51 46 39
c5315 54 43 34 40 0 0 52 0 0 52 0 37
c7552 51 31 27 0 0 0 0 31 0 51 25 32
s9234 53 52 49 0 0 0 59 0 0 56 46 45
fpuDiv 53 43 41 51 0 0 46 0 0 49 44 0
fpuIn 45 38 0 39 0 0 37 0 0 40 31 0
ifuDcl 39 37 0 29 0 0 31 34 0 35 0 0
ifuIfq 47 50 41 56 0 0 55 0 0 46 43 39
lsuExp 49 44 43 0 0 40 48 0 0 50 45 29
lsuStb 48 41 36 55 0 35 50 40 0 45 44 33
lsuRw 53 45 0 0 0 0 44 0 0 57 37 0

TABLE XIV. COMPARISON WITH RELATED WORK

Technique Sequentiality No. of Divide & Oracle
ICs Conquer Access

Sensitization [20] Yes 2+ No Yes
DeCamo [18] Yes 2+ No Yes

This work No 1 Yes No

• Blocked access to test structures. The sequentiality prob-
lem can also be overcome by gaining physical access to the
scan chains. An attacker with such access can consider a
sequential circuit as chunks of combinational blocks. How-
ever, modern ICs do not provide unauthorized scan access
to users. Thus, an attacker cannot subvert the sequentiality
problem using scan chains. A HackTest attacker does not
need to record the output from the IC. He only needs test
data and camouflaged netlist. Even if the scan chains are
disabled/locked, the IC can be reverse engineered to obtain
camouflaged netlist.
Our attack does not require oracle (input-output) access to
the IC (or its scan chains), but rather uses the test data,
which has been given to the malicious test facility and
generated for the camouflaged design with the scan access.

• Number of ICs. Sensitization and DeCamo attacks require
at least two camouflaged ICs – one to reverse engineer and
obtain the camouflaged netlist, and the other to apply input
patterns and observe the responses. Camouflaged ICs are
mainly used in defense applications, wherein an attacker
cannot always obtain two ICs. For instance, consider a
camouflaged IC being used in a drone or in a remote sensor.

In most real-life scenarios, an attacker captures only one
copy of an equipment [44]. Thus, the sensitization and
DeCamo attacks do not work in these scenarios. Our attack
requires only one IC and is thus applicable in real-life
scenarios.
• Scalability. Sensitization and DeCamo attacks consider the

design monolithically. When the scan chain is locked, the
sole access they have to rely on is through the primary
inputs and outputs. These attacks do not scale well for
modern designs, which have millions of gates, as the attacks
are NP-hard problems [18]. On the contrary, our attack
HackTest can employ a modular approach enabled by the
test structures. Test structures, such as test wrappers, usually
divide a large design into multiple isolated blocks (i.e.,
cores) to facilitate concurrent testing, thereby reducing test
time and test power [45]. Thus, although our attack is an
NP-hard problem, it can operate independently on test data
fragments, each generated for testing a core. HackTest can
thus extract the secret of individual cores independently. In
short, HackTest solves multiple but smaller instances of NP-
hard problems rather than one big NP-hard problem.

IX. DISCUSSION

Differences between the attack patterns used by Hack-
Test and DeCamo. One may consider that HackTest is suc-
cessful as the patterns generated by ATPG and the patterns
generated by DeCamo attack overlap. However, our exper-
iments show that there is no intersection between the two
sets of patterns, each generated with a completely different
objective. The objective of patterns used by the DeCamo attack

13

TABLE XV. FAULT COVERAGE (%) ACHIEVED BY ATPG GENERATED PATTERNS AND DECAMO ATTACK [18] PATTERNS.

Benchmark s5378 c5315 c7552 s9234 fpuDiv fpuIn ifuDcl ifuIfq lsuExcp lsuStb lsuRw Average
ATPG 99.9 99.9 99.4 99.9 100 100 100 100 100 100 100 99.9

D
eC

am
o RS [20] 75.8 80.0 83.9 72.5 75.0 78.8 77.4 69.2 66.9 79.1 72.8 76.4

OCS [20] 62.6 65.8 61.8 64.2 65.1 73.9 66.6 54.2 57.2 58.4 70.4 64.5
CBS [20] 63.9 63.5 70.0 53.3 66.8 73.4 63.8 56.1 51.4 61.8 64.3 64.5
OCS+CBS [20] 75.1 76.4 83.1 72.5 77.4 80.1 77.0 66.1 68.2 79.2 74.8 75.4

TABLE XVI. HACKTEST RESULTS ON CAMOUFLAGED COMPRESSION CIRCUITRY. NUMBER OF ASSIGNMENTS (OUT OF 64) RETRIEVED CORRECTLY BY
THE ATTACK WHEN 32 GATES ARE CAMOUFLAGED IN THE DECOMPRESSOR CIRCUIT AND 32 IN THE ORIGINAL CIRCUIT. CR = 10.

Benchmark s5378 c5315 c7552 s9234 fpuDiv fpuIn ifuDcl ifuIfq lsuExp lsuStb lsuRw
RS [20] 59 61 64 63 59 58 62 60 61 62 60
OCS [20] 63 64 64 59 61 63 64 62 64 62 59
CBS [20] 61 61 0 64 58 62 64 64 62 64 58
OCS+CBS [20] 64 64 62 63 63 61 59 60 62 63 64

is to find assignments to the camouflaged gates, whereas,
the objective of patterns generated by ATPG is to detect
faults at minimal cost. Table XV presents the fault coverage
obtained by the ATPG patterns (independent of camouflaged
gate-selection techniques), and the fault coverage obtained
by DeCamo attack patterns. The average fault coverage for
DeCamo attack patterns is only ∼70% as compared to ∼100%
for the ATPG patterns. Another important difference is that
in DeCamo attack, the attacker generates the attack patterns;
whereas, in HackTest the defender generates the test patterns
using ATPG tools and hands them over to the attacker.

Extending HackTest to other fault models. Multiple fault
models such as stuck-at fault, bridging fault, transition fault
and delay fault model are used in IC testing. Since HackTest
internally uses an ATPG solver, it can accommodate all fault
models that are supported by existing ATPG tools [37]. As an
example, in case of transition faults, two patterns need to be
applied in consecutive clock cycles to detect a single transition
fault. The first pattern initializes the fault location to a value
φ; φ = 0 to detect a slow-to-rise fault, and φ = 1 to detect a
slow-to-fall fault). The second pattern serves to detect a stuck-
at-φ fault in the circuit [46]. To accommodate the transition
fault model, each HackTest constraint will consist of a pair of
test stimuli, and single test response value.

Hiding test responses to prevent HackTest. In an attempt
to thwart misuse of test responses, a designer can choose to
send only the test stimuli (and not the test responses) to the test
facility. The test facility will have to return the test responses of
each chip to the designer who later decides whether the chip
is functional or faulty. In secret oblivious ATPG, the x’s in
the test responses may be left as such, so the attacker cannot
get information about the correct responses. However, none
of these methods thwarts HackTest. The attacker in the test
facility has access to multiple chips, most of which are fault
free (assuming yield is high). The attacker can record the re-
sponses of multiple ICs and find the correct responses through
majority voting. The fact that the ICs are in the test facility for
a limited period does not stop the attacker from recording the
responses of a few ICs; the task is not that time-consuming.
Moreover, each IC has to be tested, and the ATE records the
responses of each IC. Note that the IC may be not be reverse
engineered during the limited window of opportunity available

to the attacker and DeCamo/sensitization attack may not be
launched. When the functional IC is available in the market, the
scan infrastructure will be locked, thus preventing the retrieval
of responses from the scan cells.

Camouflaging compression circuitry. Another counter-
measure against HackTest is camouflaging the compression
circuitry. Table XVI presents the HackTest success rate for the
scenario when 32 gates are camouflaged in the compression
circuitry, and 32 in the original circuit. Our preliminary results
indicate that camouflaging the compression circuity does not
prevent HackTest. It is in fact detrimental for security. Hack-
Test becomes more effective as shown by a high percentage
(∼90%) of assignments retrieved correctly for most of the
circuits, as compared to HackTest-v1 (see Table X), where
all the gates to be camouflaged are selected from the original
circuit.

X. RELATED WORK

Other misuse of test infrastructure. In the past, re-
searchers have also examined how test infrastructure itself can
be misused to jeopardize the security of ICs [47], but from
an entirely different perspective than ours. For example, it
has been demonstrated that the secret keys for cryptographic
algorithms, such as DES and AES, can be leaked through
the use of scan chains [48]. Several scan based attacks and
countermeasures have been developed in the last decade with
an emphasis on the security of hardware implementations of
cryptographic algorithms [49], [47].

While most attacks assume standard, publicly known test
infrastructure such as scan chains, extraction of secrets using
undocumented proprietary test infrastructure has also been
demonstrated [39]. The attacker, at first, extracts the details
of proprietary test infrastructure using reverse-engineering
techniques and later retrieves the secret information stored on
the IC by exploiting the knowledge of the test infrastructure.

The existing research efforts focus only on the security
vulnerabilities of the test infrastructure but do not take into
account the vulnerabilities associated with the test data, i.e.,
the test patterns and the responses, and the ATPG algorithms.
More importantly, they require input-output access to the chip.
HackTest exploits test data instead.

14

Other IP protection techniques. IC camouflaging is one
IP protection technique that prevents reverse engineering by a
malicious user. Split manufacturing is another IP protection
technique that prevents reverse engineering by a malicious
foundry, but not by a malicious user [50]. Logic encryption
thwarts piracy, reverse engineering, and overbuilding at mali-
cious foundry [51], by encrypting the design with a key. Logic
encryption can be broken if the test patterns are generated
with the knowledge of the correct key during ATPG [52], in
a security-oblivious manner. HackTest is the first attack that
exploits the test data to break the IC camouflaging – that
utilizes a trusted foundry model – in realistic settings, i.e.,
with scan compression and different tools used during ATPG
and by the attack.

XI. CONCLUSION

IP protection techniques are becoming essential to thwart
various attacks, such as reverse engineering and piracy. To
deliver the protection they promise, these techniques must be
resilient against attacks.

In this work, we consider IC camouflaging as a case study.
IC camouflaging has been broken via recent attacks, although
these attacks make very strong assumptions, and thus may
be impractical for realistic ICs [20], [18]. The fundamental
assumption for the existing attacks to work is access to scan
chains, which is typically protected. Without this access, the
existing attacks are not applicable to sequential designs due to
complexity and scalability problems.

We propose an attack, HackTest, that does not require oracle
(input-output) access to scan chains. The proposed attack
rather operates on test data, raw or uncompressed, to extract
the design secret. Because the test data is generated by ATPG
tools, under the assumption that deep access to the IC is
delivered by on-chip test structures, an analysis of the test
data effectively provides the same access in a “soft” manner,
i.e., without oracle access.

Over the last few decades, a significant amount of effort has
been invested into ATPG algorithms in order to maximize test
quality. So far, the focus has been on the generation of test data
that “reveals” (the faults) rather than “protects” (the secret).
This is the fundamental reason why HackTest is so effective in
extracting design secrets from the test data. Our experimental
results confirm the success of HackTest in realistic scenarios
ranging from basic scan to compressed scan, and from regular
ATPG to secret-oblivious ATPG. We validate the underlying
reason of HackTest success by observing the close correlation
between test quality and HackTest success. We demonstrate
that without truly incorporating security into ATPG, all the
designer can do is trade test quality for protection against
HackTest. As compromise in test quality is neither desirable
nor acceptable, further research in developing secret-protecting
ATPG algorithms is a must.

REFERENCES

[1] M. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-signal VLSI circuits, vol. 17. Springer
Science & Business Media, 2000.

[2] T. W. Williams and K. P. Parker, “Design for Testability - A Survey,”
IEEE Transactions on Computers, vol. 31, no. 1, pp. 2–15, 1982.

[3] T. Kirkland and M. R. Mercer, “Algorithms for Automatic Test-Pattern
Generation,” IEEE Design and Test of Computers, no. 3, pp. 43–55,
1988.

[4] SypherMedia, “SypherMedia Library Circuit Camouflage Technology.”
http://www.smi.tv/solutions.htm. [Aug 10, 2015].

[5] J. P. Baukus, L. W. Chow, R. P. Cocchi, P. Ouyang, and B. J. Wang,
“Camouflaging a standard cell based integrated circuit,” US Patent no.
8151235, 2012.

[6] Chipworks, “Texas Instruments 4377401 Baseband Processor TSMC
65nm Process Transistor Characterization.” http://www.chipworks.com/
TOC/TI 4377401 TSMC Bb Processor TCR-0703-801 TOC.pdf.

[7] Chipworks, “Intel‘s 22-nm Tri-gate Transistors Exposed.”
http://www.chipworks.com/blog/technologyblog/2012/04/23/
intels-22-nm-tri-gate-transistors-exposed/, 2012.

[8] R. S. Wahby, M. Howald, S. Garg, abhi shelat, and M. Walfish,
“Verifiable ASICs.” Cryptology ePrint Archive, Report 2015/1243,
2015. http://eprint.iacr.org/.

[9] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating UCI:
Building Stealthy and Malicious Hardware,” in IEEE Symposium on
Security and Privacy, pp. 64–77, 2011.

[10] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design Test of Computers, vol. 27,
no. 1, pp. 10–25, 2010.

[11] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intel-
lectual Property Protection and Security,” in USENIX Security, pp. 291–
306, 2007.

[12] M. Berry and G. John, “Outsourcing Test – What are the most valu-
able engagement periods?.” http://www.amkor.com/go/outsourcing-test,
2014. [May 16, 2016].

[13] A. P. Room, “Silicon Laboratories and ASE announce milestone ship-
ment of 10 million tested integrated circuits.” http://www.aseglobal.
com/en/News/PressRoomDetail.aspx?ID=45, 2014. [May 16, 2016].

[14] “Test Overview.” http://www.spil.com.tw/services/?u=2*0, 2005. [May
12, 2016].

[15] “Test Services Overview.” http://www.statschippac.com/en/services/
testservices.aspx, 2005. [May 10, 2016].

[16] Degate. http://www.degate.org/documentation/.

[17] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri IEEE Trans. on
CAD of Integrated Circuits and Systems, 2016. to be published.

[18] M. E. Massad, S. Garg, and M. V. Tripunitara, “Integrated Circuit
(IC) Decamouflaging: Reverse Engineering Camouflaged ICs within
Minutes,” in Network and Distributed System Security Symposium,
2015.

[19] D. Liu, C. Yu, X. Zhang, and D. Holcomb, “Oracle-guided Incremental
SAT Solving to Reverse Engineer Camouflaged Logic Circuits,” in
Design, Automation Test in Europe, pp. 433–438, 2016.

[20] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis
of Integrated Circuit Camouflaging,” in ACM SIGSAC Conference on
Computer and Communications Security, pp. 709–720, 2013.

[21] S. Eggersglüß and R. Drechsler, High Quality Test Pattern Generation
and Boolean Satisfiability, ch. ATPG Based on Boolean Satisfiability,
pp. 59–70. Boston, MA: Springer US, 2012.

[22] N. Touba et al., “Survey of Test Vector Compression Techniques,” IEEE
Design and Test of Computers, vol. 23, no. 4, pp. 294–303, 2006.

[23] K. Chakrabarty, “Zero-Aliasing Space ompaction Using Linear Com-
pactors with Bounded Overhead,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, no. 5, pp. 452–
457, 1998.

[24] I. Bayraktaroglu and A. Orailoglu, “Test Volume and Application Time
Reduction through Scan Chain Concealment,” in IEEE/ACM Design
Automation Conference, pp. 151–155, 2001.

15

[25] O. Sinanoglu, “Align-Encode: Improving the Encoding Capability of
Test Stimulus Decompressors,” in IEEE International Test Conference,
pp. 1–10, 2008.

[26] SEMI, “Innovation is at Risk Losses of up to $4 Billion Annually due
to IP Infringement,” 2008. [June 10, 2015].

[27] R. Torrance and D. James, “The State-of-the-Art in Semiconductor
Reverse Engineering,” in IEEE/ACM Design Automation Conference,
pp. 333–338, 2011.

[28] M. Rostami, F. Koushanfar, and R. Karri, “A Primer on Hardware
Security: Models, Methods, and Metrics,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1283–1295, 2014.

[29] Chipworks, “Reverse engineering software.” http://www.
chipworks.com/en/technical-competitive-analysis/resources/
reerse-engineering-software. [Jan 10, 2016].

[30] M. Shiozaki, R. Hori, and T. Fujino, “Diffusion Programmable Device:
The Device to Prevent Reverse Engineering,” IACR Cryptology ePrint
Archive, p. 109, 2014.

[31] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
Dopant-Level Hardware Trojans,” in Cryptographic Hardware and
Embedded Systems, pp. 197–214, 2013.

[32] B. Krishnamurthy and S. B. Akers, “On the complexity of estimating
the size of a test set,” IEEE Transactions on Computers, no. 8, pp. 750–
753, 1984.

[33] M. R. Prasad, P. Chong, and K. Keutzer, “Why is ATPG Easy?,” in
ACM/IEEE Design Automation Conference, pp. 22–28, ACM, 1999.

[34] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering,” IEEE Design and
Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[35] “Sun Microsystems, OpenSPARC T1 Processor,” http:
//www.opensparc.net/opensparc-t1/ index.html.

[36] I. Polian, C. Miller, P. Engelke, T. Nopper, A. Czutro, and B. Becker,
“Benchmarking Academic DFT Tools on the OpenSparc Microproces-
sor,” in IEEE International Test Conference, pp. 1–1, 2008.

[37] S. U. Manual, “TetraMAX ATPG User Guide,” Version X-2005.09,
pp. 249–264, 2005.

[38] H. Lee and D. Ha, “Atalanta: An efficient atpg for combinational
circuits,” Deptartment of Electrical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, VA, USA, Technical Report,
1993.

[39] M. Kammerstetter, M. Muellner, D. Burian, C. Platzer, and W. Kastner,
“Breaking Integrated Circuit Device Security through Test Mode Silicon
Reverse Engineering,” in ACM SIGSAC Conference on Computer and
Communications Security, pp. 549–557, 2014.

[40] I. Pomeranz, S. Kundu, and S. M. Reddy, “On Output Response Com-
pression in the Presence of Unknown Output Values,” in IEEE/ACM
Design Automation Conference, pp. 255–258, 2002.

[41] A. L. Oliveira, “Robust Techniques for Watermarking Sequential Circuit
Designs,” in IEEE/ACM Design Automation Conference, pp. 837–842,
1999.

[42] D. Kroening, M. Lewis, and G. Weissenbacher, “Proving Safety with
Trace Automata and Bounded Model Checking,” in International Sym-
posium on Formal Methods, pp. 325–341, Springer, 2015.

[43] E. Dubrova, M. Teslenko, and L. Ming, “Finding Attractors in Syn-
chronous Multiple-valued Networks using SAT-based Bounded Model
Checking,” in IEEE International Symposium on Multiple-Valued Logic,
pp. 144–149, 2010.

[44] T. Guardian, “Iran claims to have reverse-engineered US
spy drone.” http://www.theguardian.com/world/2012/apr/22/
iran-reverse-engineer-spy-drone, 2014. [Jan. 10, 2016].

[45] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing Embedded-Core-Based
System Chips,” Computer, vol. 32, no. 6, pp. 52–60, 1999.

[46] M. L. Bushnell and V. D. Agrawal, “Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits,” Kluwer Academic
Publishers, Boston, 2000.

[47] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes, B. Rouzeyre, and I. Ver-
bauwhede, “Test Versus Security: Past and Present,” IEEE Transactions
on Emerging Topics in Computing, vol. 2, no. 1, pp. 50–62, 2014.

[48] B. Yang, K. Wu, and R. Karri, “Scan Based Side Channel Attack on
Dedicated Hardware Implementations of Data Encryption Standard,” in
IEEE International Test Conference, pp. 339–344, 2004.

[49] B. Yang, K. Wu, and R. Karri, “Secure Scan: A Design-for-Test
Architecture for Crypto Chips,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 10, pp. 2287–
2293, 2006.

[50] F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara, “Securing
Computer Hardware Using 3D Integrated Circuit (IC) Technology and
Split Manufacturing for Obfuscation,” USENIX Conference on Security,
pp. 495–510, 2013.

[51] J. Roy, F. Koushanfar, and I. Markov, “EPIC: Ending Piracy of Inte-
grated Circuits,” IEEE Computer, vol. 43, no. 10, pp. 30–38, 2010.

[52] M. Yasin, S. M. Saeed, J. Rajendran, and O. Sinanoglu, “Activation of
Logic Encrypted Chips: Pre-test or Post-test?,” in Design, Automation
Test in Europe, pp. 139–144, 2016.

XII. APPENDIX 1 — COMPLEXITY OF HACKTEST

Lemma 1. A clause ψi in a CNF formula φ can be
represented by an OR gate Gi with output oi. ψi is satisfied
iff oi = 1.

Proof: The clause ψi is a disjunction of mi literals, lij . A
clause is satisfied if at least one of the mi literals evaluates to
1 for a given assignment. Let each literal is represented by a
wire that drives an mi-input OR gate Gi whose output is oi.
Then, oi = 1 iff at least one of the inputs wire takes a value
of 1.

Lemma 2. A s a 0 fault on the output oi of an OR gate Gi
can be detected iff oi = 1.

Proof: According the principle of fault activation in VLSI
testing, the fault location must be set of a value opposite to
the fault. Thus, to detect a s a 0 fault on oi, oi = 1.

Lemma 3. A clause ψi in a CNF formula φ is satisfied iff
a s a 0 fault on the output oi of the OR gate Gi is detected.

Proof: According to Lemma 2, a s a 0 fault on oi is detected
iff oi = 1. According to Lemma 1, ψi can be represented by
an OR gate Gi with output oi, and oi = 1 implies that ψi is
satisfied.

Definition 1. HackTest instance A HackTest instance is a
3-tuple comprising (circuit, fault set, test set). The circuit
has n camouflaged gates whose functionality is unknown.
HackTest is the problem of finding an assignment A that
maximizes the number of faults detected in the fault set for
a given test set.

Definition 2. MaxSAT Consider a CNF formula φ con-
taining N clauses over n Boolean variables x1, x2, . . . , xn:

φ =
N∧
i=1

ψi. The ith clause ψi is represented as:
mi∨
j=1

lij , where

the literal lij is a variable xi or its complement ¬xi.
MaxSAT over the CNF formula φ is the problem of finding

an assignment v that maximizes the number of clauses satisfied
in φ:

max

{
N∑
i=1

‖ψi‖v

∣∣∣∣∣ v ∈ {0, 1}n
}

(6)

16

where, ‖ψi‖v =
{
1, if v |= ψi
0, otherwise

Theorem 1: The complexity of HackTest is NP-hard.
Proof: We show that HackTest is NP-hard by reducing the

MaxSAT problem to HackTest in linear time. The complexity
of MaxSAT is NP-hard. We show mapping from a MaxSAT
instance to individual components of a HackTest instance.
Circuit. The MaxSAT problem φ can be mapped to a

Boolean circuit Cφ in the following way. According to Lemma
1, each clause ψi in φ can be represented as an mi-input OR
gate Gi with output oi, as shown in Figure 13. oi is also the
primary output of the circuit Cφ. There are N OR gates each
corresponding to a clause.

Each variable in φ is represented as a wire in Cφ. If a
variable appears in its true form in a clause, it is connected
directly to an input of the OR gate representing that clause, as
shown in Figure 13. If a variable appears in its complement
form in a clause, it is connected to an inverter whose output is
connected to an input of the OR gate representing that clause.

For each variable xi in φ, a 2-input camouflaged gate
is added. The functionality of the camouflaged gate can be
NAND or NOR. The inputs of the ith camouflaged gate is
z2i−1 and z2i. Its output is xi, which represents a variable in
the MaxSAT problem φ, as shown in Figure 13. Each zi is a
primary input of the circuit Cφ.
Fault set. The fault set consists of s a 0 faults on the

outputs of Cφ. Taking only s a 0 faults into account, the FC

(defined in Equation 2) can be re-defined as FC = 1
N

N∑
i=1

fdi.

...

...

...

...

...
NAND/
NOR

...

NAND/
NOR

NAND/
NOR ...

x1

x2

xn

¬x1

¬x2

¬xn

o1

o2

oN

z1
z2
z3
z4

z2n-1
z2n

Fig. 13. Proof of Theorem 1. Cφ circuit equivalent of CNF formula φ that
reduces the MaxSAT problem to HackTest. Cφ has 2n inputs, N outputs, and
n camouflaged gates. Each OR gate represents a clause in φ.

Test set. For each NAND/NOR camouflaged gate, we can
apply either 10 or 01 as an input since the outputs of NAND
and NOR gates differ only for these input combinations; the
output is 1 for a NAND gate, and 0 for a NOR gate. Thus, the
value of two inputs to a camouflaged gate must be different,
i.e., for the ith camouflaged gate, z2i−1 ⊕ z2i = 1.

Let A be an assignment to the functionality of all camou-
flaged gates in Cφ. HackTest on Cφ is defined as:

maximize FC

subject to ∀
1≤i≤n

z2i−1 ⊕ z2i = 1

solve for A

(7)

The solution to HackTest is an assignment A that leads to
maximum fault coverage for Cφ. Solving for A also solves for
the assignment v in Equation 6, since according to Lemma 3,
a s a 0 fault on oi is detected iff the clause ψi is satisfied.
Thus, fault coverage of Cφ is maximized iff the number of
clauses satisfied in φ is maximized. If the assignment of a
camouflaged gate is NAND in Cφ, the corresponding variable
in φ is assigned 1; if it is NOR, the corresponding variable in
φ is assigned 0. Thus, we can solve a MaxSAT problem by
reducing it to HackTest.

The reduction can be performed in linear time. Replacing
N clauses in φ with N OR gates takes O(N) time; inserting
n NOT gates and n camouflaged gates for each literal takes
O(n) time. Since n ≤ N , the computational complexity of
reduction is O(N).

Complexity of MaxSAT is NP-hard. As MaxSAT ≤P Hack-
Test, the complexity of HackTest is also NP-hard.

